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1 Introduction

A large part of the present high-energy collider physics depends, in one way or another, on

the knowledge of the parton distribution functions (PDFs). The use of PDFs leans on a

cornerstone theorem of Quantum Chromo Dynamics (QCD), the collinear factorization [1,

2]. Although it can be formally proven only for the most simple cases, it is often assumed

to work in general. Ultimately, it is the agreement with the experimental data that decides

whether such an assumption is valid.

The PDFs are traditionally determined in global analyses [3–6] finding the parametriza-

tion that can optimally reproduce a variety of experimental data. This is a complex proce-

dure requiring the ability to efficiently solve the parton evolution equations and to calculate

higher-order QCD cross-sections. Nontrivial issues are also the actual way of finding the

best fit and quantifying its uncertainties. Although various PDF parametrizations are

publicly available for a general user, for a long period of time it was difficult for e.g. an

experimental collaboration to understand what would be the implications of their mea-

surements in the context of a global PDF fit. For example, although a given measurement

would be known to be most sensitive to, say, the up quark distribution, some other data

in a global fit may already provide the up quarks with more stringent constraints, and the

real advantage of the measurement would be due to a sub-leading contribution, say, from

the strange quarks.

The Bayesian reweighting technique, first introduced in [7] and later on elaborated by

the Neural Network PDF (NNPDF) collaboration [8, 9], provides a way of addressing the

consistency and quantitative effects of a new experimental evidence in terms of PDF fits. In
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essence, the underlying probability distribution, represented in the NNPDF philosophy [6]

by an ensemble (∼ 1000) of PDF replicas, is updated by assigning each replica a certain

weight based on the new data. This method has become an increasingly popular way to

estimate the effects of e.g. new LHC measurements [10–16]. The drawback is that it has

been proven to work only in conjunction with the NNPDF fits while the majority of the

existing PDF fits use a rather different way of quantifying the PDFs and their uncertainties.

Along with the best fit found by χ2 minimization, they provide a collection (∼ 50) of

Hessian error sets [17] that quantify the neighborhood of the central fit within a certain

confidence criterion ∆χ2. An extension of the Bayesian reweighting technique to this

particular case was suggested in [18], and has thereafter been used in some occasions [11, 19,

20]. However, a recent study [21] revealed clear deviations when comparing the results from

reweighting to the ones obtained by a direct fit, indicating that the proposed generalization

is not accurate.

Here we take a different strategy. Based on the ideas presented in ref. [22], our principal

goal is to show how a general user can directly study the consistency and consequences

of a new data set within an existing set of PDFs that comes with the Hessian error sets

without having to lean on the Bayesian techniques. The method naturally incorporates the

confidence criterion ∆χ2 defined in the original fit and, by considering a simple numerical

example, we argue that it is perfectly compatible with a new fit. Our second objective is

to understand how the procedure suggested here relates to the Bayesian reweighting and

to the discrepancies found in [21]. We prove that the original Bayesian method, proposed

in [7] and advocated recently in [23], is equivalent with the one introduced here once the

∆χ2 criterion is properly incorporated.

2 The Hessian method

The usual definition of an optimum correspondence between data and a set of PDFs f ≡
f(x,Q2) that depends on certain fit parameters {a}, is the minimum of a χ2-function. In

its most simple form, we can write it as

χ2{a} =
∑
k

[
Xtheory
k [f ]−Xdata

k

δdata
k

]2

, (2.1)

where Xtheory
k [f ] are the theory predictions depending on the PDFs. The corresponding

experimental values are denoted by Xdata
k and their uncertainty by δdata

k . Modifications to

this definition are necessary if the experimental errors are correlated or some data sets are

emphasized in the fit by assigning them an additional weight. In the Hessian approach to

quantify the PDF errors [17], the behaviour of χ2 around the best fit S0 is approximated

by a second order polynomial in the space of fit parameters {a}

χ2{a} ≈ χ2
0 +

∑
ij

δaiHijδaj , (2.2)

where δaj ≡ aj − a0
j are the excursions from the best-fit values and χ2

0 is the minimum

value of χ2. Being symmetric, the Hessian matrix Hij has Neig orthonormal eigenvectors
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v(k) and eigenvalues εk satisfying

Hijv
(k)
j = εkv

(k)
i , (2.3)∑

j

v
(k)
j v

(`)
j =

∑
j

v
(j)
k v

(j)
` = δk`. (2.4)

Defining a new set of variables as

zk ≡
√
εk
∑
j

v
(k)
j δaj , (2.5)

one easily finds that

χ2{a} ≈ χ2
0 +

∑
i

z2
i . (2.6)

That is, the transformation in eq. (2.5) diagonalizes the Hessian matrix. A criterion is

needed to specify how much the term
∑

i z
2
i can grow while the corresponding PDFs still

remain “acceptable”. Those PDF fits that employ the ideal choice ∆χ2 = 1 are usually

limited a smaller set of data [24, 25], while the global fits prefer to take ∆χ2 > 1 [4,

5] to account for small inconsistencies among the data sets and to compensate for the

parametrization bias [28]. It follows [17] that the corresponding uncertainty for a PDF-

dependent quantity O = O[f ] can be computed as

(∆O)2 = ∆χ2
∑
k

(
∂O
∂zk

)2

. (2.7)

An essential feature of the Hessian approach is the introduction of the PDF error sets S±k ,

defined customarily (along with the best fit S0) in the z-space as

z(S0) = (0, 0, . . . , 0) ,

z(S±1 ) = ±
√

∆χ2 (1, 0, . . . , 0) , (2.8)

z(S±2 ) = ±
√

∆χ2 (0, 1, . . . , 0) ,

...

z(S±Neig
) = ±

√
∆χ2 (0, 0, . . . , 1) .

Using these sets, one can evaluate the derivatives in eq. (2.7) by a linear approximation(
∂O
∂zk

)
≈
O
[
S+
k

]
−O

[
S−k
]

2
√

∆χ2
, (2.9)

such that

(∆O)2 =
1

4

∑
k

(
O
[
S+
k

]
−O

[
S−k
])2

. (2.10)

This formula, or a generalization for asymmetric errors, provides an extremely simple and

useful recipe for propagating the PDF-uncertainties to observables. Recently, it has become

fashionable [4, 5] to abandon the fixed ∆χ2 tolerance and define the PDF error sets instead

by a “dynamic tolerance”

zi(S
±
k ) ≡ ±t±k δik, (2.11)

which coincides with eq. (2.8) if the tolerance parameters t±k are equal to
√

∆χ2.
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3 The Hessian reweighting

Let us now consider a new set of data ~y = y1, y2, . . . , yNdata
with covariance matrix C. Our

goal here is twofold: to find out whether these new data are consistent within the original

set of PDFs and, if so, what would be the effect of incorporating them into the original

analysis. In order to answer these questions, we consider a function χ2
new defined as

χ2
new ≡ χ2

0 +

Neig∑
k

z2
k +

Ndata∑
i,j=1

(yi[f ]− yi)C−1
ij (yj [f ]− yj) , (3.1)

where we have simply added the contribution of the new data on top of the “old” χ2 in

eq. (2.6). Using a similar linear approximation as earlier, we can estimate the theoretical

values yi [f ] in arbitrary z-space coordinates by

yi [f ] ≈ yi [S0] +

Neig∑
k=1

∂yi [S]

∂zk

∣∣∣
S=S0

zk ≈ yi [S0] +

Neig∑
k=1

Dikwk, (3.2)

where we have defined

Dik ≡
yi
[
S+
k

]
− yi

[
S−k
]

2
(3.3)

wk ≡
zk

1
2

(
t+k + t−k

) . (3.4)

Thus, χ2
new is a continuous, quadratic function of the parameters wk, and its minimum is

given simply by

~wmin = −B−1~a, (3.5)

where the matrix B and vector ~a are

Bkn =
∑
i,j

DikC
−1
ij Djn +

(
t+k + t−k

2

)2

δkn , (3.6)

ak =
∑
i,j

DikC
−1
ij (yj [S0]− yj). (3.7)

An important feature of the solution is the “penalty term”

P ≡
Neig∑
k=1

[(
t+k + t−k

2

)
wmin
k

]2
t±k→
√

∆χ2

−−−−−−−→ ∆χ2

Neig∑
k=1

(wmin
k )2, (3.8)

which we can use to decide whether the new data set is consistent within the original PDFs.

If an overall tolerance ∆χ2 was defined in the original fit, having P � ∆χ2 means that the

new data could have been incorporated into the original fit without causing a conflict with

the other data. On the other hand, if P & ∆χ2 the new data appears to display significant

tension with the considered set of PDFs. In the case that the original fit used a dynamic

tolerance a simple interpretation like this is lost, and one can only check whether the new
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z-space coordinates remain within the tolerance parameters. However, even a large penalty

term does not necessarily mean that the new data would be incompatible with the other

data. A situation like this may arise if the new data probe unconstrained components of

PDFs whose behaviour was fixed by hand. For example, some recent PDF fits [26] still

assume s(x) ∝ (u(x) + d(x)) for the strange quark distribution and confronted with data

sensitive to the strange quarks could lead to this kind of situation.

The components of the weight vector ~wmin also specify the set of PDFs fnew that

corresponds to the new global minimum. They can be easily calculated by taking yi =

f(x,Q2) in eq. (3.2). That is,

fnew ≈ fS0 +

Neig∑
k=1

(
fS+

k
− fS−

k

2

)
wmin
k . (3.9)

The resulting new PDFs are linear combinations of the original ones — they have been

“reweighted”. We note that the new PDFs constructed in this way still satisfy the necessary

sum rules. For instance, as the original best fit S0 and the error sets S±k satisfy the

momentum sum rule ∫ 1

0
dxx

∑
f

fS0 =

∫ 1

0
dxx

∑
f

fS±
k

= 1, (3.10)

then

∫ 1

0
dxx

∑
f

fnew =

∫ 1

0
dxx

∑
f

fS0 +
∑
k

wmin
k

2

∫ 1

0
dxx

∑
f

fS+
k
−
∫ 1

0
dxx

∑
f

fS−
k


= 1 +

∑
k

wmin
k

2
[1− 1] = 1.

Due to the linearity of the parton evolution equations, also fnew satisfies them. Thus, the

reweighted distributions comprise a proper set of PDFs which can be consistently utilized

in perturbative QCD calculations. One can also construct the new PDF error sets. Indeed,

eq. (3.1) can be rewritten as

χ2
new = χ2

new
∣∣
~w=~wmin

+
∑
ij

δwiBijδwj , (3.11)

where ~δw = ~w− ~wmin, and the matrix B takes the role of the Hessian matrix (compare to

eq. (2.2)). This can be brought into a diagonal form by an analogue of the transformation

in eq. (2.5), and the new error sets defined as

δwi(Ŝ
±
k ) = ±v̂(k)

i

√
1

ε̂k
t̂±k , (3.12)

where v̂
(k)
i are the eigenvectors and ε̂k the eigenvalues of the matrix B. The original overall

tolerance can be set easily by t̂±k =
√

∆χ2.
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Non-linear extension of the Hessian reweighting. The linear approximation of

eq. (3.2) can be improved by including also quadratic terms of wk as

yi [S] = yi [S0] +

Neig∑
k=1

1

2

[
yi
[
S+
k

]
− yi [S0]

t+k /t
−
k

−
yi
[
S−k
]
− yi [S0]

t−k /t
+
k

]
wk (3.13)

+

Neig∑
k=1

t+k + t−k
4

[
yi
[
S+
k

]
− yi [S0]

t+k
+
yi
[
S−k
]
− yi [S0]

t−k

]
w2
k

correcting for the possible non-linear behaviour. Using this in eq. (3.1), χ2
new becomes

a quartic function of wk whose minimum must be found by numerical methods. The

corresponding PDFs can be computed by taking yi = f(x,Q2) in eq. (3.13). The matrix

B in eq. (3.11) gets replaced by

Bnon.lin
kn =

∑
i,j

(
∂yi[f ]

∂wk

)
C−1
ij

(
∂yj [f ]

∂wn

)
(3.14)

+
∑
i,j

(
∂2yi[f ]

∂wk∂wn

)
C−1
ij (yj [f ]− yj) +

(
t+k + t−k

2

)2

δkn,

where the partial derivatives read(
∂yi[f ]

∂wk

)
=

1

2

[
yi
[
S+
k

]
− yi [S0]

t+k /t
−
k

−
yi
[
S−k
]
− yi [S0]

t−k /t
+
k

]
(3.15)

+
t+k + t−k

2

[
yi
[
S+
k

]
− yi [S0]

t+k
+
yi
[
S−k
]
− yi [S0]

t−k

]
wk(

∂2yi[f ]

∂wk∂wn

)
=
t+k + t−k

2

[
yi
[
S+
k

]
− yi [S0]

t+k
+
yi
[
S−k
]
− yi [S0]

t−k

]
δkn, (3.16)

and are understood to be evaluated at the found minimum.

4 Bayesian methods

Given a large ensemble of PDFs fk, k = 1 . . . Nrep, such as those of the NNPDF collabora-

tion [6], that represents the underlying probability distribution Pold(f) of the PDFs, one

can compute the expectation value 〈O〉 and variance δ〈O〉 for an observable O as

〈O〉 =
1

Nrep

Nrep∑
k=1

O [fk] , (4.1)

δ〈O〉 =

√√√√ 1

Nrep

Nrep∑
k=1

(O [fk]− 〈O〉)2. (4.2)

Using the laws of statistics, the initial probability distribution Pold(f) can be updated to

include also additional information contained in a new set of data ~y, since, by the Bayes

theorem,

Pnew(f) ∝ P(~y|f)Pold(f) , (4.3)
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where P(~y|f) stands for the conditional probability (the likelihood function) for the new

data, given a set of PDFs. It follows that the average value for any observable depending

on the PDFs becomes a weighted average

〈O〉new =
1

Nrep

Nrep∑
k=1

ωkO [fk] , (4.4)

δ〈O〉new =

√√√√ 1

Nrep

Nrep∑
k=1

ωk (O [fk]− 〈O〉new)2 , (4.5)

where the weights ωk turn out to be proportional to the likelihood function P(~y|f). The

question of how to choose the likelihood appropriately has been recently revisited in [23]

but the conclusive answer, if it exists, remains to be given. Two options, corresponding to

different choices of the likelihood, have been discussed in the literature. The one suggested

originally by Giele and Keller (GK) [7] follows from taking P(~y|f)dny as the probability

to find the new data to be confined in a differential element dny around ~y resulting in

ωGK
k =

exp
[
−χ2

k/2
]

(1/Nrep)
∑Nrep

k=1 exp
[
−χ2

k/2
] , (4.6)

where

χ2
k =

Ndata∑
i,j=1

(yi[fk]− yi)C−1
ij (yj [fk]− yj) . (4.7)

The option advocated by the NNPDF collaboration derives from taking P(~y|f)dχ as the

probability for the corresponding χ ≡
√
χ2 to be confined in a differential volume dχ

around χ, giving instead1

ωchi−squared
k =

(
χ2
k

)(Ndata−1)/2
exp

[
−χ2

k/2
]

(1/Nrep)
∑Nrep

k=1

(
χ2
k

)(Ndata−1)/2
exp

[
−χ2

k/2
] , (4.8)

which has been shown to be consistent with a direct fit in the NNPDF framework [8, 9]. It

was pointed out in ref. [23] that the former weights contain more information on the new

data than the latter ones, as a given data set uniquely determines the value of χ2, while

a fixed χ2 may correspond to various different data sets. The generic behaviour of these

weights with respect to χ2 per number of points for Ndata = 10 is shown in figure 1. While

the GK weights are always higher for those replicas that give lower χ2, the NNPDF option

obviously favors ones with χ2/Ndata ≈ 1. We note that the latter likelihood may lead to a

following situation: if the value of χ2/Ndata (computed with the expectation values of the

observables or as an average of the individual χ2
ks) is less than unity before the reweighting,

it can happen that the reweighting actually causes χ2 for the new data to grow since the

replicas with χ2/Ndata ≈ 1 are favored. However, if new data are directly included into a

PDF fit as in eq. (3.1), the value of χ2 for the new data should only decrease.2

1We dub these weights ωchi−squared
k since their behaviour is very close to the usual χ2 distribution.

2In PDF fits with extremely flexible fit functions, there is a danger that the PDFs that correspond to

the minimum χ2 unwantedly reproduce also random fluctuations of the data. Here, we assume that this is

– 7 –
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Figure 1. Comparison of the likelihoods for the original derivation of the Bayesian re-weighting [7]

(red) and the one proposed in [8, 9] (blue). In this plot the number of points is n = 10.

The large ensemble of PDFs required by the Bayesian approach can be constructed,

in analogue to eq. (3.9), by

fk ≡ fS0 +

Neig∑
i

(
fS+

i
− fS−

i

2

)
Rik, (4.9)

where the coefficients Rik are random numbers drawn from a Gaussian distribution centered

at zero and with variance one. An asymmetric version of eq. (4.9) to account for non-

linearities was advocated in ref. [18]. Specifically, it was proposed that the replicas should

be generated by

fasym
k ≡ fS0 +

Neig∑
i

(
fS±

i
− fS0

)
|Rik| (4.10)

where fS+
i

or fS−
i

is chosen according to the sign of Rik. However, in this case already

before the reweighting the expectation values for the observables will not, in general, match

those computed directly with the central set of the original fit. To accurately compare with

the linear Hessian reweighting, we stick here to the symmetric prescription of eq. (4.9). As

pointed out earlier, the replicas built in this way satisfy the PDF sum rules and the parton

evolution equations. After computing the weights ωk for each replica, the reweighted PDFs

can be written as

fnew = fS0 +

Neig∑
i

(
fS+

i
− fS−

i

2

) 1

Nrep

Nrep∑
k

ωkRik

 , (4.11)

and, similarly to the Hessian case, one can calculate the “penalty” induced in the original

fit by

P = ∆χ2

Neig∑
i

 1

Nrep

Nrep∑
k

ωkRik

2

. (4.12)

not the case or that it has been taken into account e.g. by including suitable penalty terms in the original

definition of χ2 [28, 29].
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We note that before reweighting wk = 1, and the sums in the parenthesis above vanish since

the mean of the random numbers Rik is zero. Another useful indicator for the Bayesian

methods is the effective number of replicas Neff , defined as

Neff ≡ exp

 1

Nrep

Nrep∑
k=1

ωk log(Nrep/ωk)

 . (4.13)

If a given replica fk ends up having a small weight wk � 1, it has a negligible effect in

the new predictions computed by eqs. (4.4) and (4.5). The value of Neff defined above

serves as an estimate for such a “loss” of replicas. If Neff � Nrep, the method becomes

inefficient and is a sign that the new data contains too much new information or that it is

incompatible with the previous data. Should this happen, also the penalty in eq. (4.12) is

probably large.

5 Simple example

In this section, we will compare the different reweighting methods by invoking a rather

simple, but illustrative example. We consider a function

g(x) = a0x
a1(1− x)a2exa3(1 + xea4)a5 , (5.1)

which resembles a typical fit function used in PDF fits.3 We proceed as follows:

• Construct a set of pseudodata (data set 1) for g(x). The value of each data point yk
and its uncertainty δyk are computed by

yk = (1 + αrk)y
0
k, δyk = αy0

k

where y0
k = g(x) is evaluated with fixed parameters a0

0 = 30, a0
1 = 0.5, a0

2 = 2.4,

a0
3 = 4.3, a4 = 2.4, and a5 = −3. The parameter α = 0.05 controls the size of the

fluctuations generated by the Gaussian random numbers rk.

• Perform a χ2 fit with four free parameters a0, a1, a2, a3 to these data, and construct

the corresponding Hessian error sets using a certain ∆χ2 criteria.

• Construct a second set of pseudodata (data set 2) by the same procedure as in the

case of data set 1 (using the same parameters), and apply the above-introduced

reweighting techniques on these data.

• Perform a direct fit using both data sets and compare this “complete” result to the

predictions given by the reweighting methods.

We begin by considering the ideal case ∆χ2 = 1 (that is, we take t±k = 1), depicted

in figure 2. We have chosen here an example in which the data set 2 (40 points) contains

evidence from a region of x that the data set 1 (80 points) did not reach. In the case of

3In fact, the functional form and the parameter values we use here correspond to the gluons of

CTEQ6 [27].
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Figure 2. Upper left-hand panel: data set 1 normalized by the fit to these data. The light blue band

shows the fit error defined by ∆χ2 = 1. Lower left-hand panel: data set 2 normalized by the fit to

the data set 1. The light blue band shows the original fit error and the black dashed line is the result

using the Hessian reweighting on these data. Blue dotted line and the line marked by red circles are

the corresponding results using the Bayesian reweighting with ωchi−squared
k and ωGK

k , respectively.

The original value of χ2/N is indicated. Right-hand panel: the results of reweighting for the function

g(x) normalized to the fit using data sets 1 and 2 (the light-blue band is the total ∆χ2 = 1 error

band). The band enclosed by the black dashed lines corresponds the Hessian reweighting, and the

one enclosed by the blue dotted lines to the Bayesian reweighting with ωchi−squared
k . The red circles

with error bars are the results using Bayesian reweighting with ωGK
k . The resulting values of χ2/N

for the data set 2 are indicated.

Figure 3. Left-hand panel: distribution of the Bayesian weights for ∆χ2 = 1 corresponding to

figure 2. The line of green (red) points correspond to the GK (chi-squared) weights. Right-hand

panel: as the left-hand panel but for ∆χ2 = 10 corresponding to figures 4 and 5. The additional

line of blue dots corresponds to the rescaled GK weights.
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Figure 4. As figure 2, but using ∆χ2 = 10.

Bayesian methods, we have used a sufficiently large number (105) of replicas to get rid of

all numerical inaccuracies. To compare the methods as accurately as possible, the linear

version of Hessian reweighting is used throughout this section. The results shown in figure 2

reveal that the Hessian reweighting and the Bayesian one with GK weights agree not only

with each other, but also with the direct re-fit. The outcome with the chi-squared weights

is similar but it does not fully coincide with the others. The reason for the similarity is

that as the pseudodata we have used here are statistically consistent and we do not have

too much freedom in the fit function, there are practically no replicas with χ2
k/Ndata < 1,

as can be appreciated from the left-hand panel of figure 3 where we plot the distribution

of both Bayesian weights for this particular case. That is, the turnover for the chi-squared

weights (see figure 1) does not play a role and it is very similar subset of replicas that

mostly contributes in both cases.

Many global fits of PDFs use ∆χ2 clearly larger than unity. In our simple example

here, a motivation for using ∆χ2 > 1 could be to compensate for the restricted functional

form at small values of x where the data set 1 did not have constraints [28]. Thus, we

repeat the exercise taking this time ∆χ2 = 10. The results are shown in figure 4. While

the Hessian reweighting can still accurately reproduce the re-fit, neither of the Bayesian

methods coincides with them. In the case of GK reweighting the reason for the failure

is that the likelihood function P(~y|f) as such does not contain any information on ∆χ2,

although the distribution of replicas clearly depends on the value of ∆χ2. As the spread

among the replicas encoded by ∆χ2 = 1 is narrower than that covered by ∆χ2 = 10,

the new data appear more constraining than they actually are. This can also be verified

from the distribution of Bayesian weights shown in the right-hand panel of figure 3. In

comparison to the case with ∆χ2 = 1 the replicas with lowest χ2 tend to get much higer
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Figure 5. As figure 4, but rescaling the values of χ2 by (∆χ2)−1 in the case of Bayesian reweighting

with GK weights.

weight. However, the agreement encountered with ∆χ2 = 1 (figure 2) hints that it should

be possible to generalize the Bayesian method with GK weights also to the case with

∆χ2 > 1. The key point is to note that we could divide, for example, eq. (3.1) by ∆χ2,

and effectively use ∆χ2 = 1 thereafter. This observation instructs us to rescale the values

of χ2
k in eqs. (4.6) as

χ2
k −→

χ2
k

∆χ2
, (5.2)

when computing the weight for each replica. The corresponding results are shown in figure 5

which differs from figure 4 only in using the above mentioned rescaling when computing the

Bayesian GK weights. Evidently, the agreement between the Bayesian method with GK

weights, the Hessian reweighting, and the re-fit, is restored. The spectrum of rescaled GK

weights is shown in the right-hand panel of figure 3 as well. The division of the individual

χ2 values by ∆χ2 makes the distribution of weights considerably flatter and it is actually

a rather wide range of χ2 values that still give a non-negligible contribution. We note

that mathematically we would end up with the same reweighting result by narrowing the

Gaussian distribution of random numbers instead of rescaling the individual χ2 values.

Indeed, replacing Rik → Rik/
√

∆χ2 in eq. (4.9) we would recover the same distribution

of replicas that was obtained by using ∆χ2 = 1. However, with ∆χ2 = 10 and rescaled

GK weights the effective number of replicas is about twice as large as that with ∆χ2 = 1

(Neff,∆χ2=1 ≈ 19200, Neff,∆χ2=10 ≈ 37500). This makes the rescaling of χ2 values a better

option that narrowing the Gaussian distribution, although both procedures lead to the

same result.

Our simple example here indicates that the Bayesian reweighting with chi-squared

weights does not, in general, correspond to a direct re-fit although here they lead to a

– 12 –



J
H
E
P
1
2
(
2
0
1
4
)
1
0
0

0.8

1.0

1.2

0.8

1.0

1.2

10
-5

10
-4

10
-3

10
-2

10
-1

1

0.8

1.0

1.2

0.8

1.0

1.2

10
-5

10
-4

10
-3

10
-2

10
-1

1

Hessian

chi-squared

Giele-Keller

0.96

0.98

1.0

1.02

1.04

0.96

0.98

1.0

1.02

1.04

10
-5

10
-4

10
-3

10
-2

10
-1

1

Giele-Keller (rescal.) ,
2
/N=1.10

chi-squared,
2
/N=1.10

Hessian,
2
/N=1.10

Fit with data 1+2,
2
/N=1.10

xx

x

R
at

io
to

th
e

fi
t

w
it

h
d
at

a
1

R
at

io
to

th
e

fi
t

w
it

h
d
at

a
1

R
at

io
to

th
e

fi
t

w
it

h
d
at

a
1

+
d
at

a
2

data 1

data 2
2
/N=1.34

2
= 3.7

2
= 3.7

Figure 6. As figure 5, but using ∆χ2 = 3.7.

good approximation.4 However, comparing figures 2 and 5 we notice that for ∆χ2 = 1

the results of chi-squared reweighting are a bit above the true result, but for ∆χ2 = 10

somewhat below. Similarly, for ∆χ2 = 1 the errorband is too wide, but for ∆χ2 = 10 too

narrow. It therefore looks possible that by “tuning” the ∆χ2 appropriately the chi-squared

reweighting could be made to coincide with the exact result. Since the rescaled GK weights

appear to be the proper way to do the reweighting, the condition that the replicas that

mostly contribute get the same weight in both cases is that the ratio

r ≡
(
χ2
)(Ndata−1)/2

exp
[
−χ2/2

]
exp [−χ2/(2∆χ2)]

(5.3)

is approximately constant. Requiring the derivative of this ratio to be zero, one finds

∆χ2∣∣ dr
dχ2 =0

=
χ2

χ2 − (Ndata − 1)
. (5.4)

The individual replicas are always centered around the original fit and it thus makes sense

to take the original value of χ2 as a guideline in evaluating the value of ∆χ2 in the equation

above. In the present example χ2/N ≈ 1.34 before the re-fit which corresponds to ∆χ2 ≈
3.7. This particular value of ∆χ2 brings the chi-squared method to an excellent agreement

with the direct re-fit as can be seen from figure 6. The corresponding distributions of

the Bayesian weights are shown in figure 7 and, indeed, with ∆χ2 ≈ 3.7 the chi-squared

and rescaled GK weights go practically hand in hand in the region of χ2 which mostly

contributes to the final result. That is, if most of the replicas give χ2/N > 1 and ∆χ2

4In a situation in which many replicas give χ2
k/Ndata � 1 the difference to the direct re-fit can become

much larger.
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Figure 7. As the right-hand panel of figure 3, but for ∆χ2 = 3.7.

happens to be close to the value of eq. (5.4) evaluated with the original central χ2, both

Bayesian reweightings may give approximately the same result.

In our simple example here, what mainly limits the accuracy of the reweighting is

the precision of the original quadratic expansion of eq. (2.2). Indeed, the small mismatch

between the results of reweighting and the real fit e.g. in figure 5 can be largely attributed

to this approximation not being perfect. Although the same function g(x) was used in

generating and fitting the pseudodata, we have checked that using a different fit function,

e.g. a superposition of Chebysev polynomials, would not alter our conclusions.

6 Equivalence of the Bayesian and Hessian reweighting

The close similarity of the results obtained using the (linear) Hessian reweighting and

Bayesian one with the rescaled GK weights indicates that the two are actually one and the

same. In this short section we will give a formal proof of this equivalence. From eq. (4.11)

we see that the coordinates specifying the GK-reweighted PDFs in the eigenvector space

are given by

wGK
k =

1

Nrep

Nrep∑
`

ω`Rk` =
1

N
× 1

Nrep

Nrep∑
`

e
− χ2

`
2∆χ2Rk`, (6.1)

where the denominator N is

N ≡ 1

Nrep

Nrep∑
`

e
− χ2

`
2∆χ2 , (6.2)

and we have applied the rescaling χ2
k → χ2

k/∆χ
2 as in eq. (5.2). Using the expression for

χ2 in eq. (4.7) and the linear approximation of eq. (3.2) with wk = Rk`, we find

wGK
k =

1

N
× 1

Nrep

Nrep∑
`

exp

[
− 1

2∆χ2

Neig∑
n,m

Rn`

∑
i,j

DinC
−1
ij Djm

Rm` (6.3)

− 1

∆χ2

Neig∑
n

anRn` −
1

2∆χ2
χ2[fS0 ]

]
Rk`,
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where χ2[fS0 ] is the value of χ2 computed with the central set S0, and the coefficients Dik

and ak were defined in eqs. (3.3) and (3.7). In the limit of infinitely large Nrep, the sum

over the replicas above can be replaced by an integral

1

Nrep

Nrep∑
`=1

Nrep→∞−−−−−→ (2π)−Neig/2
∫ +∞

−∞
d~R exp

[
−1

2
~R2

]
, (6.4)

where the additional exponential stems from the probability distribution for the random

numbers Rm` being Gaussian. Using this in eq. (6.3) above, we have

wGK
k =

1

N
× (2π)−Neig/2 e

− 1
2∆χ2 χ

2[fS0
]
∫ +∞

−∞
d~Re

− 1
2∆χ2

~RTB~R− 1
∆χ2 ~a

T ~R
Rk

= −∆χ2

N
× (2π)−Neig/2 e

− 1
2∆χ2 χ

2[fS0
] d

dak

∫ +∞

−∞
d~Re

− 1
2∆χ2

~RTB~R− 1
∆χ2 ~a

T ~R

= − 1

N
×
√

(∆χ2)Neig

detB
e
− 1

2∆χ2 χ
2[fS0

]+ 1
2∆χ2 ~a

TB−1~a
(B−1~a)k,

where the elements of the matrix B were given in eq. (3.6). The corresponding expression

for the denominator N is

N =

√
(∆χ2)Neig

detB
e
− 1

2∆χ2 χ
2[fS0

]+ 1
2∆χ2 ~a

TB−1~a
. (6.5)

Upon taking the ratio, the various prefactors cancel, and the coefficients wGK
k reduce to

wGK
k = −(B−1~a)k, (6.6)

which coincides with the eq. (3.5) specifying the coefficients for the linear Hessian reweight-

ing. As shown in ref. [23], the weights wchi−squared
k in eq. (4.8) emerge from wGK

k by in-

tegrating over all possible data sets that give equal χ2. Being “contaminated” by such

additional information readily explains their failure in the present context.

7 Inclusive jet production at the LHC

In this section, we apply the reweighting methods to the production of inclusive jets in

proton+proton collisions at the LHC. In comparison to our example discussed earlier,

a new source of non-linearity arises which could potentially decrease the accuracy of the

linear reweighting. Namely, the quadratic PDF dependence of the proton+proton cross

sections (σ̂ denotes the coefficient functions and jet definitions in general)

σpp[S] = f [S]⊗ σ̂ ⊗ f [S], (7.1)

may or may not be well approximated by

σpp[S0 +
1

2

∑
k

(
S+
k − S

−
k

)
wk] ≈ σpp[S0] +

1

2

∑
k

(
σpp[S+

k ]− σpp[S−k ]
)
wk, (7.2)
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Figure 8. Upper panel: ratios between the jet cross sections computed by the linear approx-

imation of eq. (7.2) divided by the “exact” value using a parametrization of the corresponding

linear combination of PDFs inside FASTNLO. The results are plotted for 15 random replicas with

the weight-vector length ` < 1. The data points have been numbered with increasing transverse

momentum. Lower panel: as the upper panel, but with ` > 1.

which is the approximation one effectively makes when using eq. (3.2). In some other cases,

such as deep-inelastic scattering (linear in PDFs), this would not be an issue whereas for

the W -asymmetry, the non-linearities could be even more intricate. Here, we consider the

recent CMS
√
s = 7 TeV jet measurements [30] (Ndata = 133) for which a direct FASTNLO

interface [31–33] is available to evaluate the cross sections at NLO accuracy. We use the

CTEQ6.6 PDFs [34] whose error sets quantify the uncertainties within 90% confidence level

the corresponding tolerance being ∆χ2
CTEQ6.6(90%) = 100. The renormalization scale µr

and factorization scale µf were fixed to the jet transverse momentum as µr = µf = pT /2,

and the strong coupling was set to αs(MZ) = 0.118 at the Z boson pole.

Let us first discuss the adequacy of the approximation in eq. (7.2). To this end, we have

prepared some random PDF replicas by eq. (4.9) separating the cases ` =
∑Neig

i=1 R
2
ik < 1

and ` =
∑Neig

i=1 R
2
ik > 1. We compute the jet cross sections “exactly” (by constructing

parametrizations corresponding to these PDF replicas and using them in FASTNLO com-

putations) and, on the other hand, by the linear approximation of eq. (7.2). Typical results

from such an exercise are shown in figure 8. First, if ` < 1, the linear approximation proves
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Figure 9. Left-hand panels: the CMS inclusive jet cross sections for the five rapidity intervals

compared to the NLO calculation with CTEQ6.6 PDFs and taking µf = µr = pT /2. The error

bars in the data points show the statistical uncertainty, while the total systematic error is indicated

by the blue lines. The colored bands show the CTEQ6.6 PDF uncertainty. Right-hand panels: as

the left-hand panels, but after applying the systematic shifts.

rather accurate, the deviations being normally much less than couple of percents. In the

latter case, ` > 1, the linear approximation evidently breaks down. We conclude that if

the reweighted PDFs end up sufficiently close to the original ones the linear approximation

of eq. (7.2), and thereby the linear Hessian reweighting, should be rather accurate. In the

case of Bayesian reweighting, replicas with ` > 1 often occur, and, from the lower panel

of figure 8, we can consequently anticipate some differences whether the cross sections

are evaluated using the replicas directly inside FASTNLO, or “on the fly” by the linear

approximation of eq. (7.2).

We account for the correlated systematic errors by constructing a covariance matrix.

To be specific, we compute the elements of the covariance matrix C by

Cij = δij (σuncorr
i )2 +

∑
k

βki β
k
j , (7.3)
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where σuncorr
i is the uncorrelated error of data point i, and βki denotes the absolute shift

of this data point corresponding to 1-sigma deviation of the systematic parameter k. In

addition to the luminosity, unfolding and jet energy scale uncertainties, we also treat the

quoted uncertainty in the multiplicative non-perturbative corrections (underlying event,

hadronization) as a correlated systematic error. The uncorrelated errors σuncorr
i include the

statistical and 1% uncorrelated systematic uncertainty added in quadrature. Calculating

the χ2 using the covariance matrix C is equivalent to (see e.g. [35–37]) minimizing

χ2 =
∑
i

[
ytheory
i − ydata

i −
∑

k skβ
k
i

σuncorr
i

]2

+
∑
k

s2
k, (7.4)

with respect to the systematic parameters sk. This occurs with the parameter values

smin
k =

∑
j

βkj −∑
i,`,s

βki C
−1
i` β

s
`β

s
j

 ytheory
j − ydata

j

(σuncorr
j )2

, (7.5)

and −
∑

k s
min
k βki is the net systematic shift for the data point ydata

i . Figure 9 presents a

comparison between the CMS data and the NLO predictions, including the 68% PDF error

bands (obtained downscaling the original 90% errors by 1/1.645 [11, 38]). The χ2 value for

the central CTEQ6.6 set is χ2/Ndata ≈ 2.1 accounting for the data correlations as discussed

above. The calculation appears to overpredict the experimental cross section by some 5%

which, however, gets still easily hidden under the systematic shifts as demonstrated in

figure 9.

It is a straightforward task to apply the reweighting methods on these jet data. For

the needs of the Bayesian techniques we have generated 104 PDF replicas using eq. (4.9).

As the data uncertainties correspond to one standard deviation, we have rescaled the ran-

dom numbers in eq. (4.9) by Rik → Rik/1.645 which brings the PDF replicas to the 68%

level as well. When computing the GK weights we divide the resulting values of χ2 by

∆χ2
CTEQ6.6(68%) = 100/1.6452 ≈ 37, to appropriately modify the underlying likelihood.

The chi-squared weights are always computed without rescaling the χ2 values. We stress

that the rescaling of CTEQ6.6 replicas from 90% to 68% confidence level affects only the

outcome of chi-squared reweighting as, by construction, the central result of GK reweight-

ing would remain the same by simply using the 90% replicas and rescaling the χ2 values

by ∆χ2
CTEQ6.6(90%). The Hessian reweighting has been performed directly with the orig-

inal 90% error sets rescaling the uncertainties by 1/1.645 only at the end. The resulting

modifications in the gluon PDFs are presented in the upper panel of figure 10 (as the

jet production is predominantly sensitive to the gluons, we find it reasonable to present

the results here only in terms of gluon PDFs). From this plot we find that, as expected,

the Hessian technique and the Bayesian method with rescaled GK weights are in good

agreement also here. The small mismatch at large x originates mainly from eq. (7.2) not

being exact. As the reweighting penalty P ≈ 21 is less than ∆χ2
CTEQ6.6(68%), we conclude

that these data could have been added to the CTEQ6.6 fit without causing a significant

disagreement with the original data. In this sense these data are compatible with the
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Figure 10. Upper panel: the gluon PDFs at Q2 = 10000 GeV2 after reweighting using the corre-

lated errors. The red points with error bars correspond to the results using the Bayesian reweighting

with rescaled GK weights, and the blue dotted lines mark the corresponding result with chi-squared

weights. The result from Hessian reweighting is indicated by the black dashed lines and the colored

band is the original CTEQ6.6 uncertainty. All results are normalized to the central set of CTEQ6.6.

Lower panel: the distribution of Bayesian weights.
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Figure 11. Left-hand panels: the CMS inclusive jet cross sections compared to the predictions

after the Hessian reweighting and applying the systematic shifts. All values have been normalized

to the central prediction of CTEQ6.6 and only the statistical data errors are shown. Right-hand

panels: as the left-hand panels, but with the Bayesian reweighting with chi-squared weights.

CTEQ6.6 PDFs despite the largish χ2/Ndata ≈ 1.75 which could hint, however, that some

tension between the Tevatron Run-1 jet data [39, 40] (used in CTEQ6.6 fit to constrain

large-x gluons) and these new LHC measurements exist.5 The line of red points in figure 10

shows the spectrum of rescaled GK weights. For dividing the values of χ2 by the toler-

ance ∆χ2
CTEQ6.6(68%) ≈ 37, this distribution is rather flat and the final result is affected by

replicas with a wide range of χ2 explaining also the rather large number of effective replicas,

Neff/Nrep ≈ 0.72. The chi-squared weights give rise to effects which are qualitatively alike

but quantitatively much larger. The agreement with the new jet data is admittedly better,

χ2/Ndata ≈ 1.15 (the green points in figure 10 indeed demonstrate that the chi-squared

weights assign clearly larger weights to replicas with χ2/Ndata < 1.4 than the rescaled GK

weights), but at the cost of increasing the original χ2 by P ≈ 290 which is way beyond the

5Indeed, the latest CTEQ fit [35] has abandoned the Tevatron Run-1 jet data as they do not completely

agree with the Run-2 data. See ref. [5] for a review and ref. [41] for more discussions.
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CTEQ6.6 tolerance (both 68% and 90%). The surviving number of replicas Neff is also very

low. That is, one could conclude that the jet data considered here were not in agreement

with the CTEQ6.6 PDFs. However, as we have demonstrated in the previous sections,

the result is misleading since the chi-squared weights do not appropriately account for the

other data that were originally included in the global CTEQ6.6 fit. From eq. (5.4) we can

estimate the value of ∆χ2 that would have brought the results of chi-squared reweighting

close to the correct ones: using the original central value χ2/Ndata ≈ 2.1 and Ndata = 133

we obtain ∆χ2 ≈ 1.9. This is much less than ∆χ2
CTEQ6.6(68%) = 37 and concretely explains

why the chi-squared weights lead to a result which is so far from the correct one.

The new predictions for the cross-section are shown in figure 11. The systematic shifts

have been applied to the data and they depend significantly on which method of reweighting

was used. The Hessian reweighting has caused a mild downward shift on the cross section

which was to be expected given that the original central predictions somewhat overshoot

the data (see figure 9). In the case of Bayesian reweighting with chi-squared weights the

induced changes with respect to the original CTEQ6.6 predictions are way too large.

Reweighting of MSTW2008. In the previous example, we discussed PDF reweighting

in the case of a fixed global tolerance ∆χ2 assuming the validity of the quadratic ap-

proximation in eq. (3.1). It is, however, well known that such quadratic profile is never

perfect, and for the fit parameters that are not very well constrained severe deviations

from the ideal quadratic behaviour may occur (see e.g. figures 5-6 in [5]). To account for

such imperfections and improve the linear approximations in estimating the observables

in the space of eigenvectors, the non-linear extension of the Hessian reweighting should

provide some improvement. As an example, we consider the MSTW2008 PDFs [5] using

the same CMS jet data as earlier. In fact, the effect of incorporating the
√
s = 7 TeV CMS

and ATLAS [42] inclusive jet measurements into the MSTW2008 framework was studied

recently via a direct re-fit [21], but due to the large systematic uncertainties of the ATLAS

data, the fit was mainly driven by the same CMS measurements we have discussed here.

Thus, in what follows, we will contrast our results to what was obtained in that analysis.

The MSTW2008 package provides two separate sets of error PDFs, the 68% and 90%

confidence-level sets, of which we will use the former one. As the numerical values for the

determined tolerances t±k and the corresponding increases T±k of the global χ2 are given, we

can account also for the non-quadratic behaviour of the original χ2 function in the space

of eigenvectors. Specifically, in addition to using eq. (3.13) in evaluating the observables,

we make the following substitution in eq. (3.1):

Neig∑
k

z2
k −→

Neig∑
k

akz
2
k + bkz

3
k ,

ak =
t−k (T+

k /t
+
k )2 − t+k (T−k /t

−
k )2

t+k + t−k
, (7.6)

bk =
(T+
k /t

+
k )2 − (T−k /t

−
k )2

t+k + t−k
.
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Figure 12. The reweighted gluon distributions at Q2 = 10000 GeV2 normalized by the central

MSTW2008 gluons. The solid black line is the result from the non-linear Hessian reweighting, and

the green dashed-dotted line corresponds to the linear Hessian reweighting. Blue dotted line is the

prediction of Bayesian reweighting with chi-squared weights, and red dashed line results from using

the rescaled GK weights. The shaded band is the original MSTW2008 uncertainty and the purple

squares mark the result obtained in ref. [21].

We set αs(M
2
Z) = 0.1202, and use µr = µf = pT . As it is not possible (with the available

information) to consistently implement the dynamic tolerance after the reweighting, we

discuss here only the resulting central values.

The gluon PDF after the non-linear Hessian reweighting is shown in figure 12. For

comparison, the figure includes also the outcome from the linear Hessian reweighting,

Bayesian reweighting with the chi-squared weights, Bayesian reweighting with GK weights

rescaled by the average tolerance, ∆χ2
MSTW2008(68%) ≈ 10, and the result obtained by a re-

fit in ref. [21]. Apart from the Bayesian predictions with chi-squared weights the results of

different prescriptions are more or less consistent with each other within 10−4 < x < 10−1,

and also close to the “exact” result.6 The differences between the linear and non-linear

prescriptions are clearly more important at x < 10−4 and x > 10−1, where the original

PDF uncertainties become large. The chi-squared weights predict again modifications for

the gluon PDFs which are similar to the correct ones but somewhat too pronounced (the

estimated penalty stands out from what is obtained with the other methods). The reason

can be understood by estimating from eq. (5.4) which value of ∆χ2 would have given

consistent results: now χ2/Ndata ≈ 1.34 which translates to ∆χ2 ≈ 3.9. While close, this

is still less than ∆χ2
MSTW2008(68%) ≈ 10 and explains why the result is different from the

direct re-fit.

6Note that in ref. [21] the open fit parameters were not restricted to those used in generating the 20

eigenvecor sets. Thus, it is natural to expect deviations in comparison to the results of reweighting.
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Figure 13. Left-hand panels: the jet cross sections after reweighting MSTW2008 PDFs. The

results of the non-linear Hessian reweighting are shown by the red lines and the results of ref. [21] are

the black dashed lines. All values have been normalized to the central predictions of MSTW2008.

Systematic shifts have been applied to the data and only the statistical data errors are shown.

Right-hand panels: as the left-hand panels, but with the Bayesian reweighting with chi-squared

weights.

The predicted jet cross sections after the reweighting are shown in figure 13, normalized

to the central MSTW2008 values. The results of Hessian reweighting clearly stay within

the original uncertainties and appear to agree with the results of ref. [21]. The predictions

of the Bayesian reweighting with chi-squared weights are, however, at the lower limit of

the original error bands and disgaree with the true re-fit.

8 Conclusion

We have discussed how to test the consistency and estimate the effects that a new set of

experimental measurements have within an existing set of Hessian PDFs with non-zero

tolerance ∆χ2. To this end, the Hessian reweighting, was introduced as an alternative

technique to the prevailing Bayesian methods. While the Hessian reweighting is straight-

– 23 –



J
H
E
P
1
2
(
2
0
1
4
)
1
0
0

forwardly derived considering a new set of data in a global χ2 fit, the Bayesian methods are

outwardly distinct, based on statistical inference. We compared the different approaches

to a direct re-fit through a simple example verifying the adequacy of the Hessian method.

In the case of the Bayesian procedure an agreement with a new fit was also established,

but only after including the ∆χ2 criterion properly into the Bayesian likelihood function

which — as we mathematically justified — must be a pure exponential as originally pro-

posed by Giele and Keller. The conditions under which another commonly used (but in

this case inadequate) likelihood function gives consistent results was also discussed. The

inclusive jet production at the LHC was considered as an additional example. At first, our

findings may appear to be in contrast to the works of NNPDF collaboration in which a

different functional form for the likelihood is derived. However, as the NNPDF method-

ology for fitting PDFs is far more involved than the simple χ2 minimization considered

here, it is possible that a different functional form applies. For example, the NNPDF fits

involve extremely flexible fit functions and to avoid fitting random fluctuations the data

are divided into “training“ and “control” sets. While the actual χ2 minimization is done

only for the former subset of data, the latter one is used to decide when the minimization

process should be stopped. The outcome of a direct χ2 minimization with no stopping

criteria would generally be different if the same functional form would be used. However,

for the moment it is still unclear what exactly causes the need for using a different Bayesian

likelihood.

The two types of methods discussed here have their pros and cons: while the Hessian

procedure requires evaluating the observables only with the central and error sets (typi-

cally around 50 sets in total), in the Bayesian method one needs to deal with a much larger

ensemble of PDFs (around 103 to find well-converging results). On the other hand, the

Hessian reweighting is procedurally a bit more involved requiring e.g. numeric linear alge-

bra, while the Bayesian technique is simpler. The reliability of the both methods depends

basically on the accuracy of the quadratic approximation around the minimum χ2 made

in the original PDF fit and on the adequacy of the linear approximations that one makes.

In the case of Hessian reweighting one can improve on these approximations by invoking

non-linear corrections as we explained. However, when the PDF fits are updated details

like the form of the fit function, data sets included, or value of αs(M
2
Z) are often altered.

Such modifications cannot be easily accounted for by the reweighting procedures and in

this sense the reweighting is always an approximation to a real fit. In any case, it is def-

initely useful in checking whether the new data appear consistent and which components

of the PDFs are bound to undergo a change and how.
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