
 

Transverse spectrum of bremsstrahlung in finite condensed media
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A formalism is presented in which the radiation of photons off high energy electrons during a multiple
scattering process with finite condensed media can be evaluated for a general interaction. We show that
the arising Landau-Pomeranchuk-Migdal suppression for finite size targets saturates at some character-
istic photon energy. Medium coherence effects in the photon dispersion relation can be also considered
leading to a dielectric suppression or transition radiation effects in the soft part of the spectrum. The main
results of our formulation are presented for a Debye screened interaction and its well-known Fokker-
Planck approximation, showing that for finite size targets or for the angular distributions of the final
particles the differences between both scenarios cannot be reconciled into a single redefinition of the
medium transport parameter (q̂). Our predictions are in very good agreement with the experimental data
collected at SLAC.
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I. INTRODUCTION

The Landau-Pomeranchuk-Migdal (LPM) suppression is
a well-known effect that has been extensively studied.
Interference phenomena in a multiple scattering scenario
was initially considered by Ter-Mikaelian as the mecha-
nism regulating the amount of scattering centers which can
coherently emit as a single bremsstrahlung source [1]. A
classical evaluation of this effect for a semi-infinite medium
was soon introduced by Landau and Pomeranchuk [2,3]
and later completed by Migdal [4] for the quantum case by
means of a Boltzmann transport equation for the electron.
This calculation has shown [5] that except for the spin
corrections for hard photons, the LPM suppression for an
averaged target still agrees with the expected classical
behavior of the infrared divergence. Further and more
recent developments in various approaches have been
introduced since then by Blankenbecler and Drell [6–8],
Zakharov [9–15], the Baier-Dokshitzer-Mueller-Schiff-
Peigné group (BDMPS) [16], Baier and Katkov [17–19],
and Wiedemann and Gyulassy [20], and extensive reviews
were presented in [21,22]. We note, however, that all the
existing calculations were done in the Fokker-Planck
approximation, which both in the Boltzmann transport

approach [4,16] and in the path integral formulation
[9,20] lead to a Gaussian distribution of momenta. In this
approximation, then, the transport properties of the medium
have to be adequate to take into account the neglected large
momentum tails of the original Debye screened or Coulomb
interactions. Few works, on the other hand, considered the
finite target case, which has always been problematic and
sometimes misunderstood lacking a general formulation.
Also, the angular distribution of the final particles has not
been studied in general [20]. Taking into account these
remarks, no result has ever been given beyond the Fokker-
Planck approximation, that also accounts for the transverse
photon and electron spectrum, and which includes in a
natural way the finiteness of the target.
In this paper, we have developed a formalism and a

Monte Carlo code which allows for the computation of the
bremsstrahlung spectrum of finite targets, arbitrary inter-
actions and with a full control of the kinematics of the
process, so that specific cuts on momenta of the final
electron and photon can be applied. In Sec. II A we will
briefly explain the LPM effect in a classical scenario and
then we will review the formalism of the quantum case by
considering finite lengths, general interactions and the
angular distribution of the final particles. In Sec. II B we
will make connection with the already existing works by
showing that for semi-infinite mediums within the Fokker-
Planck approximation the result of Migdal [4] and the
equivalent rederivations by Bell [5] and Zakharov [10] are
exactly reproduced in our formalism. In Sec. III, we will
present and compare our results with the experimental data
of SLAC [23]. Finally, we end in Sec. IV with some
conclusions.
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II. FORMALISM AND CALCULATION

A. Finite length and general interactions

In this section we will introduce the general formalism
applicable to finite targets and general interactions.
It has been predicted by Ter-Mikaelian [1] and Landau

and Pomeranchuk [2] that at high energies the Bethe-
Heitler cross section [24] stops being applicable to
extended media. In order to understand this phenomenon
we start with the emission amplitude for a process con-
sisting in a collision with (n) sources

MðnÞ
em ¼ −ie

Z
d4yΨ̄ðnÞ

f ðyÞγμAλ
μðyÞΨðnÞ

i ðyÞ þOðe2Þ; ð1Þ

where in the Coulomb gauge Aλ
μðyÞ ¼ N ðkÞϵλμeik·y is a

free photon of momentum k, polarization ϵλ ¼ ð0; ϵλÞ and
normalization N ðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2π=ω
p

, ΨðnÞ
i;f ðxÞ the incoming and

outgoing electron wave functions under the external field of
the medium and e ¼ ffiffiffi

α
p

the electron charge. Since in the
ω → 0 limit the number of photons diverges, in virtue of
the soft photon theorem [25], the classical approximation
holds [26] and we can replace

JkðxÞ ¼ Ψ̄ðnÞ
f ðxÞγkΨðnÞ

i ðxÞ → JkðxÞ≡ vkðtÞδ3ðx − xðtÞÞ;
ð2Þ

where vðtÞ≡ _xðtÞ is the electron velocity. Using the
completeness relation

X
λ

ϵλi ϵ
λ
k ¼ δik −

kikk

ω2
ð3Þ

we can find a correspondence with a classical amplitude
[5,27]

MðnÞ
em ¼ −ieN ðkÞ

Z þ∞

−∞
dt

�
k
ω
× vðtÞ

�
eiωt−ik·xðtÞ; ð4Þ

One can consider the integration over time as the point in
which the photon is emitted. This observation becomes
manifest by letting the electron describe a discretized
trajectory, with velocities vj for j ¼ 1;…; nc þ 1 and
piecewise path xj ¼ xj−1 þ vj−1ðtj − tj−1Þ, where nc is
the number of collisions. Equation (4) then produces

MðnÞ
em ¼ eN ðkÞ 1

ω

Xnc
j¼1

δjeiφj ; ð5Þ

where we find a superposition of nc single Bethe-Heitler
like amplitudes [24] of the form

δj ≡ k ×

�
vjþ1

ω − k · vjþ1

−
vj

ω − k · vj

�
; ð6Þ

interfering with a phase φj ≡ ωtj − k · xj. The evaluation
of the square of (5) leads to a total emission intensity
between the photon solid angle Ωk and Ωk þ dΩk given by

ω
dI

dωdΩk
¼ e2

ð2πÞ2
�Xnc

j¼1

δ2j þ2Re
Xnc
j¼1

Xj−1
i¼1

δj ·δieiφ
j
i

�
; ð7Þ

where we have split the sum in a diagonal and a non-
diagonal contribution. The interfering behavior of the
above sum is governed by the phase change between
two arbitrary collisions or emission elements

φj
i ≡ φj − φi ¼ kμðxμj − xμi Þ ¼

Z
zj

zi

dz
kμpμðzÞ

p0

≃ ωð1 − βÞ
Z

zj

zi

dzþ ω

Z
zj

zi

dz
δp2ðzÞ
2βp2

0

; ð8Þ

where p0 is the initial electron energy, δpðzÞ is the
accumulated momentum change of the electron at z with
respect to the photon direction and β ¼ jvj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

e=p2
0

p
the electron velocity. This phase can be made maximal for
large emission angles and/or photon frequencies, provided
that φiþ1

i ≫ 1 for any two consecutive collisions. In that
case the nondiagonal sum in (7) cancels and we are left with
a totally incoherent superposition of (nc) single Bethe-
Heitler intensities, with a maximal intensity of

ω
dIsup
dωdΩk

¼ e2

ð2πÞ2
Xnc
j¼1

δ2j : ð9Þ

In this regime emission decouples and all the scatterings
can be considered to be independently emitting. In the
opposite case, when the emission angle and/or photon
energy are small so that the phase vanishes, the internal
structure of the scattering is irrelevant. This observation
becomes manifest by setting φj ¼ 0 in (5), so we are left
with the first and last terms only and intensity acquires the
minimum value

ω
dIinf

dωdΩk
¼ e2

ð2πÞ2
����X

nc

j¼1

δj

����2; ð10Þ

which can be interpreted as a Bethe-Heitler intensity with a
final velocity vncþ1 due to the coherent deflection with all
the medium centers. In this regime the entire medium acts
as a single independent emission element. This behavior is
a consequence of the well known soft photon theorem
[25,28], although in the LPM literature it is known as the
Ternovskii-Shul’ga-Fomin emission [29,30]. The suppres-
sion from the superior (incoherent) plateau of radiation (9)
to the inferior (coherent) plateau (10) is known as the LPM
effect for mediums of arbitrary size. Notice that in the
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infinite medium limit (nc ≫ 1) the coherent plateau can be
neglected, since the soft photon theorem is not observed
and then the suppression is infinite.
The above classical arguments can be made quantitative

and hold also for a quantum evaluation of the amplitude. By
Fourier transforming electron states Ψi;fðxÞ to the momen-
tum space, we can write for the quantum amplitude (1)

MðnÞ
em ¼ eN ðkÞ

Z
d3pðzÞ
ð2πÞ3

Z
l

0

dz exp

�
i
kμpμðzÞ

p0

�
d
dz

×

�
SelsnsðpðlÞ; pðzÞ; l; zÞ

fλss0 ðzÞ
kμpμðzÞ

× Sels0s0ðpðzÞ þ k; pð0Þ; z; 0Þ
�
; ð11Þ

where we used the shorthand notation

fλss0 ðzÞ≡ ϵλμðkÞp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

p0 − ω

r
ūsðpÞγμus0 ðpþ kÞ

ffiffiffiffiffiffi
me

p0

r
: ð12Þ

Here Sels2s1ðp2; p1; l2; l1Þ stands for the beyond eikonal
evaluation of the elastic amplitudes for an electron to go
from momentum p1 to p2 and from spin s1 to s2 due the
amount of matter between l1 and l2, thus given by

SðnÞsns0ðpn; p0; zn; z0Þ≡
�Yn−1

k¼1

Z
d3pk
ð2πÞ3

��Yn
i¼1

SnðziÞsisi−1ðqiÞ
�
;

ð13Þ

where we discretized the medium and thus qi ≡ pi − pi−1
is the 4-momentum transfer at the layer (i) of nðziÞ
scattering centers, and sum over intermediate spins is
assumed. At high energies the amplitude for a change of
momentum q at the ith layer verifies [31]

SnðziÞsisi−1ðqÞ¼2πδðq0Þδsisi−1βe−iqkzi

×
Z

d2yte−iqt·y exp

�
−i

g
β

XnðziÞ
k¼1

χðyt−rkt Þ
	
; ð14Þ

where yt is an impact parameter, and rk ¼ ðrkt ; zkÞ is the
position of the scattering center at the layer k. The external
field characterizing the medium is given by (n) single
Debye static sources with screening μd ≃ αmeZ1=3, coupled
with strength g ¼ Zα to the electron, of the form

χð1Þ0 ðxÞ≡
Z þ∞

−∞
dsAð1Þ

0 ðxÞ; Að1Þ
0 ðxÞ ¼ Zα

jxj e
−μdjxj:

ð15Þ

The amplitude (11), which corresponds to a sum of the
single emission elements shown in Fig. 1, can be squared

and averaged over medium configurations of infinite
transverse size R → ∞ in a finite length l, summed over
final states, and averaged over initial states, leading to an
intensity of emission in the photon solid angle Ωk and
Ωk þ dΩk and per unit of medium transverse size and unit
time of

ω
dI

dωdΩk
¼
�

e
2π

�
2
�Yn

i¼1

Z
d3pi
ð2πÞ3

��Yn
k¼1

ϕðδpk; δzÞ
�

×

�
hnðyÞ

����Xn
j¼1

δnj e
iφj

0

����2 þ hsðyÞ
����Xn
j¼1

δsje
iφj

0

����2
�
;

ð16Þ

where the spin nonflip currents δnj are given by (6) and the
spin flip currents are given by

δsj ≡ 1

1 − βkk̂ · vjþ1

−
1

1 − βkk̂ · vj
: ð17Þ

Here we have introduced explicitly the possibility of a
medium with a refractive index, by using βk, the photon
velocity. The functions hnðyÞ and hsðyÞ are the diagonal
and nondiagonal sum in spins and helicities of the squared
emission vertex (12), given by

hnðyÞ ¼ 1

2
ð1þ ð1 − yÞ2Þ; hsðyÞ ¼ 1

2
y2; ð18Þ

and y ¼ ω=p0 is the fraction of energy carried by the
photon. They produce two contributions of the same order,
the last one, however, only noticeable when y ≈ 1 due to
hsðyÞ. In what follows we will neglect this contribution by
assuming that y ≪ 1. Within the same approximation we
will assume also that the electron 4-momentum change in
the emission vertex is negligible and β ¼ 1 unless other-
wise required. The local elastic weights arising in the
averaging of the square of (13) are given by

ϕðδp; δzÞ ¼ expð−n0ðzÞδzσð1Þt Þð2πÞ3δ3ðδpÞ
þ 2πδðδp0ÞβΣ2ðδp; δzÞ; ð19Þ

where we can define the no collision probability

expð−nðzÞδzσð1Þt Þ in the layer of length δz and density

FIG. 1. Diagrammatic representation of the single emission
elements appearing in a discretization in the variable z, of the
amplitude MðnÞ

em given at Eq. (11).
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n0ðzÞ times the forward distribution δ3ðδpÞ, and the colli-
sional distribution Σ2ðq; δzÞ after an incoherent scattering
with the centers in δz

Σ2ðq; δzÞ≡
Z

d2xe−iq·x expð−n0ðzÞδzσð1Þt Þ

× ðexpðn0ðzÞδzσðxÞÞ − 1Þ; ð20Þ

which satisfies a Moliere’s equation with boundary con-
dition Σ2ðq; 0Þ ¼ 0. The required single elastic cross

sections at (19) and (20) can be shown to satisfy σð1Þt ≡
σð0Þ where, at leading order in Zα using (15)

σðxÞ≡ 4πðZαÞ2
β2μ2d

μdjxjK1ðμdjxjÞ þOðZαÞ3: ð21Þ

The expression (16) is our main result. It can be directly
used for numerical evaluation for arbitrary medium lengths
or medium properties. In addition, it can be shown that in
the continuum limit it can be cast as a combination of six
path integrals [32]. These path integrals reduce to the well
known Migdal’s or Zakharov results in the appropriate
limits. In addition to a numerical evaluation of (16), we will
derive also an heuristic formula for finite size targets to
qualitatively understand the interference phenomena. The
coherence length defined by the phase modulates the
amount of scatterers which can be considered a single
and independent unit of emission in the squared amplitude.
We then define the length δl ¼ zj − zi in which the phase
becomes larger than unity, which using (8) becomes

φj
i ≃

ω

2p2
0

ðm2
eδlþ q̂ðδlÞ2Þ≡ 1; ð22Þ

then we get

δlðωÞ≡m2
e

2q̂

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8q̂p2

0

m4
eω

s
− 1

!
: ð23Þ

We also define the frequency ωc at which the coherence
length becomes equal to l, the medium total length, thus
ωc ≃ p2

0=ðm2
elþ q̂l2Þ, and the frequency ωs in which the

coherence length becomes equal to a mean free path λ,
ωs ≃ p2

0=ðm2
eλþ q̂lλ=2Þ. Since we assume the medium to

be finite we further impose to (23) δlðωÞ ¼ l for ω > ωc. In
the coherence length δlðωÞ the internal scattering structure
is irrelevant since the phase can be neglected, and the
centers in δlðωÞ act coherently like a single scattering
source with the total equivalent charge in δlðωÞ. Since in
the entire medium l there are l=δlðωÞ coherence lengths,
then we write the incoherent sum

ω
dI
dω

ðlÞ ¼ l
δlðωÞ e

2

Z
dΩk

ð2πÞ2
Z

d3δp
ð2πÞ3

× ðhnðyÞjδn1j2 þ hsðyÞjδs1j2Þϕðδp; δlðωÞÞ:
ð24Þ

By integrating in the photon solid angle Ωk and using (19),
we find

ω
dIðlÞ
dω

¼ l
δlðωÞ

e2

π2

Z
π

0

dθ sinðθÞFðθÞΣ2ðδp; δlðωÞÞ; ð25Þ

where the electron momentum change is jδpj ¼
2p0β sinðθ=2Þ and

FðθÞ ¼
"

1 − β2 cos θ

2β sinðθ=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2cos2ðθ=2Þ

p
× log

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2cos2ðθ=2Þ

p
þ β sinðθ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2cos2ðθ=2Þ
p

− β sinðθ=2Þ

#
− 1

#
:

ð26Þ

This last integral (25) can be numerically evaluated and the
resulting intensity is exact for ω ≫ ωs and ω ≪ ωc. A
simple interpolation formula in the Fokker-Planck approxi-
mation can be obtained from (25) by integrating its two
asymptotic values, i.e., δlðωÞ ≳ l and δlðωÞ≲ λ, and then
interpolating both regions. One finds

ω
dIðlÞ
dω

¼ l
δlðωÞ

2e2

π

1þ nmðωÞ
3Aþ nmðωÞ

logð1þ AnmðωÞÞ; ð27Þ

where nmðωÞ ≃ 2q̂δlðωÞ=m2
e is a measure of the accumu-

lated transverse momentum in a coherence length and
A ¼ e−ð1þγÞ, with γ Euler’s constant.
The general behavior of these results can be summarized

in Fig. 2 where the photon intensity is pictured as a function
of the photon frequency. Above the saturation frequency ωs
the photon resolves all the internal structure of the scatter-
ing, the medium emits as a total incoherent sum of nc ¼ l=λ
Bethe-Heitler intensities, where nc is the average number
of collisions. In this regime, the photon intensity scales
with l. Notice that total suppression can occur provided ωs
becomes larger than p0, which causes that electrons with

energies larger than plpm
0 ¼ m2

e=n0σ
ð1Þ
t experiment the

bremsstrahlung suppression in all their spectrum. For
smaller frequencies the number of independent emitters,
using (23), decreases with

ffiffiffiffi
ω

p
whereas the charge of each

element logarithmically grows with logð1= ffiffiffiffi
ω

p Þ. This
suppression stops at ωc, where the coherence length (23)
acquires the maximum value l, the medium emits as a
single entity and intensity saturates to Weinberg’s soft
photon theorem [25]. The presence of a medium modifies
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the photon dispersion relation and substantially changes
this picture in the soft limit. For the energies considered
here the photon has velocity given by

β2ðkÞ ¼ 1 −
ω2
p

ω2
; ð28Þ

where ω2
p ≃ 4πZαn0=me ≡m2

γ is the plasma frequency,
which can be interpreted as a photon mass mγ. This
scenario induces an additional source of suppression due
to the fact that the wavelength of a photon of frequency ω is
now larger than in the vacuum case and thus

kμpμðωpÞ ≃ kμpμð0Þ þm2
γ

2ω
: ð29Þ

This extra term further suppresses the coherent plateau at
ω < ωde, where kμpμð0Þ≡m2

γ=2ωde, i.e., ω2
de ¼ ω2

plωc,
since the denominators of (6) and (17), defined by (29),
grow for smaller frequencies. This suppression is called the
dielectric effect and holds for a totally homogeneous space
or infinite medium. However, if the electron passes through
vacuum to a medium and then again to vacuum, or in
general through structured targets where density cannot be
considered constant, then the definition (29) becomes local
for each photon emission point. The photon emitted at the
last leg (the vacuum) then satisfies mγ ¼ 0, whereas the
first leg photon satisfies mγ ≠ 0, thus it can be shown that
an interference destroys the dielectric suppression in the
coherence plateau, dramatically enhancing the intensity for
ω < ωde. This is called transition radiation [27,33]. Both of
these effects have been implemented in our formalism and
Monte Carlo. In Fig. 2 we show qualitatively the dielectric
effect and the transition radiation together with their
characteristic frequency ωde.

B. Semi-infinite length and Fokker-Planck
approximation

In Migdal’s calculation of the intensity [4] the angular
distribution of photons is not considered, the medium is
assumed to be semi-infinite l → ∞ and the Moliere’s
equation satisfied by the elastic distributions is replaced
by the Fokker-Planck equation. As a result, the electron
distributions of momenta, which have a Yukawa form for a
Debye screened interaction (15), are replaced by Gaussian
distributions and the large pt tails are neglected. We will
briefly explain here how within these approximations
Eq. (16) leads to Migdal’s result [4] and also the equivalent
rederivations by Bell [5] and Zakharov [10].
We assume from here onwards a constant density

n0ðzÞ≡ n0 so from (19) the electron mean free path is

constant and reads λ≡ 1=n0σ
ð1Þ
t . In this elastic propagation

the electron acquires a squared momentum transfer additive
with the traveled length l. Indeed, from (19) we find

∂
∂l hδp

2ðlÞi ¼ n0σ
ð1Þ
t hδp2ðδlÞi≡ 2q̂; ð30Þ

where we defined the transport parameter q̂. Using (30) we

can write then q̂ ¼ ðη=2Þ × n0σ
ð1Þ
t μ2d, where η is a param-

eter to be determined a posteriori. Then the Fokker-Planck
approximation for (20) is obtained as

n0lσðxÞ ≃ n0lσð0Þ −
1

2
q̂lx2 ð31Þ

so that (20) acquires a Gaussian form

ΣG
2 ðq; δzÞ≡ 2π

q̂δz
exp

�
−

q2

2q̂δz

�
: ð32Þ

Inserting (32) in (19) the integration in the internal
momenta at (16) is now straightforward. It can be shown
[32] that after taking the continuous limit δz → 0, integrat-
ing in the final photon momentum and taking the l → ∞
limit, the intensity of photons for y ≪ 1 is given by

ω
dIðlÞ
dω

¼ l
2e2

π

ffiffiffiffiffiffiffiffi
q̂ω
2p2

0

s Z
∞

0

dz exp

�
−

zffiffiffi
2

p
s

�

×

�
sin

�
zffiffiffi
2

p
s

�
þ cos

�
zffiffiffi
2

p
s

��

×

�
1

z2
−

1

sinh2ðzÞ
�
; ð33Þ

which agrees with Migdal/Bell/Zakharov predictions
[4,5,10]. In Migdal’s calculations, the parameter s is
defined recursively, in terms of an implicit expression

FIG. 2. Schematic representation of the bremsstrahlung re-
gimes for several scenarios. Totally incoherent Bethe-Heitler
superposition (BH), Landau-Pomeranchuk-Migdal suppression
(LPM), totally coherent Bethe-Heitler superposition (mγ ¼ 0),
dielectric suppression (DE) and transition radiation (TR). See text
for definition of the characteristics frequencies ωc, ωs, ωde.
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which is related to the definition of q̂. Here, we define
s≡ ð2p0=m2

eÞ
ffiffiffiffiffiffiffiffiffi
q̂=ω

p
and introduce the parameter η to

account for the freedom in the definition of q̂.
An estimation of the value of η can be given by

considering the momentum transfer in a single collision
δl≲ λ which is given, using (19), by

hδp2ðδlÞi ¼ μ2d

�
2 log

�
2p0

μd

�
− 1

�
¼ μ2dη; ð34Þ

where the correction η to μ2d takes into account the long tail
of the Debye interaction (15) and a maximum momentum
transfer of jδpj ¼ 2p0 is allowed in a single collision. High
momentum changes are suppressed at high energies,
however, due to the functions (6) and (17) in (16). We
have checked that a maximum momentum transfer of
jδpj ≃ 2.5me matches the single emission and then we
write for η in (34) instead

η¼
�
2 log

�
2.5me

μd

�
−1

�
¼
�
2 log

�
2.5

αZ1=3

�
−1

�
: ð35Þ

This effective momentum transfer under bremsstrahlung
agrees with Bethe’s [24] estimation η ¼ 2 logð183=Z1=3Þ
within less than 3% deviation in the range Z ¼ ð1; 100Þ.
The above relations hold, however, for the single scattering
regime δz ≤ δl, so they can be used only to fix η and thus q̂
in the incoherent plateau. For the coherent plateau a

(a)

(b)

(c)

FIG. 3. Differential spectrum of photons emitted by an electron
of p0 ¼ 8 GeV traversing a sheet of gold of l ¼ 0.023 mm for
photon angles θk ¼ 0.01=γ (a), θk ¼ 2=γ (b) and θk ¼ 10=γ (c),
where γ ≡ p0=me, in the Monte Carlo (MC) evaluations of (16)
in the Debye interaction (yellow), in the Fokker-Planck approxi-
mation with η ¼ 8 (purple), η ¼ 4 (dark grey), and η ¼ 2 (light
grey), together with the corresponding path integral (PI) limits of
(16) in the Fokker-Planck approximation (dot-dashed lines).
Bands show the statistical uncertainty of the Monte Carlo.

FIG. 4. Intensity of photons emitted by an electron of p0 ¼
8 GeV (top) and p0 ¼ 25 GeV (bottom) after traversing a sheet
of gold of length l ¼ 0.0038 mm in the Monte Carlo (MC)
evaluation of (16) in the Debye interaction (squares), the Fokker-
Planck approximation with η ¼ 8 (circles), η ¼ 4 (diamonds),
and η ¼ 2 (triangles). Also shown our heuristic formula (25) and
the Migdal prediction (33).
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medium-length dependent fit for η has to be employed.
Correspondingly, a single Fokker-Planck approximation
can not fit both the upper and lower ends of the brems-
strahlung spectrum unless the medium length is very large,
in which case the lower plateau occurs at very low
frequencies and can be neglected. In our numerical calcu-
lations, we will choose the value of η to match the Debye
calculations in the incoherent plateau.

III. RESULTS

Expression (16) can be numerically evaluated for arbi-
trary interaction models, for finite size and arbitrarily
structured targets with dielectric suppression and transition
radiation effects included. We have developed a
Monte Carlo code to evaluate this intensity by means of
discretized paths with a typical step of δz ¼ 0.1λ. In a
typical run we computed 104 paths for 50 frequencies
and 100 photon angles, spanning from ∼103 steps for the
shortest medium to ∼105 steps for the largest. In order to
check that our results are correct we implemented also
the Fokker-Planck approximation (32) for (19) in this

discretized approach and compared with the δz → 0 limit
of (16), which within this approximation produces six
integrable Gaussian path integrals extending the Boltzmann
transport approach [4] to finite mediums [20]. We present
our result for the Debye and Fokker-Planck cases for targets
of lengths l ¼ 0.0038, 0.023 and 0.2 mm, corresponding to
an average of nc ¼ 142, 862, and 7502 collisions, respec-
tively, for electrons of p0 ¼ 8 and 25 GeV, in order to
compare to the SLAC data presented in [23,34,35]. A
systematic study and comparison with other experimental
results will be presented elsewhere [32]. For gold we obtain
an estimate for the Debye mass of μd ¼ 16 keV, a transport
parameter of q̂ ¼ ðη=2Þ × 1.89 keV3, and fix the effective
parameter η ¼ 8. The plasma frequency is ωp ¼ 0.080 keV
(see also [36]). In Fig. 3 we show the differential photon
intensity as a function of the photon energy for various
fixed emission angles for an electron of p0 ¼ 8 GeV
traversing a gold sheet of l ¼ 0.023 mm. The path integral
limit is also shown, and an excellent agreement with the
Fokker-Planck Monte Carlo evaluation is found. At low
angles, the Fokker-Planck approximation overestimates
the intensity by ∼20%. However, at larger angles the

FIG. 5. Intensity of photons emitted by an electron of p0 ¼
8 GeV (top) and p0 ¼ 25 GeV (bottom) after traversing a sheet
of gold of length l ¼ 0.2 mm in the Monte Carlo (MC) evaluation
of (16) in the Debye interaction (squares), the Fokker-Planck
approximation with η ¼ 8 (circles), η ¼ 4 (diamonds) and
η ¼ 2 (triangles). Also shown our formula (25) and the Migdal
prediction (33).

FIG. 6. Intensity of photons emitted by an electron of p0 ¼
8 GeV (top) and p0 ¼ 25 GeV (bottom) after traversing a sheet
of gold of length l ¼ 0.023 mm in the Debye interaction (open
squares) and the Fokker-Planck approximation with η ¼ 8
(circles) with the dielectric and transition radiation effect in-
cluded, compared to SLAC experimental data [23] (solid circles)
rescaled.
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Fokker-Planck approximation underestimates the intensity,
in particular only half of the real emission is obtained for
θ ¼ 10γ−1. In Fig. 4 we show the angular integrated
spectrum for a sheet of gold of l ¼ 0.0038 mm for electron
energies of p0 ¼ 8 and 25 GeV. We see that the parameter
η ¼ 8 in the Fokker-Planck approximation matches the
incoherent plateau but mismatches the coherent plateau.
Also shown are the expression (25) and the Migdal
prediction (33) both in the Fokker-Planck approximation.
The predicted characteristic frequencies are ωc ¼ 8 MeV
and ωs ¼ 1.1 GeV for p0 ¼ 8 GeV, and ωc ¼ 80 MeV
and ωs ¼ 11 GeV for p0 ¼ 25 GeV, being in good agree-
ment with the obtained Monte Carlo results.
In Fig. 5 we show the same results for a sheet of gold

of l ¼ 0.2 mm. We see that Migdal prediction becomes
a good approximation for nc ≥ 104, i.e., when the coherent
plateau can be neglected. For this length we predicted
ωc ¼ 8 keV and ωs ¼ 60 MeV for p0 ¼ 8 GeV, and
ωc ¼ 80 keV and ωs ¼ 588 MeV for p0 ¼ 25 GeV. All
these values are in well agreement with the Monte Carlo
evaluation.
In Fig. 6 we show the dielectric and transition radiation

effect implementation both in the Debye interaction and the
Fokker-Planck approximation, and compare with SLAC
data [23], for a sheet of gold of l ¼ 0.023 mm and electron
energies of p0 ¼ 8 and 25 GeV. The characteristic

frequency predictions ωde ¼ 0.6 MeV for p0 ¼ 8 GeV
and ωde ¼ 1.9 MeV for p0 ¼ 25 GeV and the comparison
with experimental data are in very good agreement. The
LPM characteristic frequencies are given in this case by
ωc ¼ 0.48 MeV and ωs ¼ 418 MeV for p0 ¼ 8 GeV, and
ωc ¼ 4.7 MeV and ωs ¼ 4 GeV for p0 ¼ 25 GeV.
In Fig. 7 we show the intensity of bremsstrahlung for

electron with a final transverse momentum jδpj < 4 MeV
or jδpj > 4 MeV. We see that the Fokker-Planck results
do not reproduce well the Debye calculation. Although
large differences could be expected for the case of
jδpj > 4 MeV, as the Fokker-Planck approximation under-
estimate the long tails of the transverse momentum dis-
tribution, it is perhaps more surprising to find that also
cutting at low pt produces different results: the Fokker-
Planck result overestimates the emission in this case at
large frequencies.

IV. CONCLUSIONS

A formalism implemented with a Monte Carlo method
has been presented which is able to evaluate the brems-
strahlung intensity in a multiple scattering scenario under a
general interaction. We have also found an heuristic
formula which describes the LPM effect for finite size
targets. Dielectric and transition radiation effects related to
effective photon masses in the medium dispersion relation
are included in this formalism if needed. Our results
reproduce the experimental data of SLAC.
We have shown that the Fokker-Planck approximation

does not fit well the differential angular spectrum, espe-
cially if kinematical cuts are applied in the final particles. In
the integrated spectrum, the Fokker-Planck approximation
fails to reproduce the spectrum. If the q̂ is fixed using the
incoherent plateau, then the coherent plateau is not well
reproduced, unless a length dependent definition of the
transport properties of the medium is used.
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FIG. 7. Intensity of photons emitted by an electron of p0 ¼
8 GeV after traversing a sheet of gold of length l ¼ 0.023 mm
from electrons with final transverse momentum pt > 4 MeV in
the Debye interaction (triangles) and the Fokker-Planck approxi-
mation with η ¼ 8 (diamonds), and with pt < 4 MeV in the
Debye interaction (squares) and the Fokker-Planck approxima-
tion with η ¼ 8 (circles).
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