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The dynamic behavior of a two-language competitive model is analyzed systemically in this paper. By the linearization and the
Bendixson-Dulac theorem on dynamical system, some sufficient conditions on the globally asymptotical stability of the trivial
equilibria and the existence and the stability of the positive equilibrium of this model are presented. Nextly, in order to protect
the endangered language, an optimal control problem relative to this model is explored. We derive some necessary conditions to
solve the optimal control problem and present some numerical simulations using a Runge-Kutta fourth-order method. Finally, the
languages competitive model is extended to this model assessing the impact of state-dependent pulse control strategy. Using the
Poincaré map, differential inequality, and method of qualitative analysis, we prove the existence and stability of positive order-1
periodic solution for this control model. Numerical simulations are carried out to illustrate the main results and the feasibility of
state-dependent impulsive control strategy.

1. Introduction

The diversity of cultures is the greatest charm of the human
civilization, and languages are the most important carrier
for culture. In the past decades, with the progress of the
globalization, local tongues are increasingly replaced by
hegemonic languages [1], this trend that has been investigated
from multiple points of view, including that of physics. We
refer to some of them in [2–11] and the references therein.

Perhaps the earliest and simplest mathematical model for
languages shift was developed by Abrams and Strogatz [2],
Patriarca et al. [12, 13], and Stauffer et al. [14].They considered
a stable population in which two languages with different
statuses competed for speakers and predicted that one of the
languages would inevitably die out. The theoretical results
were successfully fitted to historical data on the competition
between Scottish Gaelic and English, Welsh and English, and
Quechua and Spanish, among other language pairings [2].
However, there was nomention of the fact that the possibility
of bilingual individuals might exist, a possibility that is of

course realized in numerous multilingual societies. This is
widely exists in all parts of the world. For example, in Spain,
Castilian Spanish is the official language throughout the state,
but in certain regions it is coofficial with another language
(mainly Galician, Basque, Catalan, or Valencian); individual
bilingualism is common in communities with more than one
official language.

Recently, Mira et al. [8, 15, 16] proposed a modified
Abrams-Strogatz model that allows for bilingual as well as
monolingual speakers of the competing languages and that
includes a parameter that represents the ease of bilingualism.
Themodel is accordingly described by the following differen-
tial equations:

d𝑥
d𝑡

= 𝑦𝑃
𝑌𝑋

+ 𝑏𝑃
𝐵𝑋

− 𝑥 (𝑃
𝑋𝑌

+ 𝑃
𝑋𝐵

) ,

d𝑦
d𝑡

= 𝑥𝑃
𝑋𝑌

+ 𝑏𝑃
𝐵𝑌

− 𝑦 (𝑃
𝑌𝑋

+ 𝑃
𝑌𝐵

) ,

d𝑏
d𝑡

= 𝑥𝑃
𝑋𝐵

+ 𝑦𝑃
𝑌𝐵

− 𝑏 (𝑃
𝐵𝑌

+ 𝑃
𝐵𝑋

) ,

(1)
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where capital letters 𝑋 and 𝑌 denote the two languages
spoken in population; the uppercased letter 𝐵 denotes the
group of bilingual speakers; and the lowercased letters 𝑥, 𝑦,
and 𝑏 (with 𝑥 + 𝑦 + 𝑏 = 1) refer to the fraction of speakers
of each of the languages in population and the fraction of
bilingual speakers, respectively; parameter 𝑃

𝑋𝑌
denotes the

probability of a monolingual speaker of language 𝑋 being
replaced in the population by a monolingual speaker
of language 𝑌, with analogous notation for the other
parameters 𝑃

𝑌𝑋
, 𝑃
𝑋𝐵
, 𝑃
𝐵𝑋

, 𝑃
𝑌𝐵
, and 𝑃

𝐵𝑌
. The probability of

a monolingual person being replaced by mono- or bilingual
speaker of the other language is assumed to be proportional
both to the status of the second language, that is, the social
and/or economic advantages it offers, and to a power of
the proportion of population that speaks it. Thus, denoting
by 𝑠 the relative status of language 𝑋 and by 1 − 𝑠 that of
language 𝑌,

𝑃
𝑋𝐵

= 𝑐𝑘 (1 − 𝑠) (1 − 𝑥)
𝛼
,

𝑃
𝐵𝑋

= 𝑃
𝑌𝑋

= 𝑐 (1 − 𝑘) 𝑠(1 − 𝑦)
𝛼
,

𝑃
𝑌𝐵

= 𝑐𝑘𝑠(1 − 𝑦)
𝛼
,

𝑃
𝐵𝑌

= 𝑃
𝑋𝑌

= 𝑐 (1 − 𝑘) (1 − 𝑠) (1 − 𝑥)
𝛼
,

(2)

where 𝑐 is a normalization factor related to the time
scale, 𝛼 is the power parameter, and 𝑘 is the probabil-
ity that the disappearance of a monolingual speaker of
language 𝑋 (resp., 𝑌) will be compensated for by the appear-
ance of a bilingual rather than by a monolingual speaker
of language 𝑌 (resp., 𝑋). On basis of detailed analysis and
extensive calculations, authors showed that both languages
may coexist and survive in the long term. They pointed
out that it is possible only if the competing languages are
sufficiently similar, in which case its occurrence is favored by
both similarity and status symmetry.

It is generally known that the disappearance of race
languagewill bring the disappearance of race culture, even the
whole disappearance of the corresponding race. The protec-
tion of endangered language has been concerned increasingly
interdisciplinary in different contexts.

Very recently, the dynamical model with optimal control
strategies has become a major topic in mathematical biology
(see [17–23] and the references therein). Particularly, Joshi, in
[18], proposed anHIV immunologymodel with optimal drug
treatment strategies, and the existence and uniqueness results
for the optimal control pair are established. Jung et al. [24]
proposed a two-strain tuberculosis model with two control
terms, and the optimal controls are characterized in terms
of the optimality system. In addition, the state-dependent
impulsive feedback control measure is also applied widely to
the control of spread of infectious disease due to its economic,
high-efficiency, and feasibility nature; see [25, 26] and the
references therein.

Motivated by these facts, in this paper, the dynamic
behavior of two-language competitive model (1) with (2)
is analyzed systemically in Section 2. A set of necessary
conditions that an optimal control and state must satisfy,
are derived in Section 3. In Section 4, we extend model (1)

with state-dependent pulse control measure. Some sufficient
conditions are presented in this section for the existence
and stability of positive periodic solution. Some concluding
remarks are presented in Section 5.

2. Qualitative Analysis for Model (1)
Inserting the parameters formula (2) into model (1) and
taking into account 𝑥 + 𝑦 + 𝑏 = 1, we get the following
reduced model (here, we assume that 𝛼 = 1 throughout the
rest of this paper):

d𝑥
d𝑡
= 𝑐𝑠 (1 − 𝑘) (1 − 𝑥) (1 − 𝑦) − 𝑐 (1 − 𝑠) 𝑥 (1 − 𝑥) := 𝑓

1
(𝑥, 𝑦) ,

d𝑦
d𝑡
= 𝑐 (1 − 𝑘) (1 − 𝑠) (1 − 𝑥) (1 − 𝑦) − 𝑐𝑠𝑦 (1 − 𝑦) := 𝑓

2
(𝑥, 𝑦) .

(3)

By the biological background of model (3), we only
consider model (3) in the biological meaning region Ω =

{(𝑥, 𝑦) : 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 + 𝑦 ≤ 1}.
The following theorem is on the nonnegativity of solution

of model (3).

Theorem 1. The region Ω is positively invariant for model (3).

The proof of Theorem 1 is simple; we, therefore, omit it
here.

Now, we discussed the existence and stability of equilibria
for model (3).The isocline corresponding to d𝑥/d𝑡 = 0 is the
line 𝑠(1 − 𝑘)(1 − 𝑦) = (1 − 𝑠)𝑥. The isocline corresponding
to d𝑦/d𝑡 = 0 is the line (1 − 𝑘)(1 − 𝑠)(1 − 𝑥) = 𝑠𝑦.
Note that two isoclines do not have positive intersection
point for 𝑠 < (1 − 𝑠)(1 − 𝑘) or (1 − 𝑠) < 𝑠(1 − 𝑘) and
have only one positive intersection point for 1 − 𝑘 < (1 −

𝑠)/𝑠 < 1/(1 − 𝑘). Namely, model (3) has only two trivial
equilibria (1, 0) and (0, 1) for 𝑠 < (1 − 𝑠)(1 − 𝑘) or (1 −

𝑠) < 𝑠(1 − 𝑘) and has two trivial equilibria (1, 0); (0, 1) and
a positive equilibrium 𝐸(𝑥

∗
, 𝑦
∗
) for 1 − 𝑘 < (1 − 𝑠)/𝑠 <

1/(1 − 𝑘), where

𝑥
∗

=

(1 − 𝑘) 𝑠 − (1 − 𝑠) (1 − 𝑘)
2

1 − 𝑠 − (1 − 𝑠) (1 − 𝑘)
2

,

𝑦
∗

=

(1 − 𝑘) (1 − 𝑠) − (1 − 𝑘)
2
𝑠

𝑠 (1 − (1 − 𝑘)
2
)

.

(4)

The locally asymptotical stabilities of equilibria are
determined by the eigenvalues of Jacobian matrixes of the
linearization of model (3) around equilibria. It is easy to
calculate that

𝜕𝑓
1
(𝑥, 𝑦)

𝜕𝑥

= −𝑐𝑠 (1 − 𝑘) (1 − 𝑦) − 𝑐 (1 − 𝑠) (1 − 𝑥) + 𝑐 (1 − 𝑠) 𝑥,
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𝜕𝑓
1
(𝑥, 𝑦)

𝜕𝑦

= −𝑐𝑠 (1 − 𝑘) (1 − 𝑥) ,

𝜕𝑓
2
(𝑥, 𝑦)

𝜕𝑥

= −𝑐 (1 − 𝑘) (1 − 𝑠) (1 − 𝑦) ,

𝜕𝑓
2
(𝑥, 𝑦)

𝜕𝑦

= −𝑐 (1 − 𝑘) (1 − 𝑠) (1 − 𝑥) − 𝑐𝑠 (1 − 𝑦) + 𝑐𝑠𝑦.

(5)

Computing Jacobian matrixes from model (3)
around (1, 0), (0, 1), and (𝑥

∗
, 𝑦
∗
), we have that

𝐽
(1,0)

= (

𝑐 (1 − 𝑠) − 𝑐𝑠 (1 − 𝑘) 0

−𝑐 (1 − 𝑘) (1 − 𝑠) −𝑐𝑠
) ,

𝐽
(0,1)

= (

−𝑐 (1 − 𝑠) −𝑐𝑠 (1 − 𝑘)

0 𝑐𝑠 − 𝑐 (1 − 𝑘) (1 − 𝑠)
) ,

(6)

𝐽
(𝑥
∗
,𝑦
∗
)
= (

−𝑐 (1 − 𝑠) (1 − 𝑥
∗
) −𝑐𝑠 (1 − 𝑘) (1 − 𝑥

∗
)

−𝑐 (1 − 𝑘) (1 − 𝑠) (1 − 𝑦
∗
) −𝑐𝑠 (1 − 𝑦

∗
)

) .

(7)

From (6), since (1 − 𝑠) < 𝑠(1 − 𝑘) implies that (1 −

𝑠)(1 − 𝑘) < 𝑠, it follows that the two eigenvalues of 𝐽
(1,0)

are
negative and that one eigenvalue is positive and another one
is negative for 𝐽

(0,1)
when (1 − 𝑠) < 𝑠(1 − 𝑘). Therefore,

model (3) has a locally asymptotically stable node (1, 0) and
a saddle point (0, 1) for (1 − 𝑠) < 𝑠(1 − 𝑘). Furthermore,
since there is not equilibrium in interior of Ω for (1 − 𝑠) <

𝑠(1 − 𝑘), model (3) has no periodic orbit lying entirely in
the interior of Ω. Therefore, (1, 0) is globally asymptotically
stable in the interior of Ω for this case. Similarly, since 𝑠 <

(1 − 𝑠)(1 − 𝑘) implies that 𝑠(1 − 𝑘) < (1 − 𝑠), we also have
that (0, 1) is globally asymptotically stable in the interior
of Ω and (1, 0) is a saddle point for model (3) when 𝑠 <

(1 − 𝑠)(1 − 𝑘).
Consider the eigenvalues of 𝐽

(𝑥
∗
,𝑦
∗
)
; let 𝑇 =

Tr 𝐽
(𝑥
∗
,𝑦
∗
)
and 𝐷 = Det𝐽

(𝑥
∗
,𝑦
∗
)
be the trace and determinant

of 𝐽
(𝑥
∗
,𝑦
∗
)
, respectively. The eigenvalues of 𝐽

(𝑥
∗
,𝑦
∗
)
are

provided by the following characteristic equation:

𝜆
2
− 𝑇𝜆 + 𝐷 = 0. (8)

Note that when (1 − 𝑘) < (1 − 𝑠)/𝑠 < 1/(1 − 𝑘),

𝑇 = −𝑐 (1 − 𝑠) (1 − 𝑥
∗
) − 𝑐𝑠 (1 − 𝑦

∗
) < 0,

𝐷 = 𝑐
2
𝑠 (1 − 𝑠) (1 − 𝑥

∗
) (1 − 𝑦

∗
)

− 𝑐
2
𝑠 (1 − 𝑠) (1 − 𝑘)

2
(1 − 𝑥

∗
) (1 − 𝑦

∗
) > 0.

(9)

Hence, both eigenvalues have negative real part, and,
hence, (𝑥∗, 𝑦∗) is locally asymptotically stable when (1−𝑘) <

(1 − 𝑠)/𝑠 < 1/(1 − 𝑘). Furthermore, when we mention that
model (3) has no periodic orbits, refer to Lemma 3.2 of [16].

To summarize the above discussion, we give some suffi-
cient conditions for the existence and asymptotical stability
of equilibria for model (3).

Theorem 2. For any 𝑘, 𝑠 ∈ (0, 1), one of the following state-
ments is valid.

(a) If (1 − 𝑠) < 𝑠(1 − 𝑘), then model (3) has only
two trivial equilibria (1, 0) and (0, 1), where (0, 1) is
a saddle point and (1, 0) is globally asymptotically
stable in the interior of Ω.

(b) If 𝑠 < (1 − 𝑠)(1 − 𝑘), then model (3) has only
two trivial equilibria (1, 0) and (0, 1), where (1, 0) is
a saddle point and (0, 1) is globally asymptotically
stable in the interior of Ω.

(c) If (1 − 𝑘) < (1 − 𝑠)/𝑠 < 1/(1 − 𝑘), then model
(3) has two saddle points (1, 0), (0, 1) and a globally
asymptotically stable positive equilibrium (𝑥

∗
, 𝑦
∗
).

Remark 3. From Theorem 2 and the equivalence of models
(1) and (3), we obtain that model (1) has a globally asymptoti-
cally stable node (1, 0, 0) and a saddle point (0, 1, 0) for (1 −

𝑠) < 𝑠(1 − 𝑘) and has a saddle point (1, 0, 0) and a globally
asymptotically stable node (0, 1, 0) for 𝑠 < (1 − 𝑠)(1 − 𝑘).
Furthermore, if (1 − 𝑘) < (1 − 𝑠)/𝑠 < 1/(1 − 𝑘), model (1)
has a coexistent equilibrium (𝑥

∗
, 𝑦
∗
, 1 − 𝑥

∗
− 𝑦
∗
) which is

globally asymptotically stable.

Finally, we fix all parameters including 𝑐, 𝑘, 𝑠, and 𝛼 and
carry out numerical investigations to confirm our main
results obtained in this section. Firstly, we choose 𝑘 = 0.5, 𝑠 =

0.7, 𝑐 = 0.5, and 𝛼 = 1; it is easy to calculate that 1 −

𝑠 = 0.3 < 𝑠(1 − 𝑘) = 0.7 × 0.5 = 0.35. So, from the
first conclusion of Theorem 2, we know that model (1) has
only two trivial equilibria (1, 0, 0) and (0, 1, 0), (1, 0, 0) is a
globally asymptotically stable node, and (0, 1, 0) is a sad-
dle point, which is shown in Figure 1(a). It is clear that
language 𝑋 is permanent and language 𝑌 will fade away in
this case. Similar conclusion can be obtained fromFigure 1(b)
with parameters 𝑘 = 0.3, 𝑠 = 0.4, 𝑐 = 0.5, and 𝛼 = 1.
However, if we choose 𝑘 = 𝑠 = 𝑐 = 0.5 and 𝛼 = 1,
then languages 𝑋 and 𝑌 are coexistent and tend to positive
equilibrium as shown in Figure 1(c).

3. The Protection of an Endangered Language
by a Continuous Control Strategy

With the development of human civilization, people have
taken effective measures to prevent the disappearance of lan-
guage. In this section and the following, therefore, model (1)
with parameters (2) is extended to assess the impact of control
measures. And, in general, control strategies are divided into
two main types: continuous control and pulse control. We,
firstly, consider how a continuous control measure affects the
dynamical behavior of model (1) in this section.

Through discussion of Theorem 2 in Section 2, we know
that (i) language 𝑋 is permanent and language 𝑌 and
bilingual speakers 𝐵 are extinct for (1 − 𝑠) < 𝑠(1 − 𝑘) and
that (ii) language 𝑌 is permanent and language 𝑋 and
bilingual speakers 𝐵 are extinct for 𝑠 < (1 − 𝑠)(1 − 𝑘).
Considering the similarities of the two cases, we only need
to consider case (i); that is, (1 − 𝑠) < 𝑠(1 − 𝑘).

3.1. Protecting of Language 𝑌 with Continuous Control for
(1−𝑠) < 𝑠(1−𝑘). We consider model (1) with parameters (2)
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Figure 1:The asymptotical stability of equilibria of model (1) with 𝑐 = 0.5 and 𝛼 = 1: (a) the stability of trivial equilibrium (1, 0, 0) with 𝑘 =

0.5 and 𝑠 = 0.7; (b) the stability of trivial equilibrium (0, 1, 0) with 𝑘 = 0.3 and 𝑠 = 0.7; and (c) the stability of positive
equilibrium (𝑥

∗
, 𝑦
∗
, 1 − 𝑥

∗
− 𝑦
∗
) with 𝑘 = 0.5 and 𝑠 = 0.5.

and continuous control measure. The control system is mod-
eled by the following differential equations:

d𝑥
d𝑡

= 𝑐𝑠 (1 − 𝑘) (𝑦 + 𝑏) (1 − 𝑦) − 𝑐 (1 − 𝑠) 𝑥 (1 − 𝑥) − 𝑐𝜇𝑥,

d𝑦
d𝑡

= 𝑐 (1 − 𝑠) (1 − 𝑘) (𝑥 + 𝑏) (1 − 𝑥) − 𝑐𝑠𝑦 (1 − 𝑦) ,

d𝑏
d𝑡

= 𝑐𝑘 (1 − 𝑠) 𝑥 (1 − 𝑥) + 𝑐𝑘𝑠𝑦 (1 − 𝑦)

− 𝑐 (1 − 𝑘) 𝑏 [(1 − 𝑠) (1 − 𝑥) + 𝑠 (1 − 𝑦)] + 𝑐𝜇𝑥,

(10)

where 𝜇 is a controlled variable, which means that the
fraction of language 𝑋 becomes the bilingual 𝐵 per unit of
time. Note that 𝑥 + 𝑦 + 𝑏 = 1; model (10) can be written as
follows:

d𝑥
d𝑡

= 𝑐𝑠 (1 − 𝑘) (1 − 𝑥) (1 − 𝑦) − 𝑐 (1 − 𝑠) 𝑥 (1 − 𝑥) − 𝑐𝜇𝑥,

d𝑦
d𝑡

= 𝑐 (1 − 𝑠) (1 − 𝑘) (1 − 𝑦) (1 − 𝑥) − 𝑐𝑠𝑦 (1 − 𝑦) .

(11)

We denote the right-side of model (11) by 𝑓(𝑥, 𝑦) and
𝑔(𝑥, 𝑦), respectively. We, here, discuss the existence and
asymptotical stability of positive equilibrium of model (11).

From 𝑔(𝑥, 𝑦) = 0, it is easily shown that

𝑦
𝜇
= 𝑦 (𝑥) =

(1 − 𝑘) (1 − 𝑠) (1 − 𝑥)

𝑠

. (12)

Substituting it in 𝑓(𝑥, 𝑦), it follows that 𝑓(1, 𝑦(1)) =

−𝜇 < 0 and

𝑓 (0, 𝑦 (0)) = 𝑐𝑠 (1 − 𝑘) (1 −

(1 − 𝑘) (1 − 𝑠)

𝑠

) > 0 (13)

due to conditions (1 − 𝑠) < 𝑠(1 − 𝑘) and 𝑘, 𝑠 ∈ (0, 1). Hence,
there is at least one 𝑥

∗

𝜇
∈ (0, 1) such that 𝑓(𝑥

∗

𝜇
, 𝑦(𝑥
∗

𝜇
)) = 0.

Furthermore, it is also easy to calculate that

d𝑓 (𝑥, 𝑦 (𝑥))

d𝑥
= 𝑐 (1 − 𝑘) [−𝑠 + 2 (1 − 𝑘) (1 − 𝑠) (1 − 𝑥)]

+ 𝑐 (1 − 𝑠) (−1 + 2𝑥) − 𝑐𝜇,

(14)

d2𝑓 (𝑥, 𝑦 (𝑥))

d𝑥2
= 2 (1 − 𝑠) [1 − (1 − 𝑘)

2
] > 0 (15)

for all 𝑥 ∈ [0, 1]. This together with (14) gives that

d𝑓 (𝑥, 𝑦 (𝑥))

d𝑥
<

d𝑓 (1, 𝑦 (1))

d𝑥
= (1 − 𝑠) − 𝑠 (1 − 𝑘) − 𝜇 < 0

(16)

for all 𝑥 ∈ (0, 1), where inequality (1 − 𝑠) < 𝑠(1 − 𝑘) is used.
Hence, 𝑥∗

𝜇
is unique.That is, model (11) has a unique positive

equilibrium 𝐸
𝜇
(𝑥
∗

𝜇
, 𝑦
∗

𝜇
) in the interior of Ω.

Similar to the discussion of Theorem 2, we can get the
locally asymptotical stability of equilibrium 𝐸

𝜇
(𝑥
∗

𝜇
, 𝑦
∗

𝜇
). Next,

we discuss the global behavior of equilibrium 𝐸
𝜇
(𝑥
∗

𝜇
, 𝑦
∗

𝜇
).

Let 𝐵(𝑥, 𝑦) = (1 − 𝑥)
−1

(1 − 𝑦)
−1; we have

𝜕 (𝐵𝑓)

𝜕𝑥

+

𝜕 (𝐵𝑔)

𝜕𝑦

=−

𝑐 (1 − 𝑠)

1 − 𝑦

−

𝑐𝑠

1 − 𝑥

−

𝑐𝜇

(1 − 𝑥)
2
(1 − 𝑦)

<0.

(17)

So model (11) has no closed orbit lying entirely in the interior
of Ω. We, therefore, can show from the above discussion
that equilibrium 𝐸

𝜇
(𝑥
∗

𝜇
, 𝑦
∗

𝜇
) is globally asymptotically stable

in the interior of Ω.The result can be written by the following
theorem.

Theorem 4. For any 𝜇 ∈ (0, 1), if (1 − 𝑠) < 𝑠(1 − 𝑘),
then model (11) has a globally asymptotically stable positive
equilibrium 𝐸

𝜇
(𝑥
∗

𝜇
, 𝑦
∗

𝜇
) in the interior of Ω.
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Remark 5. From Theorem 2, it follows that language 𝑋 is
permanent and that language 𝑌 and bilingual speakers𝐵 will
eventually disappear for (1 − 𝑠) < 𝑠(1 − 𝑘) in model (1).
However, if we introduce a control variable 𝜇 (nomatter how
small it is) in model (1), languages 𝑋 and 𝑌 are coexistent
and tend to positive equilibrium (𝑥

∗

𝜇
, 𝑦
∗

𝜇
, 1 − 𝑥

∗

𝜇
− 𝑦
∗

𝜇
). The

coexistent state, of course, depends upon the controlled
strength 𝜇. This implies that 𝜇 is a sensitive controlled
parameter for the protection of endangered language.

3.2. Analysis of Optimal Control. Optimal control techniques
are of great use in developing the optimal strategies to protect
endangered civilization. To solve the challenges of obtaining
an optimal control measure, we use optimal control theory;
for more details, see Lenhart and Workman [27]. In model
(10), for the optimal control problem, we consider a control
variable 𝜇(𝑡) ∈ 𝑈

𝑎𝑑
; here, 𝑈

𝑎𝑑
= {𝜇 : 𝜇(𝑡) ismeasurable, 0 ≤

𝜇(𝑡) ≤ 0.9 for all 𝑡 ∈ [0, 𝑡final]} indicates an admissible
control. In this optimal problem, we assume a restriction on
the control variable 𝜇(𝑡) such that 0 ≤ 𝜇(𝑡) ≤ 0.9, because
conversion of all of language 𝑋 at one time is impossible.
In case of no control, the fraction of language 𝑋 increases
while the fractions of language 𝑌 and bilingual 𝐵 die out.
Therefore, the biological meaning of an optimal control in
this problem is that the adequate levels for the fractions of
language 𝑋 and bilingual 𝐵 are built.

Now, we consider an optimal control problem to maxi-
mize the objective functional

𝐽 (𝜇) = ∫

𝑡final

0

(𝐶
1
𝑏 −

1

2

𝐶
2
𝜇
2
) d𝑡 (18)

subject to model (10). The first term represents the benefit
of bilingual 𝐵, and the other term is systemic cost of control
measure. The positive constants 𝐶

1
and 𝐶

2
balance the size

of the terms 𝐵 and 𝜇. Our goal is maximizing the fraction of
bilingual 𝐵 and minimizing the systemic cost to the control
measure. This seeks an optimal control 𝜇∗ such that

𝐽 (𝜇
∗
) = max {𝐽 (𝜇) : 𝜇 ∈ 𝑈

𝑎𝑑
} (19)

subject to model (10). It is obvious that the integrand
of objective functional 𝐽 is a convex function of control
variable 𝜇 and that state model satisfies the Lipschitz prop-
ertywith respect to the state since state solutions are bounded.
The existence of an optimal control follows [28].

The necessary conditions that an optimal must satisfy
come from the Pontryagin’s Maximum Principle in [28].This
principle converts optimal control problem (10) and (18) into
a problem of maximizing pointwise a Hamiltonian 𝐻 with
respect to 𝜇 as follows:

𝐻 = 𝐶
1
𝑏 −

1

2

𝐶
2
𝜇
2
+ 𝜆
1
[𝑐𝑠 (1 − 𝑘) (𝑦 + 𝑏) (1 − 𝑦)

−𝑐 (1 − 𝑠) 𝑥 (1 − 𝑥) − 𝑐𝜇𝑥]

+ 𝜆
2
[𝑐 (1 − 𝑠) (1 − 𝑘) (𝑥 + 𝑏) (1 − 𝑥) − 𝑐𝑠𝑦 (1 − 𝑦)]

+ 𝜆
3
{𝑐𝑘 (1 − 𝑠) 𝑥 (1 − 𝑥) + 𝑐𝑘𝑠𝑦 (1 − 𝑦) − 𝑐 (1 − 𝑘) 𝑏

× [(1 − 𝑠) (1 − 𝑥) + 𝑠 (1 − 𝑦)] + 𝑐𝜇𝑥} ,

(20)

where 𝜆
1
, 𝜆
2
, and 𝜆

3
are adjoint variables.

In the following theorem, we derive the necessary condi-
tions for the optimal control problem.

Theorem 6. Let (𝑥
∗
, 𝑦
∗
, 𝑏
∗
) be an optimal state solution

with associated optimal control variable 𝜇
∗ for the maximized

object functional 𝐽(𝜇) subject to control model (10). Then, for
model (10), there exist adjoint variables 𝜆

1
, 𝜆
2
, and 𝜆

3
such

that

d𝜆
1

d𝑡
= 𝜆
1
[𝑐 (1 − 𝑠) (1 − 𝑥

∗
) − 𝑐 (1 − 𝑠) 𝑥

∗
+ 𝑐𝜇
∗
]

+ 𝜆
2
[𝑐 (1 − 𝑠) (1 − 𝑘) (𝑥

∗
+ 𝑏
∗
) − 𝑐 (1 − 𝑠)

× (1 − 𝑘) (1 − 𝑥
∗
)]

+ 𝜆
3
[𝑐𝑘 (1 − 𝑠) 𝑥

∗
− 𝑐𝑘 (1 − 𝑠) (1 − 𝑥

∗
)

−𝑐 (1 − 𝑘) (1 − 𝑠) 𝑏
∗
− 𝑐𝜇
∗
] ,

(21)

d𝜆
2

d𝑡
= 𝜆
1
[𝑐𝑠 (1 − 𝑘) (𝑦

∗
+ 𝑏
∗
) − 𝑐𝑠 (1 − 𝑘) (1 − 𝑦

∗
)]

+ 𝜆
2
[𝑐𝑠 (1 − 𝑦

∗
) − 𝑐𝑠𝑦

∗
]

+ 𝜆
3
[𝑐𝑘𝑠𝑦
∗
− 𝑐𝑘𝑠 (1 − 𝑦

∗
) − 𝑐𝑠 (1 − 𝑘) 𝑏

∗
] ,

(22)

d𝜆
3

d𝑡
= −𝐶
1
− 𝜆
1
𝑐𝑠 (1 − 𝑘) (1 − 𝑦

∗
) − 𝜆
2
𝑐 (1 − 𝑠)

× (1 − 𝑘) (1 − 𝑥
∗
)

+ 𝜆
3
𝑐 (1 − 𝑘) [(1 − 𝑠) (1 − 𝑥

∗
) + 𝑠 (1 − 𝑦

∗
)]

(23)

with transversality conditions 𝜆
𝑖
(𝑡
𝑓𝑖𝑛𝑎𝑙

) = 0, 𝑖 = 1, 2, 3. Fur-
thermore, the optimal control is given by

𝜇
∗
(𝑡) = min{0.9,max{0,

(𝜆
3
− 𝜆
1
) 𝑐𝑥
∗

𝐴

}} . (24)

Proof. From Pontryagin’s Maximum Principle, adjoint vari-
ables 𝜆

𝑖
(𝑖 = 1, 2, 3) can be written as

d𝜆
1

d𝑡
= −

𝜕𝐻

𝜕𝑥

,

d𝜆
2

d𝑡
= −

𝜕𝐻

𝜕𝑦

,

d𝜆
3

d𝑡
= −

𝜕𝐻

𝜕𝑏

. (25)

These are just differential equations (21)–(23) with trans-
versality conditions 𝜆

𝑖
(𝑡final) = 0 (𝑖 = 1, 2, 3). Furthermore,

by optimality condition, we have that

𝜕𝐻

𝜕𝜇








𝜇=𝜇
∗

= −𝐶
2
𝜇
∗
− 𝑐𝜆
1
𝑥
∗
+ 𝑐𝜆
3
𝑥
∗

= 0. (26)

This shows that

𝜇
∗

=

(𝜆
3
− 𝜆
1
) 𝑐𝑥
∗

𝐶
2

. (27)
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Using the property of control space, we get that

𝜇
∗

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

0,

(𝜆
3
− 𝜆
1
) 𝑐𝑥
∗

𝐶
2

≤ 0,

(𝜆
3
− 𝜆
1
) 𝑐𝑥
∗

𝐶
2

, 0 <

(𝜆
3
− 𝜆
1
) 𝑐𝑥
∗

𝐶
2

< 0.9,

0.9,

(𝜆
3
− 𝜆
1
) 𝑐𝑥
∗

𝐶
2

≥ 0.9.

(28)

This can be rewritten in compact notation, which is just
(24). This completes the proof.

3.3. Numerical Simulation and Discussion. Here, we discuss
how the continuous control measure affects the protection
of endangered language and the existence and stability of
positive equilibrium formodel (10) by numerical simulations.
Firstly, we choose the same parameters as in Figure 1(a);
that is, 𝑐 = 𝑘 = 0.5 and 𝑠 = 0.7. Besides that, we
choose control variable 𝜇 = 0.25. Figure 2(a), however,
is completely different from Figure 1(a), which shows that
model (10) has a globally asymptotically stable positive
equilibrium (𝑥

∗

𝜇
, 𝑦
∗

𝜇
, 𝑏
∗

𝜇
) = (0.4194, 0.1244, 0.4562). Further-

more, from the discussion of Theorem 4, it follows that
values 𝑥

∗

𝜇
and 𝑦

∗

𝜇
will decrease and increase with increase in

control strength 𝜇, respectively, which is shown in Figures
2(b) and 2(c). The strong consistency between theoretical
result and real situation is obviously observed.

In addition, in Figure 2(c), it is interesting to note that
control strength 𝜇 is close to 1 (where 𝜇 = 0.95), but
language 𝑋 runs around 0.2. This means that, no matter
how strong the control strength 𝜇 is, language 𝑋 will not
fade. Namely, control measure can only protect endangered
language 𝑌, but not result in extinction of language 𝑋.
Actually, in the real world, the own characteristics are
very important factors in determining the development of
languages.

The plots in Figure 3(a) show three adjoint variables
𝜆
1
, 𝜆
2
, and 𝜆

3
in the optimality system. We solve these

adjoint equations by a backward Runge-Kutta fourth-order
procedure because of the transversality conditions for more
details, see Lenhart andWorkman [27]. In Figure 3(b), dotted
line and solid line represent languages 𝑋, 𝑌 and bilingual 𝐵
in model (10) without and with continuous control, respec-
tively.We see that the fractions of language 𝑌 and bilingual𝐵
in population decrease more when there is no control. In this
case, most of this population goes to language 𝑋. If we apply
the continuous control measure, however, the fraction of
language 𝑌 slowly falls, the fraction of language 𝑋 decreases
quite a lot, and the fraction of bilingual 𝐵 is quite greater
than the fraction in the case without control, since our
main object is maximizing the fraction of bilingual 𝐵. In
Figure 3(c), the control 𝜇 is plotted as a function of time for
three different values of weight factor 𝐶

2
: 0.045, 0.1, and 0.5.

The control variable 𝜇 for the associated weight factor 𝜇 =

0.045 is much larger than the other two values. Note that, in
general, as𝐶

2
decreases, the amount of 𝜇 increases.The same

results can also be obtained from the expression of 𝜇 in (27).
The associated weight factor 𝐶

2
also plays a significant role

in keeping the balance of the size of fraction an optimal
problem.

4. Protection of Language 𝑌 with Impulsive
Control for (1−𝑠) < 𝑠(1−𝑘)

For reasons of protecting culture diversity, in this section, we
will consider how the state-dependent pulse control measure
affects the prevention of endangered language. Since learning
cycle is very brief in contrast to the life cycle of a person,
naturally we suppose that the procedure of learning is pulse
effect.

As for the protection of endangered languages for the
state-dependent control measure, we construct the following
controlled model which is modeled by differential equations
with state-dependent pulse effect:

d𝑥
d𝑡

= 𝑦𝑃
𝑌𝑋

+ 𝑏𝑃
𝐵𝑋

− 𝑥 (𝑃
𝑋𝑌

+ 𝑃
𝑋𝐵

) ,

d𝑦
d𝑡

= 𝑥𝑃
𝑋𝑌

+ 𝑏𝑃
𝐵𝑌

− 𝑦 (𝑃
𝑌𝑋

+ 𝑃
𝑌𝐵

) ,

d𝑏
d𝑡

= 𝑥𝑃
𝑋𝐵

+ 𝑦𝑃
𝑌𝐵

− 𝑏 (𝑃
𝐵𝑌

+ 𝑃
𝐵𝑋

) ,

𝑥 < 𝐸
𝑋
,

𝑥 (𝑡
+
) = (1 − 𝜃) 𝑥 (𝑡) ,

𝑦 (𝑡
+
) = 𝑦 (𝑡) ,

𝑏 (𝑡
+
) = 𝑏 (𝑡) + 𝜃𝑥 (𝑡) ,

𝑥 = 𝐸
𝑋
.

(29)

The meaning of model (29) is as follows: when the frac-
tion of language 𝑋 reaches the critical threshold value 𝐸

𝑋
at

time 𝑡
𝐸
, controllingmeasure (for example, encouraging some

speaker of language 𝑋 to study language 𝑌) is taken and the
fractions of language𝑋 and bilingual speakers 𝐵 immediately
become (1 − 𝜃)𝑥(𝑡

𝐸
) and 𝑏(𝑡

𝐸
) + 𝜃𝑥(𝑡

𝐸
), respectively.

Remark 7. It is obvious that the fractions of language 𝑌 and
bilingual 𝐵 are rather small and in danger of becoming
extinct when the fraction of language 𝑋 reaches the critical
threshold value 𝐸

𝑋
. In this case, the effective measure is

taken to prevent the loss of language 𝑌. The times of control
measures are obviously related to the state of language 𝑋.

Remark 8. The critical threshold value 𝐸
𝑋
represents

the fraction of monolingual speakers 𝑋 in population,
and 𝜃 represents the strength of control measure. Numerical
simulations in Section 4.3 show that these are crucial
parameters in model (29).

For model (29), which is equivalent to the following
reduced model since the population has a constant size 𝑥 +

𝑦 + 𝑏 = 1,
d𝑥
d𝑡

= 𝑐 (1 − 𝑥) [(1 − 𝑘) 𝑠 (𝑥 + 𝑏) − 𝑥 (1 − 𝑠)] ,

d𝑏
d𝑡

= 𝑐 (1 − 𝑥) [𝑘𝑥 − 𝑏 (1 − 𝑠 − 𝑘)] − 𝑏𝑐𝑠 (𝑥 + 𝑏) ,

𝑥 ̸= 𝐸
𝑋
,
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Figure 2: The effect of control measure on the existence and stability of positive equilibrium for model (10) with 𝑐 = 𝑘 = 0.5, 𝑠 = 0.7,
and 𝛼 = 1.
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Figure 3: The optimal adjoint variables, states, and control variable for the optimal control problem with 𝑐 = 𝑘 = 0.5, 𝑠 = 0.7, 𝛼 = 1,
and 𝐶

1
= 0.1: (a) the optimal adjoint variables 𝜆

1
, 𝜆
2
, and 𝜆

3
; (b) the optimal states of languages 𝑋, 𝑌 and bilingual 𝐵; and (c) the control

variable 𝜇 with different weight factor 𝐶
2
.

𝑥 (𝑡
+
) = (1 − 𝜃) 𝑥 (𝑡) ,

𝑏 (𝑡
+
) = 𝑏 (𝑡) + 𝜃𝑥 (𝑡) ,

𝑥 = 𝐸
𝑋
.

(30)
By the biological background of model (30), we only

consider model in the biological meaning region Ω
0

=

{(𝑥, 𝑏) : 𝑥 ≥ 0, 𝑏 ≥ 0, 𝑥 + 𝑏 ≤ 1}. Obviously, the
global existence and uniqueness of solution of model (30) are
guaranteed by the smoothness properties of the right-side of
model (30); for more details, see Lakshmikantham et al. [29].

4.1. Preliminaries. To discuss the dynamic behavior of model
(30), we define two cross-sections to the phase space ofmodel
(30) by sections

Γ
𝜃
= {(𝑥, 𝑏) : 𝑥 = (1 − 𝜃) 𝐸𝑋

, 𝑏 ≥ 0} ,

Γ
𝐸

= {(𝑥, 𝑏) : 𝑥 = 𝐸
𝑋
, 𝑏 ≥ 0} .

(31)

Suppose that point 𝐴
𝑛
(𝐸
𝑋
, 𝑏
𝑛
) is on section Γ

𝐸
; then,

trajectory

𝑂
+
(𝐴
𝑛
, 𝑡
𝑛
) = {(𝑥 (𝑡) , 𝑏 (𝑡)) : (𝑥 (𝑡) , 𝑏 (𝑡)) ∈ Ω

0
,

𝑡 ≥ 𝑡
𝑛
, 𝑥 (𝑡
𝑛
) = 𝐸
𝑋
, 𝑏 (𝑡
𝑛
) = 𝑏
𝑛
}

(32)

jumps to point 𝐴
+

𝑛
((1 − 𝜃)𝐸

𝑋
,
̂
𝑏
𝑛
) on section Γ

𝜃
due to pulse

effects 𝑥(𝑡
+

𝑛
) = (1 − 𝑚)𝑥(𝑡

𝑛
) and 𝑏(𝑡

+

𝑛
) = 𝑏(𝑡

𝑛
) + 𝜃𝑥(𝑡

𝑛
),

then intersects section Γ
𝐸
at point 𝐴

𝑛+1
(𝐸
𝑋
, 𝑏
𝑛+1

), and finally
jumps to point 𝐴

+

𝑛+1
((1 − 𝜃)𝐸

𝑋
,
̂
𝑏
𝑛+1

) on section Γ
𝜃
again,

where 𝑏
𝑛+1

is decided by 𝑏
𝑛
and parameters 𝜃, 𝐸

𝑋
. There-

fore, we defined a Poincaré map of section Γ
𝐸
as follows:

𝑏
𝑛+1

= 𝐹 (𝑏
𝑛
, 𝜃, 𝐸
𝑋
) . (33)

Let 𝑧(𝑡) = (𝑥(𝑡), 𝑏(𝑡)) be a solution of model (30) with
initial condition 𝑧

0
= 𝑧(𝑡

0
) = ((1 − 𝜃)𝐸

𝑋
,
̂
𝑏
0
). Trajec-

tory 𝑂
+
(𝑧
0
, 𝑡
0
) starts from point 𝐴

0
((1 − 𝜃)𝐸

𝑋
,
̂
𝑏
0
); first, it

intersects section Γ
𝐸
at point 𝐵

1
(𝐸
𝑋
, 𝑏
1
), then jumps to point
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𝐴
1
((1 − 𝜃)𝐸

𝑋
,
̂
𝑏
1
) on section Γ

𝜃
due to pulse effects, and

finally reaches point 𝐵
2
(𝐸
𝑥
, 𝑏
2
) on section Γ

𝐸
again. Repeat-

ing the above process, we have two points’ sequences
{𝐴
𝑛−1

((1 − 𝜃)𝐸
𝑋
,
̂
𝑏
𝑛−1

)} and {𝐵
𝑛
(𝐸
𝑋
, 𝑏
𝑛
)} (𝑛 = 1, 2, . . .). We

notice that the coordinates satisfy the relation ̂
𝑏
𝑛

= 𝑏
𝑛

+

𝜃𝐸
𝑋

(𝑛 = 1, 2, . . .).
Let S be an arbitrary set in R2, and let 𝑃 be an arbitrary

point in R2. The distance between point 𝑃 and set S is
defined by 𝑑(𝑃,S) = inf

𝑃
0
∈S|𝑃 − 𝑃

0
|. For the convenience

of statement in the rest of this paper, we introduce some
definitions.

Definition 9. Trajectory 𝑂
+
(𝑧
0
, 𝑡
0
) of model (30) is said to be

order-𝑘 periodic if there exists a positive integer 𝑘 ≥ 1 such
that 𝑘 is the smallest integer for ̂

𝑏
0
=

̂
𝑏
𝑘
.

Definition 10 (orbital stability [30]). Trajectory 𝑂
+
(𝑋
0
, 𝑡
0
) is

said to be orbitally stable if, given that 𝜀 > 0, there exists a
constant 𝛿 = 𝛿(𝜀) > 0 such that, for other solution 𝑧

∗
(𝑡)

of model (30), when 𝑑(𝑧
∗
(𝑡
0
), 𝑂
+
(𝑧
0
, 𝑡
0
)) < 𝛿, one has that

𝑑(𝑧
∗
(𝑡), 𝑂
+
(𝑧
0
, 𝑡
0
)) < 𝜀 for all 𝑡 > 𝑡

0
.

Definition 11 (orbitally asymptotical stability [30]). Trajectory
𝑂
+
(𝑧
0
, 𝑡
0
) is said to be orbitally asymptotically stable if it

is orbitally stable, and there exists a constant 𝜂 > 0 such
that, for any other solution 𝑧

∗
(𝑡) of model (30), when

𝑑(𝑧
∗
(𝑡
0
), 𝑂
+
(𝑧
0
, 𝑡
0
)) < 𝜂, lim

𝑡→∞
𝑑(𝑧
∗
(𝑡), 𝑂
+
(𝑧
0
, 𝑡
0
)) = 0.

Next, we consider the following autonomous model with
pulse effects:

d𝑥
d𝑡

= 𝑓 (𝑥, 𝑦) ,

d𝑦
d𝑡

= 𝑔 (𝑥, 𝑦) , 𝜑 (𝑥, 𝑦) ̸= 0,

Δ𝑥 = 𝜉 (𝑥, 𝑦) , Δ𝑦 = 𝜂 (𝑥, 𝑦) , 𝜑 (𝑥, 𝑦) = 0,

(34)

where 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are continuous differential func-
tions defined on R2 and 𝜑(𝑥, 𝑦) is a sufficiently smooth
function with ∇𝜑(𝑥, 𝑦) ̸= 0. Let (𝜇(𝑡), ](𝑡)) be a positive 𝑇-
periodic solution of model (34). The following result comes
from Corollary 2 of Theorem 1 in [31].

Lemma 12 (analogue of Poincaré criterion). If the Floquet
multiplier 𝜇 satisfies condition |𝜇| < 1, where

𝜇=

𝑛

∏

𝑗=1

𝜅
𝑗
exp{∫

𝑇

0

[

𝜕𝑓 (𝜇 (𝑡) , ] (𝑡))

𝜕𝑥

+

𝜕𝑔 (𝜇 (𝑡) , ] (𝑡))

𝜕𝑦

] dt}

(35)

with

𝜅
𝑗
= ((

𝜕𝜂

𝜕𝑦

𝜕𝜑

𝜕𝑥

−

𝜕𝜂

𝜕𝑥

𝜕𝜑

𝜕𝑦

+

𝜕𝜑

𝜕𝑥

)𝑓
+

+ (

𝜕𝜉

𝜕𝑥

𝜕𝜑

𝜕𝑦

−

𝜕𝜉

𝜕𝑦

𝜕𝜑

𝜕𝑥

+

𝜕𝜑

𝜕𝑦

)𝑔
+
)

× (

𝜕𝜑

𝜕𝑥

𝑓 +

𝜕𝜑

𝜕𝑦

𝑔)

−1

(36)

and 𝑓, 𝑔, 𝜕𝜉/𝜕𝑥, 𝜕𝜉/𝜕𝑦, 𝜕𝜂/𝜕𝑥, 𝜕𝜂/𝜕𝑦, 𝜕𝜑/𝜕𝑥, and 𝜕𝜑/𝜕𝑦

have been calculated at the point (𝜇(𝜏
𝑗
), ](𝜏
𝑗
)), 𝑓
+

=

𝑓(𝜇(𝜏
+

𝑗
), ](𝜏+
𝑗
)), 𝑔
+

= 𝑔(𝜇(𝜏
+

𝑗
), ](𝜏+
𝑗
)), and 𝜏

𝑗
(𝑗 ∈ 𝑁) is the

time of the 𝑗th jump, then, (𝜇(𝑡), ](𝑡)) is orbitally asymptoti-
cally stable.

4.2. Main Results. On the existence of positive order-1 peri-
odic solution for model (30), we have the following theorem.

Theorem 13. For any 𝜃 ∈ (0, 1) and 𝐸
𝑋

∈ (0, 1), model (30)
admits a positive order-1 periodic solution.

Proof. Let point 𝐴
0
((1 − 𝜃)𝐸

𝑋
, 𝑠
0
) ∈ Γ
𝜃
for sufficiently small

𝑠
0
with 𝑠

0
≤ 𝜃𝐸

𝑋
. In view of the geometrical structure of

the phase space ofmodel (30), trajectory 𝑂
+
(𝐴
0
, 𝑡
0
) ofmodel

(30) starts from initial point 𝐴
0
and intersects section Γ

𝐸
at

point 𝐵
1
(𝐸
𝑋
, 𝑠
1
). And then, trajectory 𝑂

+
(𝐴
0
, 𝑡
0
) jumps to

point 𝐴
1
(𝑠
1
, (1 − 𝜃)𝐸

𝑋
) on section Γ

𝜃
due to pulse control

effects 𝑥(𝑡
+
) = (1 − 𝜃)𝑥(𝑡) and 𝑏(𝑡

+
) = 𝑏(𝑡) + 𝜃𝑥(𝑡).

Since 𝑠
0

≤ 𝜃𝐸
𝑋
, it follows that point 𝐴

1
is above point 𝐴

0
.

Furthermore, point 𝐵
2
is above point 𝐵

1
. Otherwise, this is a

contradiction with the uniqueness of solution for model (30).
By (33), we have that 𝑠

2
= 𝐹(𝑠
1
, 𝜃, 𝐸
𝑋
) and

𝐹 (𝑠
1
, 𝜃, 𝐸
𝑋
) − 𝑠
1
= 𝑠
2
− 𝑠
1
> 0. (37)

On the other hand, let 𝜆
0
= 1−(1−𝜃)𝐸

𝑋
. For critical point

𝐶
0
((1 − 𝜃)𝐸

𝑋
, 𝜆
0
), trajectory 𝑂

+
(𝐶
0
, 𝑡
0
) starts from initial

point 𝐶
0
; it intersects section Γ

𝐸
at point 𝐷

1
(𝐸
𝑋
, 𝜆
1
), then

jumps to point 𝐶
1
((1 − 𝑚)𝐸

𝑋
, 𝜆
+

1
) on section Γ

𝜃
, and finally

reaches point 𝐷
2
(𝐸
𝑋
, 𝜆
2
) on section Γ

𝐸
again. Since 𝑥 + 𝑏 ≤

1, one has that (1 − 𝑚)𝐸
𝑋

+ 𝜆
+

1
≤ 1 = (1 − 𝜃)𝐸

𝑋
+ 𝜆
0
. That

is, 𝜆+
1

≤ 𝜆
0
. If 𝜆
+

1
= 𝜆
0
, namely, points 𝐶

0
and 𝐶

1
coincide,

then model (30) has a positive order-1 periodic solution.
Otherwise, 𝜆+

1
< 𝜆
0
; that is, point 𝐶

0
is above point 𝐶

1
, and

point 𝐷
1
is above point 𝐷

2
. By (33), we can get that 𝜆

2
=

𝐹(𝜆
1
, 𝜃, 𝐸
𝑋
) and

𝐹 (𝜆
1
, 𝜃, 𝐸
𝑋
) − 𝜆
1
= 𝜆
2
− 𝜆
1
< 0. (38)

This together with (37) yields that Poincaré map (33) has a
fixed point; that is, model (30) has a positive order-1 periodic
solution. This completes the proof.

Now, on the orbital stability of positive order-1 periodic
solution of model (30), we have the following result.

Theorem 14. Let (𝜑(𝑡), 𝜓(𝑡)) be a positive order-1 periodic
solution of model (30) with period 𝑇. For any 𝜃 ∈ (0, 1) and
𝐸
𝑋

∈ (0, 1), if the Floquet multiplier 𝜇 satisfies condition |𝜇| <

1, where





𝜇




= |𝜅| exp{∫

𝑇

0

[𝑐 (1 − 𝜑 (𝑡)) (3𝑠 + 𝑘 − 𝑘𝑠 − 2)

−𝑐𝑠 (𝜑 (𝑡) + 𝜓 (𝑡)) − 𝑐𝑠𝜓 (𝑡)] d𝑡}
(39)
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with

𝜅 =

(1 − 𝑘) 𝑠 (𝐸𝑋
+ 𝜓 (𝑇)) − (1 − 𝜃) 𝐸𝑋 (1 − 𝑠)

(1 − 𝑘) 𝑠 (𝐸𝑋
+ 𝜓 (𝑇)) − 𝐸

𝑋 (1 − 𝑠)

, (40)

then (𝜑(𝑡), 𝜓(𝑡)) is orbitally asymptotically stable.

Proof. Suppose that (𝜑(𝑡), 𝜓(𝑡)) intersects sections Γ
𝜃
and

Γ
𝐸
at points 𝐶

+
((1 − 𝜃)𝐸

𝑋
, 𝜃𝐸
𝑋

+ 𝜓(𝑇)) and 𝐶(𝐸
𝑋
, 𝜓(𝑇)),

respectively. Comparing with model (34), we have that

𝑓 (𝑥, 𝑏) = 𝑐 (1 − 𝑥) [(1 − 𝑘) 𝑠 (𝑥 + 𝑏) − 𝑥 (1 − 𝑠)] ,

𝑔 (𝑥, 𝑏) = 𝑐 (1 − 𝑥) [𝑘𝑥 − 𝑏 (1 − 𝑠 − 𝑘)] − 𝑏𝑐𝑠 (𝑥 + 𝑏) ,

(41)

and 𝜉(𝑥, 𝑏) = −𝜃𝑥, 𝜂(𝑥, 𝑏) = 𝜃𝑥, 𝜙(𝑆, 𝐼) = 𝑥 − 𝐸
𝑋
,

(𝜑(𝑇), 𝜓(𝑇)) = (𝐸
𝑋
, 𝜓(𝑇)), and (𝜑(𝑇

+
), 𝜓(𝑇

+
)) = ((1 −

𝜃)𝐸
𝑋
, 𝜓(𝑇) + 𝜃𝐸

𝑋
). Thus,

𝜕𝑓

𝜕𝑥

= −𝑐 [(1 − 𝑘) 𝑠 (𝑥 + 𝑏) − 𝑥 (1 − 𝑠)]

+ 𝑐 (1 − 𝑥) (2𝑠 − 𝑘𝑠 − 1) ,

𝜕𝑔

𝜕𝑏

= −𝑐 (1 − 𝑥) (1 − 𝑠 − 𝑘) − 𝑐𝑠 (𝑥 + 𝑏) − 𝑐𝑠𝑏,

𝜕𝜉

𝜕𝑥

= −𝜃,

𝜕𝜂

𝜕𝑥

= 𝜃,

𝜕𝜙

𝜕𝑥

= 1,

𝜕𝜉

𝜕𝑏

=

𝜕𝜂

𝜕𝑏

=

𝜕𝜙

𝜕𝑏

= 0.

(42)

Furthermore, it follows from (42) that

𝜅 = ((

𝜕𝜂

𝜕𝑏

𝜕𝜙

𝜕𝑥

−

𝜕𝜂

𝜕𝑥

𝜕𝜙

𝜕𝑏

+

𝜕𝜙

𝜕𝑥

)𝑓
+

+ (

𝜕𝜉

𝜕𝑥

𝜕𝜙

𝜕𝑏

−

𝜕𝜉

𝜕𝑏

𝜕𝜙

𝜕𝑥

+

𝜕𝜙

𝜕𝑏

)𝑔
+
) × (

𝜕𝜙

𝜕𝑥

𝑓 +

𝜕𝜙

𝜕𝑏

𝑔)

−1

=

𝑓
+
(𝜑 (𝑇
+
) , 𝜓 (𝑇

+
))

𝑓 (𝜑 (𝑇) , 𝜓 (𝑇))

= ((1 − (1 − 𝜃) 𝐸𝑋
) [(1 − 𝑘) 𝑠 (𝐸𝑋

+ 𝜓 (𝑇))

− (1 − 𝜃) 𝐸𝑋 (1 − 𝑠)] )

× ((1 − 𝐸
𝑋
) [(1 − 𝑘) 𝑠 (𝐸𝑋

+𝜓 (𝑇)) −𝐸
𝑋 (1 − 𝑠) ] )

−1
,

(43)

𝜇 = 𝜅 exp{∫

𝑇

0

[−𝑐 ((1 − 𝑘) 𝑠 (𝜑 (𝑡) + 𝜓 (𝑡))

−𝜑 (𝑡) (1 − 𝑠)) + 𝑐 (1 − 𝜑 (𝑡))

× (2𝑠 − 𝑘𝑠 − 1) − 𝑐 (1 − 𝜑 (𝑡)) (1 − 𝑠 − 𝑘)

−𝑐𝑠 (𝜑 (𝑡) + 𝜓 (𝑡)) − 𝑐𝑠𝜓 (𝑡)] d𝑡} .

(44)

On the other hand, integrating both sides of the first equa-
tion of model (30) along the orbit ̂

𝐶
+
𝐶, we have that

ln 1 − 𝐸
𝑋

1 − (1 − 𝜃) 𝐸𝑋

= ∫

𝐸
𝑋

(1−𝜃)𝐸
𝑋

d𝑥
1 − 𝑥

= −∫

𝑇

0

𝑐 [(1 − 𝑘) 𝑠 (𝜑 (𝑡) + 𝜓 (𝑡))

−𝜑 (𝑡) (1 − 𝑠)] d𝑡.

(45)

From (43)–(45), we can obtain that





𝜇




=











(1 − 𝑘) 𝑠 (𝐸𝑋
+ 𝜓 (𝑇)) − (1 − 𝜃) 𝐸𝑋 (1 − 𝑠)

(1 − 𝑘) 𝑠 (𝐸𝑋
+ 𝜓 (𝑇)) − 𝐸

𝑋 (1 − 𝑠)











× exp{∫

𝑇

0

[𝑐 (1 − 𝜑 (𝑡)) (3𝑠 + 𝑘 − 𝑘𝑠 − 2)

−𝑐𝑠 (𝜑 (𝑡) + 𝜓 (𝑡)) − 𝑐𝑠𝜓 (𝑡)] d𝑡} .

(46)

By condition (39), we see that model (30) satisfies all
conditions of Lemma 12.Therefore, order-1 periodic solution
(𝜑(𝑡), 𝜓(𝑡)) of model (30) is orbitally asymptotically stable
and has asymptotic phase property. This completes the
proof.

Remark 15. From Theorem 14, though condition (39) of
Theorem 14 is hard to test, yet it is weak since the second and
third items of the exponent term of the right-side of (39) are
negative.

Next, we give a more general result on the existence and
stability of positive order-1 periodic solutions of model (30).

Theorem 16. For any 𝜃 ∈ (0, 1) and 𝐸
𝑋

∈ (0, 1), model
(30) has a positive order-1 periodic solution which is orbitally
asymptotically stable.

Proof. Let 𝜆
∗

= 1−(1−𝜃)𝐸
𝑋
, and suppose that the trajectory

𝑂
+
(𝐶
0
, 𝑡
0
) of model (30) starts from critical point 𝐶

0
((1 −

𝜃)𝐸
𝑋
, 𝜆
∗
) and intersects section Γ

𝐸
at point 𝐶

∗
(𝐸
𝑋
, 𝛽
∗
). In

view of the geometrical construction of phase space of
model (30) and that (1, 0) is a globally asymptotically stable
node, we obtain that trajectory of model (30) which starts
from point ((1 − 𝜃)𝐸

𝑋
, 𝑏) with 𝑏 ∈ (0, 𝜆

∗
) will intersect

section Γ
𝐸
at point (𝐸

𝑋
,
̂
𝑏); then, ̂𝑏 ∈ (0, 𝛽

∗
). Sowe only need

to consider trajectories of model (30) which start from the
point (𝐸

𝑋
, 𝑏) on section Γ

𝐸
, where 𝑏 ∈ (0, 𝛽

∗
).

Suppose that trajectory 𝑂
+
(𝐷
1
, 𝑡
0
) of model (30) which

starts from initial point 𝐷
1
(𝐸
𝑋
, 𝑏
1
) (0 < 𝑏

1
< 𝛽
∗) jumps

to point 𝐷
+

1
((1 − 𝜃)𝐸

𝑋
,
̂
𝑏
1
) on section Γ

𝜃
due to pulse

effects and then reaches section Γ
𝐸

at point 𝐷
2
(𝐸
𝑋
, 𝑏
2
),

where ̂
𝑏
1

∈ (0, 𝜆
∗
) and 𝑏

2
∈ (0, 𝛽

∗
). Repeating the

above process, we have pulse points sequences {𝐷
𝑛
(𝐸
𝑋
, 𝑏
𝑛
)}

and {𝐷
+

𝑛
((1 − 𝜃)𝐸

𝑋
,
̂
𝑏
𝑛
)}, where 𝑏

𝑛
∈ (0, 𝛽

∗
) and ̂

𝑏
𝑛

∈

(0, 𝜆
∗
). Furthermore, this follows from Poincaré map (33)

that 𝑏
𝑛+1

= 𝐹(𝑏
𝑛
, 𝜃, 𝐸
𝑋
) (𝑛 = 1, 2, . . .). On the other hand,

for any two points 𝐷
𝑖
(𝐸
𝑋
, 𝑏
𝑖
) and 𝐷

𝑗
(𝐸
𝑋
, 𝑏
𝑗
) on section Γ

𝐸
,

where 𝑏
𝑖
, 𝑏
𝑗

∈ (0, 𝛽
∗
) and 𝑏

𝑖
< 𝑏
𝑗
, in view of pulse effects,
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point 𝐷
+

𝑖
((1−𝜃)𝐸

𝑋
,
̂
𝑏
𝑖
) is below point 𝐷

+

𝑗
((1−𝜃)𝐸

𝑋
,
̂
𝑏
𝑗
). And

then, trajectories 𝑂
+
(𝐷
𝑖
, 𝑡
0
) and 𝑂

+
(𝐷
𝑗
, 𝑡
0
) intersect section

Γ
𝐸
at points 𝐷

𝑖+1
(𝐸
𝑋
, 𝑏
𝑖+1

) and 𝐷
𝑗+1

(𝐸
𝑋
, 𝑏
𝑗+1

), respectively.
Therefore, from the geometrical construction of the phase
space of model (30), we claim that

0 < 𝑏
𝑖+1

< 𝑏
𝑗+1

< 𝛽
∗
. (47)

In fact, if inequality (47) does not hold, that is, 𝑏
𝑖+1

≥ 𝑏
𝑗+1

,
then, it follows that point 𝐷

𝑖+1
is above point𝐷

𝑗+1
or that two

points coincide. Furthermore, we can obtain that trajectories
𝑂
+
(𝐷
𝑖
, 𝑡
0
) and 𝑂

+
(𝐷
𝑗
, 𝑡
0
) intersect at a point 𝐷

∗
(𝑥,

̂
𝑏). It is

indicated that there are two different solutions which start
from point 𝐷

∗. This is a contradiction with the uniqueness
of solution of model (30). So inequality (47) is thus valid.

Now, for any 𝑏
0

∈ (0, 𝛽
∗
), from Poincaré map (33) of

section Γ
𝐸
, we have 𝑏

1
= 𝐹(𝑏

0
, 𝜃, 𝐸
𝑋
), 𝑏
2

= 𝐹(𝑏
1
, 𝜃, 𝐸
𝑋
), and

𝑏
𝑛+1

= 𝐹(𝑏
𝑛
, 𝜃, 𝐸
𝑋
) (𝑛 = 2, 3, 4, . . .). In particular, if 𝑏

0
= 𝑏
1
,

then model (30) has a positive order-1 periodic solution, if
𝑏
0

̸= 𝑏
1
, then it follows from the fact (47) that 𝑏

0
̸= 𝑏
2
.

Next, we discuss the general circumstance; that is,
𝑏
0

̸= 𝑏
1

̸= 𝑏
2

̸= ⋅ ⋅ ⋅ ̸= 𝑏
𝑘
(𝑘 > 2).

(a) If 𝑏
0

< 𝑏
1
, from (47), we obtain that 𝑏

1
< 𝑏
2
. Then,

𝑏
0
< 𝑏
1
< 𝑏
2
. In this case, repeating the above process,

we have that

0 < 𝑏
0
< 𝑏
1
< 𝑏
2
< 𝑏
3
⋅ ⋅ ⋅ < 𝛽

∗
. (48)

(b) If 𝑏
0
> 𝑏
1
, similar to (a), we have that

0 < ⋅ ⋅ ⋅ < 𝑏
3
< 𝑏
2
< 𝑏
1
< 𝑏
0
< 𝛽
∗
. (49)

Therefore, in case (a), we can get that lim
𝑛→∞

𝑏
𝑛
= 𝜂.This

implies that model (30) has an orbitally asymptotically stable
positive order-1 periodic solution. Similarly, we can obtain the
same result in case (b). This completes the proof.

Remark 17. According to the equivalence of models (29) and
(30), from Theorem 16, we also obtained that model (29)
has a positive order-1 periodic solution which is orbitally
asymptotically stable. At the same time, it also implies
that languages 𝑋 and 𝑌 are coexistent and have a stable
equilibrium state under state-dependent impulsive control
strategy.

Remark 18. Similar results can also be obtained from the case
that 𝑠 < (1 − 𝑠)(1 − 𝑘); we, hence, omit them here.

4.3. Numerical Simulation andDiscussion. In this subsection,
some numerical simulations are carried out to illustrate main
results and the feasibility of state-dependent pulse feedback
control measure. Firstly, we choose model parameters 𝑐 =

𝑘 = 0.5 and 𝑠 = 0.7 and control parameters 𝐸
𝑋

= 0.8

and 𝜃 = 0.15. From Figure 4, we see that state-dependent
control measure plays an important role in preventing
the disappearance of endangered language. Under state-
dependent impulsive control measure, the downward trend
for language 𝑌 was controlled effectively, and the fractions

of language 𝑋 and bilingual 𝐵 are kept within reasonable
levels. Furthermore, numerical simulations also show that the
fractions of languages 𝑋, 𝑌 and bilingual 𝐵, though from
different initial states, are stabilized in the same state.The cor-
responding numerical results are presented in Figures 4 and 5.
Namely, model (29) has a positive order-1 periodic solution,
which is orbitally asymptotically stable. This is certainly the
case as shown in Theorems 13–16. Again from Figure 5(a)–
5(c), the periodic solution is orbitally asymptotically stable
instead of being Lyapunov asymptotically stable. In fact, it
also shows exactly how different the two stabilities are.

Next, we investigate what effect has the choice of con-
trolling parameters on the dynamical behavior of model (29)
using numerical modeling method. We first choose 𝐸

𝑋
=

0.8 and parameter 𝜃 to be 0.05, 0.15, 0.25, and 0.35, respec-
tively. From Figure 6, we note that the length of times
intervals between two control strategies are closely geared
to the strength of control measure 𝜃 and that the time
interval increases with the increasing of 𝜃. Again from
Figures 6(b) and 6(c), it is obvious that the fractions of
language 𝑌 and bilingual 𝐵 in population could maintain
higher level for a long time due to larger 𝜃. Of course, the
cost of controlmeasure is related to its strength. Furthermore,
similar results can also be obtained from 𝜃 = 0.15 and
letting 𝐸

𝑋
be 0.9, 0.85, 0.8, and 0.7 in Figure 7. It is not

hard to imagine, however, that the cost of control measure is
very high if the fraction ofmonolingual speakers is incredibly
low in the population.This is because if the fraction ofmono-
lingual speakers is high in the population, then it is extremely
difficult to encouragemonolingual speaker of themainstream
language to study endangered language. Of course, it is
also not a good measure for the protection of endangered
language. How do we choose appropriate parameters such
that the fractions of language 𝑌 and bilingual 𝐵 are kept at
reasonable levels with the minimal cost of control measure?
It is an interesting problem; at the same time, it is extremely
difficult.

5. Concluding Remarks

The dynamic behavior of two-language competitive model
(1) with parameters (2) and 𝛼 = 1 is analyzed systemically
in this paper. By the linearization and Bendixson-Dulac
theorem on dynamical system, some sufficient conditions on
the globally asymptotical stability of the trivial equilibria, the
existence, the local stability, and the global stability of positive
equilibriumofmodel (1) are presented.The theoretical results
show that languages 𝑋 and 𝑌 are coexistent by adjusting the
values of model parameters 𝑘 and 𝑠.

And when considering the protection of endangered
language, model (1) with (2) is extended to model (10)
assessing the impact of continuous control measure. The
theoretical results and numerical simulations indicate that
the existence and stability of model (10) are sensitive to
control parameter. Furthermore, using the optimal control
theory, we derived and analyzed the conditions for optimality
of the endangered language. Our results say that the optimal
control has a very desirable effect formaintaining the fraction
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Figure 4: The contrast of the dynamical behaviors of model (29) with state-dependent impulsive control measure and without control,
where 𝑐 = 𝑘 = 0.5, 𝑠 = 0.7, 𝐸

𝑋
= 0.8, and 𝜃 = 0.15.
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Figure 5: The orbitally asymptotical stability of positive order-1 periodic solution for model (29).
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Figure 6:The contrast of the dynamical behaviors ofmodel (29) with different state-dependent impulsive control parameters, where𝐸
𝑋

= 0.8

and 𝜃 = 0.05, 0.15, 0.25, and 0.35, respectively.
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Figure 7:The contrast of the dynamical behaviors ofmodel (29) with different state-dependent impulsive control parameters, where 𝜃 = 0.15

and 𝐸
𝑋

= 0.9, 0.85, 0.8, and 0.75, respectively.

of bilingual 𝐵, and some comparisons between with and
without control are made in the figures.

Finally, the dynamic behavior of model (1) with state-
dependent pulse control measure, that is, model (29), is stud-
ied in Section 4. The state-dependent pulse control measure
causes the complexity for the dynamic behavior ofmodel (29)
such as frequent switching between states, irregular motion,
and some uncertainties. This is the distinguished feature
compared with continuous control measure. By the Poincaré
map, analogue of Poincaré criterion, and qualitative analysis
method, some sufficient conditions on the existence and
orbitally asymptotical stability of positive order-1 periodic
solution are presented. This amounts to the fact that we can
control the fractions of languages 𝑋, 𝑌 and bilingual 𝐵 at
reasonable levels by adjusting control parameters.Theoretical
basis for finding a new measure to protect the endangered
language is provided.
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