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Abstract

Background: The availability of clinical and therapeutic data drawn from medical records and administrative databases
has entailed new opportunities for clinical and epidemiologic research. However, these databases present inherent
limitations which may render them prone to new biases. We aimed to conduct a structured review of biases specific to
observational clinical studies based on secondary databases, and to propose strategies for the mitigation of those biases.

Methods: Scoping review of the scientific literature published during the period 2000–2018 through an automated
search of MEDLINE, EMBASE and Web of Science, supplemented with manually cross-checking of reference lists. We
included opinion essays, methodological reviews, analyses or simulation studies, as well as letters to the editor or
retractions, the principal objective of which was to highlight the existence of some type of bias in
pharmacoepidemiologic studies using secondary databases.

Results: A total of 117 articles were included. An increasing trend in the number of publications concerning the potential
limitations of secondary databases was observed over time and across medical research disciplines. Confounding was the
most reported category of bias (63.2% of articles), followed by selection and measurement biases (47.0% and 46.2%
respectively). Confounding by indication (32.5%), unmeasured/residual confounding (28.2%), outcome misclassification
(28.2%) and “immortal time” bias (25.6%) were the subcategories most frequently mentioned.

Conclusions: Suboptimal use of secondary databases in pharmacoepidemiologic studies has introduced biases in the
studies, which may have led to erroneous conclusions. Methods to mitigate biases are available and must be considered
in the design, analysis and interpretation phases of studies using these data sources.

Keywords: Pharmacoepidemiology, Observational studies, Bias, Confounding factors, Medical records, Electronic health
records, Administrative claims, Medical record linkage

Background
In recent decades, with advances of computer technology
and the exponential growth in the quantity of data avail-
able, new opportunities for research in many fields have
emerged. One of these fields is the health sector, due to
the availability of clinical and therapeutic data drawn from
medical records and administrative databases used for

billing and other fiscal functions related to the provision
of patient care (i.e. secondary databases) [1].
This availability of data has increased the interest of

pharmacoepidemiologists in using secondary databases as
sources of data for research. Contributing to this is the
perception that clinical trials are not always useful for
evaluation of therapies in real-world practice, particularly
those providing limited safety data. However, swift and
easy access to this information may be deceptively simple
[2]. Indeed, the utilization of secondary databases entail
not only the limitations specific to observational epidemi-
ologic research but those inherent to these specific types
of sources [3], as well as the social and ethical challenges
related to data privacy and security [4, 5].
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Consequently, many researchers recommend caution
and warn against the high risk of introducing biases
when using these databases [6–9]. The aim of this study
was thus to review the literature of the last two decades
in which the authors highlight the existence of some
type of bias in observational clinical studies based on
secondary data sources, in order to identify the most
common biases and explore the perception of this issue
in the pharmacoepidemiologic field over time and across
medical research disciplines. We then propose possible
strategies to control the biases identified in the review.

Methods
We carried out a scoping review, which is a methodological
strategy that enables the results of an exploratory research
to be summarized. In this type of review, unlike other
systematic reviews, the application of quality filters is not
an initial priority [10]. We performed and reported our
study based on the methodological guidance for the con-
duct of a scoping review from the Joanna Briggs Institute
[11] and the PRISMA (Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses) Extension guideline
for Scoping Reviews [12]. The protocol for this scoping re-
view is available on request from the corresponding author.

Data-sources and search strategy
An automated search of bibliographic databases was per-
formed, with an initial search in MEDLINE, subsequently
supplemented by EMBASE and Web of Science. To avoid
duplicated results, in EMBASE and Web of Science we
used the option that enables journals indexed in MEDLINE
to be excluded. The same free-text search strategy was ap-
plied in the 3 databases: (clinical–data* OR health–data*
OR medical–data* OR prescription–data* OR administra-
tive–data* OR epidemiologic–data* OR health–claim* OR
administrative–claim* OR insurance–claim* OR claims–
data* OR health–record* OR medical–record*) AND (con-
founding OR bias* OR missing–data OR misclassification)
AND (observational OR epidemiolog* OR pharmacovigi-
lance OR challenge*) AND drug, from January 1, 2000 to
January 1, 2018. All types of research design were consid-
ered. Adding restrictive MeSH (Medical Subject Headings)
terms according to type of publication was not deemed
suitable, since this was found to lead to an excessive reduc-
tion in search sensitivity.
Once the references were identified, the titles and the

abstracts, when available, were used as a preliminary
screening filter, and if deemed potentially relevant, full text
articles were retrieved. Other relevant references were
identified by manually cross-checking reference lists of se-
lected articles and using the “related articles” option. This
full screening was performed by two reviewers (GP-R, AF).
Discrepancies were discussed between the two reviewers to

achieve consensus. In case of a possible disagreement, a
third author (BT) was designated.

Article selection and data abstraction
We included in the review opinion essays, methodo-
logical reviews, analyses/reanalyses and simulation stud-
ies, as well as letters to the editor or retractions, the
principal objective of which, described in their abstracts,
was to highlight the existence of some type of bias in
pharmacoepidemiologic studies that used secondary
health care databases.
In order to reduce the number of identified references

and thus simplify the display of the results, the following
exclusion criteria were considered that classified
dismissed references into subgroups: (1) its principal
objective was to describe, compare, evaluate, validate or
develop a bias-control strategy for a known bias or limi-
tation (e.g. analytical method, study design, algorithm,
framework); (2) it estimated a measurement (e.g. associ-
ation treatment-effect) or identified risk factors for a
disease, with the existence of bias being mentioned as a
limitation of the study, regardless of whether or not
strategies for its control were used; (3) it had character-
istics different from those indicated above (e.g. studies
with different objectives, not based on secondary data-
bases, with no drug involved, no bias mentioned) or it
was a conference paper with no abstract/full-text
available.
A data charting form was jointly developed by two re-

viewers (GP-R and AF) to determine which variables had
to be extracted. One person (GP-R) extracted the informa-
tion from the articles (i.e. first author, publication date, cat-
egory under which the journal was indexed −if the journal
was indexed under more than one category, the category
under which it was best ranked was considered−, type of
article, type of bias(es) mentioned) and when further clari-
fication was needed, articles were checked and validated by
additional reviewers as a form of quality control (AF and
BT). The three reviewers discussed the results and con-
tinuously updated the data charting form.
The synthesis included both quantitative analysis (i.e.

publication trend of identified/included articles and fre-
quency analysis of the biases mentioned) and qualitative
analysis (i.e. content analysis) of the components of the
research purpose.

Results
Figure 1 shows the article selection process. A total of
117 articles were included. The automated search re-
sulted in the identification of 863 non-duplicated refer-
ences, which were reduced to 56 after application of the
exclusion criteria. The manual selection process incor-
porated a further 61 references.
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Publication trend
Figure 2 shows a polynomial smoothing of the frequency
with which the articles included in the review were pub-
lished since 2000. An increasing trend is observed, so
that nearly half (45.3%, 53/117) of the articles were pub-
lished during the last 5 full years of this review. There is
a similar trend in the timeline of references identified
through the automated search when adjusted by the
number of indexed citations added to MEDLINE dur-
ing each year [13], which suggests that the restriction
criteria considered did not introduce any selection
bias. A slight decrease in 2017 may be due to inher-
ent characteristics of the indexing process in the
bibliographic databases, or to the fact that the most
recent references have had less time to be cited, and
consequently are less likely to be identified by the
cross-reference manual search.

There seems to be a wide variety of disciplines interested
in articles about the potential limitations of secondary
databases (see Fig. 3a). Overall, the most frequently used
categories of medical journals were “Public, environmental
& occupational health” (24.8%, 29/117 articles included)
and “Pharmacology & pharmacy” (14.5%, 17/117). In gen-
eral, the same publication trend over time is observed
when stratifying by discipline (see Fig. 3b).

Major biases mentioned in the articles included in the
review
Table 1 lists the articles that mentioned the categories or
subcategories of the biases most usually described in obser-
vational studies of pharmacoepidemiologic databases.
Confounding bias as such, or in any of its diverse forms of
presentation, was the most frequently mentioned category
of bias (63.2%, 74/117 articles included), while confounding

Fig. 1 Flow chart of the article selection process. * Subgroup 1: Its principal objective was to describe, compare, evaluate, validate or develop a
bias-control strategy for a known bias or limitation. † Subgroup 2: Estimated a measurement or identified risk factors for a disease, with the
existence of bias being mentioned as a limitation of the study, regardless of whether or not strategies for its control were used. ‡ Subgroup 3:
Had characteristics different from those indicated above or was a conference paper with no abstract/full-text available
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by indication was the most frequent subcategory (32.5%,
38/117) followed by unmeasured/residual confounding
(28.2%, 33/117). Mention was also made of time-dependent
confounding and over-adjustment due to inappropriate
choice of variables in the statistical model (bias from mis-
specification of control variables).
Similarly, some type of selection and measurement bias

was mentioned in 47.0% (55/117) and 46.2% (54/117) of
the articles included, respectively. Bias due to missing data
and prevalent user bias were the most frequently reported
selection biases (38.2%, 21/55 and 21.8%, 12/55, respect-
ively); in addition, other forms of bias were also described,
such as protopathic bias, informative censoring, compet-
ing risks, and differential health care access bias. Exposure
or outcome misclassification were the most usual causes
of measurement bias (51.9%, 28/54 and 61.1%, 33/54
respectively). Temporal ambiguity and misclassification of
confounders were likewise cited.
Although they can strictly be considered a subset of

the larger 3 categories (i.e. confounding, selection or
measurement bias), last to be examined was the cat-
egory of time-related biases, such as the “immortal
time” bias, which proved to be the single most
reported bias (25.6%, 30/117) after confounding by
indication, unmeasured/residual confounding and out-
come misclassification (28.2%, 33/117). Immeasurable
time bias, time-window bias and time-lag bias were
also described. Figure 4 shows the frequency for each
bias mentioned in the articles included, as well as the
overarching categories, stratified by 6-year time
periods.

Additional file 1: Table S1 contains the data extracted
from the included articles in descending order of publica-
tion date by the research field category under which the
journal was indexed. The articles were also classified
according to type of content, including, in each case, the
categories or subcategories of bias mentioned.

Discussion
This is the first known structured review that explores
potential biases in observational studies of pharmacoepi-
demiologic databases. The results of this review suggest
that there is growing concern in the scientific literature
about identifying, describing and controlling such biases.
This should not be overlooked, since observational epi-
demiologic database studies currently afford an excellent
opportunity for medical research. The results of these
studies are to be valid and applicable to decision-making
about safety and effectiveness. It is then of paramount
importance that proper account be taken of these biases
to ensure that they are correctly controlled for.
Confounding bias as such, or in any of its diverse

forms of presentation, is mentioned in almost two-thirds
of the articles included in the scoping review (see Table
1 for references). Adequate control of confounding poses
a challenge in studies that use health care databases,
since these were not designed for undertaking epidemio-
logic studies. The absence or poor quality of data on po-
tential confounding factors in secondary databases (e.g.
over-the-counter drugs, frailty of the subject, smoking
habit) is a frequent phenomenon [14–17], which renders

Fig. 2 Publication timeline of the 117 articles included in the review (left Y axis) and the 863 references identified through the automated search
(right Y axis) unadjusted and adjusted by the number of indexed citations added to MEDLINE
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it difficult or even impossible to adjust for such factors,
in order to control for confounding [18].
If data on confounding variables has been collected, the

reviewed articles propose different control methods: (1) in
the design stage, through the application of restriction cri-
teria, matching methods, or implementation of a new-user
design (see below, depletion of susceptibles); and (2) in the
analysis stage, through stratification of patients across
treatment groups according to relevant factors, or multi-
variate regression techniques, by including these confound-
ing factors as independent variables in regression models.
In cases in which the number of variables is very high,
adjusting for the disease risk score [19] or the propensity
score to receive treatment may be of interest [20, 21].
Among the studies dealing with the issue of confound-

ing in pharmacoepidemiology, the most commonly de-
scribed type of confounding is confounding by indication
for treatment (the treatment decision is associated with
an indication, which is in turn a risk factor for the dis-
ease), which is mentioned in one-third of the articles

reviewed (see Table 1). Confounding by indication, often
also referred to as channeling bias, is closely related to
selection bias [22]. Some useful analytical control
methods proposed include separating the effects of a
drug taken at different times [23], sensitivity analysis for
unmeasured confounding factors (see below), and the
use of instrumental variables [24]. Furthermore, accord-
ing to the literature reviewed, there seems to be a gen-
eral agreement that conventional methods for control of
confounding factors are inadequate in controlling time--
dependent confounding (mentioned in 6.0% of the arti-
cles reviewed, see Table 1). G–estimation [25] and
marginal structural models [26] are alternative methods
for achieving such control.
More than a quarter of the articles included in the scop-

ing review consider the absence of quality data to control
for potential confounding variables as an important limita-
tion of observational pharmacoepidemiologic studies using
secondary databases (see Table 1). Therefore, the proposed
strategies for the control of unmeasured variables include

a

b

Fig. 3 a Distribution of included articles across medical disciplines. b Timeline of included articles by most prevalent indexed disciplines
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Table 1 Articles that mention the most usual biases described in observational studies of pharmacoepidemiologic databases

Category/Subcategory Description of the bias References (n = 117) Percentage
(%)

Confounding The measure of association between treatment and
outcome is distorted by the effect of one or more
variables, which are also risk factors for the
outcome of interest

[1–3, 6, 14–16, 18, 22, 40, 41, 57, 58, 62, 80–139] 63.2

Confounding
by indicationa

The clinical condition that determined the
prescription of the treatment is associated
with the effect, acting as a confounding
factor (e.g. a worse disease status at baseline:
confounding by disease severity)

[3, 6, 18, 22, 40, 41, 57, 80, 82, 84, 86, 87, 89, 90,
92, 96, 97, 99, 100, 104, 106, 107, 110, 111, 113,
114, 116, 118, 120, 122, 126, 128–131, 133, 134, 138]

32.5

Time-dependent
confounding

A variable that can vary with time acts as a
confounding factor between the current
exposure and outcome, and as an intermediary
between prior and current exposure

[40, 41, 57, 58, 81, 92, 104] 6.0

Unmeasured/residual
confounding

There is not enough information about all the
relevant confounding factors known, unknown
or difficult to measure (e.g. frailty). If confounding
cannot be completely controlled for, the residual
confounding effect of some factors remains in the
final effect that is observed

[1–3, 6, 14, 15, 18, 58, 62, 80–83, 86, 89, 91–93, 96,
101, 103, 108, 110, 113, 116, 119, 125, 127, 130,
132, 134, 136, 139]

28.2

Healthy user/
adherer effect

Access to health care resources is associated with
a higher level of education and health-seeking
behavior. Furthermore, patients who comply with
the treatment during prolonged periods of time
tend to be healthier

[2, 18, 91, 96, 125, 127] 5.1

Selection bias The study sample population is not representative
of the target population to which the results will
be extrapolated

[2, 16, 18, 22, 40, 41, 54, 57, 58, 63, 81, 83, 84, 87,
88, 90, 91, 93–95, 99, 101–103, 105, 107–109,
111–113, 115–119, 121, 122, 124, 125, 135–137,
140–151]

47.0

Protopathic bias The treatment is associated with subclinical disease
stages (an early manifestation of the still undiagnosed
condition under study gives rise to prescription of
the treatment)

[40, 41, 81, 109] 3.4

Losses to follow-up
(informative censoring)

The mechanism that triggers discontinuity of the
treatment is associated with the risk of observing
the outcome of interest

[40, 41, 116] 2.6

Depletion of susceptibles
(prevalent user bias)

The inclusion of prevalent instead of incident users
entails insufficient verification of the adverse effects
that occur at the beginning of treatment (those
susceptible to the adverse effect have interrupted
the treatment)

[2, 40, 41, 57, 83, 90, 99, 107, 111, 116, 118, 148] 10.3

Missing data In multivariate analyses, such as regression models,
observations that lack one or more of the values
of a variable included in the model tend to be
eliminated

[58, 63, 87, 93, 94, 108, 112, 116, 119, 125,
135–137, 140, 141, 143–147, 151]

17.9

Measurement bias Data on true exposures, outcomes and other
variables are recorded in the form of indicators
(observed measures) that do not accurately
reflect reality

[2, 3, 6, 7, 16, 40, 41, 54, 55, 58, 87, 88, 91, 93, 94,
96, 101, 105, 108, 110, 112, 114, 115, 117, 119,
121, 124, 125, 130, 135–138, 140, 141, 143,
144, 146, 147, 149, 151–164]

46.2

Misclassification bias The association between treatment and outcome is
distorted by systematic errors, due to the way in
which the variables of interest are measured in
comparison groups

[2, 3, 6, 7, 16, 40, 41, 54, 55, 58, 87, 88, 91, 93,
94, 96, 101, 105, 108, 110, 112, 114, 115, 119,
121, 125, 130, 135–138, 140, 141, 143, 144,
146, 147, 149, 152–164]

43.6

Misclassification
of exposure

The measure of exposure of a given treatment is not
an exact reflection of its real use (e.g. flawed
measurement, non-compliance with treatment, in-
appropriate use of time windows)

[2, 3, 16, 40, 41, 54, 55, 58, 87, 91, 93, 94, 96,
101, 110, 119, 121, 130, 138, 140, 146, 147,
152, 154, 156, 158, 159, 164]

23.9

Misclassification of
outcome

Error in the diagnosis (e.g. clinical ambiguity, non-
uniform coding)

[2, 3, 6, 7, 16, 40, 41, 54, 58, 87, 91, 93, 94,
96, 101, 110, 112, 114, 121, 125, 135–137,
141, 143, 149, 153, 155, 157, 160–163]

28.2
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the performance of sensitivity analyses and use of informa-
tion external to the database [27–29]. Instrumental variable
techniques, proxy measures and propensity scores, exclud-
ing from the analysis treated and untreated subjects having
extreme values, have also been used [30]. In the design
stage, case-crossover study designs, where each study par-
ticipant receives all treatments that are being investigated

but at different times [31], and restriction to an active com-
parison group can be useful. The active comparator design
emulates the design of a head to head randomized con-
trolled trial. Instead of using a non-user group, the drug of
interest is compared with another drug commonly used for
the same indication. By ensuring that treatment groups
have similar characteristics, this design potentially helps to

Table 1 Articles that mention the most usual biases described in observational studies of pharmacoepidemiologic databases
(Continued)

Category/Subcategory Description of the bias References (n = 117) Percentage
(%)

Time-related bias Follow-up time and exposure status are inadequately
taken into account in the study-design or analysis
stages

[2, 7, 40, 41, 57, 68–75, 77, 83, 86, 87, 90, 99,
101, 105–107, 111, 114, 118, 128, 129, 133,
142, 165–170]

30.8

Immortal time bias A period of time (immortal) during which the study
event cannot occur is included in the follow-up or is
excluded from analysis due to an incorrect definition
of the start of follow-up

[2, 7, 40, 41, 57, 68–75, 77, 83, 86, 87, 90,
99, 101, 106, 107, 111, 114, 118, 128, 129,
133, 166, 167]

25.6

Immeasurable time bias A period of time (immeasurable) during follow-up is
ignored and thus misclassified as unexposed period,
since outpatient prescriptions that define exposure
cannot occur (e.g. serious chronic diseases that re-
quire extensive use of medications and multiple
hospitalizations)

[142, 165, 168, 170] 3.4

Time-window bias The use of time-windows of different lengths be-
tween cases and controls to define time-dependent
exposures prevents subjects from having the same
opportunity time to receive prescriptions

[90, 106, 169] 2.6

Time-lag bias Comparisons are conducted of treatments given at
different stages of the disease, which inherently
introduces bias related to disease duration and
progression

[106] 0.9

aSometimes also referred to as channeling bias

Fig. 4 Frequency of the biases mentioned in the included articles stratified by time periods
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mitigate both measured and unmeasured confounding [32].
At all events, with the exception of crossover designs,
where the order in which a study participant receives the
treatments is randomized, control for unmeasured variables
will never be optimal or, at best, one could never be sure
that it would be so. But even in this case, the crossover de-
sign may still be affected by time-dependent confounding.
In this context, Hernán has proposed a new approach

based on the use of observational data from a large health
care database to emulate a hypothetical randomized trial
(the target trial) [33]. Although the emulated target trial
helps avoid common methodologic pitfalls, the appropriate
adjustment for time-dependent confounders remains
critical [34].
In contrast to clinical trials, an advantage of observa-

tional pharmacoepidemiologic studies in which the study
populations are constructed on the basis of large health
care databases is the inclusion of frail patients. However,
some authors have argued that due to the fact that frailty
is difficult to measure and a strong risk factor for un-
favorable outcomes, it will lead to unmeasured and re-
sidual confounding, and possibly to paradoxical results
[35, 36]. Frailty is an example of an unmeasured con-
founding variable [14, 15].
About 5% of the reviewed articles deal with the

healthy user effect (see Table 1), which consists of a
type of confounding generated because patients with
healthier behaviors generally demand medical atten-
tion more frequently for preventive treatments or
asymptomatic chronic diseases. These patients are
also more likely to be better adherers. Accordingly,
part of the apparent efficacy/safety of the treatment
will be due, not to the treatment per se, but rather to
the healthier behaviors that are associated with those
taking it [18, 37]. In observational studies of pharma-
coepidemiologic databases, these types of behavior are
seldom measured, thus making it very difficult to
control for their effect [38].
Almost half of the articles included in the scoping

review mention some type of selection bias. Within this
category, it is worth highlighting the protopathic bias. Al-
though this bias is not widely mentioned in our review
(3.4%, see Table 1), possibly because it is unusual for the
treatment to be associated with subclinical states and/or
early symptoms of the disease, the impact of this bias may
be important. However, controlling protopathic bias is not
easy since it is not a confounding bias, and adjustment
techniques are thus useless. In this case, we must resort to
restriction of the exposure group to patients with indica-
tions that are unrelated to the initial states of the disease
under study. Another option for controlling protopathic
bias is to use the concept of lag–time to define the
etiologic window in which the exposure to the drug is
assessed [39].

Consumption of medicines under real conditions is sub-
ject to important variations (e.g. variation in the dose,
treatment interruptions, dropouts), especially in the man-
agement of chronic diseases. This variability may be due to
changes in the disease (increasing or decreasing severity)
or in the effect of the drug (adverse events or interactions).
The traditional approach through an “as-treated” analysis,
in which one censors subjects who interrupt their treat-
ment during follow-up, may introduce bias since censored
subjects (losses to follow-up) are systematically at higher
or lower risk of developing the outcome [40, 41]. In prac-
tice, this informative censoring (mentioned in only 2.6% of
the articles reviewed, see Table 1) leads to a selection bias.
For example, if the clinical effects expected are not met
then the treatment is suspended or modified. The bias con-
sists in selecting for the analysis data of patients for whom
the treatment produces the expected outcome [42]. This
bias may be identified through sensitivity analyses. In this
regard, the use of databases represents an important ad-
vantage as information on the outcome may be available
even when the treatment was suspended. To control the
bias introduced by an exposure to the drug that varies with
time, it could prove useful to consider that exposure as a
time-dependent variable in an appropriate multivariate re-
gression model. Procedures based on the inverse probabil-
ity censoring weighting have also been proposed [43].
Judging by the number of articles that mention it (10.3%),

greater importance has been given to another type of selec-
tion bias known as depletion of susceptibles, which is caused
by the inclusion in the study of both prevalent and incident
treatment users (see Table 1). Prevalent users (“survivors”
from the first treatment period) may not have the same risk
of an adverse event as incident (new) users, i.e., those who
tolerate the medication continue using it and those who do
not tolerate the medication (susceptible to the adverse
event) have stopped using it. This bias can be prevented in
the design stage of the study by limiting the follow-up to
new users [44]. The new-user design allows potential
confounding factors to be measured just before the start of
follow-up. This way, these confounding factors will not be
affected by the treatment. Adjustment for differences
between treatment groups will then use the baseline values
of the confounders [45].
Apart from ensuring an appropriate adjustment for con-

founding, the new-user design potentially reduces immortal
time bias (see below) when combined with the active
comparator design by implementing similar definitions of
the index date across comparison groups [32]. The new
user design combined with the active comparator design
can also reduce confounding by indication and other
unmeasured patient characteristics (e.g. frailty, healthy user)
at the design stage [46].
As our results suggest, one of the major challenges in

the analysis of observational data is the missing data
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issue [47], which is mentioned in almost one of every
five articles included in the scoping review (see Table 1).
If the probability of missing an observation is independ-
ent of both observed and missing data, complete cases
are assumed to be a random sample of the full dataset
(i.e. missing completely at random [48]). In this case,
dropping cases with missing data may give unbiased esti-
mates. However, in the multivariate analysis, observa-
tions (or subjects) are eliminated whenever where data
of a variable included in the model are missing. As a
consequence, observations with missing values may lead
to a substantial attrition of the sample size. If this lack of
information is associated with an important characteris-
tic (e.g. severity, frailty), an effect equivalent to selection
bias is produced.
Sometimes, it is assumed that the probability of miss-

ing an observation may be predicted by variables that
are measured previously, but which are not further
dependent on unmeasured variables (i.e. missing at
random [48]). That is, the probability of dropout will
depend on observed values. Although standard analysis
of the available cases is potentially biased in this case,
methods that can provide valid analysis are available, but
these require additional appropriate statistical modeling.
In both circumstances described above, likelihood-based

methods (e.g. mixed models), in which missing data can be
estimated using the conditional distribution of the other var-
iables, can be useful for controlling bias [49]. There are alter-
native techniques, such as multiple imputation, that
preserve the natural variability of the data [50] and incorpor-
ate the uncertainty due to missing data [51], with which
similar results are obtained. Inverse probability weighting
(where complete cases are weighted by the inverse of their
probability of being a complete case) is also a commonly
used method to reduce this bias. While multiple imputation
requires a model for the distribution of missing data given
the observed data, the inverse probability weighting requires
a model for the probability that an individual is a complete
case [52]. In any case, it is important that all covariates on
which missingness depends be included in the model.
On the contrary, if the fact that an observation is miss-

ing is predicted by unmeasured variables, such as the out-
come of interest (i.e. missing not at random, sometimes
called “non-ignorable non-response” or “informative miss-
ingness”), then no statistical approach can give unbiased
estimates. When missingness cannot be empirically mod-
elled, the recommended approach is to conduct sensitivity
analyses to determine the extent of missingness [53].
After confounding by indication and unmeasured/re-

sidual confounding, our results show that the bias most fre-
quently described in studies using secondary health care
databases is that due to systematic misclassification errors
which distort the association between treatment and
outcome. Exposure or outcome misclassification, which is

mentioned in almost half of the articles included in the
scoping review (see Table 1), can give rise to measurement
biases and heterogeneity [17, 54, 55]. To prevent this, a
validation study of these variables should first be con-
ducted, followed by the performance of a sensitivity ana-
lysis or application of regression techniques [56]. Medical
records are normally considered the gold standard or ref-
erence for intermediate and final outcome variables but
display limitations in the recording of all medications
taken by patients [57]. While dispensing records are more
detailed in measurement of exposure (though they do not
record the over-the-counter or out-of-pocket consump-
tion at an individual level), they nonetheless lack outcome
variables [1, 3, 58, 59]. It is therefore important to link
both types of data sources [60, 61] and consider, when ne-
cessary, the use of additional data collected expressly for
research purposes [15, 62, 63], to avoid errors that may
generate misleading conclusions [64, 65].
The last category of bias identified was that related to

time. However, it must be taken into account that the
mechanism that underlies the generation of a time-related
bias may be closely related to the other larger categories de-
scribed (i.e. confounding, selection or measurement bias).
By far, the most frequently described time-related bias is
the immortal time bias, which is mentioned in one of every
four articles reviewed (see Table 1). Immortal time bias
(where the follow-up includes a time period during which
the study event cannot occur or is excluded from the ana-
lysis due to an incorrect definition of the start of follow-up)
resurged with a number of observational studies that re-
ported surprisingly beneficial effects of drugs [66, 67] and is
increasingly being described in cohort studies of pharma-
coepidemiologic databases [68–70]. Suissa warns about the
risk of reporting absurd conclusions, if inappropriate
data-analysis methods are used [69–75]. To prevent this,
the entire follow-up time, including that preceding the start
of exposure, must be considered, and exposure during im-
mortal time must be correctly classified [76]. By applying a
Cox model with time-dependent exposures, more reliable
estimates can be obtained [69, 77, 78].

Limitations
This scoping review presents the limitations inherent to
this type of study design. In contrast to classical systematic
reviews, the aim of which is to provide answers to a clearly
defined research question, the scoping studies are less likely
to seek very specific research questions nor, consequently,
to assess the quality of included studies [79]. In this sense,
a potential reviewer’s bias in the assessment of the restric-
tion criteria cannot be ruled out since they are not based
on a measurable quality of the identified references. How-
ever, we do not believe that this may hinder the purpose
and the conclusions of the review.
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Due to the exploratory nature of this review, its purpose
was not to obtain all available evidence on a specific topic,
but rather that from a subset of the literature on a broad
topic (bias in observational pharmacoepidemiologic studies
using secondary data sources), where many different study
designs might be applicable (opinion essays, methodo-
logical reviews, analyses, letters to the editor or retractions).
Although a wide-search strategy was employed, some
relevant studies may have been missed. Therefore, the ex-
istence of some selection bias cannot be ruled out. Further-
more, the search strategy itself, intentionally designed to
identify articles that highlight the limitations of secondary
databases, does not allow an unbiased comparison with the
articles that may show the advantage of secondary
databases.
Given the above limitations, and the fact that informa-

tion on bias was extracted based on the description pro-
vided by the original authors, another limitation would
be related to the quantification of each type of bias. This
should be interpreted as an approximate measure of the
impact of the bias on the published literature (i.e. what
is prominently talked about), but not as an estimate of
the probability of occurrence (or detection) of the bias
in the population of pharmacoepidemiologic studies that
use secondary databases, since it may be influenced by
the ease of describing that specific bias or by the interest
that the bias may have raised in the studies of the most
prolific authors in the field (e.g. immortal time bias). It
is therefore possible that a certain degree of
misclassification of some biases exists.

Conclusions
The emergence of health care databases has caused dra-
matic changes in pharmacoepidemiology. Due to routine,
automated capture of data on drug prescription and
dispensing that are used for administration purposes,
together with the implementation of electronic medical
records, secondary databases have generated enormous
possibilities and expectations about their potential. This
happens, moreover, at a time when it is recognized that

Table 2 Main bias-control strategies in observational studies of
pharmacoepidemiologic databases

Category Control strategies

Confounding

Measured confounding - Multivariate analysis
- Restriction*
- Stratification
- Matching
- New-user design
- Propensity score
- Large-scale, simple randomized trials
- Meta-analysis of clinical trials
* Confounding by indication: Restricting
the untreated group to a population

Table 2 Main bias-control strategies in observational studies of
pharmacoepidemiologic databases (Continued)

Category Control strategies

with the same indication, or limiting
participation to patients without a
risk factor for the effect that could
have determined the treatment

Time-dependent
confounding

- G–estimation
- Marginal structural models

Unmeasured
confounding

- Crossover design
- Asymmetric exclusion of patients
with extreme propensity-score values

- Instrumental variables
- Proxy measures
- Restriction (active comparison group)
- Sensitivity analysis
- Validation study + external adjustment

Selection bias

Protopathic bias - Restriction (e.g. restricting the untreated
group to a population with the same
indication, or restricting the treated
group to a population with an
indication that is not a subclinical stage
of the disease)

- Excluding a specific period of time prior
to the date of diagnosis of the disease
(lag-time) from the etiologic window

Losses to follow-up
(informative censoring)

- Inclusion of variables that affect
censoring and event times in the
multivariate regression model

- Inverse probability of censoring
weighting

- Sensitivity analysis

Depletion of susceptibles
(prevalent user bias)

- New-user design
- Meta-analysis of clinical trials

Missing data - Replacing each absent observation
with a mean value based on observed
values of the variable or the predicted
value based on a regression model

- Imputation methods (e.g. multiple
imputation)

- Likelihood-based methods
- Inverse probability weighting

Measurement bias

Misclassification bias - Validation study (exposure/outcome/
confounders) + (sensitivity analysis/
misclassification control techniques
using multivariate regression)

Time-related bias

Immortal time bias - Data analysis with procedures that take
into account time-dependent exposure
in a cohort

- Transferring the start of treatment to
the end of the immortal time period
in both groups

Immeasurable time bias - Data analysis accounting for the
time-varying exposable period

Time-window bias - Accounting for duration of treatment
in the selection of controls

- Time-dependent analysis

Time-lag bias - Comparing patients at the same stage
of disease

Prada-Ramallal et al. BMC Medical Research Methodology           (2019) 19:53 Page 10 of 14



clinical trials cannot answer questions about the effective-
ness and safety of treatments in clinical practice.
Superficially, secondary databases afford the possibility of

performing studies rapidly, at low cost, with enormous
sample sizes, objective data and long-term follow-up. Even
so, their limitations should not be ignored. This review pro-
vides a complete overview of the potential biases inherent
to this type of data sources, including the weighting of their
impact on the literature of the last two decades. Confound-
ing by indication, unmeasured/residual confounding, out-
come misclassification and immortal time bias are the most
important biases. Although this should not be interpreted
as an estimate of the risk of those biases, it may indicate
which situations have raised greater interest among re-
searchers so far and therefore should be especially consid-
ered in future studies using secondary databases to prevent
their occurrence.
Appropriate methodological designs and application of

statistical analysis techniques must be considered to
control such situations. These strategies, summarized in
Table 2, are also discussed in this review. In general, before
initiating a research using secondary databases, researchers
should assess in detail the sources of data available, focus-
ing on the purpose for which they were created, and so be-
come aware of their potential for bias. Medical records
linkage with administrative databases can be useful to
minimize the risk of bias, as well as the supplement or val-
idation of secondary data with primary data (i.e. collected
from ad hoc methods) when the completeness or quality of
original data is questionable.
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