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Abstract: In the transition to a low-carbon economy, climate-resilient investors may be inclined
to buy renewable-energy or other low-carbon assets. As the diversification benefits of investment
positions in those assets depend on interdependence between their market prices, we explore that
interdependence in the European and USA stock markets. We model the dependence structure using
bivariate copula functions and evaluate price spillovers between those markets using a conditional
quantile dependence approach that accounts for the reciprocal effects of price movements in those
markets under normal and extreme market scenarios. Our empirical evidence for the period
2010–2019 indicates that European renewable-energy and low-carbon stocks co-move; upward
and downward movements in low-carbon asset prices have sizeable effects on renewable-energy
asset prices, and vice versa, although effects are smaller. In contrast, for the USA we find evidence
of non-interdependence, with no significant upward or downward price spillover effects between
renewable-energy and low-carbon stocks. Our empirical findings provide useful insights for the
design of carbon-resilient portfolios and risk management strategies, and also for implementation of
public funding policies to support the transition to a low-carbon economy.
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1. Introduction

The transition to a low-carbon economy entails a vast amount of financial resources, which,
in turn, raises awareness among investors about opportunities and risks linked to that transition.
Renewable-energy and low-carbon assets are arguably the most suitable investment vehicles
to ensure private capital reallocation that meets the challenges posed by decarbonization. Therefore,
understanding interdependence between the prices of renewable-energy and low-carbon assets is
essential information for environmentally-friendly investors, as it determines the diversification
benefits of allocating private capital to climate-resilient portfolios and shapes private incentives
to deploy financial resources to clean energies and low-carbon industries. Moreover, interdependence
between renewable-energy and low-carbon assets is also of interest for policymakers, as low-carbon
investments could provide adequate incentives to invest in renewable energies and vice versa, thereby
determining public funds to be allocated to support the transition to a climate-resilient economy.

Energies 2019, 12, 4461; doi:10.3390/en12234461 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-3912-9410
https://orcid.org/0000-0002-0904-5665
http://dx.doi.org/10.3390/en12234461
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/23/4461?type=check_update&version=2


Energies 2019, 12, 4461 2 of 14

We examine dependence between renewable-energy and low-carbon stock prices using
a conditional quantile price dependence approach that allows price spillovers between those markets
to be explored under different market circumstances, including extreme upward and downward
movements in asset values ([1]). Specifically, to assess the impact of price movements of a particular size
in one market on stock prices in the other market, we characterize the bivariate dependence structure
between renewable-energy and low-carbon stock price returns through copulas, then we compute
conditional stock return quantiles and evaluate whether these differ from unconditional quantiles.

The extant literature on renewable-energy and low-carbon stock prices has developed along two
separate strands.

One strand has examined the relationship between clean-energy and oil prices. Some studies have
explored causality between oil prices and renewables, finding evidence of Granger causality that differs
across sample periods and time horizons ([2–6]). Other studies have examined oil price spillovers
to renewable stocks, documenting significant impacts from oil price oscillations to renewable stock
prices ([7–9]), volatility spillovers between oil and clean-energy stocks ([10–12]) and connectedness
between clean energy stocks, oil prices and financial variables ([13]). Likewise, a different set of
articles have explored dynamic correlations between renewable energy and stock prices ([14]) and the
contribution of energy prices to renewable asset prices and volatility ([15–17]).

The other strand has investigated the effects of carbon emissions on firm performance and on
investor portfolios. The authors of [18] find that firm value is negatively impacted by carbon emissions,
whereas [19] shows that the cost of capital increases with carbon emissions. The authors of [20,21]
find that firms with higher carbon emissions earn higher returns, whereas [22] show that higher
emissions are related with higher levels of downside risk. From an investor’s perspective, the authors
of [23] explores a dynamic investment strategy for passive investors to hedge climate risk without
sacrificing financial returns, finding that, even for low-carbon indexes with carbon footprints of 50%
less than the benchmark, the tracking error can be virtually eliminated; they also indicate that those
results could improve with the pricing of carbon dioxide emissions. Similarly, the authors of [24] shows
how bond investor portfolios can be hedged against climate risk with no introduction of unintended
exposure that could sacrifice a portfolio’s benchmark-tracking properties. More recently, in their
investigation of investor portfolio divestment from fossil fuels, the authors of [2] find that clean-energy
investments offer better returns, whereas [25], in comparing the financial performance of investment
portfolios with and without fossil fuel stocks, report that fossil fuel divestment does not seem to impair
portfolio performance, given that fossil fuel stocks do not outperform other stocks on a risk-adjusted
basis and that fossil fuel stocks provide relatively limited diversification benefits. Likewise, the authors
of [26] contend that socially responsible investing has not been costly in terms of forgone market
returns, as the return performance of a fossil-fuel-free portfolio surpasses the S&P 500 returns index
due to poor fossil fuel sector performance.

From the investors’ perspective, the above-mentioned strands in the literature provide useful
information on the impact of energy prices or carbon emissions on the value of low-carbon portfolios
composed of either renewable energy or low-carbon assets. However, this literature is silent about the
impact of changes in low-carbon asset values on renewable energy asset values and vice versa; such
information is crucial for climate-friendly investors as both renewable-energy and low-carbon assets are
alternative or complementary assets in terms of the design and risk diversification aims of low-carbon
portfolios. This paper fills this gap by analysing interdependence between renewable-energy and
low-carbon stock prices in a bivariate copula framework and computing how differently sized
stock price movements in one market impact on stock prices in the other market. We model price
changes in renewable-energy and low-carbon assets using a multifactor pricing model that includes
autoregressive components, with co-movement under different market circumstances modelled
through copulas taking into account the effect of common pricing factors in that co-movement. Our
empirical study covers the period January 2010 to July 2019 and the European and the USA markets,
with renewable-energy stocks represented by the European Renewable Energy and the Wilder Hill
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Clean Energy indexes, respectively, and low-carbon assets represented by the Euro STOXX Low Carbon
Select 50 and the USA STOXX Low Carbon Select 50 indexes, respectively. Our empirical results point
to dissimilarities in both stock markets. Specifically, while we observe interdependence between
renewable-energy and low-carbon markets in Europe, those markets do not co-move in the USA.
Furthermore, we find evidence of symmetric tail dependence in Europe but independence in the USA.
We consistently find evidence of symmetric downside and upside price spillover effects between the
European renewable-energy and low-carbon stock markets, differing, however, in that price spillovers
from low-carbon to renewable-energy stocks are greater than vice versa. Contrarily, for the USA,
we find no evidence of price spillovers.

These findings have implications for both investors and policymakers. Investors holding positions
in renewables can hedge such positions using low-carbon assets when they invest in the USA
market but should seek alternative hedging devices for the European market. As low-carbon and
renewable-energy stocks in the European markets behave as a similar asset class, raising funds for
renewables from environmentally-aware investors is more difficult as there are opportunities to invest
in other low-carbon assets. Finally, our evidence is informative for the design and funding of renewable
energy policies: boosting funding to renewables may have a detrimental effect on low-carbon industries
in Europe but only a minor effect in the USA.

The remainder of the paper is laid out as follows. In Section 2 we outline our methodology
to assess conditional quantile dependence using copula functions. In Section 3 we describe the main
features of our data for renewable-energy and low-carbon stock markets in Europe and the USA.
In Section 4 we discuss our results on dependence, the impact of price oscillations from/to low-carbon
assets and to/from renewable-energy stocks, and the main implications of those results. Finally,
Section 5 summarizes our results and concludes this study.

2. Empirical Methods

2.1. Quantile Dependence Between Renewable-Energy and Low-Carbon Markets

We measure price impacts between the renewable-energy and low-carbon markets using the
quantile copula dependence approach developed by [1], which allows the impact of quantile price
changes between markets to be assessed. The use of bivariate copula models offers modeling flexibility
in featuring bivariate distribution functions, as copulas account for particular data characteristics
in the marginal distribution functions, such as time-varying volatilities or leverage effects, and they
allow dependence to differ under different market circumstances, in particular in times of extreme
price oscillations.

To begin with, using copulas rather than quantile regression results in greater modeling flexibility;
this is because copulas enable heterogeneity in characterizing marginal distributions and also account
for specific data features such as conditional heteroskedasticity, volatility asymmetries, and leverage
effects. Moreover, our empirical setup allows for time-varying dependence, so the impact of oil
price changes on stock returns are allowed to differ in different moments of time depending on the
dependence and volatility features of the corresponding markets.

Let ret and lct be the (log) change in prices of renewable-energy and low-carbon stocks,
respectively. The impact of a change in the price of a low-carbon asset of a size given by its β-quantile
on the α-quantile of the renewable-energy market can be measured by the conditional -quantile of the
renewable return distribution at time t, qret|lct

α,β,t , as:

P
(

rt ≤ qret|lct
α,β,t |lct ≤ qlct

β,t

)
= α, (1)

where qlct
β,t is the unconditional β-quantile of the low-carbon price returns distribution: P

(
lct ≤ qlct

β,t

)
= β.

From this conditional quantile, we can quantify how price fluctuations in low-carbon stocks of different
sizes impact on renewable-energy stocks under different market scenarios as reflected by the quantiles
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of low-carbon stocks. Similarly, we can obtain the reverse impact, i.e., the impact of price fluctuations
in renewable-energy stock prices on the prices of low-carbon assets.

From [27]’s theorem on equality between the joint distribution function and a copula function C,
we can express Equation (1) in terms of the joint distribution function or the copula function as:

Fretlct

(
qret |lct

α,β,t , qlct
β,t

)
= C

(
Fret

(
qret|lct

α,β,t

)
, Flct

(
qlct

β,t

))
= αβ, (2)

where Fret(·) and Flct(·) denote the marginal distribution functions for the renewable-energy and
low-carbon price changes, respectively and where the second equality follows from the fact that
the joint distribution is the product of the conditional and marginal distributions, Fretlct

(
qret |lct

α,β,t , qlct
β,t

)
Fret

(
qlct

β,t

)
, with Fretlct

(
qret |lct

α,β,t , qlct
β,t

)
= α and Fret

(
qlct

β,t

)
= β. Hence, for given values for α and β and for

the copula model specification, we can compute qret |lct
α,β,t by inverting the copula function in Equation (2),

C
(

Fret

(
qret|lct

α,β,t

)
, β
)
= αβ, in order to obtain the value of F̂ret

(
qret|lct

α,β,t

)
; then, by inverting the marginal

distribution function of ret we obtain the conditional quantile as:

qret|lct
α,β,t = F−1

ret

(
F̂ret

(
qre|lct

α,β,t

))
. (3)

Note that if renewable-energy and low-carbon stock markets are independent, then
C
(

Fret

(
qre|lct

α,β,t

)
, β
)
= Fret

(
qret|lct

α,β,t

)
β, so qret|lct

α,β,t = qret
α,t . Hence, the difference between conditional and

unconditional renewable-energy return quantiles provides information on the impact of low-carbon
stock price changes on renewable-energy stock returns.

To compute the conditional quantile through copulas we need information on the marginal
distribution models and on dependence between renewable-energy and low-carbon market prices
as given by the copula function. Using copulas rather than the conditional marginal distribution
to compute conditional quantiles has the appeal of flexibility, in that copulas separate modeling of the
marginals and of the dependence structures, and they capture dependence in the case of sharp upward
(upper quantiles) or downward (lower quantiles) price movements.

2.2. Marginal and Copula Models

As the mean and variance of financial return series exhibit time-varying behavior and stock
returns depend on general pricing factors, we estimate the price dynamics of renewable-energy and
low-carbon stocks using an autoregressive moving average (ARMA) model with p and q lags and with
exogenous variables as given by the five pricing factors proposed by [28,29]:

yt = φ0 +
p

∑
j=1

φjyt−j +
q

∑
h=1

ϕjεt−h + β1MKTt + β2SMBt + β3HMLt + β4RMWt + β5CMAt + εt, (4)

where yt denotes the excess price returns in renewable-energy and low-carbon stocks and where
the pricing factors are as follows: MKTt is the excess return of the market portfolio; SMBt is the
difference between the returns of a diversified portfolio comprised of small and large assets; HMLt is
the difference between high book-to-market and low book-to-market portfolio returns; RMWt is the
difference between returns for a diversified portfolio of robust and weak profitability assets; and CMAt

is the difference between portfolio returns for low (conservative) and high (aggressive) investment
firms. εt is a stochastic component with zero mean and variance σ2

t , which has a dynamic described
by a threshold generalized autoregressive conditional heteroskedasticity (TGARCH) model:

σ2
t = ω +

r

∑
k=1

θkσ2
t−k +

m

∑
h=1

αhε2
t−h +

m

∑
h=1

λh1t−hε2
t−h, (5)
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where ω is a constant parameter and where the parameters θ and α account for the generalized
autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional heteroskedasticity
(ARCH) effects, respectively. 1t−h = 1 for εt−h < 0, then the parameter λ captures asymmetric effects:
when λ > 0 (λ < 0) negative shocks have more (less) impact on variance than positive shocks (note that
for λ = 0 we have symmetric effects as given by the GARCH model). Fat tails and asymmetries of the
stochastic component εt, and thus of yt, are captured by [30] skewed-t density distribution; this distribution
is characterized by parameters v (the degrees-of-freedom parameter, 2 < v < ∞ ) and η (the symmetric
parameter, −1 < η < 1).

We model dependence by considering different copula specifications for the variables x and
y, with u = Fx(x) and v = Fy(y). Specifically, we capture positive and negative dependence
using the bivariate Gaussian copula, given by CN(u, v; ρ) = Φ

(
Φ−1(u), Φ−1(v)

)
, where Φ is the

bivariate standard normal cumulative distribution function with correlation ρ and where Φ−1(u)
and Φ−1(v) are standard normal quantile functions. Similarly, positive and negative dependence
is captured by the student-t copula, which is given by CST(u, v; ρ, v) = T

(
t−1
v (u), t−1

v (v)
)
, where T

is the bivariate student-t cumulative distribution function with the degree-of-freedom parameter v
and dependence given by the correlation coefficient ρ and where t−1

v (u) and t−1
v (v) are the quantile

functions of the univariate student-t distribution. Gaussian and student–t copulas differ in terms
of their tail dependence: the former exhibit zero tail dependence while the latter show symmetric tail
dependence and converge to the Gaussian when the degrees of freedom go to infinity. We also consider
the Gaussian and student-t copulas with time-varying parameters, with a dynamic given by [31]:

ρt = Λ

(
ψ0 + ψ1ρt−1 + ψ2

1
q

q

∑
j=1

Φ−1 (ut−j
)
·Φ−1 (vt−j

))
, (6)

where Λ(x) = (1− e−x) (1 + e−x)
−1 is the modified logistic transformation that retains ρt in (−1,1).

As for the student-t copula, Φ−1(x) is replaced by t−1
v (x). We also use the symmetric Plackett copula,

which, like the Gaussian copula, exhibits tail independence although it displays more dependence for
large joint realizations. It is given by:

CP(u, v; θ) =
1

2(θ − 1)
(1 + (θ − 1)(u + v))−

√
(1 + (θ − 1)(u + v))2 − 4θ(θ − 1)uv. (7)

Furthermore, we capture asymmetric dependence using the Gumbel copula, given by

CG(u, v; δ) = exp
(
−
(
(− log u)δ + (− log v)δ

)1/δ
)

, which has upper tail dependence and lower tail
independence. Moreover, we rotate the Gumbel copula 180o with parameter δ > 0: CRG180(u, v; δ) =

v− exp
(
−
(
(− log(1− u))δ + (− log v)δ

)1/δ
)

. Finally, we also consider time-varying dynamics of the
dependence parameter as given by:

δt = ω + βδt−1 + α
1
q

q

∑
j=1

∣∣ut−j − vt−j
∣∣ (8)

Finally, the parameters of the marginal and copula models are estimated using the inference
function for margins ([32]), which allows parameter estimation in two steps. First, the parameters
of the marginal models are first estimated using maximum likelihood. Next, the copula parameters
are estimated by maximum likelihood using, as pseudo-sample observations for the copulas,
the probability integral transformation of the standardized residuals from the marginals. The number
of lags in the mean and variance equations in the marginal models are selected using the Akaike
information criteria (AIC), whereas the adequate copula specification is selected using the AIC adjusted
for small-sample bias ([33]).
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3. Data

Our empirical analysis on quantile dependence between renewable-energy and low-carbon
stocks in the European and USA stock markets is based on the respective stock market indices.
Specifically, we consider the Europe STOXX Low Carbon Select 50 Index (LC-EU) and the USA
STOXX Low Carbon Select 50 Index (LC-USA) for the European and USA stock markets, respectively.
These indices, which exclude all companies involved in the coal sector, capture the performance
of low carbon emissions stocks with low volatility and high dividends selected from the universe
of companies included in the STOXX Europe 600 Index and in the STOXX Global 1800 index,
respectively. The 50 assets included in the index are weighted according to the inverse of their
volatility, with a cap at 10%, and the index is reviewed quarterly.

To account for the performance of renewable-energy stocks, we take the European Renewable
Energy index (ERIX) and the Wilder Hill Clean Energy index (ECO) for Europe and USA, respectively.
ERIX is comprised of the largest European renewable-energy companies with wind, solar, biomass,
and water energy generation as their main activities. ECO is an equal-dollar-weighted index of a set
of companies that develop activities related to clean energies and conservation.

The sample covered the period 1 January 2010 to 31 July 2019, with the start date of the sample
period determined by the availability of data for low-carbon indices. Data was sourced from Bloomberg
on a daily basis. Figure 1 displays the temporal dynamics of renewable-energy and low-carbon markets
in the European and USA markets, showing that these markets follow similar trends, with price changes
harmonized in Europe, but not synchronized in the USA. We computed daily price returns as the
first difference for the (log) value of those indices. Table 1 presents the main statistical features of the
daily returns. For all markets under study, average daily returns are close to zero and standard
deviations are greater for the renewable-energy stocks than for the low-carbon stocks. Higher
volatility in renewable-energy markets is also confirmed by the maximum and minimum values
of returns. All price returns exhibit negative skewness and the price return distributions have fat tails.
In fact, the Jarque–Bera (JB) test rejects normality. The evidence of serial dependence provided by the
Ljung–Box (LJ) statistic is mixed: although most of the series exhibit serial independence, low-carbon
series for Europe show serial dependence. Finally, the ARCH test points to the presence of conditional
heteroskedasticity in the series.

Panel A. EU Panel B. USA

Figure 1. Time series plot for daily renewable-energy and low-carbon indices.

Data for the pricing factors and the risk-free interest rates to compute excess returns
in renewable-energy and low-carbon markets in Europe and the USA were sourced from the Kenneth
French data library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).
Table 2 presents descriptive statistics for those pricing factors in both markets, showing that their behaviors
differ across stock markets.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1. Descriptive statistics for renewable-energy and low-carbon indices.

LC-EU ERIX LC-USA ECO

Mean 0.015 0.003 0.042 −0.024
Maximum 4.966 6.622 4.454 8.239
Minimum −5.706 −7.978 −6.144 −10.21
Std. Dev. 0.823 1.492 0.773 1.673
Skewness −0.338 −0.301 −0.435 −0.27
Kurtosis 6.887 5.162 8.185 5.214
JB 1563.09 * 505.59 * 2775.70 * 521.49 *
ARCH 19.137 8.336 29.129 22.173

[0.000] [0.000] [0.000] [0.000]
Q(20) 45.322 28.632 33.629 41.855

[0.001] [0.095] [0.029] [0.003]

Note. The table presents descriptive statistics for price returns in low-carbon markets in the EU (LC-EU)
and the USA (LC-USA) and in the corresponding renewable-energy markets, ERIX and ECO, respectively.
Data cover daily periods from 1 January 2010 to 31 July 2019. JB denotes the Jarque–Bera statistic for the null
hypothesis of normality; an asterisk denotes rejection of the null hypothesis. Finally, ARCH denotes Engle’s
Lagrange multiplier test for conditional heteroskedasticity and Q(20) denotes Ljung–Box statistics for serial
correlation in the price return series. Both tests were computed with 20 lags and their p values are reported
in square brackets.

Table 2. Descriptive statistics for pricing factors.

Panel A. EU

MKT SMB HML RMW CMA

Mean 0.023 0.004 −0.011 0.017 0.000
Maximum 6.850 3.210 3.760 1.630 1.150
Minimum −8.800 −2.250 −2.130 −1.910 −1.070
Std. Dev. 1.098 0.443 0.443 0.296 0.245
Skewness −0.323 −0.084 0.329 −0.372 0.130
Kurtosis 7.741 5.949 6.407 5.299 4.014
JB 2298.54 * 876.03 * 1208.94 * 586.37 * 109.94 *
ARCH 16.393 11.621 10.14 3.428 8.021

[0.000] [0.000] [0.000] [0.000] [0.000]
Q(20) 41.574 41.41 33.372 37.808 33.017

[0.003] [0.003] [0.031] [0.009] [0.034]

Panel B. US

MKT SMB HML RMW CMA

Mean 0.052 −0.001 −0.01 0.006 0.000
Maximum 5.060 3.620 2.390 1.660 1.950
Minimum −6.970 −1.990 −1.83 −1.63 −1.320
Std. Dev. 0.963 0.518 0.497 0.342 0.303
Skewness −0.402 0.177 0.303 0.034 0.361
Kurtosis 7.410 4.639 4.494 4.567 4.952
JB 2018.24 * 282.48 * 261.03 * 246.89 * 434.88 *
ARCH 28.873 7.701 10.781 12.382 7.396

[0.000] [0.000] [0.000] [0.000] [0.000]
Q(20) 50.511 22.075 21.486 21.031 19.639

[0.000] [0.336] [0.369] [0.395] [0.481]

Note. The table presents descriptive statistics for pricing factors, MKT, SMB, HML, RMW and CMA, in the EU
and USA markets for the period 1 January 2010 to 31 July 2019. JB denotes the Jarque–Bera statistic for the null
hypothesis of normality; rejection of the null hypothesis is indicated with an asterisk. Finally, ARCH denotes
Engle’s Lagrange multiplier test for conditional heteroskedasticity and Q(20) denotes Ljung–Box statistics for
serial correlation in the price return series. Both tests were computed with 20 lags and their p values are reported
in square brackets.

4. Empirical Evidence

4.1. Results for Marginal and Copula Models

Parameter estimates and goodness-of-fit tests for the marginal models for renewable-energy and
low-carbon indices in the EU and the USA are presented in Table 3. We selected suitable lags for the



Energies 2019, 12, 4461 8 of 14

mean and variance by considering lag values between 0 and 2, taking as the optimal values those
that minimized the AIC. Our estimates reflect serial dependence in all price return series, given the
significant autoregressive and moving average coefficients. Parameter estimates for the pricing factors
indicate that all return series are dependent on the market factor, with betas below one indicating
that renewable-energy and low-carbon stocks are defensive stocks, with the exception of the ECO
index. However, we find mixed evidence for the remaining pricing factors as the significance of those
factors differs across markets. Likewise, parameter estimates for the volatility dynamics indicate that
volatility displays persistence and no leverage effects, with the exception of the European low-carbon
market. The degrees-of-freedom parameter also indicates that the error terms are generally symmetric
and exhibit fat tails, whereas asymmetry is significant in the low-carbon markets.

The last six columns of Table 3 show results for goodness-of-fit tests for the estimated marginal
models. The LJ test indicates that there is no serial correlation in either the residual series or the
squared residual series, and the ARCH-Lagrange multiplier (ARCH-LM) statistic indicates that no
GARCH effects remain in the model residuals. In comparing the empirical and theoretical distribution
functions of the standardized residuals, the Kolmogorov–Smirnov (KS), Cramér–von Mises (CVM),
and Anderson–Darling (AD) tests all support the null hypothesis of correct specification of the
distribution models for all the series.

We estimate copula model parameters using the probability integral transform of the standardized
residuals from the estimated marginal models as pseudo-sample observations for the copula. Parameter
estimates for the static and time-varying copulas are reported in Table 4. Empirical estimates point to
relevant difference between the European and USA markets. Thus, while in the European market we
find evidence of positive dependence between renewable-energy and low-carbon stock markets, for the
USA we find that this dependence to be negative and small. Evidence on comparing copulas through
the AIC values indicates that the static student-t copula provides the best fit for the European markets
and the Plackett copula for the USA market. Furthermore, dependence between renewable-energy
and low-carbon stock markets is fundamentally static. We only find evidence of tail dependence in the
European market, so upward or downward movements in renewable-energy stock prices have impacts
on the low-carbon market and vice versa. In contrast, for the USA market we find evidence of no tail
dependence and weak negative average dependence, so abrupt price changes in renewable-energy
stock prices have negligible effects on low-carbon assets and vice versa.

4.2. Price Impact Results for the Renewable-Energy and Low-Carbon Stock Markets

We estimate conditional quantiles using information from the estimated marginal and copula
models, taking different values for the quantiles α and β given by 0.05, 0.10, 0.25, 0.5, 0.75, 0.9, and 0.95.
To assess the relative impact of low-carbon stock prices on renewable-energy prices and vice versa,
we also estimate the unconditional quantiles from the marginal models as qyt

β,t = µt + F−1
v,η (α)σt,

for yt = ret, lct, and µt and σt are given by the ARMA and GARCH components of the marginal model,
with F−1

v,η (α) denoting the value of the α-quantile of the skewed student-t distribution.
Figure 2 depicts the quantile dynamics of the upper and lower conditional and unconditional

renewable quantiles in the European and the USA markets, considering the impact of high (low) price
fluctuations in low-carbon stocks as given by the 0.9 (0.1) quantile on the high (low) renewable-energy
quantile as given by the 0.9 (0.1) quantile. Consistent with the evidence on tail dependence in the
European renewable-energy stock market, we found that differences between conditional and
unconditional quantiles in the upper and lower tails of the joint distribution were sizable and
of a similar size. Hence, sharp upward or downward movements in low-carbon stocks have an
impact on prices of renewable-energy stocks in the European markets. However, this effect is not
observed in the USA market, as there is near zero dependence, i.e., the impact of price oscillations
in low-carbon assets has no sizeable impact on renewable-energy stock prices, as reflected in Panel B
of Figure 2.
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As for the impact of price oscillations in renewable-energy stocks on low-carbon stock prices,
Figure 3 depicts upper and lower conditional and unconditional low-carbon quantiles in the European
and the USA markets, considering the impact of high (low) price fluctuations in renewable-energy
stocks as given by the 0.9 (0.1) quantile on the high (low) low-carbon quantile as given by the 0.9 (0.1)
quantile. Graphical evidence reflects that price impacts differ in both stock markets; in the European
market, price movements in renewable-energy stocks have a significant impact on low-carbon stock
prices, whose impact is smaller than in reverse, whereas in the USA market—consistently with near
independence—differences between conditional and unconditional quantiles are small.

Table 3. Maximum likelihood estimates.

LC-EU ERIX LC-USA ECO

Mean

φ0 0.001 −0.011 −0.001 −0.072 *
(0.119) (−0.499) (−0.208) (−3.807)

φ1 0.358 * 0.000 0.627 * 0.046 *
(2.353) (0.004) (5.616) (2.171)

φ2 0.048 * 0.042 *
(2.453) (1.964)

ϕ0 −0.320 * −0.622 *
(−2.083) (−6.010)

MKT 0.447 * 0.799 * 0.805 * 1.150 *
(21.150) (24.330) (85.140) (49.020)

SMB −0.553 * −0.115 −0.163 * 0.782 *
(−14.070) (−1.540) (−12.090) (20.130)

HML −0.186 * 0.186 0.014 0.081
(−4.248) (1.770) (0.800) (1.802)

RNW 0.036 0.005 0.250 * −0.433 *
(0.651) (0.036) (11.520) (−6.985)

CMA 0.056 −0.269 * 0.350 * −0.243 *
(1.086) (−2.411) (12.270) (−3.364)

Variance

ω 0.016 * 0.133 0.029 * 0.019
(2.958) (1.613) (2.333) (1.677)

α1 0.055 * (0.064 * 0.181 * 0.043 *
(2.897) (2.761) (3.428) (2.629)

β1 0.831 * 0.253 0.293 * 0.936 *
(19.820) (1.117) (2.394) (34.420)

β2 0.562 * 0.223
(2.234) (1.858)

λ 0.068 * 0.027 −0.049 −0.007
(1.966) (0.673) (−0.770) (−0.620)

Asymetry −0.111 * 0.028 −0.067 * 0.051
(−3.698) (0.935) (−2.100) (1.720)

Tail 9.314 * 6.296 * 7.140 * 7.728 *
(5.774) (7.729) (7.138) (6.532)

LogLik −1397.5 −3562.74 −396.486 −3039.77
LJ 16.590 29.485 23.019 20.784

[0.55] [0.05] [0.19] [0.29]
LJ(2) 10.464 14.456 21.975 16.065

[0.92] [0.63] [0.19] [0.59]
ARCH 0.522 0.746 1.118 0.749

[0.96] [0.78] [0.32] [0.78]
KS [0.90] [0.96] [0.86] [0.98]
CVM [0.99] [0.99] [0.88] [0.99]
AD [0.99] [0.99] [0.91] [0.99]

Note. The table presents parameter estimates and z-statistics (in brackets) for the marginal models described
in Equations (4) and (5). An asterisk (*) indicates significance at 5%. LogLik denotes the log-likelihood
value. LJ, LJ(2) and ARCH, respectively, denote the Ljung–Box statistic for serial correlation in the residual
model and the squared residual model and Engle’s Lagrange multiplier test for the ARCH effect in residuals
computed with 20 lags. KS, CVM, and AD, respectively, denote the Kolmogorov–Smirnov, Cramér–von Mises
and Anderson–Darling statistics for the null hypothesis of correct model specification. Rejection of the null
hypothesis is indicated with p values (in square brackets) below 0.05.
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Table 4. Estimates for the copula models.

Panel A. Parameter Estimates for Time-Invariant Copulas.

EU USA

Gaussian copula
ρ 0.377 * −0.075 *

(0.01) (0.02)
AIC −367.773 −11.515

Student−t copula
ρ 0.393 * −0.078 *

(0.02) (0.02)
v 7.228 * 43.210

(0.54) (49.14)
AIC −415.622 −11.287

Gumbel copula
δ 1.305 * 1.000 *

(0.02) (0.02)
AIC −344.293 2.002

Rotate Gumbel copula
δ 1.315 * 1.001 *

(0.02) (0.00)
AIC −381.959 1.842

Plackett copula
θ 3.461 * 0.780 *

(0.20) (0.05)
AIC −396.806 −14.940

Panel B. Parameter Estimates for Time-Invariant Copulas.

EU USA

TVP-Gaussian
ψ0 −0.029 −0.235 *

(0.02) (0.07)
ψ1 0.033 * 0.191

(0.02) (0.13)
ψ2 2.155 * −1.340 *

(0.07) (0.40)
AIC −378.553 −9.807

TVP−Student
ψ0 1.777 * −0.266 *

(0.10) (0.09)
ψ1 −0.010 0.061

(0.01) (0.08)
ψ2 −2.362 * −1.370 *

(0.04) (0.64)
v 7.264 * 20.000 *

(1.13) (4.81)
AIC −412.78 −5.978

TVP−Gumbel
ω̄ 0.932 0.000

(0.49) (1.00)
β̄ −0.212 0.000

(0.35) (1.00)
ᾱ −0.408 * 0.000

(0.2) (1.00)
AIC −346.097 6.042
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Table 4. Cont.

Panel B. Parameter Estimates for Time-Invariant Copulas.

EU USA

TVP−Rotate gumbel
ω̄ 1.031 * 5.000

(0.39) (473.32)
β̄ −0.281 −4.948

(0.31) (470.40)
ᾱ −0.398 * −0.045

(0.14) (5.61)
AIC −383.263 5.831

Note. The table presents parameter estimates for different copula models along with their standard errors
reported in brackets. An asterisk (*) indicates significance of the parameter at 5%. The best copula fit is given by
the copula model that attains the minimum Akaike information criterion (AIC) value adjusted for small-sample
bias, indicated in bold. For the time-varying parameter (TVP) copulas, the value of q was set to 10.

Panel A. EU Panel B. USA

Figure 2. Temporal dynamics for upper and lower conditional and unconditional quantiles of
renewable-energy stock returns.

Panel A. EU Panel B. USA

Figure 3. Temporal dynamics for upper and lower conditional and unconditional quantiles of low-carbon
stock returns.

Finally, Figures 4 and 5 summarize the relative impact of price changes in low-carbon assets
of specific sizes on renewable-energy stocks and vice versa, respectively. For different values, the plots
represent the average value of the conditional quantile over the unconditional quantile: values
greater than one, depicted in warm colours, indicate that stock price changes in one market affect the
corresponding unconditional quantile of the other market, whereas values in cold colours indicate the
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opposite. For the European markets, Panel A in Figures 4 and 5 confirms that renewables and low
carbon markets closely co-move, so upward or downward movements in one of the markets have
a positive and significant effect on the prices in the other market. Likewise, graphical evidence also
corroborates that opposite movements in renewable-energy and low-carbon prices are not related,
consistent with the idea that markets move in tandem. In contrast, for the US, graphical evidence
in Panel B reflects the fact that renewable-energy and low-carbon markets move independently,
i.e., price changes in one market are not reflected in price movements in the other market as indicated
by the equality between conditional and unconditional quantiles.

Panel A. EU Panel B. USA

Figure 4. Average value of conditional over unconditional quantiles for renewable-energy stocks.

Panel A. EU Panel B. USA

Figure 5. Average value of conditional over unconditional quantiles for low-carbon stocks.

5. Conclusions

Investing in renewable-energy and low-carbon assets is a straightforward way for investors
to align their portfolios with a low-carbon and more climate-resilient economy. However,
the diversification benefits of holding positions in such firms closely depends on the way both kinds
of assets co-move. Climate-friendly investors could take advantage of this information to build more
adequate portfolio investment strategies. We therefore explored interdependence between prices
of renewable-energy and low-carbon assets in the European and USA stock markets for the period
2010–2019. We use copula functions, which report information on dependence under different market
circumstances, even though we have no information on the causality effects.

Our empirical evidence documents that European, but not USA, renewable-energy and
low-carbon markets co-move and, likewise, we find evidence of symmetric tail dependence in Europe
but tail independence in the USA. Consistently, we find that upside or downside movements in the
prices of low-carbon assets impact on renewable-energy asset prices in Europe, while the reverse is also
notable, although smaller in size. In contrast, for the USA market we find that the impact of upward or
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downward price oscillations in low-carbon asset prices on the price of renewable-energy stocks is not
sizable as is the case with the reverse.

Our empirical findings have practical implications for investor decision-making and for
policy-makers as follows. First, evidence of positive co-movement between renewable-energy and
low-carbon asset prices in Europe indicates that, as both kind of assets move in the same direction under
different market scenarios, long positions in low-carbon assets cannot be hedged using long positions
in renewable-energy assets, and vice versa. In the USA market, in contrast, since renewable-energy
and low-carbon stock prices move independently, investors in either market could use one set of
assets to hedge financial positions in the other market. Second, in Europe, climate-friendly investors
cannot use renewable-energy assets to manage downside risks for long positions in low-carbon
assets, and vice versa, unlike investors in the USA. Third, our evidence on interdependence between
renewable-energy and low-carbon asset prices is useful for the design of energy policies to support
and fund renewable energy investments. Specifically, when renewable-energy and low-carbon asset
prices co-move—as happens in the European markets—public funding of renewables impact on
renewable-energy companies, and this impact leads to price externalities for low-carbon companies.
Likewise, the withdrawal of support policies for renewable energies (such as subsides) will have
negative effects on the price of renewable-energy stocks that will be transmitted to the price of
low-carbon assets. As a result, policy decisions regarding energy transition to a decarbonized
economy should take into account the effects on low-carbon companies, as also crucial in the transition
to a climate-resilient economy. However, when low-carbon and renewable-energy markets move
independently—as happens in the USA—such policy effects are irrelevant. Finally, in raising funds
for the transition to a low-carbon economy, the dependence between climate-friendly assets such as
renewable-energy and low-carbon stocks is such as to render them a similar asset class; therefore,
funds for renewable energies face competition in the demand for funds for other low-carbon industries
that may also be attractive to environmentally friendly investors—the case in Europe; in the USA,
however, the independence of the asset classes may spur investment incentives in climate-friendly
assets such as renewable-energy and low-carbon stocks.
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