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Recent studies of the weakly nonlinear dynamics of probe fields in global AdS4 (and of the
nonrelativistic limit of AdS resulting in the Gross-Pitaevskii equation) have revealed a number of cases
with exact dynamical returns for two-mode initial data. In this paper, we address the question whether
similar exact returns are present in the weakly nonlinear dynamics of gravitationally backreacting
perturbations in global AdS4. In the literature, approximate returns were first pointed out numerically and
with limited precision. We first provide a thorough numerical analysis and discover returns that are so
accurate that it would be tantalizing to sign off the small imperfections as an artifact of numerics. To clarify
the situation, we introduce a systematic analytic approach by focusing on solutions with spectra localized
around one of the two lowest modes. This allows us to demonstrate that in the gravitational case the returns
are not exact. Furthermore, our analysis predicts and explains specific integer numbers of direct-reverse
cascade sequences that result in particularly accurate energy returns (elaborate hierarchies of more and less
precise returns arise if one waits for appropriate longer multiple periods in this manner). In addition, we
explain, at least in this regime, the ubiquitous appearance of direct-reverse cascades in the weakly nonlinear
dynamics of AdS-like systems.
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I. INTRODUCTION

Investigations of weakly nonlinear dynamics of global
anti–de Sitter (AdS) spacetime, initiated by the numerical
evidence for its nonlinear instability presented in Ref. [1],
have resulted in a number of surprises. This includes
evidence for turbulent cascades leading to black hole
formation starting from small initial data [1], as well as
noncollapsing initial configurations [2–7], and a number of
intriguing results within the resonant approximation of the
AdS dynamics accurately describing slow weakly nonlinear
transfer of energy between the linearized modes [8–10]:
selection rules prohibiting certain interaction channels
between the linearized modes [9–12], extra conservation
laws [10,13,14], dual energy cascades [14], and strong
numerical evidence for turbulence within the resonant

system [15] (for a review, see Ref. [16]). While the bulk
of these considerations have focused on the case of spheri-
cally symmetric perturbations of gravity-scalar field sys-
tems, extensions to pure gravity within the squashed sphere
ansätze [17] and more general perturbations outside spheri-
cal symmetry (starting with Ref. [18]) have also appeared.
Among the many surprises of the sort mentioned above is

the observation of Fermi-Pasta-Ulam (FPU)-like returns of
energy configurations in Ref. [8]. Conventionally, the
Fermi-Pasta-Ulam paradox refers to surprisingly close
returns of the energy distribution between linearized modes
to its initial configuration observed in the pioneering
numerical study [19] of weakly nonlinear oscillator chains
(for a review, see Ref. [20]). In the context of weakly
nonlinear dynamics of AdS, the energy transfer between the
linearized modes is accurately captured by the approximate
resonant system, also called the two-time framework (TTF)
inRef. [8] and the renormalization flow equation or the time-
averaged system in Refs. [9,10]. One remarkable observa-
tion of Ref. [8] is that, for initial data with all of the energy in
the two lowest modes, this resonant system shows a close
return (within a few percent) of the energy distribution to the
initial configuration after a few direct and reverse cascades
of energy to shorter wavelength modes and back. This is
reminiscent of the Fermi-Pasta-Ulam phenomenon (though
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we emphasize that there are also some significant
differences: from the standpoint of the effective resonant
system, the dynamics is strongly nonlinear, as the weak
nonlinearity parameter has been completely scaled out,
while the conventional Fermi-Pasta-Ulam paradox is essen-
tially weakly nonlinear).
A number of developments that have occurred since the

publication of Ref. [8] call us to re-examine the issue of
energy returns in global AdS4. The complexity of the
gravitational dynamics in AdS, even when treated within
the resonant approximation, has encouraged examination in
Refs. [21–24] of a number of related systems for nonlinear
probe fields in AdS, without gravitational interactions.
These systems, while possessing much simpler nonlinear-
ities, share many structural features of the gravitational
problem, including the patterns in the effective resonant
system. It turned out that such probe field resonant systems
derived in Refs. [21–23] possess remarkable analytic
features, including exact energy returns for two-mode
initial data. We also mention the closely related problems
arising from nonlinear Schrödinger equations in isotropic
harmonic traps [25–32]. These systems likewise display
perfect energy returns, and their close relation to the AdS
systems is explained by the nonlinear Schrödinger equation
in a harmonic trap emerging as a nonrelativistic limit of
nonlinear wave equations in AdS [23].
In view of the exact returns for two-mode initial data

which can be analytically demonstrated for a number of
systems closely related to weakly nonlinear gravitational
dynamics in AdS, a question naturally comes up: could it
be that the returns are in fact perfect and the imperfections
observed in the simulations of Ref. [8] are a numerical
artifact? Indeed, the simulations of Ref. [8] were performed
at a modest numerical precision, which typically involved
truncating the system to 30 or 47 lowest modes out of the
infinite tower of modes. While a few subsequent studies,
including Refs. [15,33], were performed at higher numeri-
cal precision, they did not target the question of energy
returns, and made no comments on this issue. We therefore
revisit the problem, and examine the returns of two-mode
initial data in global AdS4 in hope of elucidating the
question whether such returns are exact or approximate.
The course of our investigation involves both numerical

and analytic parts. After reviewing in Sec. II the basic setup
of the resonant approximation to nonlinear gravitational
dynamics in global AdS4, we dedicate Sec. III to a
numerical implementation of this resonant dynamical
system at a much higher precision than in Ref. [8],
specifically targeting the question of dynamical returns
for two-mode initial data. In this way, we discover strik-
ingly accurate returns that are visually indistinguishable
from the perfect returns for related systems observed in
Refs. [21,23,28,30–32]. Nonetheless, the tiny deviation
from perfect returns does not appear to go away completely
with increased numerical precision. We highlight the

subtleties of numerical simulations of the type of problems
we are considering, and are forced to look for analytic
clarification of the paradoxical situation we observe.
With this goal in mind we turn, in Sec. IV, to regimes in

which our two-mode initial data are close to one-mode
initial data. In this situation, the problem becomes
analytically tractable and one can see that the returns are
inexact. This should be contrasted with the scenario of
Refs. [21,23,28,30–32], where, for related systems, generic
two-mode initial data display exact returning behaviors. We
thus confirm the FPU-like nature of the energy returns
demonstrated by the weakly nonlinear gravitational dynam-
ics in global AdS4, which turn out to display a level of
return accuracy much more striking than what has been
seen in the past literature.
Furthermore, our analysis of solutions dominated by one

of the two lowest modes predicts and explains specific
integer numbers of direct-reverse cascade sequences that
result in particularly accurate energy returns (elaborate
hierarchies of more and less precise returns arise if one
waits for appropriate longer multiple periods in this
manner). We provide robust predictions for the numbers
of cascades that lead to enhanced returns, even for initial
data with moderate ratios of the initial mode energies. In
addition, our analytic work explains (at least in the regime
of two-mode initial data dominated by one of the modes)
the ubiquitous appearance of direct-reverse energy cascade
sequences in the weakly nonlinear dynamics of AdS-like
systems. We conclude with a discussion of possible
implications in Sec. V.

II. PRELIMINARIES

We start with a very brief review of the basic setup of the
spherically symmetric AdS-scalar field system and the
resonant approximation to its weakly nonlinear dynamics.
More details can be found in Refs. [9,10,16].
One considers Einstein’s gravity with a negative cos-

mological constant

Λ ¼ −
dðd − 1Þ

2
ð1Þ

in d spatial dimensions, coupled to a free massless scalar
field. The equations of motion are

Rμν −
1

2
gμνRþ Λgμν − 8πG

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�
¼ 0

ð2Þ
and

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0: ð3Þ

One can consistently truncate to spherically symmetric
configurations, corresponding to the metric ansatz

ANXO BIASI, BEN CRAPS, and OLEG EVNIN PHYS. REV. D 100, 024008 (2019)

024008-2



ds2 ¼ 1

cos2x

�
dx2

A
− Ae−2δdt2 þ sin2xdΩ2

d−1

�
; ð4Þ

where Aðx; tÞ, δðx; tÞ, and ϕðx; tÞ only depend on the time
coordinate t and the radial coordinate x, which is defined on
the interval ½0; π=2Þ. We shall set 8πG ¼ d − 1.
Following Ref. [1], we introduceΦ≡ϕ0 and Π≡A−1eδ _ϕ

(where dots and primes denote the t and x derivatives,
respectively), and also the following two predefined
functions

μðxÞ≡ ðtanxÞd−1 and νðxÞ≡ ðd− 1Þ
μ0ðxÞ ¼ sinxcosx

ðtanxÞd−1 : ð5Þ

The equations of motion are then written as

_Φ ¼ ðAe−δΠÞ0; _Π ¼ 1

μ
ðμAe−δΦÞ0; ð6aÞ

A0 ¼ ν0

ν
ðA − 1Þ − μνðΦ2 þ Π2ÞA;

δ0 ¼ −μνðΦ2 þ Π2Þ; ð6bÞ

_A ¼ −2μνA2e−δΦΠ: ð6cÞ

Static solutions of these equations are the AdS-
Schwarzschild black holes Aðx; tÞ ¼ 1 −MνðxÞ, δðx; tÞ ¼
0 andϕðx; tÞ ¼ 0, while unperturbedAdSdþ1 corresponds to
A ¼ 1, δ ¼ ϕ ¼ 0.
We are interested in the weakly nonlinear regime in

which the AdS solution is perturbed by a small-amplitude
scalar field and its gravitational backreaction, which will be
treated perturbatively. Because of the spherical symmetry
imposed by our ansatz (4), the metric has no propagating
degrees of freedom. On each given time slice, the constraint
equations (6b) can be integrated to express the metric
components in terms of the matter distribution given by
ϕðx; tÞ at the same moment of time. Up to quadratic order
in the scalar field, one finds [1]

Aðx; tÞ ¼ 1 − νðxÞ
Z

x

0

ð _ϕðy; tÞ2 þ ϕ0ðy; tÞ2ÞμðyÞdyþ � � �

ð7Þ

and

δðx;tÞ¼−
Z

x

0

ð _ϕðy;tÞ2þϕ0ðy;tÞ2ÞμðyÞνðyÞdyþ… ð8Þ

Using these expressions, the scalar field equation of motion
(3) can be rewritten as a nonlinear equation for ϕ of the
form [1,10]

□AdSϕ ¼ S½ϕ�; ð9Þ

where □AdS is the Laplacian in (a nondynamical) AdSdþ1

and S symbolically denotes all the nonlinear terms (which
are local in time but nonlocal in space) arising from
integrating out A and δ. In an expansion in powers of
the scalar field, the leading term in S½ϕ� is cubic; explicit
expressions can be found in Refs. [1,10]. Only this cubic
part is significant for our present discussion, since that is
what affects the specific weakly nonlinear regime we focus
on; see Ref. [10]. (One might find it strange that we talk
about gravitational dynamics in AdS, while under the
assumption of spherical symmetry the metric is nondy-
namical and one ends up with a nonlinear wave equation
for a scalar field in a fixed AdS background. Nonetheless,
there are closely related constructions, which are purely
gravitational, without any matter, and utilize a “squashed”
generalization of our ansatz; see Ref. [17]. Such extensions
effectively result in nonlinear wave equations very similar
to the one we have for the scalar field, but now satisfied by
the metric components in the absence of any matter.)
The problem of weakly nonlinear gravitational dynamics

of the AdS-scalar field system under the assumption of
spherical symmetry is thus reduced to a complicated
nonlinear wave equation in a fixed AdS background.
This highlights the relation between gravitational stability
of AdS and simpler nonlinear wave equations in AdS that
have been considered in the literature as toy models, for
example, the λϕ4 theory in nondynamical AdS; see
Refs. [13,21,23]. Our aim shall be to develop an effective
treatment of this dynamics for small fields ϕ of order ε on
long timescales of order 1=ε2. This is the regime in which
interesting phenomenology, including black hole formation
(“turbulent instability”), has been observed in numerical
experiments starting with Ref. [1].
Before proceeding with weakly nonlinear analysis, one

must thoroughly understand the linearized problem, i.e., the
equation

□AdSϕ ¼ 0; ð10Þ
which under the assumption of spherical symmetry takes
the form

ϕ̈1 þ L̂ϕ1 ¼ 0 with L̂≡ −
1

μðxÞ ∂xðμðxÞ∂xÞ: ð11Þ

The eigenvalues for the operator L̂ are ω2
n, with

ωn ¼ dþ 2n; n ¼ 0; 1;…; ð12Þ
and the eigenfunctions are

enðxÞ ¼ kncosdxP
ðd
2
−1;d

2
Þ

n ðcos 2xÞ with

kn ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ d − 1Þ!p
Γðnþ d

2
Þ : ð13Þ

Here, Pða;bÞ
n ðxÞ are Jacobi polynomials of degree n.

ENERGY RETURNS IN GLOBAL AdS4 PHYS. REV. D 100, 024008 (2019)

024008-3



A remarkable feature, intimately linked to the isometries
of AdSdþ1 forming the conformal group SOðd; 2Þ, is that
all solutions oscillate with integer frequencies ωn. This, in
fact, extends outside spherical symmetry, and the most
general solution of Eq. (10) is time periodic with period 2π.
[The entire tower of eigenmodes of Eq. (10) fills an infinite-
dimensional representation of SOðd; 2Þ—and it is also
related by a simple transformation to wavefunctions of a
superintegrable quantum-mechanical system known as the
Higgs oscillator [34,35].]
The fully resonant spectrum (12) is highly atypical, and

it gives arbitrarily small nonlinearities an opportunity to
have large effects, since the impact of resonant interactions
between the modes tends to accumulate over time. In naive
perturbation theory in terms of power series in ε, this
feature is reflected in a breakdown of perturbative expan-
sions on time scales of order 1=ε2, as noted already in
Ref. [1]. More specifically, if one tries to develop solutions
of Eq. (9) as solutions of Eq. (10) of order ε plus corrections
of higher orders in ε, already at order ε3 one ends up with
“secular” terms growing as ε3t, which overpower the
leading (linear) term on timescales greater than 1=ε2.
The origin of such terms can be directly traced back to
the presence of resonances in the linearized spectrum.
The discussion above shows that naive perturbative

expansions are not a valid way to approximate the weakly
nonlinear dynamics of Eq. (9) on the relevant timescales.
A particularly viable alternative approach is time averaging,
introduced for studies of AdS systems in Ref. [8] and
developed analytically in Refs. [9,10] (various names were
used for it). One starts by expanding solutions of (9) in
terms of linearized eigenmodes (13) as

ϕðx; tÞ ¼ ε
X∞
n¼0

ðαnðtÞe−iωnt þ ᾱnðtÞeiωntÞenðxÞ;

_ϕðx; tÞ ¼ −iε
X∞
n¼0

ωnðαnðtÞe−iωnt − ᾱnðtÞeiωntÞenðxÞ; ð14Þ

and equivalently rewriting Eq. (9) as a system of equations
for αn. This system of equations for αn is of course
completely equivalent to Eq. (9), but it matches what is
known as the “periodic standard form” in mathematical
literature, and the time-averaging procedure may be applied
to simplify this equation in a way that does not affect its
accuracy on timescales of order 1=ε2. More specifically,
substituting Eq. (14) in Eq. (9) and projecting on en, one
expresses i _αn as a cubic combination of αk and ᾱk. Most of
the terms in this cubic combination come with oscillatory
factors inherited from the explicit time dependences in
Eq. (14). Time averaging (backed by precise mathematical
theorems) discards all oscillatory terms, retaining only the
resonant terms in which the oscillatory factors cancel. This
is guaranteed not to affect accuracy on timescales of order
1=ε2 and results in a resonant system of the form

iωn _αn ¼
X

ωnþωm¼ωkþωl

Cnmklᾱmαkαl; ð15Þ

where, from now on, the dot will stand for a derivative with
respect to the slow time ε2t, which we shall call simply t
from now on. A few remarks are in order:

(i) The dependence on the small nonlinearity parameter
has been completely scaled out of Eq. (15) with the
introduction of the slow time, and there are no small
parameters left. In fact, Eq. (15) enjoys a scaling
symmetry: if αnðtÞ is a solution, so is λαnðλ2tÞ, for
any λ.

(ii) The nonlinear physics of the problem is completely
encoded in the interaction coefficients Cnmkl which
are a set of numbers expressed through the mode
functions (13) and their spatial derivatives, and
depending on the specific form of nonlinearity in
Eq. (9). For the gravitational system we are consid-
ering here, the explicit expressions for C are very
complicated and can be found in Ref. [10] (where
these coefficients are denoted as T, R, and S,
depending on the number of coincident index
values). In the Appendix, we extend them to the
case of a massive scalar field, which will be
discussed in Sec. V.

(iii) The frequencies ωn can be absorbed in C by
redefining αn, but it is often convenient to keep
them explicit. Note that ωn þ ωm ¼ ωk þ ωl is
equivalent to simply nþm ¼ kþ l.

(iv) A number of simpler related problems (nonlinear
wave equations in nondynamical AdS, variations of
the Gross-Pitaevskii equation for Bose-Einstein
condensates in harmonic traps) lead to resonant
systems that only differ from Eq. (15) by specific
values of the numerical coefficients. Some of these
systems demonstrate perfect energy returns in the
evolution of two-mode initial data [21,23,28,30].

(v) Purely from resonance analysis, Eq. (15) could have
extra terms (for example, with three α’s and no ᾱ’s),
but such terms can be shown to vanish specifically in
AdS due to special selection rules [9–12]. Corre-
spondingly, there is an emergent Uð1Þ symmetry
rotating the phases of αn by a common shift, which
is manifest in Eq. (15) but absent in Eq. (9).

(vi) In immediate relation to the extra Uð1Þ symmetry
resulting from selection rules, there is an extra
conservation law [10,13,14] for the associated “par-
ticle number”

N ¼
X

ωnjαnj2 ð16Þ

in addition to the total “linearized energy”

E ¼
X

ω2
njαnj2; ð17Þ
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generically conserved by resonant systems. They are
associated with the symmetry transformations

αn → eiφαn; αn → eiωnθαn; ð18Þ

respectively.
Our main objective is to examine solutions to Eq. (15)

starting with two-mode initial data

α0ð0Þ; α1ð0Þ ≠ 0; αn≥2ð0Þ ¼ 0: ð19Þ

In particular, the energy distribution between the modes
may be quantified by

EnðtÞ ¼ ω2
njαnðtÞj2; ð20Þ

and we may scan the evolution of two-mode initial data for
return moments when the deviation from the initial energy
distribution is small.
Due to the scaling symmetry of Eq. (15) we can

transform any initial data (19) to satisfy

E0ð0Þ þ E1ð0Þ ¼ 1: ð21Þ

Thereafter, it is sufficient to study the quantity

ΔðtÞ ¼ 1 − E0ðtÞ − E1ðtÞ: ð22Þ

If ΔðtÞ is 0, joint conservation of Eqs. (16) and (17)
guarantees that E0ðtÞ ¼ E0ð0Þ and E1ðtÞ ¼ E1ð0Þ, i.e., we
have found a perfect return, while 0 < ΔðtÞ ≪ 1 signifies
an accurate but imperfect return. As we have already
remarked, for a number of related resonant systems solved
in the literature, ΔðtÞ periodically drops to 0 for any two-
mode initial data of the form (19), signaling exact returns
[21,23,28,30]. In our present work, we shall look closely
into similar return phenomena for the gravitational resonant
system (15), which is only possible numerically.

III. NUMERICS

Before describing the results of our own numerical
experiments, we briefly summarize what has been done
in this area before. Already in Ref. [8], one of the themes
was the observation of accurate but imperfect returns of
energy to the initial configuration for two-mode initial data
in the resonant system for gravitational AdS4 perturbations
(there referred to as the two-time-framework approxima-
tion). These numerical studies were performed at the
resolution available at that time, which amounted to
truncating the resonant system to the lowest 30 or 47
modes, and returns with precision of a few percent were
observed. The evolution was seen to proceed in a sequence
of direct and reverse energy cascades, and the third reverse
cascade led to a more accurate return to the initial
energy distribution than the first two. Subsequently, a

few developments occurred, including the derivation of
analytic expressions for the interaction coefficients of the
AdS resonant systems in terms of the AdS mode functions
in Refs. [9,10] and an algorithm to convert these expres-
sions into explicit (but very complicated) functions of the
mode numbers in Ref. [33]. While this has allowed
simulations of the resonant dynamics with much higher
precision, the question of energy returns has not been
properly readdressed in the literature following these
developments.
We reiterate our reasons to revisit the question of energy

returns in AdS4. Our current perspective is quite different
from the predominant views at the time Ref. [8] was
written. Indeed, in the years that have passed, a number of
examples have emerged, where resonant systems closely
related to the one studied in Ref. [8] display exact, rather
than approximate, energy returns. These include nonlinear
probe fields in AdS [21,23] as well as nonlinear
Schrödinger equations in harmonic potentials that arise
from AdS systems in a nonrelativistic limit [28,30,32]. This
puts the results of Ref. [8] in a different light and calls for
their re-examination. Note that the limited precision of
Ref. [8] (mode number cutoff at a few dozens modes)
makes it impossible to distinguish exact and approximate
returns. In particular, in application to the systems of
Refs. [21,23,28,30,32], where the returns are analytically
known to be exact, such simulations would have indicated
approximate returns (the imperfection in this case being a
pure artifact of truncating the infinite-dimensional system).
To elucidate the issue of energy returns in global AdS4,

we have performed simulations with up to 500 modes
studying the dependence of the return accuracy on the
mode number cutoff as well as on the arithmetic precision.
For some initial energy distributions between the two
lowest modes, the returns we observe are strikingly
accurate. Figure 1(a) provides an illustration in this regard:
we study the evolution of two-mode initial data which are
fairly generic (not particularly close to one-mode initial
data) over a sequence of nine direct-reverse cascades. After
each of three cascades, we have a return to the initial
configuration that is visually indistinguishable from exact,
and furthermore the whole pattern periodically repeats after
each three oscillations in a way that is visually indistin-
guishable from exact periodicity. All of this happens in (our
high-precision numerical truncation of) the infinite-dimen-
sional nonlinear resonant system (15) that has no small
parameters. Note that the plot given in Fig. 1(a) is visually
extremely similar to an analogous plot [see Fig. 1(b)] in a
closely related resonant system called the LLL equation,
where the energy returns have been analytically proven to
be exact [28]. Figure 2 provides four illustrations where
we can observe the behavior of the energy flow for different
initial energy distributions between the first two modes:
Fig. 2(a) is particularly close to the second mode and
the evolution appears periodic after each direct-reverse
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cascade, while in Figs. 2(b) and 2(c) the apparent perio-
dicity only emerges after three direct-reverse cascades.
Finally Fig. 2(d) describes initial data for which the
evolution visibly deviates from perfect periodicity,
although it is remarkable that the deviations are still pretty
small.

And yet, spectacular as some of these returns are, they
are not exact. This by itself is not conclusive, since returns
in numerical simulations of truncated systems would not
have been exact even if returns in the infinite-dimensional
dynamical system were exact. We thus have to quantify the
dependence of the accuracy of returns on the initial data, as

FIG. 1. Nearly periodic dynamics of the spectrum for the gravitational AdS4 resonant system vs exactly periodic dynamics for the LLL
equation. The tiny deviations from exact periodicity in (a) are not visually discernible. The initial condition is Eqs. (19), (21) with
E0 ¼ 0.17 for both plots.

FIG. 2. This sequence of time evolutions of four two-mode initial data Eqs. (19), (21) shows that (a) the energy transfer between modes
appears to evolve in a periodic way when the initial condition is close to mode 1 (a), that for largerE0 the evolution is apparently periodic
only after three oscillations (b),(c), and that for equal-energy initial conditions, the returns are visibly not exact, but still more accurate
after three oscillations (d).
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well as on the mode number cutoff, arithmetic precision,
and other numerical imperfections. To set the stage, we
present in Fig. 3 plots showing the dependence of two
essential quantities on the initial energy of mode 0 for two-
mode initial data. The first quantity [Fig. 3(a)] is the
minimal value of Δ defined by Eq. (22) over the first
three direct-reverse cascades, which quantifies the energy
return precision (evidently, in computing the minimum we
exclude the initial part of the first direct cascade where Δ is
small simply because the system has not had enough time
yet to deviate from the initial conditions). We see that the
worst returns are around E0 ≈ 0.6 at a level slightly better
than 10%, while for most other initial data away from that
value the returns have precision better than 1%. The second
quantity we plot [in Fig. 3(b)] measures the strength of the
turbulent cascade starting with the given two-mode initial
data. The energy spectrum of configurations that undergo
regular evolution is suppressed exponentially for large
mode numbers, EnðtÞ ∼ nγðtÞ expð−ρðtÞnÞ with ρðtÞ > 0,
and turbulent singularity formation, in particular, would
correspond to ρðtÞ hitting zero at a certain time [15,36,37].
We quantify the strength of a turbulent cascade by
determining how small ρðtÞ becomes during the time
interval of interest. Therefore, we first fit the logarithm
of the spectrum logEnðtÞ to −ρðtÞnþ γðtÞ log n and then
plot the minimal value of ρ attained over the first three
oscillations. We see that the energy return imperfections are
especially strong in the region where the turbulent cascade
is strong as well. A strong turbulent cascade means, in
particular, a stronger sensitivity to the mode number cutoff
(as one would need to appreciably excite modes above the
cutoff to keep the evolution exact, but those modes are
excluded from simulations). This makes the problem of
interpreting the deviations from exact returns rather subtle.
Since we are entering the realm of precision questions, we
must categorize and quantify the uncertainties incurred by
our numerics. There are of course generic small errors
arising from numerical integration of the equations of
motion, but we feel that the following three aspects are

particularly important, since they are specific to the sequen-
ces of direct and reverse cascades of energy we study:
(1) Mode number truncation: Restricting to a finite

number of modes is expected to have little effect
if the energy mostly remains locked within a set of
low-lying modes. In our case, an energy cascade
develops, transferring the energy to higher modes.
While the cascade is self-limiting [unlike in the fully
turbulent case of Ref. [15], where ρðtÞ develops
a zero], it can be quite strong, as evident from
Fig. 3(b). What we observe in numerical experi-
ments is that, as the cascade hits the mode number
cutoff and then starts receding, a comblike pattern of
spikes in the spectrum forms. This pattern undergoes
an evolution of its own and remains visible in future
direct-reverse cascade oscillations. As we can ob-
serve in Fig. 4(a), these comb patterns are pure
numerical artifacts, and do not reflect the true
dynamics of the infinite-dimensional model, since
the parts of the spectrum overrun by the comb
artifacts disagree between simulations with different
mode number cutoffs. Such artifacts are generically
visible for numerical simulation of resonant systems,
including those for which exact analytic solutions
starting with two-mode initial data are known (and
do not display such comblike features). While the
total energy in the comblike artifacts is very small at
the moment of their formation, it is difficult to
predict how they affect future direct-reverse cascade
sequences, since the system is nonlinear and prone
to chaotic divergence of trajectories.

(2) Arithmetic precision: There is a very peculiar way in
which direct-reverse cascade sequences amplify
numerical errors, including the most basic rounding
errors caused by the finiteness of arithmetic preci-
sion. Indeed, assume that in the exact solution a
particular mode number k oscillates between ener-
gies Emax

k and Emin
k . In our scenario of near-perfect

returns Emin
k ≪ Emax

k , while for perfect returns

FIG. 3. Energy return precision (a) and the minimal spectral suppression exponent (b) plotted against the initial energy of mode 0 for
two-mode initial data Eqs. (19), (21). Small values of the curve in (b) correspond to strong turbulent cascades of energy.
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Emin
k ¼ 0. Since we are integrating the equations

numerically and with finite precision, Emax
k contains

a relative error given by at least the arithmetic
precision, for example 10−15. As the cascade recedes
and the energy drops, the absolute error in Ek
cannot decrease. Therefore, when one arrives at
the bottom of the reverse cascade, the energy is
Emin
k , but the absolute error is still 10−15Emax

k (in
particular, values of Emin

k below 10−15Emax
k can never

be reached, even if the exact solution corresponds to
Emin
k ¼ 0). The relative error is now 10−15Emax

k =Emin
k ,

much greater than the rounding errors themselves.
This relative error will be transported upstream in the
next direct cascade and will result in a large absolute
error 10−15ðEmax

k Þ2=Emin
k at the peak of the cascade.

Thus we can see that repeated transport of absolute
errors downstream and relative errors upstream in
direct-reverse cascade sequences leads to strong
amplification of numerical imprecision (and would
of course compromise exact returns even if they
were present in the underlying dynamical system).
In practice, we can see the formation of flat “shelf”
artifacts in the high mode number part of our
spectrum as the first cascade recedes, as in
Fig. 4(b) (these artifacts precisely reflect the inability
of the spectrum to go below 10−15Emax

k in numerical
simulations). Such artifacts continue to evolve in
future spectrum oscillations. As the near-perfect
returns we observe occur after three direct-reverse
cascade cycles, assessing the ultimate impact of
these imperfections on the return precision is subtle.

(3) Interaction coefficients: Small errors in the interac-
tion coefficientsC can produce important errors in the
evolution governed by Eq. (15). This is particularly

important when highmodes are involved, as comput-
ing the interaction coefficients typically requires
numerical integrations of oscillatory functions with
frequencies that grow with the mode numbers. These
integrals have to be evaluated for each resonant
quartet of modes satisfying nþm ¼ jþ k, and the
number of such quartets grows like OðN3

maxÞ, where
Nmax is the mode number cutoff. In addition, in order
to obtain accurate values of the coefficients C when
Nmax is large, one needs to evaluate their expressions
on a very dense grid and with increased arithmetic
precision, which further increases the burden. To
avoid these problems we computed the fully analytic
expression for C in AdS4 described in Ref. [33],
which enables us to evaluateC safely for highmodes.
The remaining burden is then the computational
cost of the simulations, which makes it hard to go
beyond Nmax ¼ 500.
We remark that improving on either points A or B

above beyond the level of our current simulations
would be very demanding in terms of computational
costs. While a break-through in our numerical pre-
cision does not appear viable at thismoment, we have
performed some basic comparison of the return
precision computed at different values of numerical
approximation parameters (as well as a study of
artifacts that we have briefly summarized in the
passages above). In Fig. 5, we show the dependence
of return precision on the number of modes included
in our simulations. As one can see, the return
precision substantially increases as the cutoff is raised
from values around 50 (typical of the simulations of
Ref. [8]), but after 200 stabilizes at a small nonzero
value. At a naive level, this can seen as an indication
that the returns are not exact in the underlying

FIG. 4. Energy spectrum of the two-mode initial data Eqs. (19), (21) at the bottom of the first reverse cascade for different mode
number cutoff. In (a), the direct cascade is strong, in which case the most relevant effects are produced by the cutoff, resulting in spurious
oscillatory behaviors in the upper half of the mode range. In (b), the direct cascade is weak, and “shelf” artifacts dominate the
imperfections of the spectrum. The shelf here refers to the shallower portion of the spectrum starting around mode 50. The true dynamics
of the underlying system is expected to be represented by a smooth extension of the steeply downward, approximately straight line in the
lower portion of the spectrum, rather than by the shelf artifact. Further discussion can be found in the text.
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dynamical system (15). One has to keep in mind that
other factors hindering perfect returns (finite arith-
metic precision, possible chaotic enhancement of
artifacts over the course of three direct-reverse
cascade oscillations) have not been taken (and are
very difficult to take) into account.
We conclude that our numerical analysis indicates

strikingly accurate, but likely imperfect energy re-
turns for two-mode initial data, though it is not
possible as of now to control all possible sources
of imperfection. There is, however, one particular
aspect that can be further elucidated. Our motivation
to take a closer look at energy returns in global AdS4
has largely come from the similarity of the observed
dynamics to the known related analytically tractable
cases [21,23,28,30,31] where the returns are exact.
This similarity extends in a few other ways, in
particular the ultraviolet parts of the spectra remain
approximately exponential for all times (only the
slope of their logarithmic plot changes). However, for
the systems of Refs. [21,23,28,30,31], energy returns
for any two-mode initial data (19) are exact. This type
of dynamics can be excluded for the resonant system
(15) by inspecting solutions close to mode 0 or mode
1,which are analytically tractable. Thiswill show that
the resonant dynamics of AdS4 cannot be strictly in
the same class as those of the similar resonant systems
of Refs. [21,23,28,30,31], which do exhibit perfect
energy returns.

IV. ANALYTICS

While direct analytic investigations of the resonant
system (15) are beyond practically imaginable limits, there
are special regimes in which this system is analytically
tractable. First of all, there are exact single-mode solutions,
in which all amplitudes are zero except for one chosen
mode [1]. The vicinities of such single-mode solutions
form stability islands [1,3,4,8,33]. While it is common to
linearize in the vicinity of such single-mode solutions and

their generalizations [22,33], which results in linear sys-
tems that are potentially tractable, our approach here will
also gain leverage by relying on single-mode solutions, but
in a way different from linearization, and much more useful
for our purposes.
Instead of linearizing around single-mode solutions, we

shall assume that all other modes are exponentially sup-
pressed in proportion to their distance from the dominant
mode. We shall see that, in the limit when this exponential
suppression becomes strong, the equations dramatically
simplify. Such techniques have been applied in Ref. [38] to
the analysis of stationary solutions of Eq. (15) and related
resonant systems. While the equations are still nonlinear
(unlike in the linearization approach mentioned above),
they can be solved iteratively starting with the dominant
mode. This structure is very convenient for our purposes,
since we are trying to understand whether the energy
returns may be exact. If the returns are exact, they are
exact for all modes, while a failure of exact returns shall be
seen in the approach we are adopting in a finite number of
steps, since the discovery of any given nonreturning mode
guarantees that the returns in the whole system cannot be
exact. This procedure has to be repeated 2 times, for
solutions dominated by mode 0 and mode 1, respectively.

A. Solutions dominated by mode 0

We shall assume that the spectrum is exponentially
suppressed as one moves away from the dominant mode 0:

αn ¼ δn
qnðtÞffiffiffiffiffiffi
ωn

p ; ð23Þ

with δ ≪ 1. Then, after the redefinition Cnew
nmkl ¼

Cold
nmkl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnωmωkωl

p
, Eq. (15) becomes

i _qn ¼
X∞
m¼0

Xnþm

k¼0

δ2mCnmk;nþm−kqkqnþm−kq̄m: ð24Þ

At leading order in δ, only the terms with m ¼ 0 survive:

i _qn ¼ q̄0ðtÞ
Xn
k¼0

Cn0k;n−kqkqn−k: ð25Þ

While this equation is still nonlinear, it offers a tremendous
simplification over Eq. (15), since it can be solved
recursively: once solutions for the modes up to qn have
been constructed, finding qnþ1 amounts to solving a single
linear ODE. We display this structure by writing out the
equations for the first few modes:

i _q0 ¼ C0000jq0j2q0; ð26Þ

i _q1 ¼ 2C1010jq0j2q1; ð27Þ

FIG. 5. Energy return precision for two-mode initial data
E0 ¼ 0.5 as a function of the mode number cutoff.
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i _q2 ¼ 2C2020jq0j2q2 þ C2011q̄0q21; ð28Þ

i _q3 ¼ 2C3030jq0j2q3 þ 2C3021q̄0q1q2; ð29Þ

i _q4 ¼ 2C4040jq0j2q4 þ 2C4031q̄0q1q3 þ C4022q̄0q22: ð30Þ

By applying the scaling symmetry of (15), one can always
set jq0j2 to 1. In order to elucidate whether energy returns of
the two-mode initial data of the form (19) are exact, we
solve Eq. (25) with the initial conditions q0ð0Þ ¼ 1,
q1ð0Þ¼1, qn≥2 ¼ 0. [The phases of q0ð0Þ and q1ð0Þ can
be adjusted as necessary by the symmetry transformations
(18), while the magnitude of q1ð0Þ can be set to 1 by
defining δ ¼ jα1ð0Þj.] The solutions for q0 and q1 are

q0ðtÞ ¼ e−iC0000t; q1ðtÞ ¼ e−2iC1010t: ð31Þ

Note that the energies in these first two leading modes are
time independent, which implies that close to mode 0 the
cascade to higher energies is necessarily very weak (the
situation will be more interesting for solutions dominated
by mode 1). For higher qn, one then obtains

i _qn − 2Cn0n0qn ¼ q̄0
Xn−1
k¼1

Cn0k;n−kqkqn−k: ð32Þ

The structure of solutions is easily understood recursively:
the right-hand side consists of terms oscillating with
frequencies given by linear combinations (with integer
coefficients) of C0000; C1010; ...; Cn−1;0;n−1;0. Hence, qn will
consist of terms that oscillate1 with frequencies given by
linear combinations (with integer coefficients) of
C0000; C1010; ...; Cn0n0. It is only if all qn constructed in
this manner (for two-mode initial conditions) oscillate with
a common period that one gets exact energy returns.
For the resonant system (15), one can straightforwardly

proceed with this algorithm, after having computed a few
low-lying interaction coefficients from the complicated
formulas given in Ref. [10]. The result for q2ðtÞ, which is

q2ðtÞ ¼
−2iC2011

C0000 − 4C1010 þ 2C2020

× sin
ðC0000 − 4C1010 þ 2C2020Þt

2

× eiðC0000−4C1010−2C2020Þt2; ð33Þ

shows that jq2ðtÞj2 is periodic with period T2 ¼ 10
123

π2.
Thus, energy returns are perfect at this order, but the period
T2 is broken at the next order given by

q3ðtÞ¼
2C2011C3021

λ1λ2ðλ2−λ1Þ
ððλ2−λ1Þ−λ2e−iλ1tþλ1e−iλ2tÞe−i2C3030t;

ð34Þ

where

λ1 ¼ −2C0000 þ 6C1010 − 2C3030; ð35Þ

λ2 ¼ −C0000 þ 2C1010 þ 2C2020 − 2C3030: ð36Þ

In our particular case their specific values are λ1 ¼ 3057
70π ,

λ2 ¼ 267
14π meaning that at jq3ðtÞj2 the energy flow has a

periodicity of T3 ¼ 140π2

3
, so that T3 is exactly 574 times

greater than T2. Inspecting the next step of our iterative
solution, we conclude that jq4j2 is also periodic with
T4 ¼ 420π2.
The pattern of common multiple periods will generalize

to the higher modes qn because of the rational relations
between the interaction coefficients Cnmkl in global AdS4.
Namely, one can apply the strategy of Ref. [33] to derive
explicit, complicated formulas for Cnmkl as functions of n,
m, k, l. This leads, in particular, to the conclusion that

2πC0000¼ 45;

2πC0n0n¼
108þ90n−33n2−58n3−21n4−2n5

nðnþ1Þðnþ2Þðnþ3Þ

þ6nð2nþ3Þ
�Xn

k¼1

1

kð2k−1Þþ
2

2nþ1

�
: ð37Þ

Hence, all C0n0n are rationals divided by π, and therefore
qn, which oscillate with frequencies given by rational
combinations of C0n0n, have common periods of the form
π2 times a rational number. (As a direct consequence, jqnj2,
which are what is important for our topic of energy returns,
also have common periods of the same form, typically
somewhat shorter than the common periods of qn.) The
common period of q0; q1;…qn grows rather rapidly with n
(for instance, we get estimates of order 1022 for n ¼ 25).
There is a different form of accurate-but-imperfect

returns, which is less spectacular than what we have
described above in the limit δ → 0, but more relevant
for not-so-long times and not-so-small δ. As we demon-
strated above, there are long multiple periods after which
large sets of qn≥2 simultaneously vanish, providing for very
accurate energy returns in the lowest two modes. The basic
“crude” return period is set by T2, the period of q2. At
t ¼ kT2 with an integer k, q2 ¼ 0 and hence one gets
approximate returns. If at this moment, the value of q3
defined by Eq. (34) is numerically small, even if it is not

1There is a possible caveat in relation to this reasoning in the
sense that, if a resonance occurs between the oscillatory terms on
the right-hand side of Eq. (32) and the frequency 2Cn0n0 on the
left-hand side, growing (rather than purely oscillatory) terms will
be produced in the solution for qn. However, our explicit
computations at a number of low-lying levels, and preliminary
analytic considerations at general n suggest that such resonances
do not in fact occur.
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zero, one gets an improved return precision. In Fig. 6, we
have performed comparisons of this analytic picture with
numerical simulations of the resonant system (15). First, we
have plotted jq3ðkT2Þj2 and identified the specific small
numbers of periods k after which one expects improved
return precision. We have then run numerical simulation
of Eq. (15) with initial data α0ð0Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 5δ2Þ

p
,

α1ð0Þ ¼ δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð3þ 5δ2Þ

p
, which are a rescaled version of

Eq. (23) corresponding to the normalization Eq. (21). At
δ ¼ 0.1, which corresponds to 1.6% of the total energy
initially in mode 1, the pattern of returns exactly matches
our analytic predictions. At δ ¼ 0.3, which corresponds to
13% of the total energy initially in mode 1, already very far
from the strict δ → 0 limit, the latter part of the return
history is upset, but the first two accurate returns (after 4
and 5 oscillations) still match our analytic picture. Our
treatment is thus robust, and retains predictive power even
outside the region of very small δ.
To summarize, the expansion of Eq. (15) in powers of δ

around mode 0 enabled us to verify that the energy transfer
between the modes is not exactly periodic for initial
conditions close to mode 0. Nevertheless, there are rational

relations between the AdS4 interaction coefficients such
that arbitrarily precise returns to the initial energy distri-
bution starting from two-mode initial data2 sufficiently
close to mode 0 occur if one waits long enough. Many other
return patterns of varying accuracy are seen even for
moderate initial ratios of energies of modes 0 and 1 in
the initial state. This is very much in the spirit of the
original FPU paradox. Corrections at subleading orders in δ
may be effectively considered starting with Eq. (24), and
are likely to display many further patterns thanks to the
ubiquitous presence of rational numbers in the problem, but
we shall not explore this systematically.

B. Solutions dominated by mode 1

We shall now assume a hierarchically organized spec-
trum dominated by mode 1:

FIG. 6. Analytics vs numerics for two-mode initial data dominated by mode 0: (a) analytic prediction for return accuracy based on
Eq. (34) and showing accurate returns after 4, 5, 13, and 14 oscillations, and extremely accurate returns after 9 and 18 oscillations; (b) Δ
defined by Eq. (22) for the numerical solution of the full resonant system (15) with two-mode initial data corresponding to δ ¼ 0.1
perfectly reproducing the analytic pattern; (c) the same for δ ¼ 0.3, already quite far from the single-mode initial data limit, but still
accurately reproducing returns after 4 and 5 oscillations.

2Note that we have not essentially used the assumption qn≥2¼0
in our reasoning, and hence the picture of arbitrarily precise returns
over long periods should apply to more general initial data
hierarchically suppressed away from mode 0 as in Eq. (23).
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α0 ¼ δ
q0ðtÞffiffiffiffiffiffi
ω0

p ; αn≥1 ¼ δn−1
qnðtÞffiffiffiffiffiffi
ωn

p ; ð38Þ

with δ ≪ 1. We then get from Eq. (15), after redefining
Cnew
nmkl ¼ Cold

nmkl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnωmωkωl

p
, the following equation for

mode 0:

i _q0¼
X∞
m¼2

Xm−1

k¼1

C0mk;m−kq̄mqkqm−kδ
2m−4

þ2
X∞
m¼1

C0m0mq̄mqmq0δ2m−2þC0000q̄0q0q0δ2; ð39Þ

and for all higher modes,

i _qn¼
X∞
m¼1

Xnþm−1

k¼1

Cnmk;nþm−kq̄mqnþm−kqkδ2m−2

þ
Xn−1
k¼1

Cn0k;n−kq̄0qkqn−kþ2
X∞
m¼1

C0n0nq̄0q0qnδ2:

Retaining only the leading terms, we obtain

i _q0 ¼ C0211q̄2q21 þ 2C0101jq1j2q0; ð40Þ
and

i _qn ¼ q̄1
Xn
k¼1

Cn1k;nþ1−kqkqnþ1−k þ q̄0
Xn−1
k¼1

Cn0k;n−kqkqn−k:

ð41Þ
To appreciate the structure, we write out the first few
equations explicitly:

i _q0 ¼ 2C0101jq1j2q0 þ C0211q̄2q21; ð42Þ

i _q1 ¼ C1111jq1j2q1; ð43Þ

i _q2 ¼ 2C2121jq1j2q2 þ C2011q̄0q21; ð44Þ

i _q3 ¼ 2C3131jq1j2q3 þ C3122q̄1q22 þ 2C3021q̄0q1q2; ð45Þ

i _q4 ¼ 2C4141jq1j2q4 þ 2C4132q̄1q2q3 þ C4022q̄0q22: ð46Þ

One first solves (43), where one can set jq1j2 ¼ 1 as before
using the scaling symmetry. After that, Eqs. (42) and (44)
form a system of two coupled linear equations for q0 and
q2. Once q0, q1, and q2 have been thus obtained, all the
higher equations are solved recursively one-by-one, in a
manner completely analogous to what we have previously
described for solutions dominated by mode 0.
Implementing this solution in practice for q0ð0Þ ¼ 1,

q1ð0Þ ¼ 1 and qn>1ð0Þ ¼ 0 [as before, the complex phases
can be eliminated using the symmetries (18), while the
magnitude of q0ð0Þ can be fixed by redefining δ], one gets

q1ðtÞ ¼ e−iC1111t; ð47Þ

q0ðtÞ ¼
�
cos

λt
2
þ iβ

λ
sin

λt
2

�
e−ið2C0101þβ=2Þt; ð48Þ

q2ðtÞ ¼
−2iC1102

λ
sin

λt
2
e−ið2C2121þβ=2Þt; ð49Þ

where β¼2ðC1111−C0101−C2121Þ and λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4C2

1102

p
.

In what follows, we assume λ ∈ R, which is the case for the
system we are dealing with, as well as for all the systems
studied in Refs. [21,23,28,30,31]. Note that, here, one gets
nontrivial flows of energy among the first subleading
modes, unlike the case dominated by mode 0. These flows
of energy are always periodic with period 2π=λ, as far as the
three lowest modes are concerned. The first order at which
violations of periodicity may enter is in the mode q3, which
is described by the following solution:

q3ðtÞ ¼
C1102

2γλ2ðγ2 − λ2Þ ðaþ beiλt þ ce2iλt þ deiðλþγÞtÞ

× eið−λþ2C0101−2C2121−C1111Þt; ð50Þ

with

a ¼ 2γðγ − λÞðC1102C2213 þ ðβ þ λÞC1203Þ;
b ¼ 4ðλ2 − γ2ÞðC1102C2213 þ βC1203Þ;
c ¼ 2γðγ þ λÞðC1102C2213 þ ðβ − λÞC1203Þ;
d ¼ −4λ2ðC1102C2213 þ ðβ − γÞC1203Þ;
γ ¼ −2C0101 þ C1111 þ 2C2121 − C3131: ð51Þ

For the resonant system (15), direct computation yields
λ=γ ¼ 7

ffiffiffiffiffiffiffiffiffiffi
3665

p
=149 ≈ 2.84. (Note that irrational numbers

emerge here already in the periods of low-lying modes,
unlike the case of initial data dominated by mode 0 we have
considered previously.)
Suppose for a moment that one had λ=γ ¼ 3. Then

E3 ∼ jq3j2 computed from Eq. (50) would have been
proportional to

jaþ beiλt þ ce2iλt þ de4iλt=3j2; ð52Þ

which oscillates with period of 6π=λ, which is thrice the
period of jq0j2, jq1j2, and jq2j2. One would thus have found
exact returns after three direct-reverse cascades as far as the
first four modes are concerned.
Now, for the actual resonant system we study, λ=γ is of

course not exactly 3. This shows that the third energy return
cannot be exact, at least for initial data close to mode 1, no
matter how close we get to exact returns in our numerical
simulations. At the same time, the fact that 2.84... is close to
3 explains why we are seeing very accurate returns after
three direct-reverse cascades (and also why the returns after
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the first two direct-reverse cascades are less exact), as in
Figs. 1(a) and 2(d).
One can extend the above argument into a more

quantitative analysis by plotting jq3ðkT2Þj2 at integer k
with q3 given by Eq. (50) and T2 ¼ 2π=λ, as we did before
for solutions dominated by mode 0. Since q2ðkT2Þ ¼ 0 by
construction, having a small q3 at the same moment
signifies a return of enhanced precision. We have displayed
the results of this analysis in Fig. 7. As in the previous
section, at δ ¼ 0.1, our predictions are perfect, and at
δ ¼ 0.3, already quite far from the single-mode data limit,
we still accurately predict the first two returns.
Note that, in general, our analysis gives a nice perspec-

tive on why direct-reverse cascade oscillations are ubiqui-
tously seen in numerical simulations of various resonant
systems. For solutions dominated by mode 1, for example,
the first three modes perform an infinite sequence of
direct-reverse cascades, while the higher modes hold
only a small amount of energy and provide cosmetic
modifications to the cascades. (Furthermore, even these
higher modes oscillate with frequencies comparable to the
lowest modes.)

V. DISCUSSION

We have revisited the issue of energy returns to the initial
configuration for two-mode initial data in the resonant
approximation to weakly nonlinear gravitational dynamics
of the AdS4-scalar-field system. Having performed numeri-
cal simulations with much higher precision than what has
been previously seen in the literature, we have observed
returns of striking accuracies, exemplified by Fig. 1.
The numerics also provided indications, however, that
the small imperfections we see cannot be purely due to
numerical artifacts. To elucidate the situation, we have
performed an analytic study of solutions dominated by
one of the two lowest modes and proved that the
accurate returns we have observed numerically are inexact
in this limit dominated by one of the two modes. This
should be contrasted with a scenario observed in the
recent literature on related systems [21,23,28,30,31], where
perfect returns occur for all two-mode initial data of the
form (19).
As usual in FPU-like situations, it is natural to expect

that the near-perfect returns arise due to proximity to

FIG. 7. Analytics vs numerics for two-mode initial data dominated by mode 1: (a) analytic prediction for return accuracy based on
Eq. (50) and showing accurate returns after 3, 6, and 14 oscillations, and extremely accurate late-time returns after 17 and 20 oscillations;
(b) Δ defined by Eq. (22) for the numerical solution of the full resonant system (15) with two-mode initial data corresponding to δ ¼ 0.1
perfectly reproducing the analytic pattern; (c) the same for δ ¼ 0.3, already quite far from the single-mode initial data limit, but still
accurately reproducing returns after 3 and 6 oscillations.
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another dynamical system for which the returns are exact.
One could first try to improve the quality of returns by
variation of parameters of the model, such as the dimension
of AdS or the mass of the scalar field. We have explored
this scenario in the context of our analytic treatment of
solutions dominated by mode 1 in Sec. IV B. We have seen
that by adjusting the mass of the scalar field, it is possible to
make the return of mode 3 exact (Fig. 8). This evidently
qualitatively improves the precision of returns for initial
data near mode 1, as the discrepancy is now in the strongly
suppressed modes starting from mode 4, but the scenario
still falls short of providing exact returns. We also note that
a nonrelativistic version of the AdS dynamics (which
technically corresponds to the limit of infinite scalar field
mass) can be analytically proved to display perfect returns
[32] in AdS5, rather than in AdS4 (returns in AdS5 at finite
masses, on the other hand, are not close to being perfect).
More broadly, one could look for arbitrary small modifi-
cations of the interaction coefficients C in Eq. (15),
irrespectively of whether they originate from standard
physically motivated PDEs, and perfect returns in any
such system would be sufficient to clarify the origin of
near-perfect returns in the (physically motivated) resonant
system (15). In Ref. [31], a very large class of resonant
systems displaying perfect returns for two-mode initial
data has been constructed. This class is characterized, in
particular, by the following identities satisfied by the
interaction coefficients:

Xnþm

k¼0

fkfnþm−k

fnfm
Cnmk;nþm−k ¼ 1;

Xnþm

k¼0

k2
fkfnþm−k

fnfm
Cnmk;nþm−k

¼ c2ðn2 þm2Þ þ c1nmþ c0ðnþmÞ; ð53Þ

wherefn canbe either1=
ffiffiffiffiffi
n!

p
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðGþ1Þ���ðGþn−1Þ=n!p

,
and G, c0, c1, and c2 are arbitrary constants. Our numerical
comparisons indicate that the interaction coefficients of the
resonant system (15) do not appear close to satisfying such
relations. One could look for modifications of Eq. (53)
approximately satisfied by the AdS4 interaction coeffi-
cients. Our preliminary study shows that some polynomial-
type summation identities are satisfied with a good pre-
cision, but we feel that it is premature to judge what exact
dynamical implications follow from such approximate
identities.
We comment explicitly on what we have achieved in

comparison to Ref. [8], where the topic of FPU-like
behaviors in weakly nonlinear AdS4 dynamics was first
brought up. In Ref. [8], the focus was on reporting, among
other things, the return after three direct-reverse cascades
for two-mode initial data with equal energies that can be
seen in our Fig. 2(d). Since the simulations were performed
with a rather limited precision, the results were in principle
consistent with perfect returns upset exclusively by numeri-
cal artifacts, especially in light of the subsequent discovery
of closely related systems for which the returns are exact.
We have now ruled out this possibility. At the same time,
we have observed imperfect returns of precision much
higher than what is suggested by the material of Ref. [8]
and repeating over many oscillation cycles, as seen in
Fig. 1. More importantly, our analytic investigations of
Sec. IV have generated a neat picture of returning behaviors
for initial data sufficiently close to mode 0 or mode 1, and
allowed for identification of specific multiple oscillation
periods after which enhanced returns occur. This picture
remains valid even for initial data with moderate energy
ratios of the two lowest modes. The rational relations
between the AdS4 interaction coefficients we have dis-
played allude to hierarchies of returns, with specific longer
waiting times resulting in returns of better and better
accuracy. One in fact sees returns of striking accuracy at
late times in Fig. 6(c), outside the domain where our
concrete analytic approximation are valid. This suggests
that there are further structures to be explored. Elaborate
patterns of returns of varying precision over long times are
known from the original FPU problem. [The FPU chain is
now believed to thermalize over very long times [39], but in
our resonant system (15), the recurrences are likely to
persist forever.]
The AdS=CFT paradigm provides an intriguing potential

link between our results and dynamics of conformal field
theories (CFTs) on spatial spheres. In particular, one would
expect that very close returns to the initial state must occur
at low energies in CFTs that can be accurately approxi-
mated in an appropriate “holographic” limit by a single
scalar field in the AdS bulk coupled to gravity. It would be
very interesting to delineate this class of systems more
precisely, and build explicit connections to the sort of
dynamics we have described in this article. There is recent

FIG. 8. Dependence of λ=γ on the mass of the scalar field.
Adjusting m2, jq3j2 can be made exactly periodic. For example,
on can choose m2 such that λ=γ ¼ 3, as briefly considered in
Sec. IV B.
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literature [40,41] providing detailed links between evolu-
tion of CFT states and weakly nonlinear gravitational
dynamics in the bulk, which is likely to be useful in this
regard.

ACKNOWLEDGMENTS

We thank Piotr Bizoń and Javier Mas for discussions
and for collaboration on related subjects. This research has
been supported by CUniverse research promotion project
(CUAASC), by FWO-Vlaanderen (projects No. G044016N
and No. G006918N), by Vrije Universiteit Brussel through
the Strategic Research Program “High-Energy Physics,”
by FPA2014-52218-P from Ministerio de Economia y
Competitividad, by Xunta de Galicia ED431C 2017/07,
by the European Regional Development Fund (FEDER) and
by Grant María de Maeztu Unit of Excellence MDM-2016-
0692. This researchhas benefited from the use computational
resources/services provided by theGalician Supercomputing
Centre (CESGA). A. B. thanks the Spanish program
“ayudas para contratos predoctorales para la formación de
doctores 2015” and its mobility program for his stay at
Vrije Universiteit Brussel, where part of this project was
developed.

APPENDIX: INTERACTION
COEFFICIENTS FOR A MASSIVE

SCALAR FIELD IN AdSd + 1

We shall consider a massive scalar field in AdSdþ1 with
Dirichlet boundary conditions ϕðπ=2Þ ¼ 0, which made an
appearance in Sec. V. This model is also fully resonant and
an approximation of the form Eq. (15) can be derived. The
massless case was developed in Ref. [9]; the process is

quite similar for the massive scalar, so we will only present
the main results.
The model is governed by the action

S ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

−
1

2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ð∂μϕ∂μϕþm2ϕ2Þ: ðA1Þ

Our ansatz for the metric is Eq. (4), with the same
conventions as in Sec. II. Developing the time-averaging
strategy described in the main text, or in Refs. [9,10] which
contain a more thorough discussion, we obtain the follow-
ing expressions for the interaction coefficients, after
splitting them in three types according to the number of
coincident indices, Tl ≡ Cllll, Ril ≡ 2Cilil for i ≠ l and
Sijkl ≡ Cijkl for fi; jg ≠ fk; lg:

Tl ¼
1

2
ω2
l Xllll þ

3

2
Yllll þ 2ω4

l Wllll

þ 2ω2
l W

�
llll − ω2

l ðAll þ ω2
l VllÞ; ðA2Þ

Ril ¼
1

2

�
ω2
i þ ω2

l

ω2
l − ω2

i

�
ðω2

l Xilli − ω2
i XliilÞ

þ 2

�
ω2
l Yilil − ω2

i Ylili

ω2
l − ω2

i

�
þ
�

ω2
iω

2
l

ω2
l − ω2

i

�
ðXilli − XliliÞ

þ 1

2
ðYiill þ YlliiÞ þ ω2

iω
2
l ðWllii þWiillÞ

þ ω2
i W

�
llii þ ω2

l W
�
iill − ω2

l ðAii þ ω2
i ViiÞ; ðA3Þ

Sijkl¼−
1

4

�
1

ωiþωj
þ 1

ωi−ωk
þ 1

ωj−ωk

�
ðωiωjωkXlijk−ωlYiljkÞ−

1

4

�
1

ωiþωj
þ 1

ωi−ωk
−

1

ωj−ωk

�
ðωjωkωlXijkl−ωiYjiklÞ

−
1

4

�
1

ωiþωj
−

1

ωi−ωk
þ 1

ωj−ωk

�
ðωiωkωlXjikl−ωjYijklÞ−

1

4

�
1

ωiþωj
−

1

ωi−ωk
−

1

ωj−ωk

�
ðωiωjωlXkijl−ωkYikjlÞ;

ðA4Þ

where

Xijkl ¼
Z

π=2

0

dxe0iðxÞejðxÞekðxÞelðxÞμðxÞ2νðxÞ; ðA5Þ

Yijkl ¼
Z

π=2

0

dxe0iðxÞejðxÞe0kðxÞe0lðxÞμðxÞ2νðxÞ; ðA6Þ

Wijkl ¼
Z

π=2

0

dxeiðxÞejðxÞμðxÞνðxÞ
Z

x

0

dyekðyÞelðyÞμðyÞ;

ðA7Þ

W�
ijkl ¼

Z
π=2

0

dxe0iðxÞe0jðxÞμðxÞνðxÞ
Z

x

0

dyekðyÞelðyÞμðyÞ;

ðA8Þ

Vij ¼
Z

π=2

0

dxeiðxÞejðxÞμðxÞνðxÞ; ðA9Þ

Aij ¼
Z

π=2

0

dxe0iðxÞe0jðxÞμðxÞνðxÞ: ðA10Þ
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Here, enðxÞ and ωn are the eigenmodes and their associated
eigenvalues of the linear problem:

ϕ̈1 þ L̂ϕ1 ¼ 0 with L̂ ¼ −
1

μðxÞ ∂xðμðxÞ∂xÞ þ
m2

cos2x
:

ðA11Þ
Their expressions are

enðxÞ ¼ kncosΔxP
ðd
2
−1;Δ−d

2
Þ

n ðcos 2xÞ;

kn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ Δ=2ÞΓðnþ 1ÞΓðnþ ΔÞ

Γðnþ d=2ÞΓðnþ Δ − d=2þ 1Þ

s
; ðA12Þ

and

ωn ¼ Δþ 2n; n ¼ 0; 1;…; ðA13Þ

where Δ satisfies the equation ΔðΔ−dÞ¼m2 and Pða;bÞ
n ðxÞ

are Jacobi polynomials. We have defined μðxÞ and νðxÞ as
in Eq. (5).
In analogy with the explanation for the massless scalar

field given in Sec. II, the current model has the resonant
condition ωn þ ωm ¼ ωk þ ωl, which through Eq. (A13) is
equivalent to nþm ¼ kþ l. However there could be
two more resonant channels, ωn ¼ ωm þ ωk þ ωl and
ωn þ ωm þ ωk ¼ ωl, equivalent to n ¼ mþ kþ lþ Δ
and n ¼ l −m − k − Δ, respectively. If Δ is integer these

last two conditions can be satisfied and a priori two new
terms must be included in the system of equations (15):

iωn _αn ¼
X

ωnþωm¼ωkþωl

Cnmklᾱmαkαl

þ
X

ωn¼ωmþωkþωl

Qnmklαmαkαl

þ
X

ωnþωmþωk¼ωl

Unmklᾱmᾱkαl: ðA14Þ

In our situation we did not perform an analytic study of
Qijkl andUijkl as in Ref. [10], where it was proven that for a
massless scalar field (Δ ¼ d) these coefficients vanish, but
numerical calculations suggest that they also vanish for
nonzero masses. On the other hand, when Δ is not integer,
the conditions n ¼ mþ kþ lþ Δ and n ¼ l −m − k − Δ
are not satisfied for any combination of the indices.
Therefore, these interaction channels disappear upon time
averaging. We thus see that, for any Δ, the relevant
dynamics is governed by Eq. (15) through Tl, Ril, and Sijkl.
We note that the given expressions for Tl, Ril, and Sijkl

are exactly the same as in Ref. [10], where all derivations
are specialized to m2 ¼ 0. However, if we were to trans-
form these integrals using integration by parts to the form
of Ref. [9], the resulting expressions would have differed
from those of Ref. [9] by additional terms with explicit
dependence on m2.
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