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Abstract: We demonstrate that the gauged BPS baby Skyrme model with a double
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where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated

by increasing the external pressure P or by turning on an external magnetic field H.

As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a

higher density phase. For smaller densities, obtained for smaller values of P and H, a

phase without solitons is reached. We find the critical line in the P,H parameter space.

Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion

matter V = V (P,H) at zero temperature, where V is the “volume”, i.e., area of the

solitons.
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1 Introduction

The baby Skyrme model [1, 2] (see also [3–18]) is a lower dimensional version of the 3 + 1

dimensional Skyrme model [19–21], that is, an effective theory of the low energy, nonper-

turbative sector of Quantum Chromodynamics. It plays an important role as a toy model

for the higher dimensional theory. In fact, many aspects of the original Skyrme proposal

were understood qualitatively by the investigation of its 2 + 1 dimensional counterpart.

Recently, it has been understood that the correct Skyrme model should be a near BPS

theory [22–25] where the BPS part gives the main contribution to some static observ-

ables [26, 27] (see also [28–31]). A concrete near BPS Skyrme action has been proposed

in [22, 23]. Indeed, already its BPS part leads to very accurate results not only for the

binding energies of the atomic nuclei [22, 23] and some thermodynamical properties [32] of

nuclear matter, but also for the physics of neutron stars [33] (maximal masses and radii,

equation of state). There are, therefore, strong arguments for the assumption that this

near BPS Skyrme model, providing an unified description of nuclear matter from baryons

with the baryon charge B = 1 and nuclei B ∼ 102 to neutron stars B ∼ 1057, is a good

candidate for the correct low-energy effective model of QCD.

Qualitatively, the BPS Skyrme model consists of two terms: the topological (baryon)

current squared and a potential. Obviously, there is a baby version of the BPS Skyrme

model [34–38] (for some near BPS extension see [39]). Both theories have many features

in common: 1) the existence of the linear energy — topological charge bound which is

saturated by infinitely many solutions with arbitrary topological charge; 2) the invariance

of the static energy integral under the SDiff symmetries and the resulting close relation to

a perfect fluid as the corresponding state of matter; 3) the possibility to identify certain

global observables of the field theory with the corresponding thermodynamic variables,

which turn out to obey the standard thermodynamical relations.
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Recently, the BPS baby Skyrme model has been used to investigate magnetic properties

of skyrmions after minimal coupling to the Maxwell electrodynamics [40, 41]. Interestingly,

the gauged BPS baby Skyrme model also allows for a N = 2 supersymmetric extension,

see, e.g., [39, 42–44]. Undoubtedly, the interaction with an abelian gauge field is very

important for properties of baryons and atomic nuclei. It is a well-known result by Witten

that, although the precise form of the low energy effective Skyrme-type theory is still

unknown, its coupling to the electromagnetic U(1) field is completely fixed [45–47]. Hence,

in principle, one can study electromagnetic properties of skyrmions once a particular model

is chosen. In practice, however, this is a rather complicated task even within the framework

of the BPS Skyrme model, and not many results are available (for the standard Skyrme

model see [48, 49] and [50]). Again, the BPS baby Skyrme model serves here as a perfect

laboratory (for gauged solitons in a related Skyrme-Faddeev-Niemi model see [51]).

The aim of the present paper is to further investigate the gauged BPS baby Skyrme

model [40, 41]. Specifically, we would like to analyze the issue of the (non)existence of

planar skyrmions in the model with double vacuum potentials. It is one of the most

surprising findings in our former work that, in contrast to one vacuum potentials, the

gauged BPS baby Skyrme model does not support solitons for potentials with two vacua.

This unexpected observation (there is no such difference for the non-gauged case, see for

example recent works for the Skyrme model [52, 53]) was made for BPS configurations, i.e.,

with zero external pressure and no external magnetic field. Here we will show that solitons

can exist if these two external parameters are larger than some minimal critical values.

Hence a phase transition between a solitonic phase and a non-solitonic phase is observed.

2 The gauged BPS baby Skyrme model

The gauged BPS baby Skyrme model is given by the following Lagrangian density

L = −λ
2

4

(
Dµ

~φ×Dν
~φ
)2
− µ2U(~n · ~φ) +

1

4g2
F 2
µν (2.1)

where the covariant derivative reads [54, 55]

Dµ
~φ ≡ ∂µ~φ+Aµ~n× ~φ. (2.2)

As usual, without loss of generality, we assume that the constant vector ~n = (0, 0, 1) and

the potential U is a function of the third component of the unit vector field ~φ = (φ1, φ2, φ3).

The gauge field is the Maxwell field with the electromagnetic coupling constant g. Here

we list the main properties of this model (for details we refer to [41]).

i) BPS bound

The static energy (or regularized energy for a non-zero constant external magnetic

field H)

Ereg =
E0

2

∫
d2x

[
λ2
(
D1

~φ×D2
~φ
)2

+ 2µ2U +
1

g2
(B −H)2

]
(2.3)
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is bounded from below by the topological charge k

Ereg ≥ 4π|k|E0λ
2〈W ′〉S2 . (2.4)

Here B is the magnetic field (pseudoscalar in 2 + 1 dimensions), W is the so-called

superpotential (depending on the target space variable φ3) defined as a solution of

the first order differential equation

λ2W ′2 + g2λ4W 2 − 2λ2WH = 2µ2U, (2.5)

and 〈W ′〉S2 is its average value over the target space manifold. The prime denotes

differentiation with respect to φ3.

ii) BPS equations

The bound is saturated by solutions of the BPS equations

Q = W ′ (2.6)

B = −g2λ2W +H (2.7)

where

Q = q + εijAi∂j(~n · ~φ), q = ~φ · ∂1~φ× ∂2~φ (2.8)

and q is the topological charge density. Further, the static energy functional is invari-

ant under spatial SDiff transformations, therefore there exist infinitely many solutions

with arbitrary shapes for each topological charge n.

iii) No solitons for two-vacuum potentials

The existence of such solutions is a rather subtle issue as the superpotential W has to

obey certain boundary conditions, and the resulting solution of eq. (2.5) must exist

over the whole interval φ3 ∈ [−1, 1]. This requirement is quite restrictive and, for

example, cannot be satisfied in the case of two vacuum potentials and H = 0. The

fact that BPS baby skyrmions for two-vacuum potentials can be destabilized by the

electromagnetic interaction was quite surprising since no similar effect was known in

the non-gauged case.

iv) Magnetization

The thermodynamic magnetization M , defined as minus the change of the thermo-

dynamic energy of a sample (in our case, the skyrmion) under a variation of the

external magnetic field

M = −∂Ereg

∂H
(2.9)

exactly coincides with the usual definition of magnetization as the difference between

full and external magnetic flux in the sample

M =
1

g2

∫
(B −H)d2x. (2.10)

Furthermore, the matter described by the gauged BPS Skyrme model behaves as a

rather nonlinear ferromagnetic medium where the solitons remain magnetized even

– 3 –
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when the external magnetic field vanishes, i.e., they possess a permanent magneti-

zation. The external magnetic field H acts in two ways: it changes the size of the

baby skyrmions (it squeezes the soliton if it has the same sign like the permanent

magnetization M of the skyrmion, while it enlarges the skyrmion if H and M have op-

posite signs) and interferes with the magnetic field inside the solitons: for an external

magnetic field H which is sufficiently weak and oppositely oriented to M , the phe-

nomenon of magnetic flux inversion occurs. That is, the total magnetic field B flips

sign in a shell region near the boundary of the skyrmion, as it has to take the value

B = H at the boundary. On the other hand, it preserves its original sign resulting

from the permanent magnetization in the interior (core region) of the skyrmion.

v) Non-BPS (external pressure) solutions

Solutions with a non-zero field theoretical pressure (P = −Tii, where Tµν is the

energy-momentum tensor with the constant external magnetic part subtracted) are

described by the same first order BPS equations but with a modified superpotential

equation

λ2W ′2 + g2λ4W 2 − 2λ2WH = 2µ2U + 2P. (2.11)

The pressure introduced in this way obeys the usual thermodynamical relation

P = −∂Ereg

∂V
(2.12)

where V is the geometrical (compacton) “volume” (area) and therefore agrees with

the thermodynamical pressure.

vi) BPS-induced thermodynamics

The model has the surprising property that certain global (bulk) observables result-

ing from exact field theory solutions may be interpreted as thermodynamic variables

obeying the standard thermodynamic relations, although no statistical physics meth-

ods and no thermodynamical limit intervened in their calculation. The soliton energy,

the geometric soliton volume (area) and the pressure (an integration constant of the

static field equations), e.g., are related by the thermodynamic relation (2.12). Here,

Ereg and V are extensive quantities (they are exactly proportional to the “particle

number”, i.e., the topological charge n), whereas P is intensive (does not depend on

n). Further, the magnetization (2.10) obeys the thermodynamical relation (2.9). The

proofs for these thermodynamical relations involve the BPS equations, therefore we

call these thermodynamical relations “BPS-induced”, although this issue certainly

deserves further investigation. Further, the static energy functional is SDiff invariant

both without and with a static magnetic field, therefore for each topological charge

n there exist infinitely many soliton solutions with arbitrary shapes, leading exactly

to the same bulk observables and to the same thermodynamic relations. These ther-

modynamic relations, therefore, depend on the BPS equations but not on the specific

solutions and, as such, are properties of the model itself.

– 4 –
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3 The new baby potential

In order to understand how the external magnetic field and/or pressure may influence the

existence of planar solitons in the case of two vacuum potentials we have to analyze the

necessary condition for the existence of BPS gauged baby skyrmions, that is, the existence

of a global solution to the superpotential equation

λ2W ′2 + g2λ4W 2 − 2λ2WH = 2µ2U + 2P. (3.1)

Concretely, we shall consider the so-called new baby potential

U =
1

4
(1− φ23). (3.2)

The next step (if the superpotential exists) is to solve the corresponding equations of

motion. Here we assume the standard axially symmetric static ansatz

~φ(r, φ) =

 sin f(r) cosnφ

sin f(r) sinnφ

cos f(r)

 , A0 = Ar = 0, Aφ = na(r) (3.3)

which leads to an identically vanishing electric field and to the magnetic field B = na′(r)
r .

Moreover, we introduce a new base space variable y = r2/2 and target space variable h via

φ3 = cos f ≡ 1− 2h ⇒ h =
1

2
(1− cos f), hy =

1

2
sin ffy. (3.4)

Then the first order field equations (BPS equations) read

2nhy(1 + a) = −1

2
Wh (3.5)

nay = −g2λ2W +H (3.6)

where the following boundary condition

h(0) = 1, h(yP ) = 0, (3.7)

a(0) = 0, ay(yP ) =
H

n
(3.8)

guarantee the nontrivial topology (n is just the topological charge) and finiteness of the

(regularized) energy

Ereg = 2π

∫
dy

(
2λ2n2(1 + a)2h2y + µ2h(1− h) +

1

2g2
n2a2y

)
. (3.9)

Here, yP is the size of the compacton for a non-zero value of the pressure P . Since we deal

with compact solutions one can define the geometrical volume (area)

V = 2πyP (3.10)

– 5 –
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which, as we remarked before, together with the pressure fulfills the usual thermodynamical

relation. The superpotential equation in terms of the new variable h reads

λ2

4
W 2
h + g2λ4W 2 − 2λ2WH = 2µ2U + 2P. (3.11)

Further, we always assume that the Skyrme field approaches the vacuum at h = 0 at the

compacton radius rP =
√

2yP . This, together with the boundary conditions and BPS

equations for h and a, implies that the superpotential W (h) must obey the boundary

conditions

W (0) = 0, Wh(0) = ± 2

λ

√
2P . (3.12)

For nonzero pressure this implies that the first derivative hy jumps at the compacton

boundary. This is as it should be, because if we impose a nonzero external pressure at the

soliton surface (compacton boundary), then the energy density must jump there.

In numerical computations we assumed λ = 1 and µ2 = 0.1, while the electromagnetic

coupling constant was kept as a free parameter. Furthermore, a particular value of the

topological charge n can be eliminated from the field equation by the coordinate redefinition

ỹ = y/n rendering the numerics n independent (with a linear dependence of the energy and

volume on n — as expected for a BPS model). Therefore we present all plots for n = 1.

3.1 H = 0, P = 0

Let us begin with the case where H = 0, P = 0. It is straightforward to see that we arrive

at some difficulties. Indeed, the superpotential equation

λ2

4
W 2
h + g2λ4W 2 = 2µ2h(1− h) (3.13)

enforces boundary conditions at both ends of the unit interval. In addition to W (0) = 0, we

must impose W (1) = 0. However, for a first order equation it is in general impossible that

both conditions can be simultaneously obeyed. Indeed, if we numerical solve equation (3.13)

then a singularity occurs for h = h0. (Strictly speaking Wh(h0) = 0 while Whh(h0) =∞.)

It approaches the boundary of the interval as the electromagnetic coupling constant goes

to 0, see figure 1. Then, for g = 0 we arrive at the non-gauge case for which BPS skyrmions

do exist and read

h(y) =


sin2 π

2

(
1− y

y0

)
y ≤ y0

0 y ≥ y0
, where y0 =

nπλ

4µ
. (3.14)

Obviously, the nonexistence of the superpotential shows that gauged solitons do not show

up if the pressure as well as the external magnetic field vanish (for any value of g > 0). It is

also clearly visible that in the more general situation, with nonzero value for the external

parameters P and H, the superpotential might exist on the full unit interval for some

external parameter values.

– 6 –
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Figure 1. The position of the singularity in the superpotential W for H = 0 and P = 0, as a

function of the coupling constant g.

3.2 H = 0, P > 0

Now let us turn on the pressure, still assuming H = 0, at the boundary of compactons.

For the limiting case, when g = 0, the exact solutions are known [41]

1− 2h

2
√

P
µ2

+ h(1− h)
= tan

µ

n
√

2λ
(y − y0), where tan

µy0

n
√

2λ
=

µ√
P

(3.15)

leading to the following equation of state

V =
4
√

2πλn

µ
arctan

µ√
P
. (3.16)

Hence, for P → 0 we find the volume Vmax = 2
√
2π2λn
µ . This is the maximal volume for

topological charge n = 1. For higher charge solutions, the volume can be further increased

by using the fact that, in our model, soliton solutions for arbitrary charge are compactons,

which deviate from their vacuum value only in a finite area. Among the infinitely many

solutions for higher charge n there exist, therefore, always “gaseous” solutions at zero

pressure, which consist of a collection of non-overlapping smaller charge constituents with

empty space (vacuum) in between, such that the amount of empty space may be increased

without cost in energy. This phase resembles a gas of BPS skyrmions. On the other hand,

for V < Vmax we have a sort of liquid phase. Therefore, one can conclude that we observe

a liquid-gas phase transition at P = 0 (at g = 0, i.e., in the absence of electromagnetic

coupling). In fact, such a behavior is a generic feature of BPS Skyrme models in any

dimension [32].

If the electromagnetic coupling constant is not zero, then solutions exist only for

P ≥ Pmin. At the critical minimal pressure Pmin the system reaches its maximal vol-

ume Vmax(P ). For P < Pmin the superpotential develops a singularity for h0 < 1, see

figure 2, and solutions cease to exist. Hence, at Pmin another phase transition occurs be-

tween a topologically trivial phase (no solitons) and a skyrmionic matter phase. One can

– 7 –
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Figure 2. The position of the singularity for the superpotential for H = 0. For h0 ≥ 1 solutions

do exist.
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Figure 3. Volume vs. pressure, for different values of the coupling constant g.

also say that the gauged BPS skyrmions are pressure induced objects. In figure 3, we

plot the equation of state V = V (P ) for the skyrmionic phase for several values of the

electromagnetic coupling constant. The ends of the curves correspond to Pmin and Vmin.

A detailed plot is presented in figure 4, where the line of minimal pressure is visible as a

function of g.

3.3 H 6= 0, P = 0

Another possibility to create solitons, i.e., to extend the existence of the superpotential

on the whole unit interval, is to consider a non-vanishing external magnetic field H > 0

together with P = 0,
λ2

4
W 2
h + g2λ2W 2 = 2µ2U + 2λ2WH. (3.17)

– 8 –



J
H
E
P
0
5
(
2
0
1
5
)
1
5
5

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

g

P

0

10

20

30

40

50

V
(H

=
0
,
P
)

4
0

3
5

3
0

0

2
0

1
5

1
0

Figure 4. The volume as a function of pressure P and coupling constant g. The white region

denotes no solutions.
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Figure 5. The position of the singularity for the superpotential for P = 0. For h0 ≥ 1 solutions

do exist.

Let us start with the limiting case when g = 0. The corresponding superpotential equa-

tion is
λ2

4
W 2
h = 2µ2U + 2λ2WH. (3.18)

It is not difficult to show that Wh will never take the value zero on the unit segment (except

at h = 0). Indeed, assuming the positive square root we find that Wh > 0 in the vicinity

of h = 0. Then, the right hand side of the equation is always greater than 0 as U ≥ 0

and W is a growing function. A consequence of that is the existence of solitons for any H

(for g = 0 and P = 0). Again, if g > 0, the original (H = 0) singularity moves towards

the boundary of the unit segment, reaching it for a certain minimal value of the magnetic

field Hmin, figure 5. Starting with this minimal value, the external magnetic field creates
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Figure 7. The volume as a function of the external magnetic field H and coupling constant g. The
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a skyrmionic phase. Now, the volume increases with the magnetic field, figure 6, as the

magnetization inside the solitons is opposite to the orientation of the external filed. A

more detailed equation of state V = V (H) for different g is presented in figure 7.

It is a surprising feature of the gauged BPS baby Skyrme model that the limiting case,

g = 0, can be solved exactly although the superpotential is not known analytically. Let

us write the full second order field equation for the Skyrme field assuming the non-back

reaction approximation (equivalent to g = 0), i.e., a = βy where β ≡ H/n. Then,

∂y
[
hy(1 + a)2

]
=

µ2

4n2λ2
(1− 2h) ⇒ ∂y

[
hy(1 + βy)2

]
=

µ2

4n2λ2
(1− 2h). (3.19)

Now we introduce the new variable

z =
1

1 + βy
. (3.20)
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Then,

z2hzz =
µ2

4n2λ2β2
(1− 2h) ≡ α(1− 2h) (3.21)

with the following general solution: for α < 1
8

h(z) = C1z
√
1−8α+1

2 + C2z
−
√
1−8α+1
2 +

1

2
, (3.22)

for α > 1
8

h(z) = C1

√
z sin

(√
8α− 1

2
ln z

)
+ C2

√
z cos

(√
8α− 1

2
ln z

)
+

1

2
. (3.23)

The boundary conditions

h(z = 1) = 1, h(z0) = 0, hz(z0) = 0 (3.24)

lead to the following solution (α < 1/8)

h(z) =
1

2
−
√
z

2

(
1

√
z0 sin(ω ln z0)

+ cot(ω ln z0)

)
sin(ω ln z) +

1

2

√
z cos(ω ln z), (3.25)

where ω ≡
√

8α− 1 and the position of the compacton boundary is given by

sin(ω ln z0) + ω cos(ω ln z0) = −2ω
√
z0. (3.26)

Hence, we find the equation of state relating the volume V = 2πy0 and the magnetic field

sin

[
1

2

√
µ2

2H2λ2
− 1 ln

(
1 +

HV

2πn

)]
+ 2

√
µ2

2H2λ2
− 1 cos

[
1

2

√
µ2

2H2λ2
− 1 ln

(
1 +

HV

2πn

)]

= −2

√√√√ µ2

2H2λ2
− 1

1 + HV
2πn

(3.27)

for the external magnetic field obeying

H <
µ

λ
√

2
. (3.28)

If the magnetic field is bigger than this value one has to change to the hyperbolic functions

resulting in

− sinh

[
1

2

√
1− µ2

2H2λ2
ln

(
1+

HV

2πn

)]
+2

√
1− µ2

2H2λ2
cosh

[
1

2

√
1− µ2

2H2λ2
ln

(
1+

HV

2πn

)]

= −2

√√√√1− µ2

2H2λ2

1 + HV
2πn

. (3.29)

These results give us the approximated equation of state V = V (H) for small value of the

electromagnetic coupling constant.
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Figure 8. Critical line for different values of the coupling constant g. Above the line the topological

phase exists while below the line we have the non-topological phase.
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3.4 H 6= 0, P 6= 0

In the most general situation, one imposes the external pressure as well as the external

magnetic field. Again, solitons are observed for sufficiently large P and H. In fact, one can

plot a critical curve in the P,H plane above which the solitonic phase exists, see figure 8.

The corresponding equation of state V = V (H,P ), for g = 0.2, is presented in figure 9.

The dependence of the regularized energy, as well as its derivative, on the magnetic field

H for several values of P (and g = 0.2) are presented in figure 10.

The soliton medium possesses a permanent magnetization, that is, a non-trivial mag-

netic field inside the solitons, even for vanishing external magnetic field. Of course, this

makes sense only if such solitons do survive in the H = 0 limit, which requires a sufficiently

large non-vanishing external pressure. We plot the magnetization in figure 11. It is always
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Figure 10. Regularized energy and its derivative as a function of H for different value of the

pressure P . Here g = 0.2.

negative and grows to a constant value in the limit of very large pressure. In figure 12

we show the magnetic susceptibility at H = 0. There is a qualitative difference to the

one-vacuum potential case: although the regularized energy is a monotonously growing

function with H (positive first derivative and negative magnetization), it is a concave func-

tion (with negative second derivative respect to H). This happens for any P . Hence, the

magnetic susceptibility (at H = 0) is always positive,

χ0(P ) = −∂
2Ereg

∂H2

∣∣∣∣
H=0

> 0. (3.30)

This behavior does not change the type of the magnetic medium described by the model.

It is still a ferromagnetic medium as we have a permanent magnetization, and the field

wants to join the external field smoothly. It simply shows that the BPS Skyrme model

with the new baby potential responds in a very nonlinear way to the external magnetic

field.

4 Summary

In this paper, we have analyzed the gauged BPS baby Skyrme model with a two vacuum

potential. It has been shown that although there are no baby skyrmions in the “unper-

turbed” case (no pressure and vanishing magnetic field at the compacton boundary), such

solitons do appear if an external pressure and/or a constant external magnetic field are

applied. Strictly speaking, baby skyrmions exist if these parameters are above their critical

values Pmin, Hmin. The resulting critical curves (in the P,H plane) have been obtained for

several values of the electromagnetic coupling constant. Such a curve divides the system

into two phases, a solitonic and a non-solitonic one, and crossing the curve corresponds to

a phase transition from the topological to the non-topological phase.

Otherwise, the thermodynamical and magnetic properties of the model in the solitonic

phase are qualitatively very similar to the previously analyzed one vacuum case. The baby

skyrmions form a non-linear ferromagnetic, i.e. permanently magnetized, type of matter

(except for the P < Pcrit(g) case, where the non-solitonic phase is reached as H → 0).

Let us note that a topology changing phase transition is a known phenomenon in Skyrme
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Figure 11. Magnetization at H = 0 as a function of the pressure, for different g.

models. For example, a transition between phases with skyrmions and half-skyrmions was

proposed in the context of dense nuclear matter [56–58] (neutron stars). Specifically, the

crystal phase formed by skyrmions transforms, as the density of the matter increases, into

a different crystal phase where the building blocks are half-skyrmions, instead. In our case,

however, the approach to the phase transition is quite different. Namely, one can start in

the topological phase and then, assuming a fixed value of the external magnetic field H,

reduce the pressure until one reaches the non-topological phase. As the pressure decreases,

the size of the skyrmions grows (pressure always squeezes the solitons in the BPS Skyrme

models), and the average energy density (ρaverage ≡ Ereg/V ) decreases, figure 13. Hence,

the non-skyrmion phase occurs for lower densities. In other words, in the model with the

new baby potential, the BPS baby skyrmions appear only if the medium has a sufficiently

high density.

There are several directions in which the present investigation may be continued. For

example, one may be interested in how the magnetic and thermodynamic properties of

the gauged BPS baby skyrmions are modified by the (iso)spin. The isospinning BPS baby

skyrmions are known [34], and it would be interesting to look for such solutions also in the

gauged version of the model (Isospinning baby skyrmions and 3 + 1 dim skyrmions have

been recently considered in [11, 12] and [59, 60]).

Unfortunately, there are a lot of problems and modifications which must be solved

before we could extrapolate these results to the 3 + 1 dimensional (near) BPS Skyrme

model. First of all, the planar case is a bit special with respect to the magnetic field.

Indeed, here B is a pseudo-scalar instead of a pseudo-vector. Moreover, in contrast to to

the planar case, the gauging of the BPS Skyrme model will break the SDiff invariance in

the static sector. Furthermore, the proper, QCD-induced, coupling to the abelian gauge

field requires also the Wess-Zumino-Witten term, which leads to a non-zero electric field

inside the skyrmions. Finally, the inclusion of non-BPS terms, i.e., the sigma model term

and the Skyrme term, may modify the magnetic properties of the system. In any case,
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the first step should be a derivation of the energy minimizers in the non-gauge near BPS

Skyrme model, which is a difficult numerical issue [61] (for some recent numerical result in

the Skyrme model with the sextic term see [52, 53, 62]).

Moreover, there exists the possibility that the gauged BPS baby Skyrme model is the

proper effective description of some real physical 2 + 1 dimensional systems. Such systems

should form an almost BPS liquid with an at least approximate realisation of the SDiff

symmetry at low temperature. Moreover, perturbative excitations around the vacuum,

governed by the relative strength of the potential part of the BPS baby model, on the

one hand, and the non-BPS addition, i.e., the usual sigma model part, on the other hand,

should possess rather large masses. In fact, there is a vast literature on planar solitons of

the baby skyrme type topology in a magnetized medium (see, e.g., [63] and the references

quoted there). The relevant topological order parameter is a local magnetization which can
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interact with an external magnetic field. It would be very desirable to rewrite the gauged

baby BPS Skyrme model in terms of magnetization and compare with such systems. This

issue is under current investigation.
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