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Abstract: We show that spherical aberration of all orders can be generated 
as an extrinsic aberration in a system of axially translating plates. Some 
practical examples are provided. In particular for two phase plates that are 
10 mm in diameter it is possible to generate from −10 to 10 waves of fourth-
order spherical aberration with an axial displacement of +/− 0.65 mm. We 
also apply the phenomenon of extrinsic aberration for the generation of a 
conical wavefront and other non-axially symmetric wavefronts, in other 
words we propose what can be called a generalized zoom plate. 
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1. Introduction 

After the seminal work of Alvarez [1,2] a variety of papers have been published about the 
generation of aberration by the relative translation, or rotation of two complementary phase 
plates [3–11]. The basic theory is that the subtraction of the wavefront deformation 
introduced by one plate from the wavefront introduced by the other plate results in a 
particular type of aberration. 

While the phenomenon of extrinsic (or induced) aberration is discussed in higher order 
aberration theory [12], it has not been fully exploited. Rather that translating or rotating two 
phase plates for generating aberration, it also possible to generate aberration by the axial 
displacement of two phase plates due to extrinsic aberration. Extrinsic aberration results when 
there is previous aberration incoming to an element that contributes aberration. Extrinsic 
aberration can be considered as a cross term, or synergy, or the interaction of an aberrated 
beam with an element that contributes aberration. 

We first discuss extrinsic aberrations and then present some application for generating 
aberration. In particular we highlight the generation of fourth-order spherical aberration 
which is currently a subject of interest. This paper follows our previous work on phase plates 
[9]. The system of two phase plates presented here is quite a simple and can be used in 
ophthalmology, optical testing, microscopy, optical alignment, and other applications [13,14]. 
While the concept is implemented using refractive optics, it can be also implemented with 
diffractive optics as well [15]. 

2. Extrinsic aberrations 

We assume a system of two phase plates in air where a light beam is transmitted and 
aberrated by the first plate by 1( )W ρ  and then the beam is again transmitted and aberrated by 

a second plate by 2 ( )W ρ . The total wavefront aberration ( )W ρ can be written as the sum of 
the individual aberration contributions and an extrinsic term 

 1 2 12( ) ( ) ( ) ( ),W W W Wρ ρ ρ ρ= + +   
 (1) 

where 12 ( )W ρ is the extrinsic aberration and ρ is the normalized aperture vector that specifies 
where a ray intersects the first plate in the system. 

The ray error ρΔ   at the second plate is given by 

 1( ),
d

W
a

ρ ρΔ = ∇
 

 (2) 

where d is the distance between the plates and a is the physical radius of the plates. A given 
ray that intersects the first plate at the point defined by aρ will intersect the second plate at 

the point defined by ( )a ρ ρ+ Δ 
. We assume that the incoming beam is collimated. 

The aberration introduced by the second plate will change due to the change of ray 
position ρ ρ+ Δ 

. Then we will have 2 ( )W ρ ρ+ Δ 
rather than 2 ( )W ρ  for the aberration 

introduced by the second plate. The total aberration introduced by both plates is then 
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 (3) 
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where 12 2 12
( ) ( ) ( )

d
W W W

a
ρ ρ ρ= ∇ ⋅∇

   
is the extrinsic aberration. If the intrinsic aberration 

contributed by each plate is equal but opposite in sign, 1 2( ) ( )W Wρ ρ= − 
, we have that the 

total aberration is simply the extrinsic aberration 

 2 2 12
( ) ( ) ( ).

d
W W W

a
ρ ρ ρ ρ+ Δ ≅ ∇ ⋅∇

    
 (4) 

Let us first analyze the case of having the plates contributing an axially symmetric wavefront 
deformation in the form 

 3/ 2 2 3 4 5
1 2 3/2 2 3 4 5( ) ( ) .W W W W W W Wρ ρ ρ ρ ρ ρ ρ= − = + + + + 

 (5) 

Table 1 presents the total aberration when only on term is present at a time. Note that all 
aberration generated is positive in sign. 

Table 1. Extrinsic Aberration Terms 
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Noteworthy is that it is possible to generate a conical wavefront deformation similar to the 
aberration introduced by an axicon, focus, fourth, sixth, and eight-order spherical aberration 
as well. The amount of aberration is proportional to the axial displacement d between the 
plates. 

Let us second analyze the case of having the plates contributing a non-axially symmetric 
wavefront deformation in the form 

 
1 2

2 3

( ) ( ) .

( ) ( ) ( )( ) ( )focus astigmatism coma line coma

W W

W W i W i W i

ρ ρ
ρ ρ ρ ρ ρ ρ ρ
= − =

⋅ + ⋅ + ⋅ ⋅ + ⋅

 
          (6) 

Where i


 is a unit vector which defines a particular direction to define the aberration 
symmetry. Table 2 presents the total aberration when only on term is present at a time. The 
second order terms, focus and astigmatism, contribute also focus and astigmatism 
respectively as an extrinsic aberration. Coma and line coma produce fourth-order terms. Other 
aberration forms can be developed using Cartesian coordinates rather than polar coordinates. 
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Table 2. Extrinsic Aberration Terms 
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The assembly of two phase plates as indicated above could be named as a generalized 
zoom plate due to the fact that axial displacements provide a variable amount of both axial 
and non-axial wavefront aberrations. 

3. Examples 

3.1 Spherical aberration 

The case of fourth order spherical aberration is of practical interest as there are applications in 
ophthalmology, optical testing, and optical alignment [8,13,14] where having the ability to 
introduce a desired amount of spherical aberration would be of value. Here we optimize two 
phase plates as shown in Fig. 1 for generating fourth-order spherical aberration. One plate is 
plano concave and the other is plano convex. Both are optically strong. The design of the 
plates involves also specifying not only cubic, but fourth, and fifth order terms as to obtain as 
much as possible pure fourth-order spherical aberration, and for having no aberration for a 
spacing of 0.75 mm. We use a wavelength of 500 nm. 

 

Fig. 1. Phase plates for the generation of +/− 10 waves of fourth-order aberration in their 1.35 
mm displacement position. Note the strong plate asphericity. The beam diameter is 10 mm. 

The relationship between the wavefront deformation 1( )W ρ  and the surface asphericity is 

 3 4 5
1 3 4 5( ) ( 1)( )W r n S r S r S r= − + +

 (7) 

where n is the index of refraction, 2 2 2 2
x yr x y a ρ ρ= + = + , is the radial coordinate in 

Cartesian coordinates, and S stands for the aspheric surface coefficients which are presented 
in Table 3. 
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The axial displacement range is from 0.1 mm for −10 waves, 0.75 mm for zero waves, and 
1.35 mm for + 10 waves. The maximum error in producing fourth-order spherical aberration 
is less than 0.05 waves at a displacement of 1.35 mm. The material used for the design of the 
plates is acrylic plastic 1.49n ≈ . 

Table 3. Surface Definition Aspheric Coefficients 

 First plate Second plate

3S  3.3754e-3 
2mm−

 3.3794e-3 
2mm−

 

4S  5.3521e-5 
3mm−

 3.0974e-4 
3mm−

 

5S  −6.575e-6 
4mm−

 −6.165e-6 
4mm−

 

This system of phase plates is sensitive to lateral misalignment. For an error of 0.001 mm 
about 0.25 waves of coma aberration is introduced. The tilt of one plate of 1 arc-minute 
produces 0.1 waves of coma which is not too large. Fortunately, some motion mechanisms 
based on tangential flexures can be designed to provide a high level of precision motion [16]. 
Most importantly, any coma present in the beam from misalignment of the phase plates can 
be corrected by moving both plates with respect to the light beam. For a relative displacement 
of the plates of 0.005 mm, there are about 1.25 waves of coma. This can be corrected by 
laterally moving both plates with respect to the beam by 0.15 mm which is not a demanding 
alignment. 

This follows the relationship for the coma, comaW , generated by an element that introduces 

spherical aberration, sphericalW , when there is a lateral displacement yΔ : 

 4coma spherical

y
W W

a

Δ=  (8) 

3.2 Conical wavefront 

The generation of a wavefront deformation in the shape of a cone is of interest. Axicons are 
optical elements shaped as cones and produce a conical wavefronts. They can be used in a 
variety of applications from optical alignment to the generation of special beams [17,18]. 
Recently the control of the light distribution in the focal region has been proposed by using 
two [19] and three [20] axicons. In this work, the extrinsic aberration would be a linear term 
proportional to displacement if we generate terms of the form 3/ 2

3/ 2W ρ  according to theory. 
Figure 2 (Left) shows a system of two plates that generate a conical wavefront as shown in 
Fig. 2 (Center). The aperture of these plates is 10mm, the surface coefficient is 

1/2
3/2 0.02S mm= , and the amount of conical wavefront generated is about 1.23 waves per 

millimeter of axial displacement. 

 

Fig. 2. Left, phase plates for generating a conical wavefront; center, wave fan for an axial 
displacement of 1 mm corresponding to 1.24 waves of wavefront amplitude; Right, point 
spread function when the beam is focused by a perfect lens. Note the strong plate asphericity. 
The beam diameter is 10 mm. 
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One feature of this system of plates is that the conical wavefront is generated with smooth 
surfaces. This should be useful in providing a precise wavefront near the optical axis. 

4. Conclusions 

We have presented a generalized zoom, a system of phase plates that are optically strong for 
generating optical aberration by the phenomenon of extrinsic aberration. The basic theory for 
these plates is discussed and spherical aberration of all orders can be generated, including a 
linear term which represents a conical wavefront. Two specific examples are provided that 
illustrate the design and working of such phase plates. The generation of variable spherical 
aberration is of interest for a variety of applications, as well as the generation of variable 
amounts of a conical wavefront. 

Acknowledgments 

This work was supported by the Spanish Ministerio de Economia y Competitividad grant 
FIS2012-38244-C02-01 and Xunta de Galicia grant CN 2012/156 during the stay of E. Acosta 
in the University of Arizona. 

 

#198683 - $15.00 USD Received 1 Oct 2013; revised 28 Nov 2013; accepted 2 Dec 2013; published 2 Jan 2014
(C) 2014 OSA 13 January 2014 | Vol. 22,  No. 1 | DOI:10.1364/OE.22.000289 | OPTICS EXPRESS  294




