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The ability of antibiotics to cure bacterial infections is at a serious

risk due to the emergence and worldwide spread of superbugs. A

lack of innovation and investment for almost 50 years has led to

significant efforts currently being devoted to find alternative and

innovative therapies to face this challenge. This short review

highlights some of the recent efforts to develop synthetic small

molecules with anti-infective activity. This article is focused on

those compounds that, when co-administered with an antibiotic,

enhance the antimicrobial action of the drug, as well as

compounds that target unexplored objectives for bacterial

survival. Selected examples are provided.
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Introduction
Antibiotics are probably the drugs that have transformed

modern medicine the most. These drugs have managed to:

(i) cure diseases that were fatal in the past, (ii) contribute

greatly to increased life expectancy, and (iii) manage com-

mon infectious complications in vulnerable patients under-

going treatment. In all of these cases, the ability to treat

secondary infections is crucial for patient recovery. Unfortu-

nately, the ability of these drugs to cure infections caused by

bacteria is now at serious risk due to the emergence and

worldwide spread of superbugs (multi-resistant) [1]. Of

particular concern is the increasing incidence in health-

care-associated systems, since in these cases the weak

immune systems of patients facilitate the pathogenicity of

bacteria. Resistance to antibiotics is reaching such dangerous
www.sciencedirect.com 
levels that the World Health Organization (WHO) estimates

that by 2050 around 10 million people could die every year as

a result of this problem, and deaths from antibiotic resistance

will exceed those caused by cancer.

Although bacteria will always be resistant due to their

adaptability and intrinsic evolutionary character to develop

highly efficient resistance mechanisms to escape the action

of antibiotics, we must have solutions to keep them under

control [2]. To this end, given the gap in investment in

R&D by the big pharmaceutical companies since the 1960s

and the small number of innovative approaches employed,

which were mainly focused on improving existing drugs,

anti-infective discovery strategies are currently focused on

two approaches: (i) the development of antibiotic adjuvants

for combined therapy with the existing antibiotics in clini-

cal use; and (ii) the discovery of small molecules with new

mechanisms of action that can disable unexplored objec-

tives for bacterial survival [3��]. This short review high-

lights some recently described synthetic small molecules

with anti-bacterial activity in the context of the two strate-

gies outlined above.

Antibiotic adjuvants � b-lactamase inhibitors
Antibiotic adjuvants, also named resistance breakers

or antibiotic potentiators, are compounds that do not

inhibit bacterial growth in their own right but when co-

administered with the antibiotic they enhance the anti-

microbial action of the latter [4–6,7��,8–10,11�]. Adjuvants

breathe new life into antibiotics that have saved millions

of lives for years but are now inefficient against superb-

ugs. The most remarkable antibiotic adjuvants are those

that block the main bacterial resistance mechanism to

b-lactam antibiotics, that is, enzymatic inactivation of the

drug by hydrolysis of the b-lactam core in an acylation–

deacylation-based process catalyzed by b-lactamases

enzymes. Among the four known types of b-lactamases

(A–D), the most worrisome ones are the class D

b-lactamases (oxicillinases, OXA) because they can inac-

tivate the entire spectrum of b-lactam antibiotics, peni-

cillins, cephalosporins, and even carbapenems, which are

the antibiotics of last resort [12��]. These b-lactamases are

widespread among the multi-resistant healthcare-associ-

ated infections caused by the Gram-negative ESKAPE

pathogens, such as Pseudomonas aeruginosa, Acinetobacter
baumannii and Enterobacteriaceae, which were designated

in 2017 by the WHO as the top priority pathogens for the

development of novel anti-infective therapies [13]. The

b-lactamase inhibitors in clinical use, namely clavulanic

acid, sulbactam, and tazobactam, are ineffective against
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class D b-lactamases and much effort has, therefore, been

devoted to the development of more effective chemical

entities, with some examples already in clinical studies.

These compounds fundamentally fall into two categories:

(1) diazabicyclooctanes and (2) boronic acids (Figure 1).

Diazabicyclooctanes (DBOs)

These are bicyclic compounds that undergo ring opening

of their urea core by the catalytic serine to afford a stable

carbamoyl adduct. The most representative example is

avibactam, which was approved in 2014 by the FDA in

combination with ceftazidime and is actually in clinical

studies in combination with other antibiotics (Figure 1a)

[14,15]. Avibactam has a unique mechanism of inhibition

among the b-lactamase enzymes since it proved to be a

covalent and slowly reversible inhibitor [16–18]. It has

also been shown that avibactam targets penicillin-binding

protein 2 in Escherichia coli. The main limitation of this
Figure 1
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Most relevant b-lactamase inhibitors. (a) Diazabicyclooctanes. (b) Boronic a
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compound is its variable inhibitory capacity against car-

bapenem-hydrolyzing class D b-lactamases, in particular

OXA-24/40 and OXA-23, which represent the most prev-

alent and dangerous examples in the WHO top priority

pathogens. The latter effect is due to the uncommon

geometry of the active site, which has a tunnel-like

entrance formed by Tyr/Phe and Met residues that act

as a hydrophobic filter to allow the entrance of only

certain substrates. In an effort to extend the avibactam

spectrum activity, the DBO scaffold has been modified

either by introducing other functional groups in position

C2 or by functionalizing the cyclohexane core in positions

C3 and C4. For example, Durand-Réville et al. [19]

reported that the introduction of a double bond between

positions C3 and C4 of avibactam and the inclusion of a

methyl group in C3, that is, compound ETX2514, enables

effective inhibition of the most dangerous OXA enzymes

in A. baumannii, OXA-24/40 and OXA-23. In combination
WCK 4234 (2), R = CN

Relebactam  (3), R = 

WCK 5153 (4), R = 

 Zidebactam ( 5), R  =

OP0595 (6), R =

11 Z = N, X = H
12 Z = CH, X = Cl
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with piperacillin, ETX2514 (4 mg/mL) shows MIC values

of 4 and 2 mg/mL against OXA-24/40 and OXA-23 from A.
baumannii, respectively, while avibactam has poor in vitro
activity for both enzymes (MIC > 64 mg/mL). More

importantly, the combination of sulbactam/ETX2514

proved to have excellent in vitro activities of 0.5 mg/mL

for both enzymes. The resolution of the crystal structure

of OXA-24/40 from A. baumannii in complex with

ETX2514 (PDB entry 5VFD) revealed that the afore-

mentioned modifications in the avibactam scaffold

enhance apolar interactions with the tunnel-like entrance

and this explains the increase in activity. ETX2514 is now

in phase I clinical studies. Moreover, Papp-Wallace

et al. [20] showed that the replacement of the primary

amide group in C2 by other more complex amide groups,

specifically compounds WCK 5153, relebactam, zidebac-

tam (WCK 5107), or by a nitrile group (WCK 4234),

enhances the in vitro activity against OXA-24/40 and

OXA-23 from A. baumannii by up to 64-fold. In addition,

this enhancement is more pronounced in other OXA

enzymes such as KPC-2 or OXA-48, both from Klebsiella
pneumoniae.

Boronic acids

These compounds are mimics of the tetrahedral interme-

diate obtained after nucleophilic attack of the catalytic

serine of the b-lactamase enzyme to the b-lactam core of

the antibiotic (Figure 1b). Relevant examples are com-

pounds 7�9, which contain the thiophen-2-yl group of the

natural penicillins and a carboxylate moiety to interact

with the carboxylate binding pocket [21–26]. The reso-

lution of diverse crystal structures of the corresponding

enzyme adducts provides a good understanding of the

potency of these ligands. The use of fragment-based

design subnanomolar inhibitors led to the identification

of compounds 10�12, which have good in vivo anti-

bacterial activity [27]. Acyclic boronic acids also proved

to be good inhibitors for both metallo-b-lactamases and

serine-b-lactamases [28,29]. The best example is

RPX7009, which is in phase 3 clinical trials [30].

Small molecules that target unexploited
objectives for bacterial survival
In general, the mode of action of antibiotics in clinical use

is based on the prevention of the synthesis and assembly

of key components for bacterial survival (bacterial viabil-

ity), the inhibition of cell wall biosynthesis, DNA repli-

cation, RNA transcription, the biosynthesis of folates or

the biosynthesis of proteins. Although this strategy is very

effective and has given rise to a good arsenal of life-saving

compounds, all of them inhibit a reduced number of

biological targets and resistance to them is well known

and widespread. It is not surprising, therefore, that there

is great interest in exploring other bacterial functions and

developing compounds with new mechanisms of action.

Two examples of pathways that have attracted significant

attention are highlighted below.
www.sciencedirect.com 
Inhibitors of the lipid A biosynthesis

The enzymes of the lipid A pathway are attractive targets

for Gram-negative anti-infective drug discovery because

lipid A is: (i) the main component of the outer membrane

of the Gram-negative bacteria, which differentiate them-

selves from the Gram-positive ones; (ii) essential for

bacterial survival in relevant pathogens such as P. aeru-
ginosa or E. coli; and (iii) involved in the capacity of the

Gram-negative bacteria to cause infection. Among the

enzymes involved in the pathway, only the LpxC

enzyme, which catalyzes the second step of the route,

has been studied and several inhibitors are already in

clinical trials. The identification of the oxazoline hydro-

xamic acid L-573,655, followed by its improved version

L-161,240, a hydroxamic acid with the R configuration,

triggered all of the subsequent studies in this area [31�].
L-161,240 is a reversible competitive inhibitor of the E.
coli enzyme with a Ki value of 24 mM and MIC values

against E. coli up to 1 mg/mL. As both L-573,655 and

L-161,240 are ineffective for P. aeruginosa treatments,

efforts were devoted to the development of novel chemi-

cal entities suitable for this pathogen. The most relevant

inhibitors reported are summarized in Figure 2 and they

all have a hydroxamic acid with the R configuration linked

to a long aliphatic tail that mimics the (R)-3-hydroxymyr-

istoate moiety of the natural substrate [32–41]. These

LpxC inhibitors have excellent in vitro activities against

both E. coli and P. aeruginosa. Among them, ACHN-475 is

already in clinical trials. The binding mode of these

inhibitors has been well established with the resolution

of a wide range of LpxC crystal structures from P.
aeruginosa, E. coli, Aquifex aeolicus and Yersinia enterocolitica
in complex with these compounds [42]. It is important to

highlight that the aforementioned inhibitors, and in gen-

eral the LpxC inhibitors, do not inhibit the growth of A.
baumannii (MIC > 512 mg/mL), another critical Gram-

negative pathogen reported by the WHO, since lipid A

is not essential for this bacterium [43].

Inhibitors of the shikimic acid pathway

The enzymes involved in the shikimic acid pathway have

attracted a great deal of attention for the development of

new anti-tubercular therapies since six of the seven

enzymes in the route are essential for Mycobacterium
tuberculosis – the causative agent of tuberculosis – and

they do not have any counterpart in human cells [44].

Four of the enzymes in the pathway are also essential for

Helicobacter pylori, the causative agent of gastric and

duodenal ulcers and also classified as a type I carcinogen,

and, therefore, inhibitors that disable these targets have

also been reported.

In accordance with the mechanism of action of the type II

dehydroquinase, which catalyzes the third step, a large

number of competitive reversible inhibitors have been

reported that mimic the enolate intermediate involved

[44]. As a carboxylic group in the inhibitor is required in
Current Opinion in Pharmacology 2019, 48:17–23
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Figure 2

LpxC-4LPC-004 
E. coli  0.2 μg/mL E. coli  0.25  μg/mL 
P. aeruginosa 1.6  μg/mL    P. aeruginosa 1 μg/mL   

E. coli  0.125 μg/mL 
P. aeruginosa 0.25  μg/mL    

ACHN-975

LPC-009 G = H; 1R = H; 2R = Me (E.coli  0.05  μg/mL,  P.aeruginosa 0.74  μg/mL)    
LPC-011  G = NH2; 

1R = H; 2R = Me (E.coli  0.03 μg/mL,  P.aeruginosa 0.5  μg/mL)    
LPC-058 G = NH2; 

1R = Me; 2R = CHF2 (E.coli 0.018 μg/mL,  P.aeruginosa 0.17  μg/mL)    

L-161,240
E. coli 1  μg/mL

L-573,655
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(a)

(b)

Most relevant LpxC inhibitors. (a) First examples. (b) Most potent inhibitors reported. MIC values against E. coli and P. aeruginosa are also

included.
order to achieve good affinity for this enzyme, since it is a

key point for recognition for all enzymes in the pathway,

obtaining good in vitro activities has been the bottleneck

for many of the developed inhibitors. Considering that

the low in vitro activity obtained could be due to the high

hydrophilicity of the compounds, lipophilic prodrugs

(ester prodrug form) were designed. In principle, these

ester derivatives would be slowly hydrolyzed to the

carboxylate active form after absorption by the bacterium

(cytosol). Fortunately, the in vitro activity dramatically

increases with the stability of the ester against hydrolysis,

proving to be the propyl ester derivatives the most effi-

cient ones. Compound 14 was the most active example,

with an MIC value of 5 mg/mL, and its active form

compound 13 gave a Ki of 28 nM (Figure 3) [45]. The

resolution of the crystal structures of the DHQ2

enzyme from H. pylori and M. tuberculosis in complex

with these types of compounds revealed that the aromatic

moiety freezes the substrate-covering loop, which con-

tains two essential residues, in an inactive conformation

for catalysis. Thus, this moiety interacts with the catalytic

tyrosine of the loop by p-stacking and expels the catalytic

arginine from the active site [45,46].

From a library of about 400 anti-mycobacterial com-

pounds previously identified by the NIH Tuberculosis

Antimicrobial Acquisition and Coordination Facility
Current Opinion in Pharmacology 2019, 48:17–23 
(TAACF), Simithy et al. [47] identified an inhibitor of

shikimate kinase from M. tuberculosis, the fifth enzyme of

the pathway, namely the oxadiazole-amide 15, which had

an MIC value of 0.86 mg/mL and an IC50 value of 3.43 mM
with the isolated enzyme. Moreover, considering the

large conformational changes required for the shikimate

kinase enzyme in the LID and shikimic acid binding

domains for product release, diverse C5-substituted shi-

kimic acid analogs were developed to stabilize an inactive

open conformation of the enzyme [48]. The 3-nitrobenzyl

(16) and 5-benzothiophenyl (17) derivatives proved to be

the most potent inhibitors, with Ki values of 460 nM and

560 nM, respectively. Ethyl ester 18 (a proform of 17) was

the most efficient derivative in achieving good in vitro
activity against H. pylori and this had an MIC value of

4 mg/mL.

Zeneca Pharmaceuticals discovered that (6S)-6-fluoroshi-
kimic acid (19), a fluorinated analog of the natural sub-

strate of shikimate kinase, inhibited the growth of E. coli
B with an MIC value of 0.25 mg/mL [49]. The antibacte-

rial activity of 19 is due to the irreversible inhibition of

4-amino-4-deoxychorismate synthase by 2-fluorochoris-

mic acid (20) [50]. The latter compound is generated

in vivo from 19 by the last three enzymes of the pathway,

specifically shikimate kinase, EPSP synthase and chor-

ismate synthase.
www.sciencedirect.com
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Figure 3

15 IC50 = 3.43  μM, MIC (H37Rv) = 0.86  μg/mL 
13 G = H, Ki = 28 nM
14 G = n-Pr
MIC (H37Rv) = 5 μg/mL

16 Ki = 460 nM 17 G = H, Ki = 560  nM
18 G = Et, MIC (H.pylon) = 4 μg/mL 

19 MIC (E. coli B) = 0.25  μg/mL 
20
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Most relevant inhibitors of the shikimic acid pathway with antibacterial activity.
Conclusions and outlook
After a prolonged and incomprehensible lethargy, the

future of the discovery of new anti-infective agents is

compelling. In the foreseeable future, combination therapy

strategies will probably be the most successful since (i) they

do not require the identification and validation of new

therapeutic targets; and (ii) they also allow us to preserve

and/or rescue drugs that have been in use for years but are

now less effective. This is perhaps why such compounds

are the most common in the still limited new treatments in

clinical studies. However, the development of compounds

with new mechanisms of action, despite the challenges and

the cost, can dramatically expand our ability to control

bacteria. This approach will provide new weapons to deal

with this significant problem.Therecent progress is already

very significant, as shown by the examples discussed here.
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