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Abstract: We analyze the range of applicability of the high energy Reggeon Field Theory

HRFT derived in [1]. We show that this theory is valid as long as at any intermediate

value of rapidity η throughout the evolution at least one of the colliding objects is dilute.

Importantly, at some values of η the dilute object could be the projectile, while at others

it could be the target, so that HRFT does not reduce to either HJIMWLK or HKLWMIJ .

When both objects are dense, corrections to the evolution not accounted for in [1] become

important. The same limitation applies to other approaches to high energy evolution

available today, such as for example [2, 3] and [4–6]. We also show that, in its regime

of applicability HRFT can be simplified. We derive the simpler version of HRFT and in

the large Nc limit rewrite it in terms of the Reggeon creation and annihilation operators.

The resulting HRFT is explicitly self dual and provides the generalization of the Pomeron

calculus developed in [4–6] by including higher Reggeons in the evolution. It is applicable

for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings

occur close in rapidity to one dilute object (projectile), while all the merging close to the

other one (target). Additionally we derive, in the same regime expressions for single and

double inclusive gluon production (where the gluons are not separated by a large rapidity

interval) in terms of the Reggeon degrees of freedom.
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1 Introduction

Starting from the BFKL Pomeron [7–10], Reggeon Field Theory in QCD has been under

intense study in the literature [11–35] This paper addresses the question of formulating the

QCD Reggeon Field Theory, which consistently includes Pomeron loop effects. The effects

of Pomeron loops become important when the hadronic wave function is evolved to high

energy and the saturation physics [36, 37] takes over from the linear BFKL evolution.

Some years ago three of us have given a QCD derivation of the Hamiltonian of the

Reggeon Field Theory HRFT [1]. The derivation of [1], accounted for both effects that are

important in the nonlinear high energy regime — the nonlinear corrections to the evolution

of the wave function of a dense projectile [38], as well as multiple scattering corrections

important for dense target. The derivation used perturbation theory in strong external

field in order to calculate the soft photon wave function of the dense projectile.

However it was subsequently realized that this approximation is inadequate to describe

scattering of a dense projectile on a dense target. For such a process one needs to know the

large field “tail” of the wave function, namely the part of the wave function that carries very
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little probability density, but nevertheless determines the overlap between the incoming and

outgoing projectile states, when such a state is strongly altered in the scattering process.

This part of the problem cannot be addressed in perturbation theory in external field, but

requires a more elaborate semiclassical treatment.

Nevertheless, the HRFT derived in [1] reduces to the two known limits —

JIMWLK [39–47] and KLWMIJ [48] — in the approximation of a dilute target or dilute

projectile respectively. We have argued that it adequately takes into account the Pomeron

loops in the situation of scattering of two dilute objects at very high energy.

In this paper we analyze more carefully in what circumstances HRFT is applicable.

We show that it is valid as long as at any intermediate value of rapidity η throughout the

evolution at least one of the colliding objects is dilute. We also show that in this regime

HRFT can be simplified. We derive the simpler version of the Hamiltonian and rewrite

it explicitly in terms of QCD Reggeon operators and their duals (conjugates) discussed

previously in [49]. We also consider gluon production in this regime and derive compact

self dual expressions for the single and double inclusive gluon production cross sections.

In section 2 we review the basic setup of our approach. In section 3 we express HRFT in

terms of color singlet Reggeon operators and discuss its properties. Section 4 reformulates

gluon production amplitudes in terms of the Reggeons introduced in section 3. We present

our conclusions in section 5. Several appendices supplement calculations of sections 3 and 4.

2 The high energy evolution

Our main object of interest in the first part of this paper is the evolution of a scattering

matrix of two hadrons, which we refer to as “projectile” and “target”. In the high energy

eikonal approximation the scattering matrix is calculated as

〈S〉 =
∫

dα

∫

dρδ(ρ)WP [δ/δρ] e
ig2

∫
x
ρa(x)αa(x)WT [α] (2.1)

The simple exponential form of the S-matrix operator eig
2
∫
x
ρa(x)αa(x) is the result of the

eikonal approximation, while the functional integrals over ρ(x) and α(x) represent aver-

aging over the projectile and target wave functions respectively. Here x is the transverse

coordinate. In this expression ρa(x) refers to the color charge density of the projectile,

while αa(x) to the color field of the target, so that strictly speaking we should write ρaP (x)

and αa
T (x). We have dropped the subscripts P and T for simplicity, and will follow this

practice in the rest of this paper, unless we need to explicitly differentiate between the pro-

jectile and target degrees of freedom. We have written the projectile probability density

function in terms of its functional Fourier transform WP [δ/δρ] for future convenience. The

target probability density can also be written in this form, but we choose to keep it as a

function of the color α.

The natural way to write the functionalWP in the dilute projectile limit is as a function

of the unitary matrix

R(x) = eT
aδ/δρa(x) (2.2)
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where T a is the generator of the SU(Nc) group in the fundamental representation. When

acting on the exponential eikonal S-matrix, every power of δ/δρ turns into iα, and thus

R(x) → exp{ig2T aαa(x)}, which is just the eikonal phase factor for propagation of a

projectile parton at transverse coordinate x through the target field α(x).

For a fixed configuration of n partons at transverse coordinates x1, . . . xn the functional

WP has the form

WP = R(x1)R(x2) . . . R(xn) (2.3)

which upon integration over ρ in eq. (2.1) gives the eikonal phase factor for the state of n

partons propagating through the target field. In the following we will be interested in the

propagation of color neutral states, which implies that the left and right indices of R(xi)

are all contracted into color singlets. A particular example is a projectile consisting of a

single color dipole. The functional WP of a single dipole is given by

W dipole
P =

1

Nc
tr[R†(x)R(y)] (2.4)

As the energy of the process is increased, the evolution of the S-matrix is given by the

action of the Reggeon Field Theory Hamiltonian HRFT.

d

dY
〈S〉 =

∫

dα

∫

dρδ(ρ)WP [δ/δρ]HRFT[ρ, δ/δρ] e
ig2

∫
x
ρa(x)αa(x)WT [α] (2.5)

Two particular limits of HRFT have been known for a while now. When the projectile

is dilute (the color charge density is small), while the target is dense the appropriate limit

is the KLWMIJ Hamiltonian [48]

HKLWMIJ =
αs

2π2

∫

x,y,z
Kxyz

{

Ja
L(x)J

a
L(y) + Ja

R(x)J
a
R(y)− 2Ja

L(x)R
ab(z)Jb

R(y)
}

(2.6)

with the kernel

Kx,y;z =
(x− z)i(y − z)i
(x− z)2(y − z)2

(2.7)

The left and right rotation generators when acting on functions of R have the representation

Ja
L(x) = tr

[

δ

δRT
x

T aRx

]

− tr

[

δ

δR∗
x

R†
xT

a

]

(2.8)

Ja
R(x) = tr

[

δ

δRT
x

RxT
a

]

− tr

[

δ

δR∗
x

T aR†
x

]

(2.9)

WhenHKLWMIJ acts on gauge invariant operators (operators invariant under SUL(Nc) and

SUR(Nc) rotations of R), the kernel Kxyz can be substituted by the so called dipole kernel

Kx,y;z → −1

2
Mx,y;z; Mxy;z =

(x− y)2

(x− z)2(y − z)2
(2.10)

The SU(Nc) rotation generators can be expressed explicitly in terms of the color charge

density ρ as [49]

Ja
L(x)=ρb(x)

[

τ(x)

2
coth

τ(x)

2
− τ(x)

2

]ba

; Ja
R(x)=ρb(x)

[

τ(x)

2
coth

τ(x)

2
+

τ(x)

2

]ba

(2.11)
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where

τ(x) ≡ ta
δ

δρa(x)
(2.12)

with tabc = ifabc — the generator of SU(Nc) in the adjoint representation.

This is the regime where the evolution is dominated by the so called Pomeron splittings.

The evolution of the wave function of the dilute projectile is dominated by emission of soft

gluons. These gluons proliferate exponentially, and multiple Pomeron exchanges have to

be taken into account.

In the opposite regime, where the projectile is dense, but the target is dilute the relevant

evolution is given by JIMWLK Hamiltonian [39–47]. It is obtained from HKLWMIJ by the

dense-dilute duality (DDD) transformation [50, 51]

R(x) → SF (x) ≡ eig
2Taαa

P
(x) (2.13)

where αP is the projectile color field related nonlinearly to the projectile color charge

density by
i

g2
∂i

[

SF †(x)∂iS
F (x)

]

= T aρaP (x) (2.14)

DDD transforms the right (left) rotation operators acting on R into right (left) rotation

operators acting on S.

This regime is dominated by “Pomeron mergings”. For a dense projectile wave function

the rate of emission of gluons in the wave function is slowed down by the effects of coherent

radiation from multiple sources.

While the KLWMIJ and JIMWLK regimes are applicable in the situation where one

of the colliding objects is dense and the other one is dilute, one is in general interested also

in a different situation, where the same object can evolve from dilute to dense during the

rapidity evolution.

In this case one has to include in the evolution the so called Pomeron loops, since the

initial stages of the evolution of a dilute projectile are dominated by Pomeron splittings,

while in the final stages Pomeron mergings take over, thus creating “large” Pomeron loops.

Another related issue is that, since the color charge density is dimensionfull, a statement

like “large color density” does not make sense by itself. Whether the color charge density

is large or small, depends on the resolution scale on which one is measuring it. It is

more appropriate to think of the color charge density as defining an intrinsic scale — the

saturations scale Qs in the hadronic wave function. For momenta below the saturation

momentum the wave function looks dense and effects of coherence are important, while for

momenta above Qs the hadron looks dilute. Thus depending on the observable of interest,

the same object should be treated either as dilute or as dense, which again requires taking

account of Pomeron loops.

Several groups have approached the problem of Pomeron loops in the past several years

with varying degree of rigor [1, 4–6, 52, 55–64]. In this paper we continue the approach

of [1].

Ref. [1] provided the most detailed derivation of the high energy evolution, starting

from the fundamental QCD Hamiltonian, and considering the construction of the soft gluon
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wave function. This wave function was calculated perturbatively in the coupling constant,

but allowing for the presence of large valence color charge density as a source for soft

gluons. This wave function then was allowed to scatter eikonally on a dense target, and

the resulting scattering matrix determined the evolution Hamiltonian HRFT. The resulting

Hamiltonian is:1

HRFT =
1

8π3

∫

x,y,z,z̄
[bbRi(x)R

†ba(x) − baLi(x)]

[

δij
1

(x− z)2
− 2

(x− z)i (x− z)j
(x− z)4

]

×
[

δac + [SA †
L (x)SA

L (z)]
ac
]

K̃−1 cd
⊥jk (z, z̄)

[

δkl
1

(y − z̄)2
− 2

(y − z̄)k (y − z̄)l
(y − z̄)4

]

×
[

δde + [SA †
R (z̄)SA

R(y)]
de
]

[beRl(y) − R†ef (y) bfLk(y)] (2.15)

with

K̃ ab
⊥ij(x, y) =

1

2π2

∫

z

[

δik
1

(x−z)2
− 2

(x−z)i(x−z)k
(x− z)4

] [

δkj
1

(z−y)2
− 2

(z−y)k(z−y)j
(z − y)4

]

×
{

R†ab(z) +
[

SA †
R (x)SA

R(z)R
†(z)SA †

L (z)SA
L (y)

]ab
}

(2.16)

and

baL(R)i = −1

g
fabc(SA

L(R))
†bd ∂i S

Adc
L(R) . (2.17)

Here the adjoint unitary matrix SA
L(R) is the adjoint representation of the fundamental

matrix SF
L(R) defined as in eq. (2.14) with JL(JR) on the right hand side.

As shown in [1] this Hamiltonian reduces to the correct JIMWLK and KLWMIJ forms

in the appropriate limits. Thus, we have here a Hamiltonian, derived directly from QCD

which is applicable in both, dense and dilute limits. Clearly therefore, when applied to

evolution of a dilute projectile to very high rapidity, it does contain Pomeron loop contri-

bution. The limits of applicability of this Hamiltonian however, have not been clarified.

This is our aim in the next section.

3 Applicability of HRFT

In the derivation of HRFT in [1] the projectile wave function was treated as having an

arbitrary density of color charge. More precisely the density parametrically cannot exceed

1/αs but is allowed to be of order 1/αs. The target fields were also assumed to be at most

of the same order, and thus the scattering matrix R was assumed to be O(1). Nevertheless,

HRFT as derived in [1] can not be used for processes involving the scattering of a dense

projectile on a dense target.

1It is worthwhile mentioning that HRFT describes interactions of Reggeons as shown in ref. [1], and

corresponds to Reggeon Field Theory (RFT). This in spite of the fact that it is not written explicitly in

terms of Reggeon degrees of freedom. The simplified form of this Hamiltonian that describes the BFKL

Pomerons and their interaction in terms of the Pomeron fields we will refer to as the BFKL Pomeron

calculus (see ref. [4–6] and eq. (3.24)).
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We now explain the reason for that. The procedure of calculating HRFT adopted

in [1, 38] is the following. One first calculates the wave function of the soft gluons of

the projectile in the presence of a (possibly large) valence color charge density ρa(x),

Ψin[A, ρ]. The fields A are soft gluon fields which occupy a small rapidity interval δY . This

hadronic wave function after scattering on the target becomes Ψout[A, ρ] = Ψin[RA,Rρ].

The Hamiltonian is obtained by calculating the scattering matrix and expanding it to linear

order in δY ,
∫

DAΨ∗
in[A, ρ]Ψin[RA,Rρ] = 1−HRFT[ρ,R]δY + . . . (3.1)

In [1, 38] the wave function Ψin was calculated perturbatively in αs, re-summing to

all orders terms of the type (αsρ)
n. The resulting wave function turns out unsurprisingly

Gaussian, and schematically has the form

Ψin = N eb[ρ]A− 1

2
AΛ[ρ]A (3.2)

where the classical field b[ρ] at large ρ is parametrically b ∼ O(1/g), while the width of the

Gaussian Λ ∼ O(1).

As in any perturbative calculation, the perturbative expression for Ψin gives good

approximation for the wave function in the region of field space that contains most of the

probability density, that is for those values of the field where Ψ is not exponentially small.

In the present case this means for A = Λ−1b±∆ with ∆ ∼ O(1). On the other hand, in the

outgoing wave function Ψout, the maximum of the distribution is at a different value of the

field A = Λ̄−1b̄ with b̄ = Rb[Rρ] and Λ̄ ∼ O(1) as before. Thus the overlap of the two wave

functions in eq. (3.1) is in fact dominated by the tails of the two probability distributions,

where the values of the field are far from the maximum of either wave function by the

amount of order 1/g. These tails are not correctly given by the perturbative calculation,

and thus the situation where a dense projectile scatters on a dense target is outside the

validity of [1].

On the other hand when either one of the scattering objects is small, it turns out that

b̄ − b ∼ O(g), and thus HRFT derived in [1] is applicable. As we demonstrate below the

regime of applicability of HRFT extends, in fact to a wider range of situations.

3.1 Dipole-dipole scattering

Let us consider scattering of two dilute systems, which we will figuratively refer to as

dipoles, at some high energy. We attribute all the evolution to the wave function of one of

the dipoles, “the projectile”. Formally, the S-matrix is given by the following expression

〈SY 〉 =
∫

dα

∫

dρδ(ρ)WP [R]e−HRFT[ρ,R]Y eig
2
∫
x
ρa(x)αa(x)WT [α] (3.3)

Since both, the projectile and the target are initially dilute, not all the terms in HRFT

are equally important. To understand this, let us divide the exponential in eq. (3.3) into

product of three factors

e−HRFT[ρ,R]Y = e−HRFT[ρ,R]ηe−HRFT[ρ,R](Y−η−η′)e−HRFT[ρ,R]η′ (3.4)
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The rightmost factor can be thought of as acting on the target wave function. Technically,

since HRFT is a Hermitian operator, we can take it to act on the eikonal factor in eq. (3.3).

Then every factor of R in HRFT becomes the matrix S written in terms of the target field

α, whereas every factor of ρ becomes δ/δα. In other words HRFT acting on eig
2
∫
ρα is

equivalent to the dual to HRFT written in terms of the target degrees of freedom, acting

on WT [α]. As shown in [50], the complete HRFT has to be self dual. Although it has not

been shown explicitly that HRFT derived in [1] has this property, as we will see later it is

indeed self dual in its region of applicability. Thus the rightmost factor in eq. (3.4) evolves

WT to rapidity η′.

The leftmost factor in eq. (3.3) acts to the left on the projectile wave function and

evolves it to rapidity η. Let us take rapidity η small enough, so that the evolved projectile

wave function

W η
P [R] = WP [R]e−HRFT[ρ,R]η (3.5)

still describes a dilute system.

Let us consider the mechanics of the calculation of the evolved probability density

eq. (3.5). To find W η
P [R] one has to commute all the factors of ρ in e−HRFT [ρ,R] to the left

of all the factors of R, whereby they vanish upon hitting the δ-function in eq. (3.3). The

Hamiltonian HRFT eq. (2.15) is a function of gρ only. Thus any extra power of ρ in the

expansion necessarily comes with an extra power of the coupling constant. The smallness

of the coupling constant can only be overcome by a large combinatorial factor if ρ has to

be commuted through a product of many factors R.

Since initially WP [R] describes a dilute system, it does not contain many factors of

R, and therefore HRFT can be safely expanded to lowest order in ρ. This is also true for

subsequent step in the evolution, as long as W η
P [R] corresponds to a dilute system. As

discussed above, to leading order in ρ, the Hamiltonian HRFT reduces to the KLWMIJ

Hamiltonian eq. (2.6). The rapidity η is of course arbitrary, and can be taken arbitrarily

large as long as the condition of diluteness of the projectile evolved to rapidity η is satisfied.

Within the usual saturation picture this maximal rapidity is of order

ηmax =
1

ωP
ln

1

α2
s

ωP = 2 ln 2αsNc/π (3.6)

A completely analogous argument on the target side tells us that the target probability

density effectively evolves with the KLWMIJ Hamiltonian as well, as long as the target

evolved to rapidity η′ remains dilute. This means that in the rightmost factor in eq. (3.4)

HRFT can be expanded to leading order in δ/δρ, since expansion in powers of δ/δρP trans-

lates into expansion in powers of αT when acting on WT [α]. To leading order in δ/δρ the

Hamiltonian HRFT is equivalent to the JIMWLK Hamiltonian. This argument again is

valid as long the rapidity η′ is smaller than ηmax.

Since HRFT reproduces both the JIMWLK and KLWMIJ evolution in the appropriate

limits, it certainly generates valid evolution in these two parts of the rapidity interval. It

follows, that for the total rapidity

Y < 2 ηmax (3.7)

the Hamiltonian HRFT of [1] generates correct high energy evolution.
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Alternatively one can describe this physical situation in the following way. The evo-

lution can be partitioned between the projectile and the target in an arbitrary way. Say,

we choose an arbitrary rapidity 0 < η < Y and evolve the projectile wave function by

η and the target wave function by Y − η. HRFT is valid if for any η in the interval, at

least one of the evolved objects is dilute. If the total energy of the process is too large,

at some intermediate rapidity one necessarily encounters the situation when both colliding

objects are dense. At this energy the perturbative approximation made in deriving HRFT

breaks down, and HRFT is not applicable. Essentially, HRFT gives consistent Hamiltonian

representation of evolution in the regime discussed in [65–69].

The estimate of maximal rapidity eq. (3.7) assumed that initially both, the target and

the projectile are dilute (dipoles). If this is not the case the argument above restricts the

total allowed rapidity Y depending on the initial projectile and target states. Interestingly,

this demonstrates the limitation of JIMWLK evolution even in the dense regime. Suppose

we consider the scattering of a dense object on a dilute one. Initially the evolution of

the dense object is governed by HJIMWLK . However this is only correct for rapidities for

which the target remains dilute if evolved all the way to the rapidity of the projectile,

namely for Y −Y0 < ηmax. Once the total evolution rapidity exceeds this value, HJIMWLK

has to be amended to take into account scattering of two dense objects. Thus JIMWLK

(and KLWMIJ) evolution can only be consistently applied only if at initial rapidity Y0 the

projectile is dense and the target is dilute, and then only up to rapidity Y = Y0 + ηmax.

This restriction has to be kept in mind while using the JIMWLK equation.

3.2 Simplifying HRFT

The preceding discussion does not only establish the validity of HRFT in the parametric

regime of eq. (3.7), but also suggests that in this regime its form can be significantly

simplified. Consider the following approximation for HRFT

HRFT ≈ HKLWMIJ +HJIMWLK −HBFKL (3.8)

As we have discussed above, in the leftmost exponential factor in eq. (3.4) where HRFT acts

on dilute projectile, it reduces to HKLWMIJ , since one is allowed to expand to lowest order

in ρ. On the other hand, to lowest order in ρ we know that HJIMWLK reduces to HBFKL.

Thus eq. (3.8) indeed reproduces the correct behavior. Analogously in the exponential

terms close to the dilute target expansion in δ/δρ is valid, and thus HRFT reduces to

HJIMWLK . In the leading order in δ/δρ, HKLWMIJ reduces to HBFKL and thus again

eq. (3.8) is appropriate. Note that as long as we are at low enough rapidity defined by

eq. (3.7), there is always an interval within the evolution, corresponding to the middle

exponential factor in eq. (3.4) where both objects are dilute. In this regime simultaneous

expansion in powers of ρ and δ/δρ is valid and the evolution reduces to the linear BFKL

evolution. Again, in this regime eq. (3.8) has the correct behavior. Thus we conclude, that

eq. (3.8) is parametrically correct approximation in the range of validity of HRFT.

Although this is certainly a simplification, the Hamiltonian eq. (3.8) is still fairly

complicated. The complexity stems from the fact that the commutation relations between

– 8 –
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the basic variables of HKLWMIJ and HJIMWLK are in principle very complicated. Recall,

that the basic field theoretical variable of the KLWMIJ theory is the unitary matrix R

defined in eq. (2.2), whereas the basic variable of JIMWLK is the unitary matrix S, which

is a complicated nonlinear function of the color charge density determined through the

solution of eq. (2.14). For small ρ it is easy to find S, which in the adjoint representation is

SAab(x) ≈ δab − ig2tabc
1

∇2
(x, y)ρc(y) (3.9)

with tabc = ifabc, the generator of SU(Nc) group in the adjoint representation. However

for large ρ no explicit expression is available, and consequently the commutation relation

between R and S is not known. However, as we demonstrate now, in the regime discussed

here one can approximate the commutation relation by a simple one.

For simplicity in the rest of this paper we work in the largeNc limit. In this limit, as was

shown in [49] the KLWMIJ Hamiltonian can be expressed in terms of Reggeon operators

and their conjugates. The simplest such Reggeon is the Pomeron, defined in [49] as

P (x, y) = 1− 1

2Nc
Tr[R†(x)R(y) +R†(y)R(x)] (3.10)

We will disregard the other Reggeons for now, but will include them in the Hamiltonian

later on. In terms of the Pomeron, the KLWMIJ Hamiltonian can be written as

HKLWMIJ = −αsNc

2π2

∫

x,y,z
Mx,y;z

{

[Px,z + Pz,y − Px,y − Px,zPz,y]P
†
x,y

}

(3.11)

The Pomeron conjugate operator is defined by the relation

[Pxy, P
†
uv] = δ+[(uv)− (xy)] (3.12)

where

δ+[(uv)− (xy)] =
1

2
[δ2(x− u)δ2(y − v) + δ2(x− v)δ2(y − u)] (3.13)

To be more precise, we do not require the operator commutation relation eq. (3.12). Rather,

in eq. (3.12) the operator P † is understood to act to the left on P which has been con-

structed explicitly as a function of the unitary matrix R. This is equivalent to requirement

that P † has the following matrix elements

∫

dρδ[ρ]PxyP
†
uv ≡ 〈Pxy|P †

uv〉 = δ+[(uv)− (xy)] (3.14)

while
∫

dρδ[ρ]P †
uvPxy ≡ 〈P †

uv|Pxy〉 = 0 (3.15)

Equations (3.14), (3.15) are our working definition for the operator P †
xy. We will continue

using the notation of eq. (3.12) in the sense of eqs. (3.14), (3.15). Similar notations will be

adopted for other Reggeons in the rest of this paper.
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One can find in principle an explicit expression for P † in terms of the color charge

density operators ρ and the Pomeron field P . In [49] it was shown that to lowest order in

P one has
1

Nc
ρa(x)ρa(y) = P †

xy − δxy

∫

z
P †
xz (3.16)

Similarly JIMWLK Hamiltonian can be written in terms of dual Reggeon operators.

Let us define the “dual Pomeron”

P̄ (x, y) = 1− 1

2Nc
Tr[SF †(x)SF (y) + SF †(y)SF (x)] (3.17)

Then

HJIMWLK = −αsNc

2π2

∫

x,y,z
Mx,y;z

{

[P̄x,z + P̄z,y − P̄x,y − P̄x,zP̄z,y] P̄
†
x,y

}

(3.18)

Here, again we have neglected the contributions of the dual Reggeons except for the dual

Pomeron, which we will include later. The conjugate dual Pomeron can also be constructed

explicitly. To lowest order

1

g4Nc
∇2

x

δ

δρa(x)
∇2

y

δ

δρa(y)
= P̄ †

xy − δxy

∫

z
P̄ †
xz (3.19)

In the Hilbert space of the Reggeon field theory, P and P̄ are not independent variables.

Clearly, P̄ is closely related to P †, since both are expressible in terms of the color charge

density operators, however in general the relation is complicated. Nevertheless in the limit

of small charge color density the relation is simple

P̄ (xy) ≈ g4

4

[

1

∇2
(xu)− 1

∇2
(yu)

][

1

∇2
(xv)− 1

∇2
(yv)

][

P †
uv − δuv

∫

z
P †
uz

]

(3.20)

In the limit where eq. (3.20) is valid, the commutator between P and P̄ is simple. In terms

of

∆(x, y;u, v) ≡
(

1

∇2
(xu)− 1

∇2
(yu)− 1

∇2
(xv) +

1

∇2
(yv)

)

(3.21)

it becomes

[P (xy), P̄ (uv)] =
g4

8

[

∆(x, y;u, v)
]2

(3.22)

This is just the scattering amplitude of a dipole with coordinates (x, y) on a dipole with

coordinates (u, v), evaluated in the two gluon exchange approximation. This expression is

of course very natural. While the meaning of R(x) as we have discussed above, is that of

the scattering amplitude of a parton in the projectile wave function, the meaning of S(y) is

the scattering amplitude of an external parton that scatters on the wave function with color

charge density ρ (in our case — the projectile again). Thus the commutator in eq. (3.22)

is the scattering amplitude of a dipole (u, v) on the wave function created by the dipole

(x, y). In general, this scattering amplitude is an operator with nontrivial dependence on

ρ which provides for possibility of further scatterings. Thus for example an expression

like P (zw)P (xy)P̄ (uv) corresponds to the double scattering of the (u, v) dipole on the
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wave function created by two dipoles — (x, y) and (z, w). According to eq. (3.22) this

expression would vanish. This simply corresponds to an approximation where any dipole

can only scatter on one dipole at a time, or approximation of dilute projectile. If the

projectile itself is dense, then of course multiple scatterings are allowed and the scattering

amplitude of the external dipole (u, v) is much more complicated.

Our aim now is to show why the approximation of eq. (3.20) is appropriate for the

regime discussed in the present paper. Consider again eq. (3.4) inserted in eq. (3.3) within

the limit (3.7). As we have explained, the leftmost exponential factor corresponds to the

range of rapidities at which the object to the left of it (the projectile) is dilute, and the

object to the right of it (evolved target) is dense, while the rightmost exponential factor

acts in the opposite environment where the target is dilute, but the projectile is dense. In

the leftmost factor therefore HRFT is approximated by HKLWMIJ , while in the rightmost

one by HJIMWLK . Consider a generic term in expansion of the two exponentials to some

order in ∆Y :
∫

dα

∫

dρδ(ρ)WP [R]
(

HKLWMIJ [ρ,R]
)n(

HJIMWLK [ρ,R]
)m

eig
2
∫
x
ρa(x)αa(x)WT [α] (3.23)

In general we cannot expand HKLWMIJ in this expression in powers of δ/δρ, since any

given term acts on a dense wave function to the right of it. By the same token HJIMWLK

cannot be expanded in ρ, since it encounters a dense wave function when acting to the

left. However, what interests us is how the terms involving P̄ in HJIMWLK act on the P

operators in HKLWMIJ . Technically, in order to calculate the integral in eq. (3.23), one

has to commute all the factors involving ρ all the way to the left, where they annihilate

the δ-function. Let us concentrate on a factor involving S, or equivalently P̄ coming

from one of the HJIMLWK terms. First, it has to be commuted through the rest of

the factors HJIMWLK to the left of it. This is the rapidity interval where, according to

our previous discussion, the projectile is dense and no further simplifications are possible.

There is no problem however, since HJIMWLK is expressed in terms of P̄ and P̄ †, and these

operators have simple commutation relations, so the calculation is straightforward. The

potential problem only arises when one has to commute P̄ through the factors ofHKLWMIJ .

However, once P̄ arrives next to these factors, it is now in the environment where the

projectile is dilute. Here P̄ can be expanded to leading order in ρ. As a consequence, the

commutation relation of any factor P̄ from HJIMWLK with any factor of P from HKLWMIJ

in eq. (3.23) can be approximated by the simple c-number relation eq. (3.22).

The physics of this argument is simple. We can attribute the factor P̄ that we have

concentrated on, to the target wave function. Its interpretation then is that of the scattering

amplitude of a dipole that belongs to the target, on the wave function of the evolved

projectile. Since the projectile is dense, multiple scatterings are certainly possible, and

therefore one cannot expand P̄ . However the structure of the evolved projectile wave

function is such, that most of the gluons are soft. We know that from the exponential

growth with rapidity of the gluon density in the dipole model . Thus the multiple scatterings

will occur with large probability only on gluons close to the target rapidity (contained in

HJIMWLK terms in eq. (3.23). On the other hand, there are not many gluons at rapidities

– 11 –



J
H
E
P
0
4
(
2
0
1
4
)
0
7
5

max

max

0

HJIMWLK

HKLWMIJ

max

max

0

HJIMWLK

HKLWMIJ

a) b)

Figure 1. The JIMWLK and KLWMIJ Pomeron cascades described by HRFT (P ) of eq. (3.24).

The wavy lines denote the BFKL Pomerons. The gray circles are the triple Pomeron vertex while

the black circle denote α2
s

1
∇2

1
∇2

2

which is the amplitude of two dipoles interaction in the Born

approximation of perturbative QCD. Figure 1-b shows the first correction to HRFT (P ) stemming

from the induced four Pomeron vertex which describes the interaction of two dipoles from KLWMIJ

cascade with two dipoles from JIMWLK cascade at low energy denoted by the large (red) circle.

close to the “valence” rapidity of the projectile. Thus multiple scattering of the target

dipole on these energetic gluons is suppressed by powers of the coupling constant. Therefore

it is possible to keep only the single scattering term in the commutator of P̄ close to target

valence rapidity with P close to the projectile valence rapidity. This is the approximation

explored in ref. [52].

The upshot of this discussion is that in the large Pomeron loop regime the RFT Hamil-

tonian (truncated to contain only Pomerons) can be written as (see figure 1-a)

HRFT (P ) = −αsNc

2π2

∫

x,y,z
Mx,y;z

{

[Px,z + Pz,y − Px,y]P
†
x,y − Px,zPz,y P

†
x,y − P̄x,zP̄z,y P̄

†
x,y

}

(3.24)

with

P̄ (xy) =
g4

4

[

1

∇2
(xu)− 1

∇2
(yu)

][

1

∇2
(xv)− 1

∇2
(yv)

][

P †(uv)− δuv

∫

z
P †
uz

]

P̄ †(xy) =
4

g4
∇2

x∇2
yP (x, y), x 6= y; P̄ †(xy) = 0, x = y (3.25)

With the identification eq. (3.25) the Hamiltonian can be written in terms of the dual

Pomerons in an explicitly self dual form (see appendix A)

HRFT (P ) = − Nc

32π4αs

∫

x,y,u,v
∇2

u∇2
v Pu,v

{

[

1

∇2
(xv) − 1

∇2
(yv)

]2 [

1

∇2
(ux) +

1

∇2
(uy)

]

+

+

[

1

∇2
(xu) − 1

∇2
(yu)

]2 [

1

∇2
(vx) +

1

∇2
(vy)

]

}

∇2
x∇2

y P̄x,y

+
Nc

8π4αs

∫

x,y,z
Mx,y;z

[

Px,zPz,y ∇2
x∇2

y P̄x,y + P̄x,zP̄z,y ∇2
x∇2

y Px,y

]

(3.26)
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This is the Hamiltonian proposed by Braun in [4–6] and frequently referred to as BFKL

Pomeron Calculus.

3.3 Beyond BFKL Pomeron calculus

The discussion in the previous subsection was not complete, since we have only considered

the Pomeron contribution to the Hamiltonian. However, even at large Nc one has to include

other Reggeons, as explained in [49]. The number of these Reggeons is in principle infinite,

corresponding to all possible n-point functions of the matrix R. We will limit ourselves, like

in [49] to considering four lowest reggeons, and will include their contributions to HRFT.

The Reggeons in questions are the Odderon [53, 54], defined as

O(x, y) =
1

2Nc

(

tr[R(x)R†(y)]− tr[R(y)R†(x)]
)

(3.27)

and the B and C reggeons defined in terms of the “quadrupole” operator

Q(x, y, u, v) ≡ 1

Nc
tr[R(x)R†(y)R(u)R†(v)] (3.28)

as

B(x, y, u, v) =
1

4
[4−Q(x, y, u, v)−Q(v, x, y, u)−Q(u, y, x, v)−Q(y, x, v, u)]

− [Pxy + Pxv + Pyu + Puv − Pxu − Pyv]

C(x, y, u, v) =
1

4
[Q(x, y, u, v) +Q(v, x, y, u)−Q(u, y, x, v)−Q(y, x, v, u)] (3.29)

As discussed in [49], the field O is charge conjugation and signature odd, C is signature

even and charge conjugation odd, while B has the same quantum numbers as the Pomeron.

When these fields are included, the KLWMIJ Hamiltonian has the form:

HKLWMIJ = HP +HO +HB +HC (3.30)

where

HP =−αsNc

2π2

∫

x,y,z
Mx,y;z

{

[Px,z + Pz,y − Px,y − Px,zPz,y −Ox,zOz,y]P
†
x,y

}

(3.31)

HO =−αsNc

2π2

∫

x,y,z
Mx,y;z

{

[Ox,z +Oz,y − Ox,y −Ox,zPz,y − Px,zOz,y]O
†
x,y

}

(3.32)

HC =−αsNc

2π2

∫

x,y,u,v,z

{

−[Mx,y;z +Mu,v;z − Lx,u,v,y;z]CxyuvC
†
xyuv + 4Lx,v,u,v;zCxyuzC

†
xyuv

−4Lx,v,u,v;zCxyuzPzvC
†
xyuv

}

(3.33)

HB =−αsNc

2π2

∫

xyuvz

{

− [Mx,y;z + Mu,v;z − Lx,u,v,y;z] BxyuvB
†
xyuv + 4Lx,v,u,v;zBxyuzB

†
xyuv

−2Lx,y,u,v;z

[

PxvPuy +OxvOuy

]

B†
xyuv

−2PxzPyz

[

2Lx,y,u,v;zB
†
xyuv −

(

Lx,u,y,v;z + Lx,v,y,u;z

)

B†
xuyv

]

−4PxzPyu

[

2Lx,y,x,v;zB
†
xyuv − Lx,y,x,u;zB

†
xyvu

]

− 4BxyuzPzvLx,v,u,v;zB
†
xyuv

}

(3.34)
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where

Lx,y,u,v;z =

[

(x − z)i
(x − z)2

− (y − z)i
(y − z)2

] [

(u − z)i
(u − z)2

− (v − z)i
(v − z)2

]

=
1

2
[My,u;z + Mx,v;z − My,v;z −Mx,u;z ] (3.35)

Applying the DDD transformation, we can write immediately the JIMWLK Hamiltonian

in terms of the dual operators Ō, B̄ and C̄ obtained by replacing R by S in all expressions

eqs. (3.27), (3.28), (3.29).

HJIMWLK = HP̄ +HŌ +HB̄ +HC̄ (3.36)

where

HP̄ =−αsNc

2π2

∫

x,y,z
Mx,y;z

{

[P̄x,z + P̄z,y − P̄x,y − P̄x,zP̄z,y − Ōx,zŌz,y] P̄
†
x,y

}

(3.37)

HŌ =−αsNc

2π2

∫

x,y,z
Mx,y;z

{

[Ōx,z + Ōz,y − Ōx,y − Ōx,zP̄z,y − P̄x,zŌz,y] Ō
†
x,y

}

(3.38)

HC̄ =−αsNc

2π2

∫

x,y,u,v,z

{

− [Mx,y;z +Mu,v;z − Lx,u,v,y;z]C̄xyuvC
†
xyuv + 4Lx,v,u,v;zC̄xyuzC̄

†
xyuv

−4Lx,v,u,v;zC̄xyuzP̄zvC̄
†
xyuv

}

(3.39)

HB̄ =−αsNc

2π2

∫

xyuvz

{

− [Mx,y;z + Mu,v;z − Lx,u,v,y;z] B̄xyuvB̄
†
xyuv + 4Lx,v,u,v;zB̄xyuzB̄

†
xyuv

−2Lx,y,u,v;z

[

P̄xvP̄uy + ŌxvŌuy

]

B̄†
xyuv

−2P̄xzP̄yz

[

2Lx,y,u,v;zB̄
†
xyuv −

(

Lx,u,y,v;z + Lx,v,y,u;z

)

B̄†
xuyv

]

−4P̄xzP̄yu

[

2Lx,y,x,v;zB̄
†
xyuv − Lx,y,x,u;zB̄

†
xyvu

]

− 4B̄xyuzP̄zvLx,v,u,v;zB̄
†
xyuv

}

(3.40)

The same line of argument as in the previous subsection leads us to combine these

two sets Hamiltonians into HRFT with an additional simplification that the commutation

relations between P, O, C, B and P̄ , Ō, C̄, B̄ are taken to be those of the dilute limit.

To establish these commutation relations we have to expand the dual reggeons to leading

order in ρ and relate them to the conjugate reggeons.

For the expansion of B and B̄ reggeons we have

B(x, y, u, v) =
1

4Nc
Tr{[T aT bT cT d] + [T dT cT bT a]}

(

δ

δρa(x)
− δ

δρa(v)

)

× (3.41)

×
(

δ

δρb(x)
− δ

δρb(y)

)(

δ

δρc(y)
− δ

δρc(u)

)(

δ

δρd(u)
− δ

δρd(v)

)

B̄(x̄, ȳ, ū, v̄) =
g8

4Nc
Tr{[T aT bT cT d] + [T dT cT bT a]} × (3.42)

×(αa(x̄)− αa(v̄))(αb(x̄)− αb(ȳ))(αc(ȳ)− αc(ū))(αd(ū)− αd(v̄))
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The commutator is

[B̄(x̄, ȳ, ū, v̄), B(x, y, u, v)] =
g8N2

c

16 · 8 DB(x̄, ȳ, ū, v̄;x, y, u, v) ;

DB(x̄, ȳ, ū, v̄;x, y, u, v) ≡
[

∆(x̄, v̄;x, v)∆(x̄, ȳ;x, y)∆(ȳ, ū; y, u)∆(ū, v̄;u, v)

+∆(x̄, v̄;x, v)∆(x̄, ȳ;u, v)∆(ȳ, ū; y, u)∆(ū, v̄;x, y)

+∆(x̄, v̄;x, y)∆(x̄, ȳ; y, u)∆(ȳ, ū;u, v)∆(ū, v̄;x, v)

+∆(x̄, v̄;x, y)∆(x̄, ȳ;x, v)∆(ȳ, ū;u, v)∆(ū, v̄; y, u)

+∆(x̄, v̄; y, u)∆(x̄, ȳ;u, v)∆(ȳ, ū;x, v)∆(ū, v̄;x, y)

+∆(x̄, v̄; y, u)∆(x̄, ȳ;x, y)∆(ȳ, ū;x, v)∆(ū, v̄;u, v)

+∆(x̄, v̄;u, v)∆(x̄, ȳ;x, v)∆(ȳ, ū;x, y)∆(ū, v̄; y, u)

+∆(x̄, v̄;u, v)∆(x̄, ȳ; y, u)∆(ȳ, ū;x, y)∆(ū, v̄;x, v)
]

(3.43)

An entirely analogous calculation can be performed for the C-reggeon, with the only

difference that [T aT bT cT d] + [T dT cT bT a] → [T aT bT cT d] − [T dT cT bT a] in eqs. (3.41)

and (3.42). The result for the commutator is identical with eq. (3.43)

[C̄(x̄, ȳ, ū, v̄), C(x, y, u, v)] =
g8N2

c

16 · 8
[

∆(x̄, v̄;x, v)∆(x̄, ȳ;x, y)∆(ȳ, ū; y, u)∆(ū, v̄;u, v)

+∆(x̄, v̄;x, v)∆(x̄, ȳ;u, v)∆(ȳ, ū; y, u)∆(ū, v̄;x, y)

+∆(x̄, v̄;x, y)∆(x̄, ȳ; y, u)∆(ȳ, ū;u, v)∆(ū, v̄;x, v)

+∆(x̄, v̄;x, y)∆(x̄, ȳ;x, v)∆(ȳ, ū;u, v)∆(ū, v̄; y, u)

+∆(x̄, v̄; y, u)∆(x̄, ȳ;u, v)∆(ȳ, ū;x, v)∆(ū, v̄;x, y)

+∆(x̄, v̄; y, u)∆(x̄, ȳ;x, y)∆(ȳ, ū;x, v)∆(ū, v̄;u, v)

+∆(x̄, v̄;u, v)∆(x̄, ȳ;x, v)∆(ȳ, ū;x, y)∆(ū, v̄; y, u)

+∆(x̄, v̄;u, v)∆(x̄, ȳ; y, u)∆(ȳ, ū;x, y)∆(ū, v̄;x, v)
]

(3.44)

A similar calculation gives for the Odderon

[O(xy), Ō(uv)] =
g6Nc

32

[

2
1

∇2
(uy)

1

∇2
(vy)

1

∇2
(vx) + 2

1

∇2
(uy)

1

∇2
(ux)

1

∇2
(vx)

−2
1

∇2
(uy)

1

∇2
(vy)

1

∇2
(ux)− 2

1

∇2
(ux)

1

∇2
(vy)

1

∇2
(vx)

+
1

∇2
(ux)

1

∇2
(vy)

1

∇2
(vy) +

1

∇2
(vy)

1

∇2
(ux)

1

∇2
(ux)

− 1

∇2
(vx)

1

∇2
(uy)

1

∇2
(uy)− 1

∇2
(uy)

1

∇2
(vx)

1

∇2
(vx)

]

(3.45)

It is clear therefore that the extension of the pure Pomeron Hamiltonian, which also

accounts for higher Reggeons in the “Pomeron loop” regime should be taken as the sum

HRFT = HRFT (P ) +HB+B̄ +HC+C̄ +HO+Ō (3.46)
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with

HB+B̄ =−αsNc

2π2

∫

xyuvz

{

− [Mx,y;z +Mu,v;z − Lx,u,v,y;z]BxyuvB
†
xyuv + 4Lx,v,u,v;zBxyuzB

†
xyuv

−2Lx,y,u,v;z

[

PxvPuy +OxvOuy

]

B†
xyuv − 2Lx,y,u,v;z

[

P̄xvP̄uy + ŌxvŌuy

]

B̄†
xyuv

−2PxzPyz

[

2Lx,y,u,v;zB
†
xyuv −

(

Lx,u,y,v;z + Lx,v,y,u;z

)

B†
xuyv

]

−2P̄xzP̄yz

[

2Lx,y,u,v;zB̄
†
xyuv −

(

Lx,u,y,v;z + Lx,v,y,u;z

)

B̄†
xuyv

]

−4PxzPyu

[

2Lx,y,x,v;zB
†
xyuv − Lx,y,x,u;zB

†
xyvu

]

− 4BxyuzPzvLx,v,u,v;zB
†
xyuv

−4P̄xzP̄yu

[

2Lx,y,x,v;zB̄
†
xyuv − Lx,y,x,u;zB̄

†
xyvu

]

− 4B̄xyuzP̄zvLx,v,u,v;zB̄
†
xyuv

}

(3.47)

HC+C̄ =−αsNc

2π2

∫

x,y,u,v,z

{

− [Mx,y;z +Mu,v;z − Lx,u,v,y;z]CxyuvC
†
xyuv + (3.48)

+4Lx,v,u,v;zCxyuzC
†
xyuv − 4Lx,v,u,v;zCxyuzPzvC

†
xyuv − 4Lx,v,u,v;zC̄xyuzP̄zvC̄

†
xyuv

}

HO+Ō =−αsNc

2π2

∫

x,y,z
Mx,y;z

[{

[Ox,z +Oz,y − Ox,y

}

O†
x,y

−[Ox,zPz,y + Px,zOz,y]O
†
x,y − [Ōx,zP̄z,y + P̄x,zŌz,y] Ō

†
x,y

]

(3.49)

This is supplemented with the commutation relations eqs. (3.43), (3.44), (3.45).

Just like in the case of the Pomeron, one can get rid of B† and C† in favor of the dual

reggeons B̄ and C̄ in the Hamiltonian, and rewrite the relevant terms in an explicitly self

dual form. To do this, we recall that the conjugate B-reggeon to leading order is given by

the expression ([49])

B†(1234) = − 2

N3
c

tr(T aT bT cT d)
{

ρa(1)ρb(2)ρc(3)ρd(4) + ρa(2)ρb(1)ρc(4)ρd(3)
}

(3.50)

Using this, and a similar relation for C†, to leading order we have

∇2
x∇2

y∇2
u∇2

vB̄(x, y, u, v) =
g8N2

c

4
B†(x, y, u, v);

∇2
x∇2

y∇2
u∇2

vC̄(x, y, u, v) =
g8N2

c

4
C†(x, y, u, v) (3.51)

The situation is more subtle for the Odderon, since we do not have readily available an

equation similar to eq. (3.51). We therefore cannot explicitly eliminate O† in favor of Ō.

However from practical point of view this is not necessary, since the commutation relation

eq. (3.45) provides all the necessary information to be able to use O and Ō within the same

framework.

We conclude this section with discussion of two important aspects of the Hamilto-

nian HRFT.

3.4 On the peculiarities of large Nc counting

There is a certain subtlety related to the Hamiltonian eq. (3.47) that we have to comment

upon. As we have discussed above, to write down HRFT we had to add the JIMWLK and
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KLWMIJ Hamiltonians, and subtract the BFKL term. When performing this in terms of

the B-reggeon operators, to arrive at eq. (3.47) we have added HB and HB̄ and subtracted

the homogeneous term, which is common to the two Hamiltonians, while keeping all vertices

intact. On the other hand, as noted in [49], the B†PP vertex in eq. (3.33) in the expansion

to lowest order in δ/δρ generates a contribution to the linear BKP equation, and thus in a

sense is a part of the BFKL Hamiltonian. The same goes for the vertex B̄†P̄ P̄ in eq. (3.39).

This begs the question, whether we have not undersubtracted the BFKL terms in arriving

to eq. (3.47) by keeping both these vertices. It does of course seem very unnatural to

subtract either or both of these vertices, and in fact they are clearly both needed so that

HB+B̄ can reproduce all the terms in HKLWMIJ in the dilute regime, and all the terms in

HJIMWLK in the dense one.

It is necessary and consistent to keep both these terms in the Hamiltonian, if and only if

we can show that in the regime they are not supposed to be present, they are parametrically

smaller than the terms we have subtracted. We will now show that this is indeed the case

due to the somewhat peculiar way the large Nc limit works at high energy. Specifically, we

will show that the term B†PP is leading order at large Nc in the KLWMIJ regime and thus

is the same order as the homogeneous term B†B. On the other hand in the dense JIMWLK

regime the B†PP term is suppressed in the large Nc limit, even though naively one could

think that it is always O(1). Thus even though we have “undersubtracted” this term in

the JIMWLK regime, this is consistent within our calculation, since we are working in the

large Nc limit. The converse is true for the B̄†P̄ P̄ term. It is O(1) in the JIMWLK regime,

but O(1/N2
c ) in the KLWMIJ regime. Thus keeping both vertices in the Hamiltonian is a

completely consistent approximation in the large Nc limit.

To understand the peculiarities of the large Nc counting, consider for example the

dual Pomeron amplitude eq. (3.17). The saturation regime is defined as regime where the

matrix S has fluctuation of order unity, and therefore close to the saturation regime in

terms of 1/Nc counting, P̄ (x, y) ∼ O(1).

Now let us consider the dilute regime. To count powers of Nc properly, we have to

restore the powers of the coupling constant. Recall that S = exp{ig2T aαa(x)}, where α is

the gauge field in the wave function of the projectile. The gauge field itself is determined

by the color charge density via the Yang-Mills equation as ∇2α = ρ, and so S(x) =

exp{ig2T a∇−2ρa}. In the last relation the normalization of the color charge density is

such that the charge for a single particle is of order unity, or more precisely the second

Casimir operator in a fundamental representation is equal to Nc/2 without any powers of

the coupling constant g. Thus in the dilute regime, where we assume that the projectile

contains a finite number of partons, we find

P̄ (x, y) ∼ g4

4Nc
[∇−2(x, u)−∇−2(y, u)][∇−2(x, v)−∇−2(y, v)]ρa(u)ρa(v) ∝ α2

s (3.52)

In the usual ’t Hooft counting, λ ≡ αsNc is finite in the large Nc limit, αs ∝ 1
Nc

and thus

P̄ ∼ 1

N2
c

(3.53)
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This is natural, given the fact that in the large Nc limit mesons (and therefore heavy

quarkonia - dipoles) in QCD are stable, noninteracting particles.

Similarly, considering the Pomeron in the situation where the projectile scatters on a

target that contain a finite number of partons (or dipoles), we find

P ∼ α2
s ∼

1

N2
c

(3.54)

This is obtained taking δ
δρ → g2∇2ρ. Interestingly, in this regime the B-Reggeon is para-

metrically larger than the product of two Pomerons. Expanding the quadrupole operator

to order
(

δ
δρ

)4
we find eq. (3.41). The magnitude of this expression in the large Nc limit

is estimated taking again δ
δρ → g2∇2ρ and calculating the product of four generators of

SU(Nc) group in some low dimensional representation. For example, averaging over a

fundamental representation we have

〈ρaρbρcρd〉fundamental =
1

Nc
Tr[T aT bT cT d] (3.55)

using this in eq. (3.41) we find

B(x, y, u, v) ∼ α4
sN

2
c = α2

sλ
2 = λ4/N2

c (3.56)

Note that in this regime the B reggeon is of order 1/N2
c , while the two Pomeron contribution

to scattering is O(1/N4
c ); and thus B ≫ P 2.

This 1/Nc counting brings forth an interesting point. In order to get to the saturation

regime at large Nc one needs a parametrically large energy. The Pomeron amplitude

becomes of order one only at rapidity determined by

α2
s e

ωP Y ∼ 1; Y ∼ 1

ωP

[

ln
1

ωP
+ lnNc

]

(3.57)

Therefore the Nc counting for the same scattering amplitude is very different in dense and

dilute limits.

Returning to the estimates of various terms in the Hamiltonian HB+B̄ , for definiteness

let us concentrate on the term B†PP . This term is certainly important in the KLWMIJ

regime, where as we know, it is of the same order as the homogeneous term B†B, which

is undoubtedly a part of HBFKL. In this regime PP ∼ O(1) and also B ∼ O(1). On

the other hand in the JIMWLK regime things are very different as is obvious from the

previous discussion. The B-reggeon operator is of order B ∼ α4
sN

2
c , while the two Pomeron

operator is parametrically smaller PP ∼ α4
s. Thus in the JIMWLK regime the vertex we

have “undersubtracted” is suppressed by 1/N2
c relatively to the homogeneous term B†B.

Therefore keeping it is perfectly consistent in the large Nc limit, which is the approximation

we are using in this paper. The reverse is true for the vertex B̄†P̄ P̄ . It is as large as BB†

in the JIMWLK regime, but is suppressed by the factor 1/N2
c in the KLWMIJ regime, and

again, it is fully consistent to keep it in the Hamiltonian “as is”.
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Figure 2. The four Pomeron interactions that are generated by the exchange of the Pomeron and

B-Reggeon.

3.5 On the effective 2 → 2 Pomeron vertex

A possibility that RFT should involve a 2 → 2 Pomeron vertex has been previously dis-

cussed in the literature [60, 70–75]. Recently, Braun [76, 77] argued that such a vertex

appears in the BKP formalism and can be relevant for collisions of two deuterons.

The Hamiltonian eq. (3.46) indeed gives rise to such an effective vertex via integration

of an intermediate exchange of a Pomeron and of a B-reggeon. The latter exchange gives

dominant contribution in the ’t Hooft large Nc limit.

The Hamiltonian eq. (3.46) contains the B-reggeon as an independent degree of free-

dom. In general this is necessary, since some physical observables involve B directly, as for

example double inclusive gluon production as discussed in the next section. However if we

are interested in restricted set of observables which depend only on the Pomeron field, we

can “integrate out” the B-reggeon and obtain the effective Pomeron Hamiltonian.2 This

integration out procedure clearly generates an effective 2 → 2 Pomeron vertex due to con-

tributions of a single B-reggeon intermediate state. A similar contribution arises also from

a single Pomeron intermediate state.

Figure 2 illustrates the effective four Pomeron vertex due to exchanges of the Pomeron

and the B-Reggeon. The fundamental vertices of HRFT that couple the two Pomerons to

one B-Reggeon state are PPB† and P̄ P̄ B̄† in eq. (3.47), while coupling to one Pomeron

state is via the three Pomeron vertex in eq. (3.24).

The physical meaning of the four Pomeron interaction as illustrated in figure 2, is

that of the probability for “direct” interaction of two dipoles from the upper cascade

with two dipoles from the lower cascade. For dilute-dense scattering this probability is

small. However when the rapidity of one of the colliding objects approaches 2ηmax the

four Pomeron interaction becomes more significant. It is the largest if all the dipoles that

interact are close to midrapidity η = ηmax.

2We should also integrate of course the other reggeons, O and C. These however give subleading

contributions and we do not discuss them here.
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Figure 3. The contribution of four Pomeron interactions to Green’s function of two Pomerons.

The coupling to a single Pomeron state is indicated by the upper and lower three Pomeron vertices.

The parametric estimate for the strength of the direct four Pomeron interaction due

to one Pomeron exchange is λ3/N2
c , while for the B-Reggeon it is λ/N2

c . The Pomeron

exchange can therefore be neglected, or rather treated as a perturbation.

To derive the induced interaction due to the B-Reggeon we need to integrate over

the rapidity of the intermediate state. This gives a factor 1/ (2ωP − ωB) where ωP is the

intercept of the BFKL Pomeron and ωB is the intercept of the B-Reggeon exchange. Thus

the effect of B-reggeon propagation on Pomeron observables in the range of validity of

HRFT can be summarized by the effective Hamiltonian

HRFT (E) =HRFT (P ) +
1

α2
s

1

8π8

1

(2ωP − ωB)

∫

x,y,u,v;x̄,ȳ,ū,v̄;z,z̄
(3.58)

{(

4Pxz (Pyz − Puz) + 2PxvPuy

)

Lx,y,u,v;z + 8Pxz (Pyv − Pyu) Lx,y,x,v;z

}

× DB (x, y, u, v; x̄, ȳ, ū, v̄)

×
{(

4P̄x̄z̄

(

P̄ȳz̄ − P̄ūz̄

)

+ 2P̄x̄v̄P̄ūȳ

)

Lx̄,ȳ,ū,v̄;z̄ + 8P̄x̄z̄

(

P̄ȳv̄ − P̄ȳū

)

Lx̄,ȳ,x̄,v̄;z̄

}

where DB is defined in eq. (3.43).

An interesting property of this Hamiltonian is that it generates the additional con-

tribution to the two Pomeron Green’s function [70–73] through graphs illustrated on

figure 3. This has the effect that in the linearized approximation the two Pomeron

Green’s function increases faster than the product of two the single Pomeron exchanges:

ωPP = 2ωP + λ/N2
c δ where δ is a small number (see ref. [70–73] for details). This

contribution starts to be essential with rapidities η ∝ N2
c /λ > ηmax.

A word of caution is in order here. While we have demonstrated the emergence of an

effective 2 → 2 Pomeron vertex from HRFT, the exact form of the vertex itself is not under

control within our approximation. First, we have systematically ignored all the subleading

Nc effects while deriving the RFT in this paper. On the other hand the two dipole-two

dipole interaction, which is described by the effective vertex eq. (3.58) is subleading at

large Nc. Thus we cannot exclude other sources contributing to this vertex beyond the

ones taken into account in eq. (3.58). Second, as has been emphasized above, although
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we have written HRFT in the operator form, strictly speaking in its region of validity all

the vertices close in rapidity to a dilute object must be of the splitting type. The 2 → 2

vertex is generated by the diagrams (figure 2) which involve the “wrong” order of vertices:

a merging vertex is closest to a dilute object, and a splitting appears only further away in

rapidity. Such a diagram is subleading in the regime of validity of HRFT eq. (3.46). In fact

such order of vertices naturally corresponds to collision of two dense objects. Indeed Braun

argues [76, 77] that the 2 → 2 is enhanced in the dense regime. This is however the regime

where, as we have discussed above our Hamiltonian is not under control. Thus, although

our considerations here regarding the existence of 2 → 2 Pomeron vertex are plausible, it

remains to be understood if they can be put on a firmer basis.

4 Gluon production

The previous discussion pertained to the energy evolution of scattering amplitudes. An-

other set of interesting observables at high energy are inclusive (multi)gluon production

amplitudes. In the context of HRFT of ref. [1] they were discussed in [78]. The derivation

of [78] employed the same approximations as in [1], and thus has the same range of validity.

In this section we discuss the same type of simplification for gluon production observables

as the one discussed in section 3 for HRFT. We limit ourselves to discussing inclusive single

gluon production and inclusive production of two gluons that have similar rapidity, so that

the evolution between the rapidities of the gluons can be neglected. The rapidity at which

the gluons are measured can be either close to the projectile, or close to the target, or

anywhere in between. The restriction that follows from the derivation of [78] is that at no

rapidity is a dense multigluon final state produced in the scattering process.

As in previous sections, our goal is to cast the gluon production observables in terms

of the natural degrees of freedom of Reggeon Field Theory, which are the dual pairs P and

P̄ ; B and B̄ and so on. We start with discussing the simplest observable of this type — a

single gluon inclusive production.

4.1 Single gluon production

Consider inclusive production of a gluon with rapidity η in a scattering process at total

energy corresponding to rapidity difference Y between the target and the projectile. First,

we take η to be close enough to the projectile, so that the projectile wave function evolved

to η is dilute. We do not assume diluteness of the target wave function. In this regime

the amplitude of [78] reduces to a well know expression first derived in [79]. We find it

more convenient to use the notations of [80, 81]. The single gluon production amplitude

according to [80, 81] is given by

dσ

dη dk2
=

αs

4π3

∫

b;z,z̄
ei k(z− z̄)

∫

x,y

(z − x)i
(z − x)2

(z̄ − y)i
(z̄ − y)2

×

×
〈

W Y−η
T

∣

∣

∣

[

(SA†
z − SA†

x )(SA
z̄ − SA

y )
]ab 〉

〈W η
P |Ja

L[x] J
b
R[y]〉 (4.1)

– 21 –



J
H
E
P
0
4
(
2
0
1
4
)
0
7
5

The target matrix elements are defined as

〈W Y−η
T |O[S]〉 ≡

∫

DρT W Ȳ−η
T [ρT ] O[S]; (4.2)

and similarly for the projectile. In these expressions the target distribution W T has been

evolved through the rapidity interval of length Y −η , while the projectile distribution WP

has been evolved by η to the rapidity of the observed gluon.

We have explicitly indicated in eq. (4.1) the integration over the impact parameter ~b,

which is the transverse plane vector between the “center of mass” of the projectile and the

target wave functions. One of the wave functions (WT or WP ) should be understood as

depending on ~b through a global shift of all the transverse coordinates of its sources, even

though this dependence has not been indicated explicitly in eq. (4.1). This integration

ensures transverse translational invariance of the initial state.

Our goal now is to rewrite this observable in the language of the degrees of freedom

of the Reggeon Field Theory. First off, we note that due to color neutrality of the target

and the projectile we can write

〈

W Y−η
T

∣

∣

∣

[

(SA†
z − SA†

x )(SA
z̄ − SA

y )
]ab 〉

=
1

N2
c

δab
〈

W Y−η
T

∣

∣

∣
Tr

[

(SA†
z − SA†

x )(SA
z̄ − SA

y )
]〉

〈W η
P |Ja

L[x] J
b
R[y]〉 =

1

N2
c

δab〈W η
P |Jc

L[x] J
c
R[y]〉 (4.3)

This leads to

dσ

dη dk2
=

αs

4π3N2
c

∫

b;z,z̄
ei k(z− z̄)

∫

x,y

(z − x)i
(z − x)2

(z̄ − y)i
(z̄ − y)2

×

×
〈

W Y−η
T

∣

∣

∣
Tr

[

(SA†
z − SA†

x )(SA
z̄ − SA

y )
] 〉

〈W η
P |Ja

L[x] J
a
R[y]〉 (4.4)

The operators that appear in eq. (4.4) are strictly speaking different than the ones used

to define the Reggeon operators discussed in [49]. All the Reggeon and Reggeon conjugate

operators discussed in [1] are singlets under the SUR(Nc) × SUL(Nc) transformation. On

the other hand the operator Ja
L[x] J

a
R[y], while a singlet under the vector SU(Nc) subgroup,

transforms as an adjoint under the action of the left and right rotations separately. This

operator represents the cut Pomeron as discussed in [83]. The reason ref. [49] discussed

only evolution of left and right singlets, is that for the calculation of the forward scattering

amplitude of any color singlet physical state, the weight functional has the form

W = W [P,O,B . . .]δ[ρ] (4.5)

where P,O,B, etc . . . are all SUR(Nc)×SUL(Nc) singlets. Thus only the evolution of singlet

operators is relevant for the calculation of forward scattering amplitude. On the other hand,

it is not true that only SUR(Nc) × SUL(Nc) singlets have nonvanishing expectation value

in the state specified by W . A trivial example of an operator which is not a singlet, but

whose average does not vanish is Rαβ . Recall that one of the defining properties of W is

its normalization [84]
∫

dρW = 1 . (4.6)
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From this it immediately follows that

∫

dρW Rαβ(x) = δαβ (4.7)

Thus in this sense, a state specified by any normalized W of the form eq. (4.5) breaks

spontaneously the SUL(Nc) × SUR(Nc) symmetry of HRFT down to the diagonal SU(Nc)

subgroup [85].

The operator Ja
L[x] J

a
R[y] therefore has a nonvanishing expectation value even though

it is not separately left and right invariant. Nevertheless, if at the initial rapidity

W [P,O,B . . .] depends only on SUR(Nc)×SUL(Nc) invariant operators, it will continue to

have this properety at any rapidity, and thus only the evolution of these operators is impor-

tant. We conclude therefore, that even though our observable is not SUL(Nc)× SUR(Nc)

invariant, in terms of evolution it is sufficient to consider only the invariant Reggeons P, O,

etc., as was done in [49].

The situation may well be different if we were to consider an observable which measures

two (or more) gluons separated by a large rapidity interval. For an observable like this

one may need to consider explicitly the evolution of SUL(Nc) × SUR(Nc) noninvariant

observables which are still invariant under the diagonal SUV (Nc) between the rapidities of

the two observed gluons. In this paper we do not consider such observables and therefore

will not dwell on the evolution of left-right noninvariant operators.

To rewrite eq. (4.4) in terms of the Reggeon operators we first note that on the target

side the algebra is straightforward

1

N2
c

Tr
[

(SA†
z − SA†

x )(SA
z̄ − SA

y )
]

= −2P̄ (zz̄) + 2P̄ (zy) + 2P̄ (xz̄)− 2P̄ (xy)

+P̄ 2(zz̄)− P̄ 2(zy)− P̄ 2(xz̄) + P̄ 2(xy)− Ō2(zz̄) + Ō2(zy) + Ō2(xz̄)− Ō2(xy)

≡ −P̄A(zz̄) + P̄A(zy) + P̄A(xz̄)− P̄A(xy) (4.8)

where for compactness we have defined “adjoint Pomeron” as P̄A(zz̄) ≡ 2P̄ (zz̄)−
P̄ 2(zz̄) + Ō2(zz̄).

On the projectile side, it is easy to see that for any SUV (Nc) invariant function WP ,

〈W η
P |Ja

L[x] J
a
R[y]〉 = 〈W η

P |Ja
R[x] J

a
R[y]〉 = 〈W η

P |Ja
L[x] J

a
L[y]〉 (4.9)

Using eq. (3.16) we can therefore write

1

Nc
Ja
L[x] J

a
R[y] → P †

xy − δxy

∫

z
P †
xz (4.10)

Substituting eqs. (4.8), (4.10) into eq. (4.4) we obtain

dσ

dη dk2
=

αsNc

4π3

∫

b;z,z̄
ei k·(z− z̄)

∫

x,y

(z − x)i
(z − x)2

(z̄ − y)i
(z̄ − y)2

× (4.11)

×
(

− P̄ T
A (zz̄) + P̄ T

A (zy) + P̄ T
A (xz̄)− P̄ T

A (xy)
)

(

P †P
xy − δxy

∫

u
P †P
xu

)
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In eq. (4.11) we have restored the superscripts T and P on the appropriate operators, in

order to indicate that they depend on different degrees of freedom. Thus P̄ T
A denotes an

adjoint dual Pomeron operator, which depends on the color charge density of the target

ρT , while P †P denotes conjugate Pomeron which depends on the projectile color charge

density ρP . Also we have dropped the reference to the projectile and target wave functions

in eq. (4.11) for simplicity. It should be understood however, that the right hand side of

eq. (4.11) contains matrix elements of the operators over the appropriate wave functions.

Thus we use here the simplified notations

〈W Y−η
T |P̄ T

A (zz̄)〉 → P̄ T
A (zz̄); 〈W η

P |P †P
xy 〉 → P †P

xy (4.12)

and similarly for products of Pomerons and other Reggeons in the remainder of this

section.3

Equation (4.11) is the correct form of the inclusive single gluon cross section when

the gluon is emitted close to the dilute projectile. In this case only the leading order

term in weak field expansion contributes to the projectile side matrix element, while the

full nonperturbative expression P̄ T must be kept on the target side, as the target is not

necessarily dilute. Conversely, for gluon emitted close to the target, the target field can

be expanded, but the full expression must be kept on the projectile side. In that case the

observable is given by eq. (4.11) where the form of the operators on the target and projectile

sides are interchanged. One can in fact generalize eq. (4.11) to the expression valid for gluon

production at any rapidity between the target and the projectile by writing P † in terms

of P̄ a la eq. (3.25). This procedure in principle is not unique, since there can be different

functions of P̄ that upon expansion to leading order reduce to P †. Nevertheless, it makes

sense to adopt the simplest expression that reproduces both limits - of dilute projectile and

dilute target:

P †
xy − δxy

∫

z
P †
xz →

2

g4
∇2

x∇2
yP̄A(x, y) (4.13)

We can thus write eq. (4.11) in the form

dσ

dη dk2
=

Nc

32π5αs

∫

b;z,z̄
ei k·(z− z̄)

∫

x,y

(z − x)i
(z − x)2

(z̄ − y)i
(z̄ − y)2

× (4.14)

×
(

− P̄ T
A (zz̄) + P̄ T

A (zy) + P̄ T
A (xz̄)− P̄ T

A (xy)
)

∇2
x∇2

yP̄
P
A (x, y)

This expression upon some algebra can be cast into an explicitly symmetric form (for

details of the derivation see appendix B)

dσ

dη dk2
=

Nc

8π3αs

1

k2

∫

b;x,y
ei k·(x−y) ∂

∂xi

∂

∂yj
P̄ T
A (x, y)

[

δijδkl + δikδjl − δilδjk
] ∂

∂xk

∂

∂yl
P̄P
A (x, y)

(4.15)

3To avoid ambiguity we note that in eq. (4.22) and all other equations in this section we encounter a

single matrix element of products of projectile operators over the projectile wave function WP , and a single

matrix element of products of target operators over the target wave function (as opposed to products of

matrix elements).
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As mentioned above, integration over the impact parameter b ensures translational

invariance of the projectile and target distributions. As a result, both averages depend

only of the coordinate differences x− y, and eq. (4.15) can be simplified to

dσ

dη dk2
=

Nc

8π3αs

1

k2

∫

x−y
ei k·(x−y)∇2P̄ T

A (x− y)∇2P̄P
A (x− y) (4.16)

where now

P
T (P )
A (x− y) ≡

∫

x+y
P

T (P )
A (x, y) (4.17)

4.2 Inclusive two gluon production

Now let us consider inclusive two gluon production [86]. Again we first concentrate to the

situation when both gluons are produced at rapidity close to that of the projectile. The

expression for two gluon production cross section in this limit has been obtained in [80, 87].

It is given by the square of the two gluon production operator amplitude A(k, p) averaged

over the projectile and target wave functions

Aab
ij (k, p) ∝

∫

u,z
eikz+ipu

∫

x1,x2

{

(z − x1)i
(z − x1)2

[S(x1)− S(z)]ac ρc(x1)

}

×

×
{ (u− x2)j
(u− x2)2

[S(u)− S(x2)]
bd ρd(x2)

}

−1

2

∫

x1

(z − x1)i
(z − x1)2

(u− x1)j
(u− x1)2

{

[S(x1)− S(z)] ρ̃(x1)
[

S†(u) + S†(x1)
]}ab

+

∫

x1

(z − u)i
(z − u)2

(u− x1)j
(u− x1)2

{

(S(z)− S(u)) ρ̃(x1)S
†(u)

}ab
(4.18)

with ρ standing for ρP and ρ̃ab = tcabρ
c.

Squaring the amplitude we get a sum of several terms, which we can separate into

three types, according to the power of color charge density (figure 4)

Σ(2) ∝ ρ2; Σ(3) ∝ ρ3; Σ(4) ∝ ρ4 (4.19)

This expression is somewhat schematic. In fact the factors of ρ that belong to the amplitude

turn into right color charges JR, while the ones that belong to the conjugate amplitude turn

into left color charges JL. To express this in terms of Reggeons we need, just like in the

case of single gluon production cross section, relate expectation values of SUV (Nc) invariant

operators to those of SUR(Nc) × SUL(Nc) operators. In the present case it is somewhat

more involved than for the single inclusive production. We leave full analysis of the two

gluon production amplitude for future work. In this paper we concentrate exclusively on

the term Σ(4), for which the transition to Reggeon operators is straightforward. This term

is particularly interesting since it gives the leading contribution to correlated gluon emission

as discussed in [88]. Approximate numerical implementation of this term has been used to

describe the observed ridge correlations in p-p and p-A collisions at LHC in [89, 90].
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Figure 4. Mueller diagrams [82] for single (figure 4-a) and double (figure 4-b) production. The

gray circles denote the triple Pomeron vertex while the black blobs describe the emission of the

gluon from the BFKL Pomeron.

The contribution of this term to the cross section is

dσ(4)

dη dk2d dξ dp2
=
( αs

4π3

)2
Σ4(k, p) (4.20)

Σ(4)(k, p) =

∫

b;z,z̄,w,w̄
ei k(z− z̄)ei p(w− w̄)

∫

x,y

(z − x) · (z̄ − y)

(z − x)2(z̄ − y)2
(w − u) · (w̄ − v)

(w − u)2(w̄ − v)2
×

×
〈

W Y−η
T |

[

(SA†
z − SA†

x )(SA
z̄ − SA

y )
]ab [

(SA†
w − SA†

u )(SA
w̄ − SA

v )
]cd 〉

×

×
〈

W η
P

∣

∣

∣

1

4

(

Ja
L[x] J

c
L[u] + Jc

L[u] J
a
L[x]

)(

Jb
R[y] J

d
R[v] + Jd

R[v]J
b
R[y]

)〉

(4.21)

We express this in terms of the target reggeons in appendix C. The result for the Σ(4)

part is

Σ(4) =

(

1

32π3αsNc

)2 1

k2
1

p2

∫

b;x,y,u,v
cos k · (x− y) cos p · (u− v)×

×
{

1

4

∂

∂(ijīj̄)
[P̄ T

A (x, y)P̄ T
A (u, v)]∆ijkl∆īj̄k̄l̄ ∂

∂(klk̄l̄)
[P̄P

A (x, y)P̄P
A (u, v)]

− 8

N2
c

∂

∂(ijīj̄)
[d̄Txyd̄

T
uvQ̄

T
yuvx]∆

ijkl∆īj̄k̄l̄ ∂

∂(klk̄l̄)
[d̄Pyxd̄

P
vuQ̄

P
xvuy]

}

(4.22)

where

∂

∂(ijkl)
≡ ∂

∂xi

∂

∂yj

∂

∂uī

∂

∂vj̄
; ∆ijkl ≡ δijδkl + δikδjl − δilδjk (4.23)

The second term can now be expressed in terms of dual Pomerons and B-Reggeons if

desired.
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Just like in the case of single gluon production, the integration over the impact param-

eter ensures translational invariance of the projectile and target states. We can thus write

Σ(4) =

(

1

32π3αsNc

)2 1

k2
1

p2

∫

x−y,u−v,x+y−u−v
cos k · (x− y) cos p · (u− v)× (4.24)

{

1

4

∂

∂(ijīj̄)
DT

2A(x−y, u−v, x+y−u−v)∆ijkl∆īj̄k̄l̄ ∂

∂(klk̄l̄)
DP

2A(x−y, u−v, x+y−u−v)

− 8

N2
c

∂

∂(ijīj̄)
DT

B(x−y, u−v, x+y−u−v)∆ijkl∆īj̄k̄l̄ ∂

∂(klk̄l̄)
DP

B(y−x, v−u, x+y−u−v)]

}

with

D2A(x− y, u− v, x+ y − u− v) ≡
∫

d2(x+ y + u+ v)/4 P̄A(x, y)P̄A(u, v);

DB(x− y, u− v, x+ y − u− v) ≡
∫

d2(x+ y + u+ v)/4 d̄xyd̄uvQ̄yuvx (4.25)

The functions D2A(X,Y, Z) and DB(X,Y, Z) in general have nontrivial dependence on all

three coordinates, and thus translational invariance does not allow in this case any further

simplifications similar to eq. (4.16).

Superficially it may look like the second term in eq. (4.22) is suppressed in the large

Nc limit relative to the first one. However, in the region of applicability of eq. (4.22), where

one of the colliding objects is dilute, this is not the case. Consider, for example the dilute

projectile limit. As we have discussed above, in this limit

∇2
x∇2

yP̄A(x, y) → g4P †(x, y) ∼ O(α2
s) (4.26)

∇2
x∇2

y∇2
u∇2

v[d̄xyd̄uvQ̄yuvx] → g8N2
c

[

−B†
yuvx + C†

yuvx

]

∼ O(α4
sN

2
c ) ∼ O(α2

sλ
2)

Thus both terms in eq. (4.22) are of the same order in the coupling constant and Nc. The

suppression of the second term comes to fore only in the formal limit where both colliding

objects are dense. In this limit, however, expression eq. (4.22) is not valid.

The dense-dense regime is outside the scope of our approximation. It is possible that

although eq. (4.22) is not literally valid in the dense-dense limit, a similar expression in

terms of Pomerons and B-Reggeons can be written down with the same Nc counting as in

eq. (4.22). In that case the double gluon production in this regime would be dominated by

the two Pomeron term. This, however, requires a separate investigation.

5 Discussion and conclusions

In this paper we clarified the applicability range of the RFT Hamiltonian derived in [1] and

also showed that in this regime it can be written in a much simpler form in terms of QCD

Reggeon degrees of freedom. We have shown that the approximation of [1] is justified

when at every step in the evolution at least one of the colliding objects is dilute. The

total rapidity range of the evolution is therefore restricted by the nature of the colliding

objects at initial rapidity. For example, if at initial rapidity Y0 both objects are dilute
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(dipole-dipole scattering), HRFT can be used to evolve the system up to final rapidity

Y − Y0 = 2ηmax with ηmax = 1
4 ln 2ᾱs

ln 1
α2
s
. If on the other hand at Y0 we consider the

scattering of a dilute object on a dense one ( dipole-nucleus), the maximal rapidity interval

is ony Y − Y0 = ηmax. This underscores the known fact that JIMWLK evolution can only

be used in a restricted rapidity range of the width ηmax.

The limitation of this nature also applies to other existing approaches, for example

to the approach based on classical solution of Yang-Mills equations of motion developed

in [2, 3]. Consider scattering of two dense objects. The evolution of the scattering matrix

can not be calculated in the approach of [2, 3]. However [2, 3] showed that one can indeed

calculate observables of the type of n-gluon inclusive amplitudes, as long as n ≪ 1/αs.

The reason this is possible is naturally understood in the context of our current discussion.

A typical observable has the form4 similar to eq. (4.4)

On
Y,η = K〈W Y−η

T |OT
n 〉〈W η

P |OP
n 〉 (5.1)

were K is a kinematical factor, while OT and OP are some operators constructed from the

target and the projectile degrees of freedom. The operators OT
n and OP

n are not explicitly

given in [2, 3], but rather are determined by solving classical equations of motion. However

it is clear that for small n these contain a small number of factors of the matrix S. In our

expression eq. (4.4) this property is explicit,

OT
1 = Tr

[

(SA†
z − SA†

x )(SA
z̄ − SA

y )
]

; OP
1 = Ja

L[x] J
a
R[y] . (5.2)

The averaging of the projectile and target observables decouple from each other in eq. (5.1).

Both averages have the form reminiscent of the S-matrix of the dense-dilute system. For

example 〈W Y−η
T |Tr

[

(SA †
z − SA †

x )(SA
z̄ − SA

y )
]

〉 is identical to evaluation of the scattering

matrix of a superposition state of an adjoint dipole on the dense target with the wave

function W Y−η
T . The projectile side observables have a very similar structure. In the

approach of [2, 3] both, the evolution in Y − η and in η is taken to be JIMWLK evolution.

As we have discussed above the evolution of such an observable is well approximated

by JIMWLK evolution of WT only as long as the dilute object in the amplitude stays dilute.

This means that given initial wave function W 0
T , one can evolve the one-gluon inclusive

amplitude with JIMWLK evolution only up to rapidity Y − η = ηmax. The same holds

for the evolution on the projectile side, limiting the allowed range of η to η < ηmax. The

maximal rapidity shrinks as the number of gluons in the observable becomes large, since the

observable itself becomes “dense”. For the n-gluon inclusive production the allowed range

is η < ηmax − 1
4 ln 2ᾱs

lnn . Thus, just like for the RFT Hamiltonian of [1], the applicability

of the approach of [2, 3] is limited to the same range of rapidities.

Interestingly, a similar argument tells us that for certain observables in the case of

dilute-dilute scattering our approach is valid in a wider rapidity interval. Consider an

inclusive n-gluon production with n ≪ 1
α2
s
, where all gluons are emitted at mid-rapidity

4The “factorizable” form is not essential to our argument. An observable can contain a sum of several

factors of the type discussed here. Our argument holds as long as each term in the sum is of the same

nature as in eq. (5.1).
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η = Y/2. This observable is of the same form as eq. (5.1). Here again the averaging

over the projectile and target factorizes, and each average has the form of a dilute-dilute

S-matrix. Thus we can evolve each average with HRFT as long as η < 2ηmax. We conclude

that gluon production at mid-rapidity for dilute-dilute scattering can be calculated using

HRFT reliably up to rapidity Y = 4ηmax. Of course, it still remains true that if we want to

be able to calculate gluon emission at all intermediate rapidities 0 < η < Y , the restriction

on Y is that of eq. (3.7).

Although we have only proved the validity of HRFT as given in eq. (3.46) in the

restricted range of rapidities, it is tempting to entertain the possibility that it is valid also

beyond 2ηmax. Nothing in the expression of HRFT itself is indicative of its failure at larger

rapidities. Thus retaining the same Hamiltonian (with complete nonlinear commutation

relations between P and P̄ and so on) can be a good model in an extended range of

rapidities. The leading correction that is coming from the “wrong” diagrams, as discussed

above, induces the four Pomeron vertex via integrating out the B-Reggeon. The main effect

of this vertex is to modify the intercept of the two Pomeron state by the amount of order

λ/N2
c . Further corrections will appear due to the contributions of the Reggeons we have

neglected. For example, we expect appearance of the vertex of the type P̄ P̄ P̄X, where X

is the Reggeon containing 6 Wilson lines. Integrating out X will produce a 3 → 3 Pomeron

vertex of order λ2/N4
c . Thus in this scenario, taking into account the B-Reggeon alone

extends the applicability of the theory to rapidities 2η̃ = 2ηmax + ∆η with ∆η ∝ N2
c /λ,

and in fact further, since the 3 → 3 vertex only becomes important at ∆η ∝ N4
c /λ

2 . This

scenario is plausible albeit unproven in the CGC approach. This could be a fruitful avenue

to explore in seeking understanding of the interrelation of the CGC approach and Reggeon

Field Theory.

We conclude discussion with some comments on the inclusive gluon production. Our

expression for two gluon inclusive production is directly relevant to recent calculations of

ridge correlations in [89, 90]. Ref. [89, 90] calculates gluon correlations based exclusively

on the first term in eq. (4.22). On the other hand it is very likely that the second term in

eq. (4.22) contains nontrivial angular correlations between emitted gluons. This term has no

contribution that can be associated with the square of the single gluon emission probability,

and as such it describes correlations in their pure form . The nontrivial dependence on

the coordinates of the Reggeons most likely leeds to nontrivial angular dependence, and

thus angular correlations between emitted gluons. As we discussed in the text, formally

this term is sub-leading at large Nc in the dense-dense regime. Although eq. (4.22) is

not strictly speaking valid in the dense-dense limit, one may hope that it at least gives

correct large Nc counting. In this case the contribution of B-reggeon is sub-leading in

this regime. However, when one of the objects is dilute, this term contributes at the same

order as the two Pomeron exchange (the first term). In fact, in the dilute-dilute regime

it’s contribution is formally enhanced by N2
c relatively to that of the two Pomerons. This

is a very interesting effect, as it suggests that in the dilute-dilute limit emission is very

strongly correlated due to the presence of this term. This point needs further clarification.

However it is certainly true that the relative Nc weight of the two terms is different at

different densities. Interestingly, as discussed in [88], one expects significantly correlated
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emission to arise from dilute rather than dense regime, where one certainly cannot neglect

the effect of the second term (B-Reggeon) in eq. (4.22). Even in the dense-dense regime

in the calculation of [89, 90] the correlated emission given by the first (two Pomeron) term

in eq. (4.22) arises only at next to leading order in 1/Nc. At this order the contribution of

the B-Reggeon term is equally important and has to be accounted for.

A Self-duality of RFT

While the interaction term in eq. (3.24) is by construction self-dual, it is not that explicit

in case of the homogeneous term. Here, we prove it using the relations between P̄ and P̄ †

P †
x,y =

4

g4
∇2

x∇2
y P̄x,y (A.1)

We notice that the kernel Mx,y;z can be written as

Mx,y;z =

{

∇i
z

[

1

∇2
(xz) − 1

∇2
(yz)

]} {

∇i
z

[

1

∇2
(xz) − 1

∇2
(yz)

]}

(A.2)

Next we write

Px,z+Py,z−Px,y =
1

2

∫

u,v

[

1

∇2
(ux)

1

∇2
(vz) +

1

∇2
(uz)

1

∇2
(vx) +

1

∇2
(uy)

1

∇2
(vz)+ (A.3)

+
1

∇2
(uz)

1

∇2
(vy)− 1

∇2
(uy)

1

∇2
(vx)− 1

∇2
(ux)

1

∇2
(vy)

]

∇2
u∇2

v Pu,v

Integrating by part once, the homogeneous term in eq. (3.24) can be written as

∫

x,y,z
Mx,y;z [Px,z + Py,z − Px,y]P

†
x,y = − 1

g4

∫

x,y,z,u,v

{

∇i
z

[

1

∇2
(xz) − 1

∇2
(yz)

]2
}

×∇i
z

[

1

∇2
(ux)

1

∇2
(vz) +

1

∇2
(uz)

1

∇2
(vx) +

1

∇2
(uy)

1

∇2
(vz) +

1

∇2
(uz)

1

∇2
(vy)

]

×∇2
u∇2

v Pu,v ∇2
x∇2

y P̄x,y (A.4)

Integrating by parts second time we get

∫

x,y,z
Mx,y;z [Px,z + Py,z − Px,y]P

†
x,y =

1

g4

∫

x,y,z,u,v

[

1

∇2
(xz) − 1

∇2
(yz)

]2

[

1

∇2
(ux)δvz + δuz

1

∇2
(vx) +

1

∇2
(uy)δvz + δuz

1

∇2
(vy)

]

∇2
u∇2

v Pu,v ∇2
x∇2

y P̄x,y (A.5)
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Integrating over z

∫

x,y,z
Mx,y;z [Px,z + Py,z − Px,y]P

†
x,y =

=
1

g4

∫

x,y,u,v

{

[

1

∇2
(xv) − 1

∇2
(yv)

]2 [

1

∇2
(ux) +

1

∇2
(uy)

]

+

+

[

1

∇2
(xu) − 1

∇2
(yu)

]2 [

1

∇2
(vx) +

1

∇2
(vy)

]

}

∇2
u∇2

v Pu,v ∇2
x∇2

y P̄x,y =

=
1

g4

∫

x,y,u,v

{

(

1

∇2
(xv)

)2 1

∇2
(uy) +

(

1

∇2
(yv)

)2 1

∇2
(ux) −

− 2
1

∇2
(xv)

1

∇2
(yv)

[

1

∇2
(ux) +

1

∇2
(uy)

]

+

(

1

∇2
(xu)

)2 1

∇2
(vy)+

+

(

1

∇2
(yu)

)2 1

∇2
(vx)− 2

1

∇2
(xu)

1

∇2
(yu)

[

1

∇2
(vx) +

1

∇2
(vy)

]

}

×

×∇2
u∇2

v Pu,v ∇2
x∇2

y P̄x,y (A.6)

In the last form the expression is explicitly selfdual under exchange of P and P̄ .

B Single gluon cross section — getting in shape

In this appendix we present the algebra which simplifies the form of the single gluon cross

section. We start with eq. (4.14) and rewrite it in terms of the Fourier transforms

∫

z,z̄,x,y,u,v
ei k(z− z̄)

∫

x,y

(z − x)i
(z − x)2

(z̄ − y)i
(z̄ − y)2

(

− P̄ T
A (zz̄) + P̄ T

A (zy) + P̄ T
A (xz̄)− P̄ T

A (xy)
)

×

×∇2
x∇2

yP̄
P
A (x, y)=

∫

z,z̄,x,y,u,v

d2l

4π2

d2m

4π2

d2s

4π2

d2t

4π2

d2p

4π2

d2q

4π2
(2π)2P T

A (p, q)
li
l2

mi

m2
s2t2PP

A (s, t)×

×eik(z−z̄)+il(z−x)+im(z̄−y)+isx+ity
[

− eipz+iqz̄ + eipz+iqy + eipx+iqz̄ − eipx+iqy
]

(B.1)

After straightforward integration over the four coordinate variables and momenta l,m, p

and q, which realizes the momentum delta functions, we arrive at

∫

d2s

4π2

d2t

4π2
4π2P T

A (−k − s, k − t)PP
A (s, t)s2t2

(

− si
s2

− ki
k2

)(

ti
t2

− ki
k2

)

=

∫

d2s

4π2

d2t

4π2
4π2P T

A (−k − s, k − t)PP
A (s, t)

1

k2

×
[

− (−k − s) · t(k − t) · s+ (−k − s) · (k − t)s · t+ (−k − s) · s(k − t) · t
]

(B.2)
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Finally, expressing this back through the functions in coordinate representation, and col-

lecting the omitted prefactor we obtain

dσ

dη dk2
=

Nc

8π3αs

1

k2

∫

x,y
ei k(x−y) ∂

∂xi

∂

∂yj
P̄ T
A (x, y)

[

δijδkl + δikδjl − δilδjk
] ∂

∂xk

∂

∂yl
P̄P
A (x, y)

(B.3)

C Projecting two-gluon emission operator onto Reggeons

In this appendix we express the two gluon inclusive production cross section eq. (4.21) in

terms of Reggeon operators. Since the projectile and the target are both color neutral, we

have to project

[

(SA †
z − SA †

x )(SA
z̄ − SA

y )
]ab [

(SA †
w − SA †

u )(SA
w̄ − SA

v )
]cd

(C.1)

and

Ja
L[x] J

b
R[y] J

c
L[u] J

d
R[v] (C.2)

onto color singlets separately. A color decomposition of the above expressions using com-

plete set of projectors has been introduced in ref. [88]. Here we follow an alternative

route [49] which is better adopted to the large Nc limit. Define

tabcd ≡ Tr(T aT bT cT d) (C.3)

To leading order in 1/Nc one has the following decomposition [49]

[

SA †
x SA

y

]ab [

SA †
u SA

v

]cd
=

1

N4
c

[

δabδcd
[

D2 traces(x, y, u, v)

− 4

Nc
[D1234

B (xyuv) +D1432
B (xyuv) +D1243

B (xyuv) +D1342
B (xyuv)]

]

+δacδbd
[

D1 trace(xyvu)−
4

Nc
[D1432

B (xyuv)+D1234
B (xyuv)+D1423

B (xyuv)+D1324
B (xyuv)]

]

+δadδbc
[

D1 trace(xyuv)−
4

Nc
[D1324

B (xyuv)+D1423
B (xyuv)+D1342

B (xyuv) +D1243
B (xyuv)]

]

]

+
16

N4
c

[

tdcbaD1234
B (xyuv) + tcdbaD1243

B (xyuv) + tdbcaD1324
B (xyuv)

+tbdcaD1342
B (xyuv) + tcbdaD1423

B (xyuv) + tbcdaD1432
B (xyuv)

]

(C.4)

D2 traces(x, y, u, v) = tr[SA
x
†
SA
y ] tr[S

A
u
†
SA
v ] (C.5)

D1 trace(x, y, u, v) = tr[SA
x
†
SA
y SA

u
†
SA
v ] (C.6)

Dijkl
B (x, y, u, v) = taiajakal [SA

x
†
SA
y ]

a1a2 [SA
u
†
SA
v ]

a3a4 (C.7)
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We can rewrite the above expressions in terms of fundamental dipoles and quadrupoles

D2 traces(x, y, u, v) = (N2
c d̄xy d̄yx − 1) (N2

c d̄uv d̄vu − 1) (C.8)

D1 trace(x, y, u, v) = N2
c Q̄xvuy Q̄yuvx − 1 ; (C.9)

D1 trace(x, y, v, u) = N2
c Q̄xuvy Q̄yvux − 1 (C.10)

D1234
B (xyuv) =

N3
c

4

(

d̄xy d̄uv Q̄yuvx − 1

N2
c

d̄xy d̄yx − 1

N2
c

d̄uv d̄vu +
1

N4
c

)

(C.11)

D1432
B (xyuv) =

N3
c

4

(

d̄yx d̄vu Q̄xvuy − 1

N2
c

d̄xy d̄yx − 1

N2
c

d̄uv d̄vu +
1

N4
c

)

(C.12)

D1342
B (xyuv) =

N3
c

4

(

d̄yx d̄uv Q̄xuvy − 1

N2
c

d̄xy d̄yx − 1

N2
c

d̄uv d̄vu +
1

N4
c

)

(C.13)

D1243
B (xyuv) =

N3
c

4

(

d̄xy d̄vu Q̄yvux − 1

N2
c

d̄xy d̄yx − 1

N2
c

d̄uv d̄vu +
1

N4
c

)

(C.14)

D1324
B (xyuv) =

Nc

4

(

1

Nc
tr[S†

uSvS
†
xSyS

†
vSuS

†
ySx]− d̄xy d̄yx − d̄uv d̄vu +

1

N2
c

)

(C.15)

D1423
B (xyuv) =

Nc

4

(

1

Nc
tr[S†

vSuS
†
xSyS

†
uSvS

†
ySx]− d̄xy d̄yx − d̄uv d̄vu +

1

N2
c

)

(C.16)

Convoluting
[

SA
x
†
SA
y

]ab [

SA
u
†
SA
v

]cd
with four Js and retaining terms leading in Nc

only, we obtain

[

SA
x
†
SA
y

]ab [

SA
u
†
SA
v

]cd
Ja
1 Jb

2 J
c
3 J

d
4 = (1− P̄ T

Axy)(1− P̄ T
Auv) J

a
1 Ja

2 Jb
3 J

b
4 +

+
4

Nc

[

d̄Txy d̄
T
uv Q̄

T
yuvx tr[T

dJd
4 T

cJc
3 T

bJb
2 T

aJa
1 ] + d̄Tyx d̄

T
vu Q̄

T
xvuy tr[T

bJb
2 T

cJc
3 T

dJd
4 T

aJa
1 ] +

+d̄Tyx d̄
T
uv Q̄

T
xuvy tr[T

bJb
2 T

dJd
4 T

cJc
3 T

aJa
1 ] + d̄Txy d̄

T
vu Q̄

T
yvux tr[T

cJc
3 T

dJd
4 T

bJb
2 T

aJa
1 ]
]

(C.17)

Just like in the single gluon production case, eq. (4.9), there is no difference between the

expectation values of JLJLJRJR and JLJLJLJL. We can thus directly express the product

of J ’s in terms of the Reggeons. As before, we only need to identify this relation in

leading order.

Ja
1 Ja

2 Jb
3 J

b
4 → 4N2

c

g8
∇2

1∇2
2∇2

3∇2
4

[

P̄P
A 12 P̄

P
A 34

]

(C.18)

1

Nc
tr[T dJd

4 T
cJc

3 T
bJb

2 T
aJa

1 ] →
1

g8
∇2

1∇2
2∇2

3∇2
4[Q̄

P
1432] (C.19)

We will follow the same line as for the single gluon emission, namely, we will write the

final expressions in the form which are valid also in the limit of dense projectile and dilute

target, in other words in the form which is symmetric under the interchange of T and P

labels. In order to do that we modify the previous relation to

1

Nc
tr[T dJd

4 T
cJc

3 T
bJb

2 T
aJa

1 ] → 1

g8
∇2

1∇2
2∇2

3∇2
4[d̄

P
21d̄

P
43Q̄

P
1432] (C.20)
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To leading order in J and 1/Nc, the right hand side of eq. (C.20) coincides with that of

eq. (C.19) Thus

[

SA
x
†
SA
y

]ab [

SA
u
†
SA
v

]cd
Ja
1 Jb

2 J
c
3 J

d
4 =

N2
c

g8

[

(1−P̄ T
Axy)(1−P̄ T

Auv)∇2
1∇2

2∇2
3∇2

4

[

P̄P
A 12P̄

P
A 34

]

+
8

N2
c

{

d̄Txy d̄
T
uv Q̄

T
yuvx∇2

1∇2
2∇2

3∇2
4

[

d̄P21d̄
P
43Q̄

P
1432

]

+ d̄Tyx d̄
T
vu Q̄

T
xvuy ∇2

1∇2
2∇2

3∇2
4

[

d̄P41d̄
P
23Q̄

P
1234

]

+d̄Tyx d̄
T
uv Q̄

T
xuvy ∇2

1∇2
2∇2

3∇2
4

[

d̄P31d̄
P
24Q̄

P
1243

]

+ dTxy d
T
vuQ

T
yvux∇2

1∇2
2∇2

3∇2
4

[

d̄P21d̄
P
34Q̄

P
1342

]

}

]

(C.21)

From here the Fourier transform algebra is identical to that for the single gluon and can

be done separately for the two sets of momenta corresponding to the two gluons. The four

terms can be easily transformed into each other by change of dummy integration variables.

The result is to turn each exponential factor eikx in the expression anogous to eq. (4.15)

into 2 cos kx. The resulting expression is

dσ

dη dk2d dξ dp2
=

(

Nc

32π3αs

)2 1

k2
1

p2

∫

x,y,u,v
cos k(x− y) cos p(u− v)×

×
{

1

4

∂

∂(ijīj̄)
[P̄ T

A (x, y)P̄ T
A (u, v)]∆ijkl∆īj̄k̄l̄ ∂

∂(klk̄l̄)
[P̄P

A (x, y)P̄P
A (u, v)]

− 8

N2
c

∂

∂(ijīj̄)
[d̄Txyd̄

T
uvQ̄

T
yuvx]∆

ijkl∆īj̄k̄l̄ ∂

∂(klk̄l̄)
[d̄Pyxd̄

P
vuQ̄

P
xvuy]

}

(C.22)

where we have defined

∂

∂(ijkl)
≡ ∂

∂xi

∂

∂yj

∂

∂uk

∂

∂vl
; ∆ijkl ≡ δijδkl + δikδjl − δilδjk (C.23)
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