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ABSTRACT Maximum heart rate (MHR) is widely used in the prescription andmonitoring of exercise inten-
sity, and also as a criterion for the termination of sub-maximal aerobic fitness tests in clinical populations.
Traditionally, MHR is predicted from an age-based formula, usually 220−age. These formulae, however, are
prone to high predictive errors that potentially could lead to inaccurately prescribed or quantified training
or inappropriate fitness test termination. In this paper, we used functional data analysis (FDA) to create
a new method to predict MHR. It uses heart rate data gathered every 5 seconds during a low intensity,
sub-maximal exercise test. FDA allows the use of all the information recorded by monitoring devices in the
form of a function, reducing the amount of information needed to generalize a model, besides minimizing the
curse of dimensionality. The functional data model created reduced the predictive error by more than 50%
compared to current models within the literature. This new approach has important benefits to clinicians and
practitioners when using MHR to test fitness or prescribe exercise.

INDEX TERMS Maximum heart rate prediction, functional data analysis, machine learning, low intensity
sub-maximal test.

I. INTRODUCTION
Heart rate (HR) is one of the most widely used measures in
clinical medicine and exercise physiology to evaluate a per-
son’s cardiovascular fitness. Two key reasons for this are its
non-invasive ease of measurement and its low cost. Together,
these two factors mean it has great utility being used in the
control of exercise intensity [1], the detection and monitoring
of fatigue and over-stimulation states [2], [3] and even in
clinical settings to detect heart problems e.g. angina [4], [5].
These uses of HR are dependent of having a known value for
maximum HR (MHR). A true MHR can only be accurately
derived from a maximal effort, usually in a cardiac stress
test. In these tests, heart rate will increase gradually as work
rate increases, with the objective of pushing the body to its
physical limit. However, a direct measurement is not always
feasible because of the elevated risk of adverse events in some
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clinical populations [6], limited access to suitable facilities
and equipment, or the disruption to an athlete’s training [7].

To circumvent the issues associated with obtaining a true
MHR, a number of predictive equations have been devel-
oped [8]. These predictions take account of the fact that
MHR declines with age [9]. The most popular of these
age-predicted maximal heart rate methods is the formula:
220 − age (years). Despite its near pandemic use by prac-
titioners, this formula is based upon observation rather than
statistically derived from experimental data and is prone to
large predictive errors [8]. Some multivariate approaches
have also been developed trying to bettermodel the variability
inMHR prediction. However, they do not improve the predic-
tive power of univariate models.

The increasing capacity of electronic devices to collect data
at a high sampling frequency is facilitating new insights into
human physiology. Numerous smart watches now record HR
in real time [10]. One benefit of this is that HR demonstrates

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 121841

https://orcid.org/0000-0002-8682-6772


M. Matabuena et al.: Application of FDA for the Prediction of MHR

a strong, linear relationship with oxygen uptake (VO2) [11],
a key determinant of physical capacity and energy expendi-
ture [12]. With its comparative ease of measurement com-
pared to VO2, many wearable devices use HR to quantify
exercise into HR zones, provide a score reflecting the training
load or difficulty of an activity or even predict VO2 max.
All of these functions incorporate the use of a value for
MHR that is often derived from an age predicted formulae.
However, the errors associated with these predictions com-
promise the accuracy of these functions. A drawback of these
approaches is that they do not incorporate important aspects
of the structure of the data and, thus, do not fully exploit the
potential of the information gathered during exercise tests to
better understand the heart’s response to external stress. The
high dimensionality of data and the high correlation between
nearby observations are important issues to achieve this aim.
The amount of data needed to generalise a model accurately
(with statistical significance) grows exponentially (curse of
dimensionality) if we do not group data in objects with similar
properties. However, in high-dimensional data, all objects
appear to be sparse and dissimilar, which prevents common
data organization strategies from being efficient.

In this paper we propose a newmethod for predictingMHR
based on functional data analysis (FDA), which minimizes
the aforementioned issues. FDA is a mathematical technique
able to express the discrete observations arising from time
series in the form of a function as a single observation.
The idea behind FDA is that data collected (usually a dense
sampling) over time reflect the influence of a smooth function
in the generation of the observations. FDA uses this function
to predict information from the collection of functional data.
This abstraction allows FDA to take advantage of additional
information from this function, contrary to classical multi-
variate statistical techniques.

The proposed method predicts MHR from the observations
captured during the sub-maximal stages of a maximal and
incremental exercise test, specifically a treadmill exercise
stress test starting at 6 km · h−1 increasing by 0.25 km · h−1

every 15 seconds until exhaustion. Predictive errors obtained
by this method have been compared with more traditional
uni and multivariate approaches. In addition, results have
also been compared with other traditional machine learning
regressionmethods, obtaining similar scores in terms of error,
but with the advantage that we know the significance of the
variables introduced in the model.

Finally, a predictive module has been developed and inte-
grated in the Athletes Management System (AMS) of the
High Performance Center of Pontevedra (Spain). The MHR
predictions are currently used to improve training planning,
as well as for medical supervision. The developed module is
also integrated with the athletes database, and is programmed
to update monthly the training database used to generate the
predictive model.

The paper is structured as follows: In Section II we analyse
the main approaches to MHR prediction. In Section III we
define the main concepts of FDA and functional regression.

In Section IV we detail the experimental approach to predict
MHR from sub-maximal exercise tests. In Section V we
show the results obtained by the proposed method, as well
as from other regression methods. In Section VI we discuss
the primary findings of this study. In Section VII we describe
the system architecture and its integration with the AMS
of the High Performance Center. Finally, in Section VIII we
summarize the benefits of our approach as well as the future
work.

II. RELATED WORK
Numerous attempts have been made to derive a formulae
for MHR from experimental evidence. Table 1 summarises
the main studies that only take into account the effect of
age. Identified papers (i) are indexed in scientific journals,
(ii) contain both male and female participants, (iii) have no
participant age limit, (iv) contain a prediction based on a
maximal exercise test, and (v) have more than 5 participants
per group. As we can see, formulas have different slopes
and intercepts, which reflects the great disparity of results
obtained when adjusting a simple regression model. The σ ∗

column shows the standard deviation of the error obtained
with the dataset used in this paper with the formulas proposed
by the different authors, while the r2 column shows the coef-
ficient of determination published by authors. The standard
deviation of residuals is very similar in all cases, although
the best result was obtained by Tanaka equation [13].

As most of age-based methods produce unacceptably large
predictive errors [8], subsequent multivariate equations to
predict MHR have been developed. Multivariate approaches
are represented in Table 2. These approaches add explanatory
variables that include, but are not limited to: ethnicity, data
that can be extracted from treadmill or cycle ergometer tests,
the participant’s level of habitual activity and the protocol
used [14]. Despite the additional variables, the predictive
power of multivariable equations is no better than univariate
equations, as we can see in the σ ∗ column.
The above proposals, both univariate and multivariate, are

intended to be easily interpretable by clinicians or practition-
ers. This is why more complex regression approaches have
not been applied in this context, e.g., support vector machines
or multilayer perceptron. However, nowadays, we can apply
better and more complex strategies to predict MHR thanks to
technological advances in measuring devices.

It should be mentioned that high dimensionality of data
also hinders the use of these methods from the interpretability
perspective, in addition to the significance of the adjusted
model and variables. In this context, they need to be com-
bined with a dimensionality reduction method, such as
Principal Components Analysis (PCA) or selection variable
techniques [15]. PCA may change the data-space drasti-
cally and ignore dimensions with lower variance/information,
thus affecting the performance of the regression method.
Accordingly, the application of PCA requires an important
knowledge of data [15]. On the other hand, variable selection
methods, such as Lasso, oftenwork poorly in high collinearity
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TABLE 1. Univariate equations for MHR prediction.

TABLE 2. Multivariate equations for MHR prediction.

contexts [16] and, moreover, are difficult to interpret. More-
over, it is often difficult to carry out an inferential process
on the true significance of the selected variables (the prob-
lem of post-selection inference). Although there has been

much research on this topic, models are currently limited to
linear [17] or Lasso [18] regressions, and not for universal
approximators such as neural networks or support vector
machines.
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In this paper, we use FDA to reduce the error in the
MHR prediction, avoiding the aforementioned problems of
collinearity and high dimensionality and, at the same time,
establishing the significance of the introduced variables. FDA
is better suited to this task, since it allows the analysis of
dense sampling of observations over time, on the assump-
tion that the generation of these observations is influenced
by certain smooth functions. This should be the case of
MHR prediction since that heart rate increase in exercise of
curvilinear way with changes in different zones of metabolic
exchange [19].

III. FUNCTIONAL DATA ANALYSIS
Finite discrete time series are usually treated as multivariate
data. However, this approach ignores important information
about the stochastic process that generated the data. Thus,
it is sometimes useful to consider a more general object
as the unit of measurement under study. FDA provides the
techniques to analyse, model, and predict time data series
when the intrinsic structure of the data is functional, i.e.
when there is an underlying function that gives rise to the
observed data. In this paper we worked under the hypothesis
that several observations of cardiac stess test may have a
functional structure.

A. FUNCTIONAL REPRESENTATION
FDA considers each observation as a function (or curve)
Xk (t), on a compact interval I = [0,T ] on the real line.
These functions can be viewed as the realizations of a
one-dimensional stochastic process, often assumed to be in
a Hilbert space, such as L2(I) = {f : I → R such as ‖f ‖I <
∞}, where ‖f ‖I is the norm induced by the following inner
product 〈f , g〉I =

∫
I fgdx.

In this context, high-dimensional functions such as Xk (t)
are modelled using a low-dimensional approximation. One
approach is to use a set of basis functions {φi}mi=1 to
characterize the functional space, where m is the number
of data recorded for the observation. Thus, each obser-
vation Xk (t) can be transformed in an estimated function
f̂k =

∑m
i=1 ĉikφi(t), where ĉik are the coefficient for the

k-th observation. Coefficients are usually calculated using
the minimum square criterium, while basis functions are
orthonormal basis by which the maximum of variance of
the data can be described, such as Fourier bases, B-splines,
or functions obtained from functional principal components
analysis [42].

B. LINEAR REGRESSION MODEL
Traditional linear models with scalar response Y ∈ R and
vector covariate X ∈ Rp can be expressed as:

Y = β0 + 〈X , β〉 + ε = E(Y |X )+ ε (1)

using the inner product in the Euclidean vector space, where
β0 and β are the regression coefficients (intercept and slope

of each covariate). The error ε is assumed to be a gaussian
random variable with mean zero.

In this paper, we assume X (·) ∈ L2(I) and use the L2(I)
inner product to support a functional response. Furthermore,
we use a centered stochastic process XC (t) = X (t) − µ(t)
instead of X (t):

Y = β0 +
〈
XC , β

〉
+ ε

= β0 +

∫
I
XC (t)β(t)dt + ε (2)

where β(t) ∈ L2(I ).
When X (t) and β(t) are representatives using an orthonor-

mal basis {φi(t)}∞i=1 then X (t) =
∑
∞

i=1 ciφi(t), β(t) =∑
∞

i=1 biφi(t), and equation 2 is equivalent to:

Y = β0 +
∞∑
i=1

cibi + ε (3)

In practice, the sum is truncated to the first K terms:

Y ≈ β0 +
K∑
i=1

cibi + ε (4)

This estimation is equivalent to a lineal multivariate regres-
sion model using normal regression equations [42].

C. ADDITIVE REGRESSION MODEL
In this paper, we use the classic additive regression
model [45], but with functional covariates [46], since it allows
the use of non-linear relationships between the data. Let us
suppose that X = (X1, . . . ,Xp) is a p-dimensional functional
random variable in L2(I1) × L2(I2) × · · · × L2(Ip) space,
where Ik denote Xk domain, and Y is a random response
variable. The relationship between the variables X and Y in a
spectral additive regression model (GSAM) is:

E(Y |X ) = β0 +
p∑

k=1

fk (Xk ) (5)

where each fk is a smooth function and E(fk (Xk )) = 0 for all
k ∈ {1, . . . , p}.
Every functional variable Xk (with k = 1, . . . , p) can be

expressed as follows using Karhunen-Loeve theorem:

Xk (t) = µ(t)+
∞∑
j=1

ckjφkj(t) (6)

where φkj(t) is the j-th eigenfunction for the k-th functional
variable and ckj is a score term. Thus, equation (5) can be
approximated as follows:

E(Y |X ) ≈ β0 +
p∑

k=1

rk∑
m=1

fk (ckm) (7)

where cmk is the m-th principal component score of the
k-th functional covariate and rk is the number of principal
components considered for the k-th functional covariate.
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TABLE 3. Participant characteristics.

The estimation of the smooth functions is carried out using
the technique known as principal component analysis with
conditional expectation (PACE). This method selects auto-
matically the number of eigenfunctions to be chosen for every
functional covariate by means of the AIC criterion [46].

IV. RESULTS
A. EXPERIMENTAL APPROACH TO THE PROBLEM
A maximal, incremental treadmill test designed to elicit VO2
max was used to elicit MHR. MHR was recorded at the end
of the test and predicted using a number of traditional uni
and multivariate approaches. In addition, FDAwas applied to
the HR data captured every 5 seconds for the first 6-minutes
of the incremental test to predict MHR. The predicted MHR
values from the different approaches were compared to the
actual MHR at the termination of the incremental test to
establish the magnitude of predictive error.

B. SUBJECTS
Three hundred and sixty participants (164 women and 196
men), aged between 10 and 46 of age, participated in this
study. All the participants were competitive athletes from dif-
ferent sports including: athletics, badminton, handball, bas-
ketball, cycling, football, judo, wrestling, canoeing, rowing,
squash, taekwondo, triathlon and sailing (see Table 3). The
data were obtained from a continuous, incremental treadmill
protocol, and collected from the High Performance Center
of Pontevedra (Spain) between the years 2010-2015. Prior to
the study, informed consent was obtained from all individual
participants included in the study, where they were under
18 years of age parental assent was given. The study received
institutional ethical approval and conformed to the Helsinki
declaration.

C. PROCEDURES
Prior to the treadmill test, stature and mass were recorded.
All participants then completed a maximal incremental tread-
mill test. The treadmill test began at 6 km · h−1 increas-
ing by 0.25 km · h−1 every 15 seconds until exhaustion.
Every 5 seconds throughout the test, HR and breath by breath

expired gases were recorded on a Jaegger CPX master screen
gas analyser, which was calibrated according to the manufac-
turer’s instructions before each test.

The accuracy of the proposed new method for estimating
MHRwas based on comparing the MHR at the end of the test
(the point of exhaustion), with the MHR predicted from data
collected during the first 6-minutes of the test analysed using
FDA. For example, a similar approach has been successfully
applied to predict maximum oxygen uptake in athletes [47].

TheHR data collected every 5 seconds were plotted against
time and then analysed using FDA. During the first 6 minutes
of the test participants reached approximately 70% of the
treadmill speed attained at the point of exhaustion.

D. STATISTICAL ANALYSIS
The analysis consisted, firstly, of adjusting linear regressions
for age. We then added more explanatory variables, such as
height, weight and sex as categorical variables. The choice
of predictive variables was carried out using a stepwise for-
ward selection. A significance test with a post-selection infer-
ence [48] was applied to the variables of the regressionmodel.
In a second step, a functional additive model with functional
covariates was adjusted using information from the HR in
the first six minutes of the exercise test. Finally, we selected
the additive model [46] (see [49] for more information about
additive models), since it achieved the best results.

In all the cases, the r2 and the standard deviation of the
residuals were calculated. All statistical analyses were per-
formed with the statistical software R. Stepwise regressions
were implemented with the selectiveInference package [50],
while the regression models with functional covariates have
been fitted with the fda.usc package [51].

V. RESULTS
Firstly, a linear regressionmodel was adjusted, and found sex,
weight, and height to be statistically non-significant. The best
model from our data was (a)MHR = 209.9−0.77 · age. This
highlights that MHR is predicted, to a large extent, by age
alone and is independent of sex, height, and weight.
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TABLE 4. Goodness-of-fit of a linear and functional regressions for the dataset considered in this study.

Finally, amodel containing functional and scalar covariates
was fitted: (b) MHR = s(HR[0,6]) + s(dHR[0,6]) + s(age)
where HR[0,6] and dHR[0,6] are the HR and the derivative of
HR in the first six minutes of the treadmill test, respectively.
The function s(·) denotes an additive effect over the vari-
able. Other covariates, such as the second derivative of HR,
were also considered during the experimentation. However,
these variables were not statistically significant, and the fitted
regression model did not improve the predictive capacity.

Table 4 shows the goodness-of-fit of the former three
models. The r2 and the standard deviation of the residuals are
used as measurement error. The new model reduces the pre-
diction error compared to the traditional regression models,
as reflected by the substantial r2 increase and the reduction
in the standard deviation of the residuals. The increase in
precision is clearly visible in Figure 1, where errors of the
functional and linear models are represented as HR residual
plots, respectively. The error of traditional models reaches
20 b · min−1 while the functional model does not exceed
10 b ·min−1 (50-80% of the observations have an error below
3 b · min−1).

FIGURE 1. Comparison of residual produced by the functional model and
the linear regression model.

A. COMPARISON WITH OTHER REGRESSION MODELS
Table 5 compares the performance of our solution with three
other regression methods: Support Vector Machines (SVM),
Multilayer Perceptron (MLP) and Random Forest (RF).

TABLE 5. Comparison of the goodness-of-fit between different
regression methods for a 10-fold cross validation.

Thesemethods were selected because they are universal func-
tion approximators (UFA), and thus are able to approximate
any continuous function from a sufficiently large amount
of data. In addition, all methods are among the five best
regressor families [52]. We limited the experimentation to
the former three methods since the objective of this study was
not a thorough comparison, but to show that our approach is
able to fit models with a similar predictive capacity as some
of the best machine learning regressors.

We used the implementations of SVM, MLP, and
RF available in the e1071 [53], neuralnet [54], and
randomForest [55] R packages, respectively. Data were split
in two datasets for training and test, containing 80% and 20%
of the data, respectively. We used the Caret package [56]
to optimize the hyper-parameters of the former statistical
methods during the training phase, using a grid search over
parameter ranges, in a 10-fold cross-validation.

SVM regression was configured with a radial basis func-
tion (RBF) kernel, k(x, y) = exp(−γ · ‖x-y‖2), which is a
universal kernel [57], a necessary condition to ensure UFA
property. The γ parameter was configured to range between
2−5 and 25. The value of γ in the best model was 2−4.

The MLP was set up with three hidden layers, up to 15
neurons per hidden layer. We decided not to experiment with
more neurons per hidden layer to avoid over-fitting. The
backpropagation algorithm was set as supervised learning
technique for training. We experimented with three small
learning rates (0.1, 0.01, and 0.001) to avoid an unstable
training process and learning a sub-optimal set of weights
too fast. The number of neurons in the hidden layers for the
optimal model was 5, 5, and 10.

Finally, we used the default values for the number of trees
to grow (500) and for the minimum size of terminal nodes
(5 for regression) in RF. The number of variables available
for splitting at each tree node (mtry parameter) was set to
range between 20 and 23. The value of mtry in the best
model was 22, which coincides with the recommended value
for regressions (the number of variables divided by three,
rounded down) [58].
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FIGURE 2. Heart rate in the first 6-minutes of the stress test.

In the experiment, we used the same variables as those
of the functional model but with the difference that a PCA
is carried out previously, selecting 7 components combining
98.4% of explained variance. As listed in Table 5, functional
regression predictions are slightly better. Certainly, the high
dimensionality and structure of the data have a greater impact
on the other regressors. This is particularly apparent for the
MLP which obtains the worst results, despite using three
hidden layers and small learning rates. In the case of SVM,
the low γ value of the best model is an indication of a
Gaussian function with a large variance. Thus, two points can
be considered similar even if they are far from each other,
similarly as in a linear regression. Finally, RF obtains similar
results as SVM, although 18% worse than the functional
regression.

B. INTERPRETABILITY AND SIGNIFICANCE OF RESULTS
Figure 2 shows the evolution of the HR over time. Each
curve represents the submaximal test of a participant. As can
be seen, the relationship between these two variables is not
linear. Moreover, the variations are smooth and progressive.

Figure 3 depicts the HR derivative over the 6-minutes. In
this case, the evolution of the derivative is heterogeneous
and individualized. Despite this fact, this derivative is an
important element in the prediction.

Table 6 shows the significance of the functional vari-
ables HR and dHR. Specifically, it shows the p-value asso-
ciated with the coefficient ck,j of Eq. 6 for each one of the
k-dimensions of the FPCA. As we can see, the p-value of
s(HR[0,6]) is lower than 0.05 for all scores but the first one,
which means that the dimension with more variance is the
less significant. The same happens for variable dHR.

TABLE 6. P-value of functional variables.

TABLE 7. Estimate value and p-value of non-functional variables.

Table 7 shows the significance of non-functional variables.
Results show that HR decreases 0.31374 per year.

VI. DISCUSSION
The primary finding of the present study are that traditional
uni and multivariate methods of predicting MHR based on
age contain large predictive errors. This study is the first
to use FDA to predict MHR, finding that it significantly
increased the accuracy of MHR prediction compared to tradi-
tional models. The margin of error from FDA was low, with
a mean predictive error 4.1 b · min−1 and a maximum error
of 10 b · min−1. This compared to a mean error of 7.0 and a
maximum error of almost 20 b · min−1 when using the uni-
variate and multivariate approaches. Furthermore, we found
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FIGURE 3. Derivative of the heart rate in the first 6-minutes of the stress test.

FIGURE 4. System architecture.

that MHR prediction to be independent of sex, height, and
weight.

Reducing predictive error through the use of FDA could
have benefits for both practitioners and exercise prescription.
The importance of this cannot be understated considering the
implications of an incorrect MHR value when interpreting
treadmill test data, in both clinical and exercise settings, and

also for exercise prescription. In the context of cardiovascular
fitness assessment, a stress test is usually terminated when
participants reach a stipulated percentage of predicted MHR
(e.g., 85%MHR) [59]. Errors in excess of 10− 20 b ·min−1,
higher or lower, could result in a premature test termina-
tion, overexertion or inaccurate predictions of VO2 max. For
exercise prescription, HR training zones are often determined
based on percentages MHR. Prediction errors could therefore
lead to inaccurate training intensities resulting in the loss
of the desired effects of the training plan, or overtraining.
Reduced predictive error, together with its relative simplicity,
make FDA a valuable tool for use in situations where a
maximal stress test cannot be utilised.

Using a univariate approach Tanaka and colleagues
Tanaka et al. [13] derived the formulae of 208 − (0.7· age)
and 209 − (0.7· age) from a meta-analysis and experimen-
tal data respectively. This is very similar to our univariate
formula of 209 − (0.77 · age), however we did observe a
large discrepancy in r2 values. This could be explained by the
different populations. Our participants were all from sporting
backgrounds and aged between 10 and 46, whereas Tanaka
et al’s [13] participants were aged between 18 and 81, with
a wide variation in habitual physical activity levels. In a
similar age range to this study, a subset of participants aged
between 10 to 33 was used but a high predictive error was
found [25]. Arena et al. [41] derived the formulae 209.2 −
(0.72 · age) which has the lowest RMSE (7.053 b · min−1)
of all traditional univariate approaches, although their partic-
ipant’s average age was approximately 20 years older. This
predictive error is close to the RMSE (7.044 b · min−1)
of the formulae adjusted by our linear regression, but still
41% worse than the predictive error of FDA model. Using
a multivariate approach, we saw no improvement in predic-
tive power. The best equations in the previously literature
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FIGURE 5. Screenshot of the MHR prediction web application.

Londeree and Moeschberger [14] obtained a good fit, with a
RMSE of 7.077 b · min−1, similar to our linear regression.
Some formulae listed in Appendix were not tested since
some variables could not be calculated from the information
available in our dataset.

While the novel application of FDA has resulted in a much
reduced predictive error, it does require the use of a 6-minutes
treadmill test during which time HR must be collected every
5 seconds. The treadmill test is sub-maximal, with partici-
pants only reaching an average of 70% of the running speed
during the maximal test, therefore it is relatively easy to
perform for athletic populations, even in children as young
as 10. Further research is required to see the extent to which
this method would need to be modified for clinical, older or
sedentary populations. This study utilised a ramp protocol,
whether the same results can be achieved with square wave
increments or different modes of exercise is unknown. In this
new era of personalized diagnostics and treatments [60] in
which the models should be adjusted individually from the
enormous amount of the data collected on each patient, often
in real time, the functional data analysis is a valuable tool.
Although in this paper our approach is based on dense func-
tional data, as data are regularly spaced and captured at high

frequency, other functional approaches can be better suited
depending on the data structure. For instance, a sparse func-
tional data is better aligned to deal with irregularly spaced
longitudinal data [61], where the number of repeated mea-
surements available per subject is small. Moreover, situations
in which only partial information on the variables of interest
is available also require a censored data approach [62].

From a methodological point of view, FDA is able to take
advantage of all the information recorded by the ECG to build
reproducible models, as demonstrated by the variables sig-
nificance. In addition to the model robustness, FDA obtains
better results than other universal function approximators
such as SVM and MLP. Moreover, SVM and MLP can have
behave far from the ideal in contexts of collinearity with finite
samples. FDA has also the advantage that statistical inference
can be directly applied to the model, contrary to SVM and
MLP that are black boxes.

VII. SYSTEM IMPLEMENTATION
The system architecture developed for the High Performance
Center of Pontevedra (Spain) is depicted in Figure 4. The
core of the infrastructure is the Athletes Management System
(AMS), which manages all the information generated for

VOLUME 7, 2019 121849



M. Matabuena et al.: Application of FDA for the Prediction of MHR

and by sportsmen and sportswomen. AMS provides several
web interfaces, where each one is targeted to a specific
profile such as medical staff, coaches, or sportsmen and
sportswomen. In this paper, AMS was extended with new
functionalities to improve training planning using the pre-
dicted MHR.

As aforementioned, HR is measured by electrodes on the
chest of athletes running on the treadmill. However, we plan
to use HR bands in the future to reduce the cost but also
to facilitate the measurement of cardiac stress outside med-
ical facilities. It is also intended to create various predictive
models based on HR variability to detect future episodes of
overtraining [63].

Although electrocardiogram data are stored in a propri-
etary software, we developed a module to extract these data
and to integrate them in the AMS database. After each new
sub-maximal stress test, a trigger invokes the prediction ser-
vice to estimate the MHR. The patient profile is then updated
to adjust training loads taking this new MHR prediction or
other physiological measurement into account. Furthermore,
stress test data are accessible by the medical staff and by the
athlete, as well as MHR predictions. The web interface also
shows a comparative study between the last tests.

Finally, we also developed a public web interface using
the Shiny [64] R package to access the MHR predictor.1

In this application (Figure 5) the user can input the age,
mass, stature, and the HR from the initial 6-minutes of the
stress test in a CSV file. This application calculates the
prediction and its confidence interval. In addition, it also
provides a histogram in which the prediction is compared
with all the multivariate and univariate equations described
in tables 1 and 2.

VIII. CONCLUSION
This is the first paper to utilise functional data analy-
sis (FDA) in the prediction of maximal HR. In this paper
we recorded HR every 5 seconds during the first 6-minutes
of a sub-maximal incremental treadmill test. By applying
FDA to the data of a heterogeneous sample, we were able
to predict MHR with far lower predictive than the traditional
approaches currently available. The new approach proposed
has important benefits for clinicians and practitioners when
using MHR to evaluate fitness or prescribe exercise.
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