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This paper deals with the fractional order dengue epidemic model. The stability of disease-free and positive fixed points is studied.
Adams-Bashforth-Moulton algorithm has been used to solve and simulate the system of differential equations.

1. Introduction

Dengue is a major public health problem in tropical and
subtropical countries. It is a vector-borne disease transmitted
by Aedes aegypti and Aedes albopictus mosquitoes. Four
different serotypes can cause dengue fever. A human infected
by one serotype, when recovers, gains total immunity to
that serotype and only partial and transient immunity with
respect to the other three.

Dengue can vary from mild to severe. The more severe
forms of dengue include shock syndrome and dengue hemor-
rhagic fever (DHF). Patients who develop these more serious
forms of dengue fever usually need to be hospitalized. The
full life cycle of dengue fever virus involves the role of the
mosquito as a transmitter (or vector) and humans as the
main victim and source of infection. Preventing or reducing
dengue virus transmission depends entirely on the control
of mosquito vectors or interruption of human vector contact
[1, 2].

In this paper we study the fractional order dengue
epidemicmodel.The stability of equilibriumpoints is studied.
Numerical solutions of this model are given. We like to argue
that fractional order equations are more suitable than integer
order ones in modeling biological, economic, and social
systems (generally complex adaptive systems) wherememory
effects are important. Adams-Bashforth-Moulton algorithm
has been used to solve and simulate the system of differential
equations.

2. Model Derivation

Esteva and Vargas [3] developed a dengue fever transmission
model by assuming that, once a person recovers from the
disease, he or she will not be reinfected by the disease. The
model also assumes that the host population 𝑁ℎ is constant,
that is, the death rate and the birth rate equal 𝜇𝐻. The host-
vector model for the dengue transmission of Esteva and
Vargas [3] is as follows:

𝑑𝑆ℎ

𝑑𝑡
= 𝐴 −

𝛽ℎ𝑏

𝑁ℎ

𝑆ℎ𝐼V − 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ

𝑑𝑡
=
𝛽ℎ𝑏

𝑁ℎ

𝑆ℎ𝐼V − (𝜇ℎ + 𝛾) 𝐼ℎ,

𝑑𝑅ℎ

𝑑𝑡
= 𝛾𝐼ℎ − 𝜇ℎ𝑅ℎ,

𝑑𝑆V

𝑑𝑡
= 𝐵 −

𝛽V𝑏

𝑁ℎ

𝑆V𝐼ℎ − 𝜇V𝑆V,

𝑑𝐼V

𝑑𝑡
=
𝛽V𝑏

𝑁ℎ

𝑆V𝐼ℎ − 𝜇V𝐼V,

(1)

where

𝐴 is the recruitment rate of the host population,
𝐵 is the recruitment rate of the vector population,
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𝑆ℎ is the number of susceptible in the host population,

𝐼ℎ is the number of infective in the host population,

𝑅ℎ is the number of immunes in the host population,

𝑁V is the vector population,

𝑆V is the number of susceptible in the vector popula-
tion,

𝐼V is the number of infective in the vector population,

𝜇V is the death rate in the vector population,

𝛽ℎ is the transmission probability from vector to host,

𝛽V is the transmission probability from host to vector,

𝛾 is the recovery rate in the host population,

𝑏 is the biting rate of the vector.

The notion of fractional calculus was anticipated by
Leibniz, one of the founders of standard calculus, in a letter
written in 1695. Recently great considerations have been
made to the models of FDEs in different aria of researches.
The most essential property of these models is their nonlocal
property which does not exist in the integer order differential
operators. We mean by this property that the next state of
a model depends not only upon its current state but also
upon all of its historical states. There are many definitions
of fractional derivatives [4, 5]. Perhaps the best-known is the
Riemann-Liouvile definition.The Riemann-Liouville deriva-
tive of order 𝛼 is defined as

RL𝐷
𝛼

0+
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
𝛼−𝑛+1

𝑑𝑠,

𝑛 = [𝛼] + 1,

(2)

where Γ() is the gamma function and 𝑛 is an integer. An
alternative definition was introduced by Caputo as follows,
which is a sort of regularization of the Riemann-Liouville
derivative:

𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑓
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛼−𝑛+1

𝑑𝑠. (3)

Pooseh et al. [6] introduced the notion of fractional deriva-
tive in the sense of Riemann-Liouville to reformulate the
dynamics of the classical model (1) in terms of fractional
derivatives. They applied a recent approximate technique
to obtain numerical solutions to the fractional model. The
system in this paper will be in the sense of Caputo fractional

derivative by the following set of fractional order differential
equations:

𝐷
𝛼

𝑡
𝑆ℎ = 𝐴 −

𝛽ℎ𝑏

𝑁ℎ

𝑆ℎ𝐼V − 𝜇ℎ𝑆ℎ,

𝐷
𝛼

𝑡
𝐼ℎ =

𝛽ℎ𝑏

𝑁ℎ

𝑆ℎ𝐼V − (𝜇ℎ + 𝛾) 𝐼ℎ,

𝐷
𝛼

𝑡
𝑅ℎ = 𝛾𝐼ℎ − 𝜇ℎ𝑅ℎ,

𝐷
𝛼

𝑡
𝑆V = 𝐵 −

𝛽V𝑏

𝑁ℎ

𝑆V𝐼ℎ − 𝜇V𝑆V,

𝐷
𝛼

𝑡
𝐼V =

𝛽V𝑏

𝑁ℎ

𝑆V𝐼ℎ − 𝜇V𝐼V.

(4)

Because model (4) monitors the dynamics of human pop-
ulations, all the parameters are assumed to be nonnegative.
Furthermore, it can be shown that all state variables of the
model are nonnegative for all time 𝑡 ≥ 0 (see, for instance,
[7–9]).

Lemma 1. The closed set Ω = {(𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆V, 𝐼V) ∈ 𝑅
5

+
: 𝑆ℎ +

𝐼ℎ + 𝑅ℎ = 𝐴/𝜇ℎ, 𝑆V + 𝐼V = 𝐵/𝜇V} is positively invariant with
respect to model (4).

Proof. The fractional derivative of the total population,
obtained by adding all the equations of model (4), is given
by

𝐷
𝛼

𝑡
𝑁ℎ (𝑡) = 𝐴 − 𝜇ℎ 𝑁ℎ (𝑡) . (5)

The solution to (5) is given by 𝑁ℎ(𝑡) =

𝑁ℎ(0)𝐸𝛼,1(−𝜇ℎ 𝑡
𝛼
) + 𝐴 𝑡

𝛼
𝐸𝛼,𝛼+1(−𝜇ℎ 𝑡

𝛼
), where 𝐸𝛼,𝛽 is

the Mittag-Leffler function. Considering the fact that the
Mittag-Leffler function has an asymptotic behavior [4, 10],

𝐸𝛼,𝛽 (𝑧) ∼ −

𝜔

∑

𝑘=1

𝑧
−𝑘

Γ (𝛽 − 𝛼𝑘)
+ 𝑂 (|𝑧|

−1−𝜔
) ,

(|𝑧| 󳨀→ ∞,
𝛼𝜋

2
<
󵄨󵄨󵄨󵄨arg (𝑧)

󵄨󵄨󵄨󵄨 ≤ 𝜋) .

(6)

One can observe that 𝑁ℎ(𝑡) → 𝐴/𝜇ℎ as 𝑡 → ∞. The
proof of vector population case is completely similar to that
of host population and is therefore omitted. One can observe
that𝑁V(𝑡) → 𝐵/𝜇V.Therefore, all solutions of themodel with
initial conditions in Ω remain in Ω for all 𝑡 > 0. Thus, region
Ω is positively invariant with respect to model (4).

In the following, wewill study the dynamics of system (4).

3. Equilibrium Points and Stability

To evaluate the equilibrium points let

𝐷
𝛼

𝑡
𝑆ℎ = 0, 𝐷

𝛼

𝑡
𝐼ℎ = 0, 𝐷

𝛼

𝑡
𝑅ℎ = 0,

𝐷
𝛼

𝑡
𝑆V = 0, 𝐷

𝛼

𝑡
𝐼V = 0.

(7)
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Then 𝐸0 = (𝐴/𝜇ℎ, 0, 0, (𝐵/𝜇V) 0). By (4), a positive equi-
librium 𝐸1 = (𝑆

1

ℎ
, 𝐼
1

ℎ
, 𝑅
1

ℎ
, 𝑆
1

V , 𝐼
1

V ) satisfies

𝑆
1

ℎ
=
𝑁ℎ𝜇V (𝐴𝑏𝛽V + 𝑁ℎ (𝛾 + 𝜇ℎ) 𝜇V)

𝑏𝛽V (𝑏𝐵𝛽ℎ + 𝑁ℎ𝜇ℎ𝜇V)
,

𝐼
1

ℎ
=

𝐴𝑏
2
𝐵𝛽ℎ𝛽V − 𝑁

2

ℎ
𝜇ℎ (𝛾 + 𝜇ℎ) 𝜇

2

V

𝑏𝛽V (𝛾 + 𝜇ℎ) (𝑏𝐵𝛽ℎ + 𝑁ℎ𝜇ℎ𝜇V)
,

𝑅
1

ℎ
=
𝐴𝑏
2
𝐵𝛾𝛽ℎ𝛽V − 𝛾𝑁

2

ℎ
𝜇ℎ (𝛾 + 𝜇ℎ) 𝜇

2

V

𝑏𝛽V𝜇ℎ (𝛾 + 𝜇ℎ) (𝑏𝐵𝛽ℎ + 𝑁ℎ𝜇ℎ𝜇V)
,

𝑆
1

V =
𝑁ℎ (𝛾 + 𝜇ℎ) (𝑏𝐵𝛽ℎ + 𝑁ℎ𝜇ℎ𝜇V)

𝑏𝛽ℎ (𝐴𝑏𝛽V + 𝑁ℎ (𝛾 + 𝜇ℎ) 𝜇V)
,

𝐼
1

V =
𝐴𝑏
2
𝐵𝛽ℎ𝛽V − 𝑁

2

ℎ
𝜇ℎ (𝛾 + 𝜇ℎ) 𝜇

2

V

𝑏𝛽ℎ𝜇V (𝐴𝑏𝛽V + 𝑁ℎ (𝛾 + 𝜇ℎ) 𝜇V)
.

(8)

The Jacobianmatrix 𝐽(𝐸0) for the system given in (4) evaluat-
ed at the disease-free equilibrium is as follows:

𝐽 (𝐸0) =

(
(
(
(
(
(
(
(
(
(
(

(

−𝜇ℎ 0 0 0 −
𝐴𝑏𝛽ℎ

𝑁ℎ𝜇ℎ

0 −𝛾 − 𝜇ℎ 0 0
𝐴𝑏𝛽ℎ

𝑁ℎ𝜇ℎ

0 𝛾 −𝜇ℎ 0 0

0 −
𝑏𝐵𝛽V

𝑁ℎ𝜇V
0 −𝜇V 0

0
𝑏𝐵𝛽V

𝑁ℎ𝜇V
0 0 −𝜇V

)
)
)
)
)
)
)
)
)
)
)

)

. (9)

Theorem 2. The disease-free equilibrium 𝐸0 is locally asymp-
totically stable if 𝑅0 < 1 and is unstable if 𝑅0 > 1.

Proof. The disease-free equilibrium is locally asymptotically
stable if all the eigenvalues, 𝜆𝑖, 𝑖 = 1, 2, 3, 4, 5 of the Jacobian
matrix 𝐽(𝐸0) satisfy the following condition [11–14]:

󵄨󵄨󵄨󵄨arg (𝜆𝑖)
󵄨󵄨󵄨󵄨 >

𝛼𝜋

2
. (10)

The eigenvalues of the Jacobian matrix 𝐽(𝐸0) are 𝜆1 =

−𝜇ℎ, 𝜆2 = −𝜇ℎ, and 𝜆3 = −𝜇V; the other two roots are
determined by the quadratic equation

𝜆
2
+ 𝜆 (𝛾 + 𝜇ℎ + 𝜇V) + 𝜇V (𝛾 + 𝜇ℎ) (1 − 𝑅0) = 0, (11)

where 𝑅0 = (𝐴𝐵𝑏
2
𝛽ℎ𝛽V)/(𝜇ℎ 𝜇

2

V 𝑁
2

ℎ
(𝛾 + 𝜇ℎ)). Hence 𝐸0 is

locally asymptotically stable if 𝑅0 < 1 and is unstable if
𝑅0 > 1.

The quantity 𝑅∗
0
= √𝑅0 is called the basic reproductive

number of the disease, since it represents the average number
of secondary cases that one case can produce if introduced
into a susceptible population.

We now discuss the asymptotic stability of the endemic
(positive) equilibrium of the system given by (4). The Jaco-
bian matrix 𝐽(𝐸1) evaluated at the endemic equilibrium is
given as

𝐽 (𝐸
1
)

(
(
(
(
(
(
(
(
(
(
(

(

−
𝑏𝛽ℎ𝐼
1

V

𝑁ℎ

− 𝜇
ℎ

0 0 0 −
𝑏𝑆
1

ℎ
𝛽ℎ

𝑁ℎ

𝑏𝛽ℎ𝐼
1

V

𝑁ℎ

−𝛾 − 𝜇ℎ 0 0
𝑏𝑆
1

ℎ
𝛽ℎ

𝑁ℎ

0 𝛾 −𝜇
ℎ

0 0

0 −
𝑏𝑆
1

ℎ
𝛽V

𝑁ℎ

0 −
𝑏𝛽V𝐼
1

ℎ

𝑁ℎ

− 𝜇V 0

0
𝑏𝑆
1

V𝛽V

𝑁ℎ

0
𝑏𝛽V𝐼
1

ℎ

𝑁ℎ

−𝜇V

)
)
)
)
)
)
)
)
)
)
)

)

.

(12)

The characteristic equation of 𝐽(𝐸1) is

(𝜆 + 𝜇ℎ) (𝜆 + 𝜇V) (𝜆
3
+ 𝑎1𝜆
2
+ 𝑎2𝜆 + 𝑎3) = 0, (13)

where

𝑎1 = 𝛾 + 𝜇V +
𝑀2 (𝐾𝜃 +𝑀1𝜇V)

𝐾𝜃𝑀1𝑁ℎ𝜇V
,

𝑎2 = (𝑀
2

2
+ 𝐾𝜃𝑀1𝑁

2

ℎ
𝜇ℎ𝜇V (𝜃 + 𝜇V)

+𝑀2𝑁ℎ (𝐾𝜃
2
+ (𝐾𝜃 +𝑀1 (𝜃 + 𝜇ℎ)) 𝜇V))

× (𝐾𝜃𝑀1𝑁
2

ℎ
𝜇V)
−1

,

𝑎3 =
𝑀2 (𝑀2 + 𝑁ℎ (𝐾𝜃 +𝑀1𝜇ℎ) 𝜇V)

𝐾𝑀1𝑁
2

ℎ
𝜇V

,

𝑀1 = 𝐴𝑏
2
𝐵𝛽ℎ𝛽V − 𝑁

2

ℎ
𝜇ℎ (𝛾 + 𝜇ℎ) 𝜇

2

V ,

𝑀2 = 𝐴𝑏𝛽V + 𝑁ℎ (𝛾 + 𝜇ℎ) 𝜇V,

𝐾 = 𝑏𝐵𝛽ℎ + 𝑁ℎ𝜇ℎ𝜇V,

𝜃 = 𝛾 + 𝜇ℎ.

(14)

If𝑝(𝑥) = 𝑥
3
+𝑎1𝑥
2
+𝑎2𝑥+𝑎3. Let𝐷(𝑝) denote the discrim-

inant of a polynomial p(x); then

𝐷(𝑝) = −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑎1 𝑎2 𝑎3 0

0 1 𝑎1 𝑎2 𝑎3

3 2𝑎1 𝑎2 0 0

0 3 𝑎1 𝑎2 0

0 0 3 2𝑎1 𝑎2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 18𝑎1𝑎2𝑎3 + (𝑎1𝑎2)
2
− 4𝑎3𝑎

3

1
− 4𝑎
3

2
− 27𝑎

2

3
.

(15)

Following [14–18], we have Proposition 3.

Proposition 3. One assumes that 𝐸1 exists in 𝑅
3

+
.

(i) If the discriminant of𝑝(𝑥),𝐷(𝑝), is positive andRouth-
Hurwitz are satisfied, that is,𝐷(𝑝) > 0, 𝑎1 > 0, 𝑎3 > 0,
and 𝑎1𝑎2 > 𝑎3, then 𝐸1 is locally asymptotically stable.
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(ii) If 𝐷(𝑝) < 0, 𝑎1 > 0, 𝑎2 > 0, 𝑎1𝑎2 = 𝑎3, and 𝛼 ∈ [0, 1),
then 𝐸1 is locally asymptotically stable.

(iii) If 𝐷(𝑝) < 0, 𝑎1 < 0, 𝑎2 < 0, and 𝛼 > 2/3, then 𝐸1 is
unstable.

(iv) Thenecessary condition for the equilibrium point𝐸1, to
be locally asymptotically stable, is 𝑎3 > 0.

4. Numerical Methods and Simulations

Since most of the fractional order differential equations do
not have exact analytic solutions, so approximation and
numerical techniques must be used. Several analytical and
numerical methods have been proposed to solve the frac-
tional order differential equations. For numerical solutions of
the system (4) one can use the generalized Adams-Bashforth-
Moultonmethod. To give the approximate solution by means
of this algorithm, consider the following nonlinear fractional
differential equation [19]:

𝐷
𝛼

𝑡
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇,

𝑦
(𝑘)

(0) = 𝑦
𝑘

0
, 𝑘 = 0, 1, 2, . . . , 𝑚 − 1, where 𝑚 = [𝛼] .

(16)

This equation is equivalent to Volterra integral equation:

𝑦 (𝑡) =

𝑚−1

∑

𝑘=0

𝑦
(𝑘)

0

𝑡
𝑘

𝑘!
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠. (17)

Diethelm et al. used the predictor-correctors scheme [15,
16, 20] based on the Adams-Bashforth-Moulton algorithm to
integrate (17). By applying this scheme to the fractional order
dengue epidemic model and setting ℎ = 𝑇/𝑁, 𝑡𝑛 = 𝑛ℎ, and
𝑛 = 0, 1, 2, , . . . , 𝑁 ∈ 𝑍

+, (17) can be discretized as follows
[19]:

𝑆𝑛+1 = 𝑆0 +
ℎ
𝛼

Γ (𝛼 + 2)
(𝐴 −

𝛽ℎ𝑏ℎ

𝑁ℎ

𝑆
𝑝

𝑛+1
𝑌
𝑝

𝑛+1
− 𝜇ℎ𝑆
𝑝

𝑛+1
)

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝑎𝑗,𝑛+1 (𝐴 −
𝛽ℎ𝑏ℎ

𝑁ℎ

𝑆𝑗𝑌𝑗 − 𝜇ℎ𝑆𝑗) ,

𝐼𝑛+1 = 𝐼0 +
ℎ
𝛼

Γ (𝛼 + 2)
(
𝛽ℎ𝑏ℎ

𝑁ℎ

𝑆
𝑝

𝑛+1
𝑌
𝑝

𝑛+1
− (𝜇ℎ + 𝛾) 𝐼

𝑝

𝑛+1
)

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝑎𝑗,𝑛+1 (
𝛽ℎ𝑏ℎ

𝑁ℎ

𝑆𝑗𝑌𝑗 − (𝜇ℎ + 𝛾) 𝐼𝑗) ,

𝑅𝑛+1 = 𝑅0 +
ℎ
𝛼

Γ (𝛼 + 2)
(𝛾𝐼
𝑝

𝑛+1
− 𝜇ℎ𝑅

𝑝

𝑛+1
)

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝑎𝑗,𝑛+1 (𝛾𝐼𝑗 − 𝜇ℎ𝑅𝑗) ,

𝑋𝑛+1 = 𝑋0 +
ℎ
𝛼

Γ (𝛼 + 2)
(𝐵 −

𝛽V𝑏ℎ

𝑁ℎ

𝑋
𝑝

𝑛+1
𝐼
𝑝

𝑛+1
− 𝜇ℎ𝑋

𝑝

𝑛+1
)

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝑎𝑗,𝑛+1 (𝐵 −
𝛽V𝑏ℎ

𝑁ℎ

𝑋𝑗𝐼𝑗 − 𝜇V𝑋𝑗) ,

𝑌𝑛+1 = 𝑌0 +
ℎ
𝛼

Γ (𝛼 + 2)
(
𝛽V𝑏ℎ

𝑁ℎ

𝑋
𝑝

𝑛+1
𝐼
𝑝

𝑛+1
− 𝜇ℎ𝑌

𝑝

𝑛+1
)

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝑎𝑗,𝑛+1 (
𝛽V𝑏ℎ

𝑁ℎ

𝑋𝑗𝐼𝑗 − 𝜇V𝑌𝑗) ,

(18)

where

𝑆
𝑝

𝑛+1
= 𝑆0 +

1

Γ (𝛼)

𝑛

∑

𝑗=0

𝑏𝑗,𝑛+1 (𝐴 −
𝛽ℎ𝑏ℎ

𝑁ℎ

𝑆𝑗𝑌𝑗 − 𝜇ℎ𝑆𝑗) ,

𝐼
𝑝

𝑛+1
= 𝐼0 +

1

Γ (𝛼)

𝑛

∑

𝑗=0

𝑏𝑗,𝑛+1 (
𝛽ℎ𝑏ℎ

𝑁ℎ

𝑆𝑗𝑌𝑗 − (𝜇ℎ + 𝛾) 𝐼𝑗) ,

𝑅
𝑝

𝑛+1
= 𝑅0 +

1

Γ (𝛼)

𝑛

∑

𝑗=0

𝑏𝑗,𝑛+1 (𝛾𝐼𝑗 − 𝜇ℎ𝑅𝑗) ,

𝑋
𝑝

𝑛+1
= 𝑋0 +

1

Γ (𝛼)

𝑛

∑

𝑗=0

𝑏𝑗,𝑛+1 (𝐵 −
𝛽V𝑏ℎ

𝑁ℎ

𝑋𝑗𝐼𝑗 − 𝜇V𝑋𝑗) ,

𝑌
𝑝

𝑛+1
= 𝑌0 +

1

Γ (𝛼)

𝑛

∑

𝑗=0

𝑏𝑗,𝑛+1 (
𝛽V𝑏ℎ

𝑁ℎ

𝑋𝑗𝐼𝑗 − 𝜇V𝑌𝑗) ,

𝑎𝑗,𝑛+1 =

{{{{

{{{{

{

𝑛
𝛼+1

− (𝑛 − 𝛼) (𝑛 + 1) , 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝛼+1

+ (𝑛 − 𝑗)
𝛼+1

−2(𝑛 − 𝑗 + 1)
𝛼+1

,
1 ≤ 𝑗 ≤ 𝑛,

1, 𝑗 = 𝑛 + 1,

𝑏𝑗,𝑛+1 =
ℎ
𝛼

𝛼
((𝑛 − 𝑗 + 1)

𝛼
− (𝑛 − 𝑗)

𝛼
) , 0 ≤ 𝑗 ≤ 𝑛.

(19)

5. Discussion

In this paper, we have considered a fractional calculus model
for dengue disease. Following [21], Figure 1 shows that 𝑆ℎ
drops significantly in a relatively small period of time. Both 𝐼ℎ
and 𝐼V increase significantly during the period of 30 days and
then eventually oscillate around the endemic state (0.09529,
0.0.00029, and 0.00058).This seems unrealistic in the nature.
With constant population of mosquitoes, this fluctuation (in
a short period of time) cannot be shown to happen in the
nature [21]. As mentioned by [6], Figures 2 and 3 show that
even a simple fractional model may give surprisingly good
results. However, the transformation of a classical model
into a fractional one makes it very sensitive to the order of
differentiation 𝛼: a small change in 𝛼 may result in a big
change in the final result. From the numerical results in
Figures 2 and 3, it is clear that the approximate solutions
depend continuously on the fractional derivative 𝛼.
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Figure 1: 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), and 𝐼V(𝑡) for 𝛼 = 1 and 𝜇ℎ = 0.0000457; 𝜇V =
0.25; 𝑏 = 0.5; 𝛽ℎ = 0.75; 𝛽V = 1; 𝛾 = 0.1428;𝑁ℎ = 10000; 𝐵 = 5000.
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Figure 2: 𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), and 𝐼V(𝑡) for 𝛼 = 0.9 and 𝜇

ℎ
= 0.0000457;

𝜇V = 0.25; 𝑏 = 0.5; 𝛽ℎ = 0.75; 𝛽V = 1; 𝛾 = 0.1428; 𝑁ℎ = 10000;
𝐵 = 5000.
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Figure 3: 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), and 𝐼V(𝑡) for 𝛼 = 0.8 and 𝜇ℎ = 0.0000457;
𝜇V = 0.25; 𝑏 = 0.5; 𝛽ℎ = 0.75; 𝛽V = 1; 𝛾 = 0.1428; 𝑁ℎ = 10000;
𝐵 = 5000.
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Figure 4: 𝑆ℎ(𝑡) for 𝛼 = 1, 0.9, 0.8 and 𝜇ℎ = 0.0000457; 𝜇V = 0.25;
𝑏 = 0.5; 𝛽ℎ = 0.75; 𝛽V = 1; 𝛾 = 0.1428;𝑁ℎ = 10000; 𝐵 = 5000.
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Figure 5: 𝐼ℎ(𝑡) for 𝛼 = 1, 0.9, 0.8, 𝜇ℎ = 0.0000457; 𝜇V = 0.25; 𝑏 = 0.5;
𝛽ℎ = 0.75; 𝛽V = 1; 𝛾 = 0.1428;𝑁ℎ = 10000; 𝐵 = 5000.

The approximate solutions 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), and 𝐼V(𝑡) are
displayed in Figures 4 and 5 with different values of 𝛼. In
each figure three different values of 𝛼 are considered. When
𝛼 = 1, system (4) is the classical integer-order system (1).
In Figure 4, the variation of 𝑆ℎ(𝑡) versus time 𝑡 is shown for
different values of 𝛼 = 1, 0.9, 0.8 by fixing other parameters.
It is revealed that 𝑆ℎ does not drop significantly in a relatively
small period of time for small values. Figure 5 depicts 𝐼ℎ(𝑡)
versus time 𝑡. As mentioned by [22, 23], one should note
that although the equilibrium points are the same for both
integer order and fractional order models the solution of
the fractional order model tends to the fixed point over a
longer period of time. One also needs to mention that when
dealing with real life problems, the order of the system can be
determined by using the collected data.
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