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Abstract: Mesenchymal stem cells (MSCs) are present in all organs and tissues, playing a well-known
function in tissue regeneration. However, there is also evidence indicating a broader role of MSCs in
tissue homeostasis. In vivo studies have shown MSC paracrine mechanisms displaying proliferative,
immunoregulatory, anti-oxidative, or angiogenic activity. In addition, recent studies also demonstrate
that depletion and/or dysfunction of MSCs are associated with several systemic diseases, such as
lupus, diabetes, psoriasis, and rheumatoid arthritis, as well as with aging and frailty syndrome.
In this review, we hypothesize about the role of MSCs as keepers of tissue homeostasis as well as
modulators in a variety of inflammatory and degenerative systemic diseases. This scenario opens the
possibility for the use of secretome-derived products from MSCs as new therapeutic agents in order
to restore tissue homeostasis, instead of the classical paradigm “one disease, one drug”.

Keywords: Regenerative medicine; aging diseases; diabetes; lupus; secretome; conditioned medium;
extracellular vesicles; exosomes

1. Introduction

Many chronic diseases of inflammatory and/or degenerative origin do not currently have satisfactory
treatment. The advent of regenerative medicine based on stem cells could provide new promising alternatives.
Among the various stem cell types, i.e., hematopoietic, embryonic, induced pluripotent, and mesenchymal,
the mesenchymal stem cells (MSCs) are awakening the most extraordinary interest [1] due to the absence of
serious adverse effects reported following MSC transplantation, unlike those associated with the allogeneic
transplant of hematopoietic stem cells [2].

MSCs were first described in the 1950s by the Russian haematologist A. Friedenstein [3]. They are
a heterogeneous group of multipotent cells, morphologically akin to fibroblasts, that form colonies and
are capable of differentiate into mesenchymal lineages [4,5]. Although in small amounts, MSCs have
been isolated from numerous organs and tissues, such as bone marrow, adipose tissue, umbilical cord,
dermis, muscle, synovial membrane, peripheral blood, tonsil, periodontal ligament, dental pulp and
uterus, among others [6,7] (some of them summarized in Tables 1 and 2), suggesting a perivascular
origin since perivascular cells natively express MSC markers [8]. However, MSCs subtypes differ in
their biological features [9,10].
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To refer to mesenchymal-like cells various nomenclatures are used as “mesenchymal stem cells”,
“mesenchymal stromal cells” and “multipotent stromal cells”, but the acronym MSCs is now generally
used to identify this class of cells. Because of the initial variation in nomenclature and characterization,
the International Society for Cellular Therapy established the minimum criteria required for MSCs
definition as follows: (a) plastic-adherent cells when maintained in standard culture conditions;
(b) expression of CD105, CD73 and CD90, and lack of expression of CD45, CD34, CD14 or CD19, CD79a
or CD11b, and HLA-DR surface molecules, and (c) capacity to differentiate into adipocytes, osteoblasts,
and chondroblasts in vitro [11].

Many studies have demonstrated that secretome-derived products from MSCs, such as exosomes
and conditioned medium, have therapeutic effects on key pathological processes that are associated
with basic homeostatic functions, such as cell differentiation and proliferation, angiogenesis and
vasculogenesis, inflammation, and oxidative stress (Tables 1 and 2).
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Table 1. Therapeutic effects of mesenchymal stem cell (MSC)-derived exosomes on disease in vivo models.

Disease MSC Source Administration Via Experimental Model Therapeutic Effect Ref

Local administration

Diabetic wound healing
Gingival Topical Diabetic rat Promotion of healing in diabetic skin defects. [12]

Synovium Topical Diabetic rat Stimulation of proliferation of human dermal
fibroblasts and human microvascular endothelial cells. [13]

Corneal epithelial wound Corneal Local Mouse Acceleration of corneal epithelial wound healing. [14]

Traumatic and degenerative
ocular disease Bone marrow Intravitreal injection Rat Promotion of retinal ganglion cells and axon

regeneration survival. [15]

Autistic-like behaviors Bone marrow Intranasal BTBR mice Increase of male to male social interaction and reduce
repetitive behaviors. [16]

Liver fibrosis Umbilical cord Intra-hepatic Mouse Decrease of surface fibrous capsules and alleviate
hepatic inflammation. [17]

Periodontitis Adipose-derived Local Injection Rat Increase in newly organized tissue. [18]

Systemic administration

Cutaneous wound healing

Adipose tissue Intravenous Mouse
Acceleration of cutaneous wound healing and

stimulation of fibroblast migration and
collagen synthesis.

[19]

Umbilical cord Subcutaneous injection Rat Promotion of wound healing and angiogenesis. [20]

Adipose tissue Intravenous injection Mouse
Promotion of extracellular matrix reconstruction and

regulation of fibroblast differentiation to mitigate
scar formation.

[21]

Menstrual
blood-derived Intradermic injection Mouse

Resolution of inflammation, reepithelization
accelerated by induction of M1-M2 macrophage

polarization and increased neoangiogenesis.
[22]

Atopic dermatitis Adipose tissue Intravenous and
subcutaneous injection Mouse

Decrease of clinical score, level of serum IgE, number
of eosinophils in blood and infiltration of mast cells,

CD86+ and CD206+ cells.
Decrease of mRNA expression of

pro-inflammatory cytokines.

[23]



Int. J. Mol. Sci. 2019, 20, 3738 4 of 23

Table 1. Cont.

Disease MSC Source Administration Via Experimental Model Therapeutic Effect Ref

Hepatic injury Umbilical cord Intravenous Mouse Reduction of oxidative stress and apoptosis. [24]

Endotoxin-induced acute
lung injury Bone marrow Intravenous Mouse Reduction of white blood cells and neutrophils from

bronchoalveolar lavage fluid (BALF). [25]

Bronchopulmo-nary
dysplasia

Wharton jelly
Bone marrow Intravenous Mouse

Amelioration of alveolar simplification, fibrosis and
pulmonary vascular remodelling, reduction of

pro-inflammatory M1, and increase of
anti-inflammatory M2 macrophages.

[26]

Osteonecrosis Synovial
membrane Intramuscular Rat Prevention of osteonecrosis, enhance proliferation and

anti-apoptotic effects. [27]

Local and systemic administration

Pneumonia/E. coli Bone marrow Intratracheal
Intravenous Mouse

Reduction of lung injury, white blood cells and
neutrophils in BALF. Reduction of E. coli in BALF,

lung and blood.
Increased survival.

[28]

Lung injury Bone marrow Intratracheal
Intravenous Mouse

Reduction of lung injury, white blood cells,
neutrophils, total protein, MIP-1 and E. coli in BALF.

Increase of survival.
[29]

Wharton jelly Intratracheal Mouse

Reduction of lung edema, airway resistance,
pulmonary artery pressure, neutrophils in lung, and

inflammatory cytokines in BALF.
Increase of KGF, PGE2 and IL-10 in BALF.

[30]

Lung fibrosis/Silica Bone marrow Intratracheal Mouse Reduction of calcified nodules size, hydroproline in
lung, and inflammatory cells in BALF. [31]

Bone marrow Intratravenous Mouse Reduction of lung collagen and white blood cells
in BALF. [32]
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Table 2. Therapeutic effects of MSC-derived conditioned medium on disease in vivo model.

Disease MSC Source Administration Via Experimental Model Therapeutic Effect Ref

Local administration

Cutaneous wound
healing Bone marrow Local T1 diabetic rats Acceleration of wound healing. [33]

Keloid Adipose tissue Local Mouse
Inhibition of proliferation and collagen synthesis of human

keloid-derived fibroblast.
Reduction of inflammation and fibrosis.

[34]

Dry eye and corneal
epithelial wound Uterine cervix Local

Rat Improvement in wound healing of alkali-injured corneas.
Strong bactericidal effect on infected corneal contact lens [35]

Rabbit Improvement in epithelial regeneration
Reduction of corneal pro-inflammatory cytokines. [36]

Uveitis Uterine cervix Topical Mouse
Reduction of inflammation, and LPS-induced

pro-inflammatory cytokines.
Decrease in leucocytes in aqueous humor and ocular tissues.

[37]

Systemic administration

Acute liver failure Bone marrow Intravenous Rat Inhibition of liver injury biomarkers release and promotion of
recovery in liver structure. [38]

Multiple sclerosis Periodontal
ligament Intravenous Mouse Decrease in clinical and histologic score, and modulation of

inflammation, oxidative stress, and apoptotic pathways. [39]

Diabetes Adipose tissue Intravenous Mouse

Reverse mechanical, thermal allodynia and
thermal hyperalgesia.

Restoration of pro/anti-inflammatory cytokine balance.
Prevention of skin innervation loss and re-establishment of

Th1/Th2 balance.
Recovery of kidney morphology.

[40]

Pneumonia/E. coli Bone marrow Intravenous Rat Increase in survival. [41]

Acute kidney injury Bone marrow Intramuscular Rat Amelioration of kidney injury. [42]

Myocardial infarct Bone marrow Intravenous and
intracoronary Porcine Reduction of myocardial infarct size.

Improvement of systolic and diastolic cardiac performance. [43]
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In addition, recent studies have shown the capacity of MSCs to exert antimicrobial effects, indicating
an immune function independent of the host’s immune system [44]. Therefore, this experimental
and clinical evidence strongly suggests the physiological relevance of MSCs in tissue homeostasis.
Because of these properties, MSCs are currently being used in Phase I and II clinical trials in several
pathologies, including immunological, bone, heart or neurodegenerative disorders [45], and even in
phase III clinical trials in graft-versus-host disease (GVHD), Crohn’s disease, myocardial infarction
and liver cirrhosis [1].

This present review addresses aspects of MSCs, such as mechanisms of intercellular communication,
their dysfunction in different physio-pathological processes, their role in homeostasis, and their possible
therapeutic use.

2. MSCs and Its Secretome in Intercellular Communication

Several studies have demonstrated that intravenously injected MSCs can migrate specifically to
the sites of tissue damage, such as those caused by ischemic conditions or inflammation [46]. Even,
it has been demonstrated that systemic administration of MSC was more efficient at all-time points for
engraftment compared to after local MSC transplantation [47]. In addition, unlike other stem-cell-based
therapies, MSCs do not require differentiation into a mature cell type prior to administration and have
strong homing capacities in the damaged sites after cell transplantation [48]. However, the molecular
mechanism underlying the efficacy of MSCs in promoting engraftment and the functional recovery
of injury sites is still unclear [49]. Studies of the potential of MSCs to treat cardiovascular diseases,
have shown the ability of MSCs to form new blood vessels by differentiating into endothelial cells
in vivo [50,51]. However, other studies have shown poor viability and survival of transplanted cells
into the host tissue [52–54] and often less than 1% of transplanted MSCs are long-term retained within
the target tissue [55,56].

This suggests that the beneficial effects of their transplantation are not the result of the cells
themselves, but rather are related to their ability to secrete bioactive factors which provide a favorable
microenvironment to injured tissues and help limit the damage area and promote regenerative
response [57,58]. In fact, MSC-derived products can effectively mimic the therapeutic effects of
MSCs in preclinical models. These secreted bioactive factors may generically be termed “secretome or
conditioned medium”. This biological product includes molecular soluble factors such as cytokines and
growth factors, but also membrane-bound vesicles containing biomolecules. As shown in Tables 1–3,
some of these factors are involved in homeostatic and therapeutic actions at multiple levels. As it
shown in Tables 1 and 2, probably the most plausible scientific evidence of the biological effects of
the MCS-secretome derived products are their reported actions after local administration in several
experimental in vivo models. Either the whole conditioned medium or the extracellular vesicles (EVs)
obtained from different human origin MSC cultures perform extensive therapeutic benefits. EVs are
particles made up of phospholipid membranes that contain growth factors, cytokines, lipids, DNA
and various forms of RNA. They represent an intercellular communication pathway and play an
important role in several cellular mechanisms, such as the exchange of genetic material, the transfer of
biologically active molecules, and the defense against viral attack in mammalian cells [59]. Indeed,
EVs interact with recipient cells by mechanisms which resemble those involved in viral entry [60].
Although exosomes are secreted by almost all human cell types, protective effects seem specific to
MSC-derived exosomes, unlike, for example, fibroblast-derived exosomes [61]. MSCs secretome
may contain three different types of EVs: (a) Exosomes (40–150 nm in diameter); (b) microparticles
(50–1000 nm in diameter), and (c) apoptotic bodies (500–2000 nm in diameter).
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Table 3. Bioactive factors in MSC-derived secretome.

Bioactive Effects Factors Ref

Proliferation/Regeneration FGFs, HGF, IGF-1, EGF, PDGF, VEGF, TIMP-1,
TIMP-2, UPAR [35,62–64]

Angiogenesis FGFs, HGF, IGF-1, IL-6, MCP-1, PDGF, VEGF [35,62,64]

Anti-apoptosis FGF, IL-6, IGF-1, GM-CSF, HGF [35,62–65]

Anti-fibrosis FGFs, HGF, TIMP-1, MMPs [35,62,64,66]

Chemo-attraction CCLs, CXCLs, G-CSF, LIF, MCP-1 [35,62,65,67]

Immuno-modulation IDO, IL-10, IL-6, LIF, NT-3, PGE-2 [37,62,67,68]

Anti-tumoral FLT-3, CXC10/IP10, LAP, Light [69]

Bactericidal CXC10/IP10, CXCL8/IL8, CXCL1/GRO-7,
CXCL6/GCP-2, CCL20/MIP-3, CCL5/RANTES [35,62]

Antifungal IL-6, IL-8, IL-17, IP-10, CCL-5, CXC-6, CXC-16 [70]

3. MSCs Dysfunction in Systemic Diseases and Aging

The idea of MSC dysfunction in systemic diseases arose from the observation that patients with
autoimmune diseases such as systemic lupus erythematosus (SLE), diabetes mellitus (DM), rheumatoid
arthritis (RA), and multiple sclerosis entered disease remission when treated with mesenchymal or
hematopoietic stem cells after allogenic transplants, but not after autologous transplants. These findings
were especially relevant in patients with lymphoma or leukemia and a concomitant autoimmune
disease, such as psoriasis [71]. It has been hypothesized that the remission took place due to the
“resetting” of immune memory, but it could also be due to the restoration of internal homeostasis by
the administration of external well-functioning MSCs.

Several recent studies indicate an altered functioning of MSCs in various systemic diseases,
the role of MSCs in their pathogenesis and/or the development of associated comorbidities. These
alterations may be acquired. One example is the systemic autoimmune disease RA, characterized by
cartilage and bone destruction associated with local production of inflammatory mediators. Some
studies have demonstrated that increased local production of TNFα may injure the bone marrow
(BM) microenvironment and affect the reserves of BM haematopoietic progenitor cells [72]. Moreover,
a significant reduction in MSC expansion through passages has been observed in patients with RA
suggesting a defective proliferative capacity [73]. Dysfunction in MSCs from several sources (e.g., bone
marrow, adipose tissue, umbilical cord, and dermis) has been associated with a number of diseases
(Table 4). Among these diseases, SLE and DM are representative of the possible impact on their
systemic pathophysiology of MSC dysfunction.

Table 4. MSC dysfunction in diseases.

Disease MSC Source MSC Features Ref

Flattened morphology. [74–76]
Increased cell senescence and apoptosis. [77]

Impaired potential for differentiation and migration. [78]
Systemic

Lupus
Erythematosus

Bone marrow Increased activation of the p53/p21 pathway. [79,80]

Increased expression of p16INK4a [80,81]
Increased reactive oxygen species. [80]

Alteration of expression profiles in genes related to
immune function. [74,80,82–84]
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Table 4. Cont.

Disease MSC Source MSC Features Ref

Idiopathic
pulmonary fibrosis Bone marrow

Mitochondrial dysfunction, with accumulation of
DNA damage.

Cell senescence.
Decreased capacity to migrate.

Increased pro-inflammatory responses.

[85]

Impaired differentiation and decreased proliferation. [86–89]

Diabetes
mellitus

Bone marrow and
Adipose tissue

Impaired angiogenesis/vasculogenesis. [90–95]
Increased pro-inflammatory cytokines. [96]

Greater propensity to differentiate into adipocytes. [97]

Umbilical cord Increased pro-inflammatory cytokines. [98]
Reduced ex vivo proliferation and clonogenic

potential, premature senescence, and accelerated
shortening of telomere terminal

restriction fragments.

[99]

Multiple sclerosis Bone marrow Reduced in vitro neuroprotective potential. [100]
Reduced expression, activity, and secretion of

key antioxidants.
Increased susceptibility to nitrosative stress.

[101]

Rheumatoid
arthritis Bone marrow Impaired proliferative potential in association with

premature telomere length loss. [73]

Parkinson disease Bone marrow Impaired differentiation, mitochondrial dysfunction
and increased ROS generation and oxidative stress. [102]

Amyotrophic lateral
sclerosis

Bone marrow
Reduced migration. [103]

Alterations in metalloproteases. [104]
Reduced capacity of pluripotency and

trophic factor secretion. [103,105]

Psoriasis

MSCs in psoriasis
plaques or from areas

surrounding the
psoriasic eruptions

Increased expression of inflammation and
angiogenesis-related genes. [106–110]

Myelodysplastic
syndromes Bone marrow

Altered morphology, reduced proliferative potential,
p53 pathway activation, dysregulated miRNA in

extracellular vesicles.
[111]

SLE is a chronic inflammatory disease that affects all major organs and systems of the body.
Inflammation has long been proposed as a cause for accelerated aging. Early studies reported that
BMSCs from lupus patients, compared to matched controls, had a flattened morphology, proliferated
more slowly, showed increased ROS, had increased expression of p16INK4a and increased activation
of the p53/p21 pathway [74]. In addition, genetic alterations have been shown in SLE which have a
direct or indirect role in MSC immune-regulation function [112]. For instance, the OAZ transcription
factor is over-expressed in MSCs from SLE patients, which impairs MSC regulation of B cells, leading
to anti-nuclear antibody production [113]. Similarly, p16ink4a, an inhibitor of cyclin-dependent kinase
CDK4 and CDK6, related to senescence of MSCs [114], shows increased expression in MSCs from SLE
patients, inhibiting TGF-β secretion and contributing to the decrease of Treg cells [81].

DM is the most common metabolic disease. Over 382 million people (8.3% of the world population)
are affected, with an estimated increase to 592 million in the next 20 years [115]. DM leads to many
life-threatening complications affecting major organs, such as heart, kidneys, and eyes [116]. It has
been reported MSCs to adopt an insulin-secreting phenotype [117,118]. In association with DM,
this hyperglycaemic state is considered a stressor that leads to a pathological microenvironment
and compromises MSC functionality. Four types of MSC anomalies are found in DM: altered
pro-inflammatory cytokine secretion, altered cellular differentiation and proliferation, changes in
angiogenesis/vasculogenesis, and increased oxidative stress. Firstly, in the diabetic milieu, inflammatory
cytokines, such as IL-6, are chronically elevated [119]. Considering that MSCs function is highly
regulated by cytokines [96,98,120], this might constitute a relevant aspect of the disease. In fact, changes
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in cytokine interactions can induce altered patterns in the MSC secretome [121], which mediates critical
cell signaling and migratory pathways [68]. Secondly, regarding differentiation and proliferation of
MSCs, many of the complications that arise in diabetes could be the result of MSC dysfunction [97].
MSCs have also been shown to display an increased tendency to differentiate into adipocytes in diabetic
states, which may contribute to the disease burden [95,97,122]. In addition, the increased tendency
of diabetic MSCs to differentiate into adipocytes is often coupled with reduced differentiation into
osteoblasts, which has been suggested as the cause of the increased bone fractures and osteoporosis
in diabetic patients [123,124]. Thirdly, the delicate balance of factors implicated in angiogenesis
is well-known to be altered in the diabetic state [94]. Several studies have reported the impaired
angiogenic capacity of MSCs as a result of different alterations, such as decreased expression of
major angiogenic genes (e.g., VEGF-A, VEGF-C, angiopoietin 1 and angiopoietin 2) [125] or decreased
expression of proteins required for endothelial migration and vascular smooth muscle formation
(e.g., VE-cadherin and α-SMA) [92]. In addition, one subpopulation of MSCs, specifically associated
with an elevated angiogenic and vasculogenic gene profile, is expressed at a lower proportion in type 1
and 2-DM cell populations compared to controls [122]. And fourthly, oxidative stress and autophagy
has been related the MSC dysfunction in patients with metabolic syndrome and type 2 DM [126].

With respect to aging, by definition stem cells cannot be fully senescent. Their inability to
undergo permanent cell cycle arrest is precisely what defines their ability to divide and repopulate.
However, MSC functionality declines with aging. In fact, MSCs in early passages have shown
better colony efficiency than in later passages [127], which should be taken into consideration for
therapeutic purposes.

Several MSC senescence phenotypes have been recognized, such as an increase in flattened
morphology, growth arrest in G1 phase of cell cycle, increased expression of senescence-associated
lysosomal α-l-fucosidase and senescence-associated β-galactosidase [128]. In addition, reparative
capacity of MSCs may decrease with age [129], and MSCs obtained from aged individuals possess
reduced immunomodulatory properties compared to those from younger ones [130]. MSCs from both
bone marrow and adipose tissues present reduced capacity to handle oxidative stress with increasing
donor age [131]. Oxidative stress leads to hyperactivity of pro-growth pathways, such as insulin/IGF-1
and mTOR, and the subsequent accumulation of toxic aggregates and cellular debris ultimately leading
to apoptosis, necrosis, or autophagy [132].

MSC senescence may be involved in the loss of tissue homeostasis, which could lead to organs
failure and development of age-related diseases. In this sense, there are MSC alterations associated
with their multilineage differentiation, homing, immunomodulatory and wound-healing capacity,
oxidative stress regulation and intrinsic changes in telomere shortening [133–136]. Collectively, these
aging-related stem cells changes ultimately lead to Frailty Syndrome [137]. Frailty has been clinically
defined as “a state of increased vulnerability resulting from aging-associated decline in reserve and
function across multiple organ systems, such that the ability to cope with every day or acute stressors
is compromised” [138]. This may be because of the full senescence of stem cells, and is considered as
stem cell exhaustion. Regenerative medicine has been proposed to offer further therapeutic approaches
to improve or reverse frailty signs and symptoms [135]. In fact, deterioration of adult stem cells
in the adult phase can become an important player in the onset of several aging diseases, such as
the metabolic syndrome [139], diabetes mellitus [140,141], rheumatoid arthritis [73], systemic lupus
erythematosus [80] or ageing syndromes [142,143]. These diseases are characterized by the perpetuation
of inflammatory states, constant emission of “alarm signals,” proliferation, mobilization, and finally
an endless sequestration of MSCs into the damaged tissues, probably leading to a decrease in the
endogenous pool of MSCs, which are perhaps the most important specialized repairing cells [144].
This could lead to irreversible and premature stem cell exhaustion syndrome (SCES), inhibiting the
organism to self-repair and survive.
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Aging-related diseases are highly relevant. According to the 2018 Aging and Health report of
the World Health Organization, 2 billion people worldwide (22% of the population) will be over
the age of 60 by the year 2050, which is more than double the rate in 2015 (http://www.who.int/
mediacentre/factsheets/fs404/en/). Therefore, a new era of therapeutics focusing on the restoration of
MSC functionality could be promising.

4. Control of Tissue Homeostasis by MSCs: Hypothesis and Therapeutic Opportunities

Based on the above, the following scenario regarding tissue homeostasis by MSCs leads us to an
interesting hypothesis. A damaged somatic cell might send “alarm signals” indicative of dysfunction
in the form of exosomes, for example. These membrane-derived vesicles could then be internalized by
“resident sentinel” MSCs and would trigger their proliferation and activation in response to the damage
in the somatic cell, leading ultimately to the production of a specialized secretome. This secretome,
able to establish an intercellular communication and with regenerative, anti-inflammatory, and other
above-described properties, would be decisive in restoring the physiological balance in the damaged
cell, and by extension, in the whole organ (Figure 1A). This intercellular communication might
involve, among others, the newly discovered microanatomical fluid-filled space within and between
tissues [145].

According to this hypothesis, a number of different situations could lead to loss of tissue regulation
control: (a) inadequate alarm messages by damaged somatic cells (Figure 1B); (b) inadequate response
to those alarm signals by MSCs due to their depletion (Figure 1C); (c) inadequate response to alarm
signals by MSCs due to primary or secondary cell dysfunction, induced by alterations in tissue
microenvironment (Figure 1D); and (d) inadequate response by somatic cells to the intercellular
communication signals coming from MSCs (Figure 1E).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 13 of 26 
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response by MSCs. In a therapeutic setting, the impaired equilibrium could be theoretically restored

http://www.who.int/mediacentre/factsheets/fs404/en/
http://www.who.int/mediacentre/factsheets/fs404/en/


Int. J. Mol. Sci. 2019, 20, 3738 11 of 23

using a specifically designed cocktail of substances aimed at palliating the dysfunction in intercellular
communication between damaged somatic cells and MSCs.

For this purpose, secretomes derived from cultured MSCs, including EVs, could be potential
candidates, as these secreted and/or derived products have demonstrated their potential for
repairing organs and tissues damaged by various degenerative and/or inflammatory disorders
(Tables 1 and 2) [6,146]. Furthermore, secretome-derived EVs have therapeutic advantages as they
have the ability to protect their cargo from unfavorable environmental conditions, such as changes in
pH or digestive (lytic) enzymes into the bloodstream and damaged tissues.

5. MSC-Derived Secretome Products as Therapeutic Agents

The use of MSC-derived secretome products offers key advantages over applications based on
stem cells themselves [6]. These advantages include: greater safety, by avoiding issues associated
with transplantation of living and proliferative cell populations; better evaluation of MSC-derived
secretome regarding dosage and potency, such as conventional pharmaceutical agents; better storage
(without presence of potentially toxic cryopreservative agents for a long period and without loss of
potency); economical mass-production through tailor-made cell lines under controlled laboratory
conditions; and the possibility of being immediately available for acute disease treatment. In addition,
MSC-derived secretome could be modified for more effective therapeutic applications.

Nevertheless, several important related aspects must be borne in mind when envisaging further
applications of MSCs-derived secretome and its derivates, such as MSC origin, donor condition (age, sex,
and health status), as well as several technical and biological aspects related to the development of
secretome-derived products

5.1. Origin of MSCs

Proteomic comparison of MSC-derived secretomes from different tissue sources have revealed
differing profiles and capabilities. For example, MSC-derived secretome from bone marrow, adipose
tissue, and dental pulp present different protein composition [147]. It has been also reported that
Wharton’s jelly-derived MSCs secrete greater amounts of proinflammatory proteins and growth factors,
while those derived from adipose tissue have an enhanced angiogenic profile and secrete greater
amounts of extracellular matrix proteins and metalloproteases [148]. Thus, the origin of MSCs seems an
important aspect related to their possible therapeutic uses. In fact, a MSC population obtained from the
human uterine cervical transformation zone [69], displays age-related properties which may affect the
regression rate of cervical intraepithelial neoplasia by means of paracrine effects [149]. It has also been
recently shown that the conditioned medium from those cells has growth-inhibiting properties against
different microorganism species of Candida, a common pathogen of the vaginal medium, to which the
cervical transformation zone is in permanent contact [70].

5.2. Donor Condition

Theoretically identical MSC populations from different individuals may display different secretome
properties, depending on factors including age and health status [150]. Thus, for example, as mentioned
above, MSCs obtained from aged individuals possess reduced immunomodulatory properties compared
to those from younger subjects, and MSCs from patients affected by several diseases exhibit reduced
capabilities [130,131]. These points should be considered in the development and application of
secretome-derived products, using specific functional tests to ensure homogeneity of action.

5.3. Bioprocess Development for Secretome-Derived Products

There are several aspects related to the technical development of secretome-derived products
which may influence their potency, such as the specific platform on which cells are grown and
culture conditions.
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Commonly, MSCs are grown in 2D monolayers in tissue culture flasks (T-flasks). However, this
labor-intensive methodology involves a large number of T-flasks with the risk of flask-to-flask variability
and contamination [151]. An alternative for mass production of MSCs is the use of bioreactors in
which cells grow homogeneously in 3D suspension [152]. This highly scalable technology allows the
cells to form three-dimensional aggregates (spheroids), which are considered to be more biomimetic
and capable of increasing the levels of reparative/regenerative, anti-inflammatory and angiogenic
factors [153].

Among the culture conditions which may influence the quality of MSC-derived secretome
products are: type of media and supplements (e.g., fetal bovine serum, xeno-free, or chemically-defined
media), temperature, pH, seeded-cell density, oxygen level, and mechanical, electromagnetic, or
biochemical stimuli (e.g., lipopolysaccharide (LPS), TNF-α, TNF-β, INF-γ or hydrogen peroxide
-H2O2-) [154]. For example, in response to hypoxia, MSCs increase the production of several angiogenic
and anti-apoptotic factors, such as VEGF, IL-6, CCL2, and stanniocalcin-1 (STC-1) [155,156].

These data suggest that it may be possible to adapt secretome-derived products to individual
patients (Figure 2). However, it is still necessary to get insight into large-scale production of MSC-derived
secretome according to the Good Manufacturing Practices (GMP) guidelines.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 15 of 26 
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which may influence the quality of MSC secretome-derived products (paracrine factors, microvesicles
or exosomes).

Secretome-derived products can be understood as a combination of therapeutic biomacromolecules
and vesicles, and thus treated as biopharmaceutics for the development of delivery platforms.
The design of delivery systems must guarantee stability, allow easy administration and maximize
pharmacological effects. The nature of secretome-based products should allow their loading on
micro/nanoparticulated systems of variable composition and structure, which have been widely
studied for biomacromolecular therapeutics. This type of carriers can increase macromolecules half-life
in vivo, control drug delivery profiles and allow for specific targeting reducing side effects [157–159].
Moreover, the use of other polymeric-based nanostructured drug delivery platforms such as hydrogels
has also been widely used for the delivery of biopharmaceuticals. They present similarities to the
native extracellular matrix in terms of oxygen and nutrient permeability while showing excellent
biocompatibility and porous structure [160,161]. Moreover, the use of injectable hydrogels allows for
their administration in the target sites with minimal invasiveness permitting local biomacromolecule
retention and delivery [162].
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In summary, there are a wide variety of drug delivery strategies that could be tested
for secretome-derived product administration to maintain/increase their potency and efficiency.
Secretome-derived products loaded on delivery platforms, could open new possibilities of restoring
tissue homeostasis in a controlled manner in time and/or place.

6. Conclusions and Future Perspectives

A growing body of evidence suggests the significant role for MSCs in the regulation of tissue
homeostasis. These cells are widely distributed throughout the human body and considered the
most important type of stem cells involved in tissue regeneration. The positive regenerative,
immunoregulatory, proangiogenic, antitumor, and antimicrobial activity of MSCs has also been
demonstrated in their secretome-derived products in several in vivo experimental models.

Recently, knowledge has increased regarding the role of morphological and functional alterations
of MSCs in several important systemic diseases and the aging process. A paradigm shift could result if
the hypothesis is confirmed that alterations in intercellular communication signals between somatic
cells and MSCs are key in the occurrence of diseases. This would entail the development of new
therapeutic strategies based on the recognition of damaged signals and their restoration, instead of
the classical paradigm of “one disease, one drug”. This context would require the standardization of
secretome-derived products, their manufacture and individual adaptation to each pathological process
and patient.
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α–ΣMA Alpha-smooth muscle actin
BM Bone marrow
CCLs Chemokine (C-C motif) ligands
CCL2 Chemokine (C-C motif) ligand-2
CCL5 Chemokine (C-C motif) ligand-5
CD Cluster of differentiation
CM Conditioned medium
CXCLs Chemokine (C-X-C motif) ligands
DM Diabetes mellitus
DNA Deoxyribonucleic acid
EGF Epidermal growth factor
Evs Extracellular vesicles
FcγRIIB Inhibitory Fcγ receptor Iib
FGFs Fibroblast growth factors
FLT-3 ligand Fms-related tyrosine kinase 3 ligand
G-CSF Granulocyte colony-stimulating factor
GMP Good manufacturing Practice
GvHD Graft-versus-host disease
H2O2 Hydrogen peroxide
HGF Hepatocyte growth factor
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IDO Indolamine 2,3-deoxygenase
IFN γ Interferon γ

IGF-1 Insulin-like growth factor-1
IL Interleukin
IP10 Interferon-gamma-inducible protein-10
LAP Latency-associated peptide
LIF Leukemia inhibitory factor
LPS Lipopolysaccharide
MCP-1 Monocyte chemotactic protein-1
MMP Matrix metalloproteinase
MSC Mesenchymal stem cell
mTOR mammalian Target of Rapamycin
NT-3 Neurothrofin-3
OAZ Olfatory-1/early B-cell factor
Pbx1 Pre-B-cell leukemia homeobox 1
PD-1 Programmed death 1
PDGF Platelet-derived growth factor
PGE-2 Prostaglandin E2
RA Rheumatoid arthritis
ROS Reactive oxygen species
RNA Ribonucleic acid
SLE Systemic lupus erythematosus
STAT1 Signal transducer and activator of transcription 1
STC-1 Stanniocalcin-1
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
TGF-b Transforming growth factor-b
TIMP Tissue inhibitor of metalloproteinases
TNFa Tumor necrosis factor alpha
uPAR Urokinase-type plasminogen activator receptor
VE-cadherin vascular endothelial cadherin
VEGF Vascular endothelial growth factor
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