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.



To Lucı́a



.



Acknowledgments

First of all, it is a great pleasure to thank my supervisors, Rubén Figueroa and Rodrigo López
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Notation

List of symbols most used throughout the work.

N Set of natural numbers, that is, {1, 2, . . . }.
Z Set of integer numbers.

Q Set of rational numbers.

R Set of real numbers.

R+ Set of nonnegative real numbers.

2X Power set: set of all subsets of X , also denoted by P(X).

U Closure of the set U .

∂ U Boundary of the set U .

Br(x) Open ball centered at x and radius r.

ρ(x, U) Distance from the point x to the set U , i.e.,
ρ(x, U) = inf{d(x, y) : y ∈ U}.

co Convex hull.

co Closed convex hull.

C(I) Space of continuous real functions defined on I .

Cn(I), n ∈ N Space of n-times differentiable real functions defined on I such that
the j-th derivative is continuous for j = 0, 1, . . . , n.

AC(I) Space of absolutely continuous functions defined on I .

Lp(I), 1 ≤ p <∞ Lebesgue p space on I , that is,
Lp(I) = {x : I → R : x Lebesgue measurable,

∫
I
|x|p < +∞}.

L∞(I) Space of the measurable functions on I which are essentially bounded.

W k,p(I), k, p ∈ N Sobolev space k − p on I , that is,
W k,p(I) = {x ∈ Ck−1(I) : xk−1) ∈ AC(I), xk) ∈ Lp(I)}.

m(A) Lebesgue measure of A.

χ
A

Characteristic function of the set A.

Fix(T ) Set of fixed points of the operator T .

Id Identity function.
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Abstract

This Thesis, entitled Topological methods for discontinuous operators and applications, con-
tains most of the research work developed by the author during the last years.

It should be highlighted from the beginning that the keyword in the title is discontinuous
since it is the lack of continuity of the operators studied along the text what encourages our
research.

As a motivation to start with the study of topological methods and its applications to
discontinuous differential equations, we present a summary of the chapters included in this
manuscript. It may be divided into two parts: the first one, which comprises the first two
chapters, focuses on the developing of a fixed point theory for a class of discontinuous opera-
tors based on that for multivalued mappings. The second part, which goes from Chapter 3 to
Chapter 6, is devoted to the study of differential problems with discontinuous nonlinearities.

The aim of the first part is to build a machinery which applies for discontinuous operators
and so it is useful to establish new existence results concerning differential problems. The
simplicity of the idea behind the fixed point results may hide their utility and that is why both
parts must be seen as a whole instead of as independent items.

Now the main ideas in each chapter are briefly presented. Our results are also collected
in several papers, see [61–66, 102–105, 121, 122, 128, 129].

Chapter 1: Degree theory for a class of discontinuous operators
The study of differential problems is frequently addressed by means of the topological degree
theory and this implies to deal with the associated fixed point operators defined between
normed spaces. In the case of differential problems with discontinuous nonlinearities, which
are the type of problems we are concerned with, the operators are not continuous and thus
the classical Leray–Schauder’s degree theory becomes useless. That is our main motivation
to consider a theory for discontinuous operators.

Given an operator T : D ⊂ X −→ X , not necessarily continuous, we consider its
closed–convex envelope T : D ⊂ X −→ 2X defined as

Tx =
⋂
ε>0

coT
(
Bε(x) ∩D

)
for every x ∈ D,

where D is a nonempty subset of a normed space X .
If the setD is the closure of a nonempty, bounded and open subset Ω of a Banach spaceX ,

then the topological degree of T is well–defined as that for upper semicontinuous multivalued
mappings [40, 139] under reasonable conditions on T . This fact provides a way to introduce
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the notion of degree for a discontinuous operator T by means of that for its closed–convex
envelope T.

Definition. Let Ω be a bounded open subset of a Banach space X and let T : Ω −→ X be
such that TΩ is relatively compact, Tx 6= x for every x ∈ ∂ Ω, and

x ∈ Tx implies x = Tx for every x ∈ Ω.

We define the degree of Id− T on Ω with respect to 0 ∈ X as follows:

deg (Id− T,Ω, 0) = deg (Id− T,Ω, 0) .

Notice that if T is continuous, then Tx = Tx for every x ∈ Ω and so the degree defined
above coincides with the Leray–Schauder degree. Moreover, observe that the continuity of
the operator T is replaced by the more general condition

x ∈ Tx implies x = Tx for every x ∈ Ω,

which means that all the fixed points of T are fixed points of T . This assumption lets prove
that the new degree inherits the basic properties of the degree for multivalued mappings,
namely, homotopy invariance, additivity, normalization and existence properties.

As happens in the classical case, the degree can only be applied to mappings defined in
the closure of open sets, what is an important restriction for its applicability to differential
problems since it is often convenient to work in sets with empty interior, as for example, some
type of cones. To overcome this difficulty, it was introduced the concept of fixed point index
based on the previously defined degree theory.

Chapter 2: Fixed point theorems for some discontinuous operators
This chapter is devoted to the generalization of some classical fixed point theorems to a class
of discontinuous operators by using the same trick that in the definition of the degree: the
continuity assumption is replaced by the condition that, exactly, means that the fixed points
of a discontinuous operator coincide with those of its closed–convex envelope. Most of these
fixed point theorems are obtained as a consequence of the computation of the degree on
adequate sets.

A first glance is directed to the celebrated Schauder’s fixed point theorem whose extension
is now stated.

Theorem. Let K be a nonempty convex and compact subset of X . Let T : K −→ K be a
mapping satisfying the following condition: x ∈ Tx implies x = Tx for every x ∈ K. Then
T has a fixed point in K.

The simplicity of the previous theorem turns it into a useful tool when looking for so-
lutions to nonlinear problems. Nevertheless, it is frequently convenient to obtain additional
properties about the solutions, as for instance, its positivity or localization, and then the fixed
point theorems in cones acquire great importance. Krasnosel’skiı̆’s compression–expansion
type fixed point theorems in cones are extensively employed in this direction and here they
are adapted to the framework of discontinuous operators.

vi



Abstract

Theorem. Let K be a cone, 0 < r1, r2 ≤ R, r1 6= r2 and let T : BR(0) ∩ K −→ K
be a mapping such that T (BR(0) ∩ K) is relatively compact and it satisfies the following
condition: x ∈ Tx implies x = Tx for every x ∈ BR(0) ∩K.

Suppose that

(a) λx 6∈ Tx for all x ∈ K with ‖x‖ = r1 and all λ ≥ 1,

(b) there exists w ∈ K with ‖w‖ 6= 0 such that x 6∈ Tx + µw for every µ ≥ 0 and all
x ∈ K with ‖x‖ = r2.

Then T has a fixed point x ∈ K such that

min {r1, r2} < ‖x‖ < max {r1, r2} .

In a similar fashion, other fixed point theorems are generalized in Chapter 2. Some of
them let derive the existence of multiple fixed points, as in the case of Leggett–Williams’
three solutions theorem, whereas other ones provide more precise information about their
localization, as the vectorial version of Krasnosel’skiı̆’s theorem. All of them are applied in
the next chapters to obtain new existence results for differential problems.

The main idea behind this new results goes further than the concrete theorems which
are generalized in Chapter 2 and gives a method to adapt most of fixed point theorems for
compact operators to this class of discontinuous ones.

Chapter 3: First order problems
This chapter deals with the existence of solutions to both scalar and system of first–order
problems.

First, the functional initial value problem

x′(t) = f(t, x(t)) for a.a. t ∈ I = [0, L], x(0) = F (x),

is considered. Here, F : C(I) → R is assumed to be continuous and the nonlinearity f to
satisfy the following conditions:

(H1) There exist r < R, N ≥ 0 and M ∈ L1 (I) such that N + ‖M‖L1 < r, |F (x)| ≤ N
if ‖x‖∞ ≤ R, and for a.a. t ∈ I and all x ∈ [−R,R] we have |f(t, x)| ≤M(t).

(H2) Any composition t ∈ I 7→ f (t, x(t)) is measurable if x ∈ C(I) and ‖x‖∞ ≤ R.

(H3) There exist admissible discontinuity curves γn : In −→ R (n ∈ N) such that for a.a.
t ∈ I the function x 7→ f(t, x) is continuous on [−R,R] \

⋃
{n:t∈In} {γn(t)}.

Under these assumptions, it is proven that the previous problem has at least one absolutely
continuous solution. Obviously, the discontinuity curves must satisfy some type of transver-
sality condition in order to be admissible curves. This notion of admissible discontinuity
curves will be a key ingredient throughout the following chapters. Therefore, conditions like
(H3) will be commonly employed in most of the existence results in the present manuscript,
what distinguishes them from the classical results concerning Carathéodory nonlinearities.
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The existence of solutions will be a consequence of the application of the degree theory
introduced in Chapter 1 to the integral operator

Tx(t) = F (x) +

∫ t

0

f(s, x(s)) ds (t ∈ I, x ∈ C(I)).

Next, the existence of absolutely continuous solutions to the system

x′(t) = f(t, x(t)) for a.a. t ∈ I = [0, L], x(0) = x0 ∈ Rn,

is investigated. Again the nonlinearity f : I × Rn −→ Rn need not be continuous.
The main hypothesis in the existence result consists in assuming that the function f can

be expressed in the form

f(t, x) = F (t, g1(τ1(t, x), x), g2(τ2(t, x), x), . . . ),

where for each i ∈ N ,

(i) a) Each function τi : I × Rn −→ R is differentiable;

b) Each function gi : R× Rn −→ R is continuous in (R \ Ai)× Rn, where Ai is
a null–measure set;

c) For a.a. t ∈ I and all x ∈ Rn, the condition τi(t, x) ∈ R \ Ai for all i ∈ N
implies that f(t, ·) is continuous at x.

(ii) For each (t, x) ∈ τ−1
i (Ai) we have

∇τi(t, x) · (1, z) 6= 0 for all z ∈ Kf(t, x),

where Kf(t, x) =
⋂
ε>0 cof

(
t, Bε(x)

)
for every (t, x) ∈ I × Rn.

Under additional assumptions on the measurability and boundedness of the nonlinearity f , the
existence of solutions is obtained in the following way: first, it is shown that the differential
inclusion

x′(t) ∈ Kf(t, x(t)) for a.a. t ∈ I, x(0) = x0,

has at least one solution, and then the assumption stated above allows to prove that it is, in
fact, a solution to the former discontinuous differential system.

Moreover, in the scalar case, we can also deduce the existence of extremal solutions. This
fact joint with an iterative technique for discontinuous operators and the method of lower and
upper solutions are the tools employed in Section 3.3 to establish the existence of extremal
absolutely continuous solutions to the functional problem

x′(t) = f(t, x(t), x) for a.a. t ∈ I, B(x(0), x) = 0,

where both f and B may be discontinuous with respect to all of their variables, even though
some monotonicity assumptions are required with respect to the functional arguments.

Some second order problems can be reduced to the class of first order problems with
functional dependence above and, consequently, new existence results are also deduced for
them.
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Chapter 4: Second order problems and lower and upper solutions
This chapter concerns the existence and multiplicity of solutions to the following class of
second–order boundary value problems x′′(t) = f(t, x(t), x′(t)) for a.a. t ∈ I = [a, b],

0 = L1(x(a), x(b), x′(a), x′(b), x),
0 = L2(x(a), x(b)).

The method of lower and upper solutions is combined here with the degree theory of Chap-
ter 1 and the fixed point theorems of Schauder’s type proven in Chapter 2 in order to get the
existence results.

First, we assume the existence of well–ordered lower and upper solutions, that is, the
lower solution is smaller than the upper solution, and we establish the existence of a W 2,1–
solution between them. The nonlinearity is assumed to satisfy a Nagumo condition which
allows us to obtain a priori bounds for the derivative of the solutions. To prove the existence
result, we look for fixed points in C1(I) of the integral operator associated to a convenient
modified problem.

The main difference with respect to other works where this type of problems was studied
by means of similar methods is that here the nonlinearity may be discontinuous over the
graphs of at most a countable number of admissible discontinuity curves. Moreover, the
existence of extremal solutions between a lower and an upper solutions is also established.

On the other hand, if there exist a lower and an upper solution, but they are not well–
ordered, then it is possible to construct a pair of constant well ordered lower and upper so-
lutions and so the existence of solutions will be a consequence of the previously mentioned
results. To do so, we consider a more restrictive problem with L2(x, y) = x − y and we
require stronger assumptions on the nonlinearity.

Several multiplicity results are also obtained as an application of the previous results by
assuming the existence of more than a pair of lower and upper solutions with some order
relations between them.

Finally, in Section 4.4, we present new existence results to the following second order
problem on the half line{

x′′(t) = f(t, x(t), x′(t)) for a.a. t ∈ R+,
L(x(0), x′(0), x) = 0, lim

t→+∞
x′(t) = B.

The philosophy employed is similar to that described above in the case of bounded domains,
but now we look for fixed points in a different Banach space

X =

{
x ∈ C1(R+) : lim

t→∞

x(t)

1 + t
∈ R and lim

t→∞
x′(t) ∈ R

}
endowed with a Bielecki–type norm,

‖x‖ := max {‖x‖0 , ‖x‖1} ,

where

‖x‖0 = sup
0≤t<∞

|x(t)|
1 + t

and ‖x‖1 = sup
0≤t<∞

|x′(t)|.
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It is remarkable the fact that our results improve those in the literature even in the case of
Carathéodory nonlinearities since the usual notion of lower and upper solutions is relaxed
and, furthermore, we also prove the existence of extremal solutions between them.

Chapter 5: Positive solutions for second and higher order problems
The existence of positive solutions to integral and differential equations acquires a great im-
portance due to the fact that in most applications differential equations model physical or
biological processes where the magnitudes cannot attain negative values. In this chapter we
look for positive solutions to different second and fourth order problems with discontinuous
nonlinearities.

In our setting, the solutions of the differential problem correspond with the fixed points
of a Hammerstein–type operator

Tu(t) :=

∫ 1

0

G(t, s)g(s)f(s, u(s)) ds,

where G is the Green’s function associated to the differential problem. The idea now is to
apply the fixed point theorems in cones obtained in Chapter 2 to the operator T . In this way,
we deduce the existence of positive solutions to the differential problems. As in the previous
chapters, we allow nonlinearity f to be discontinuous over some admissible discontinuity
curves.

Notice that the technique based on fixed point theorems in cones requires the construc-
tion of a suitable cone of functions (which may vary depending on the differential problem
considered). At this point the properties of the Green’s function play a crucial role. For the
problems studied, there exist a continuous function Φ : I → R+ and a constant c ∈ (0, 1]
such that

G(t, s) ≤ Φ(s) for all t, s ∈ I,
cΦ(s) ≤ G(t, s) for all t ∈ [a, b], s ∈ I,

where [a, b] ⊂ I . These bounds for the Green’s function lets prove that the operator T maps
the cone

K =

{
u ∈ C(I) : u ≥ 0, min

t∈[a,b]
u(t) ≥ c ‖u‖∞

}
,

into itself. This cone K is adequate to the application of Krasnosel’skiı̆–type fixed point
theorems.

On the other hand, when we look for multiplicity results by means of applying Leggett–
Williams–type fixed point theorems we employ the cone of nonnegative continuous functions
P = {u ∈ C(I) : u ≥ 0}.

Chapter 6: Positive solutions for general problems
The aim of this chapter is to obtain the existence of positive solutions for differential problems
for which a Green’s function may not exist but a Harnack type inequality holds. This fact
entails the main contrast with respect to the problems studied in the previous chapter. As an
example of the type of problems which can be considered we mention φ–Laplacian equations.
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More precisely, we study the existence of positive solutions for a general problem of the
form {

Lu(t) = f(t, u(t)) a.e. on I = [0, 1],
u ∈ B,

where B ⊂ C(I) and L : D(L) ⊂ C(I) −→ L1 (I) is a general operator not necessarily
linear.

The method used also differs from that in the previous chapter. Here, we consider first
the auxiliary problem {

Lu(t) ∈ Kf(t, u(t)) a.e. on I,
u ∈ B.

Once the existence of solutions to the differential inclusion is guaranteed, a suitable transver-
sality condition on the discontinuities of the nonlinearity f lets prove that they are also solu-
tions to the former problem.

As a consequence of the obtained results, we derive new existence principles for the
Dirichlet–Neumann problem involving the φ–Laplacian{

−(φ(u′))′(t) = f(t, u(t)) a.e. on I,
u′(0) = u(1) = 0,

where φ : (−a, a) → (−b, b) is an increasing homeomorphism such that φ(0) = 0 and
0 < a, b ≤ ∞.

Moreover, the localization properties of solutions allow us to obtain some multiplicity
results under additional conditions. In the case of nonlinearities with excessive oscillations
towards zero or infinity we deduce the existence of infinitely many positive solutions.

Conclusions and further work
Along this thesis we develop a method to deal with differential problems with discontinuous
nonlinearities. Such method is essentially based on the fixed point theory for upper semicon-
tinuous mappings and the transversality conditions on the nonlinearities of the differential
problems. The notion of admissible discontinuity curves is adapted to a broad number of
boundary value problems and, therefore, new existence results are achieved for them. They
are illustrated with a variety of examples.

Despite all the theory developed along these pages concerning discontinuous operators
and discontinuous differential equations, a huge number of problems still remain open in this
field waiting to be solved. There are several directions for further work that we would like
to emphasize here and which, in some way, they would complement or improve our present
results.

A challenging problem is the definition of a topological degree theory for discontinuous
operators without employing that for multivalued mappings. Even in the finite dimensional
setting, the extension of the Brouwer degree to a class of discontinuous operators seems to
be an arduous task. Obviously, the continuity of the operator must be replaced by another
(weaker) condition in order to obtain a meaningful theory.

Our fixed point theory for discontinuous operators depends heavily on the definition of
the closed–convex envelope. It is the smaller upper semicontinuous mapping with closed
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and convex values which contains the discontinuous operator as a selection. Nevertheless,
it could be interesting to analyze another regularizations which may not contain the studied
operator but may provide sharper fixed point theorems.

A key notion throughout the text is that of the admissible discontinuity curves. Its de-
finition is given for differential equations, but it is natural to ask oneself whether a similar
idea also holds for integral equations. Moreover, in our existence results we assume that it
may exist at most a countable number of these curves, so it is reasonable to wonder if with
an uncountable number of such curves those results hold true.

Another interesting problem, which was not studied in this thesis, is the uniqueness of
solutions for discontinuous differential equations. In the case of first order systems, the paper
by Bressan and Shen [25], whose existence result was generalized in Section 3.2, may be a
good starting point.

In Chapter 4, the existence of solutions in the case of non well–ordered lower and upper
solutions is achieved for a more restrictive class of boundary conditions than in the well–
ordered case, so it remains unanswered whether the existence result is true for the general
boundary conditions. Moreover, a common extension of the results in Chapter 4 consists in
considering the φ–Laplacian equations. Nevertheless, in the case of φ–Laplacian equations
we were not able to check that the fixed points of the integral operator associated to the
differential problem coincide with the fixed points of its closed–convex envelope. That is the
reason why we employ a different technique in Chapter 6. That technique uses fixed point
theory for decomposable mappings, but it seems to be not enough for our purpose and the
developing of a degree theory for this class of mappings would be helpful.
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Introduction

A usual assumption in the study of the existence of solutions for initial and boundary value
problems is the continuity on the right–hand side of the differential equation. More specifi-
cally, for an equation of the form

Lu = f(t, u) on I, (Eq)

where L stands for a differential operator, the most commons hypotheses concerning the
function f : I × R→ R are the continuity in both variables or the Carathéodory conditions.
Both of them require to the function f to satisfy the following condition:

(C) For a.a. t ∈ I , the function u 7→ f(t, u) is continuous on R.

If the condition (C) is weakened or removed, then equation (Eq) is called a discontinuous
differential equation. Its study often relies on fixed point theorems for monotone operators
and thus monotonicity hypotheses about f are imposed, see [78]. Also it is frequent to iden-
tify the solutions of discontinuous differential equations with the solutions of some suitable
differential inclusions following the early ideas of Filippov [68]. Depending on the multival-
ued mapping which replaces the function f in (Eq), different notions of generalized solutions
to (Eq) appear (see the papers [75, 134] and the references therein). They are crucial in the
study of some physical processes modeled by discontinuous differential equations as, for
instance, dry friction [24, 108].

Our approach throughout this manuscript is essentially different from both mentioned
above since in all our existence results for differential problems we look for solutions in
the Carathéodory sense and no monotonicity assumptions are required on f . Obviously, not
any discontinuous differential problem has a Carathéodory solution, so some transversality
condition is necessary at the discontinuity points, see [25, 45, 84]. In this sense, our key
ingredient will be the admissible discontinuity curves presented initially for second–order
ordinary differential equations by Pouso [101] and Figueroa and Infante [58] and which will
be extended here to a wide class of ordinary differential problems.

All the differential problems considered along the text can be written as a fixed point
problem by means of the inverse of the differential operator L, which is given by an inte-
gral operator whose kernel is often the Green’s function of the differential problem. How-
ever, the usual fixed point theory for compact operators is not applicable to discontinu-
ous differential problems since the integral operators obtained are not continuous. That
is the reason why we regularize either the right–hand side in the differential equation or
the discontinuous fixed point operator. In both cases, we arrive to a multivalued problem
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which can be analyzed with the well–known fixed point theorems for upper semicontinu-
ous mappings [49, 50, 144], for instance, Bohnenblust–Karlin’s fixed point theorem [17] and
Fitzpatrick–Petryshyn’s compression–expansion result in cones [69].

After obtaining a fixed point for the multivalued problem, we prove that in fact it is a
fixed point of the single–valued discontinuous operator and so a solution of the discontinuous
differential problem. That is the point where the transversality condition on the discontinuity
set of f plays a decisive role. In this way, the step of going to the multivalued problem can
be seen as an auxiliary problem for, later, coming back and achieving new results concerning
the former discontinuous single–valued one.

In what follows, we describe and compare briefly the two approaches employed in the
thesis to regularize the discontinuous differential problem and study it by using multivalued
analysis.

The first one consists in considering the discontinuous single–valued fixed point operator
and ‘convexifying’ it as follows: given the mapping T : D ⊂ X −→ X , we associate to it
the multivalued operator T : D ⊂ X −→ 2X defined as

Tx =
⋂
ε>0

coT
(
Bε(x) ∩D

)
for every x ∈ D,

where X is a Banach space. Under suitable conditions on T , the set–valued operator T is
upper semicontinuous with nonempty, closed and convex values and maps bounded sets into
relatively compact sets, so it is under the hypotheses of the topological degree for multivalued
mappings [40, 139]. Moreover, if T is continuous at the point x, then the associated multi-
valued map T satisfies that Tx = {Tx}. This lets us develop a degree theory for a class of
single-valued mappings for which the condition Fix(T) ⊂ Fix(T ) holds and, subsequently,
some fixed point theorems for this class of mappings are deduced. This method allows to
deal with a lot of different differential problems just as in the continuous case with the unique
difference of showing that T satisfies that Fix(T) ⊂ Fix(T ) instead of proving that it is
continuous.

In the second approach we regularize the right–hand side in the differential equation in-
stead of the fixed point operator. Hence, in order to study the solutions of (Eq), we consider
the differential inclusion

Lu ∈ Kf(t, u) on I,

where Kf : I × R→ 2R is the multivalued mapping defined by

Kf(t, x) =
⋂
ε>0

cof
(
t, Bε(x)

)
for every (t, x) ∈ I × R.

First, we look for solutions to the differential inclusion, which are known as Krasovskij solu-
tions, and, later, we prove that they are solutions to (Eq).

Both techniques are not equivalent as shown by the following example.

Example. Consider the autonomous Cauchy problem

x′ = f(x) =

{
1, if x ∈ Q,
−1, otherwise, for a.a. t ∈ I = [0, 1], x(0) = 0.
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It is obvious that x(t) = t for all t ∈ I is a solution to

x′ ∈ Kf(x) for a.a. t ∈ I, x(0) = 0,

since Kf(x) = [−1, 1] for all x ∈ R.
On the other hand, consider the integral operator T : C(I)→ C(I) given by

Tx(t) =

∫ t

0

f(x(s)) ds.

Notice that finding solutions of the Cauchy problem is equivalent to find fixed points of the
operator T . Moreover, any fixed point of T must belong to the closed and convex set

K = {y ∈ C(I) : y(0) = 0, |y(t)− y(s)| ≤ |t− s|}.

Consider the multivalued mapping T associated to the operator T : K → K defined as
above.

We shall show that the function x(t) = t is not a fixed point of the mapping T.
It is clear that TK ⊂ K. Hence if x ∈ Tx, it must exist a sequence of functions

{yn}n∈N ⊂ K such that ‖yn − x‖∞ → 0 and ‖Tyn − x‖∞ → 0. Denote An = y−1
n (Q)

and notice that

Tyn(1) =

∫ 1

0

f(yn(s)) ds =

∫
An

1 ds+

∫
[0,1]\An

−1 ds = m(An)−m([0, 1] \An).

Given an arbitrary sequence of functions {yn}n∈N ⊂ K such that ‖yn − x‖∞ ≤ 1/n for
each n ∈ N, we shall show that m(An) ≤ 2/n and thus x 6∈ Tx. Indeed, since Q is a null
measure set, it is known that y′n = 0 almost everywhere in An and then

1− 2

n
≤ yn(1)− yn(0) =

∫ 1

0

y′n(s) ds =

∫
[0,1]\An

y′n(s) ds+

∫
An

y′n(s) ds

≤ m([0, 1] \An) = 1−m(An),

so the conclusion is obtained.

The proof of the condition Fix(T) ⊂ Fix(T ) have been done for a variety of integral
operators T coming from first, second and higher order ordinary differential equations under
certain conditions on the nonlinearities throughout this manuscript. As the reader may see,
the proof is laborious and requires some technical results from measure theory. It was adapted
to different kinds of problems by using as a starting point that given by Pouso in [101].

The main advantage of this method is, roughly speaking, that it allows to investigate a
large number of differential problems just as in the case of continuous nonlinearities with the
exception of proving that Fix(T) ⊂ Fix(T ) instead of showing that T is continuous, as a
consequence of the fixed point machinery developed in Chapters 1 and 2. Also, compared to
the second approach, it avoids to study the upper semicontinuity and the compactness of the
Nemytskii operator associated to the multivalued mapping Kf which is not a trivial matter,
see [85].
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However, when the differential operator is not linear, for instance in the case of φ–
Laplacian problems, we noticed that similar reasonings to those for linear operators are not
helpful to prove the mentioned condition Fix(T) ⊂ Fix(T ). That is the reason why we con-
sider then the second method (consisting in regularizing the right–hand side in the differential
equation), which becomes really useful in Chapter 6 in order to obtain existence results for
differential problems involving the φ–Laplacian.
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Chapter 1

Degree theory for a class of
discontinuous operators

Degree theory is a fundamental tool in nonlinear analysis, especially in the study of existence
of solutions to many types of problems; see [73, 100, 113]. Readers interested in the history
and the development of degree theory are referred to the expository paper by Mawhin [110].

As a well–known fact, continuity is a basic assumption in degree theory and the clearest
limitation of its applicability. As an important particular case, we point out the usual degree-
theory-based proofs of existence of solutions to boundary value problems, which consist on
turning the former problems into fixed point problems of integral operators for which degree
theory applies. However, most discontinuous differential equations, see [38, 78], fall outside
that scope simply because the corresponding fixed point operators are not continuous.

On the other hand, the analysis of discontinuous differential equations usually leans on
fixed points results for monotone operators, and therefore the corresponding existence re-
sults lean, to some extent, on monotonicity conditions imposed on the nonlinear parts of the
considered problems.

In this chapter we introduce a new definition of topological degree, which coincides with
the usual degree in the continuous case, and it is also suitable for a wide class of operators
which need not be continuous. As a consequence, this new degree is proved to be useful
in the study of discontinuous differential equations and, moreover, it yields new existence
results which do not require monotonicity at all. Using multivalued analysis in the study of
discontinuous problems is a classical approach and the novelty here is the use of multival-
ued analysis to obtain results for single–valued operators. The applicability of our abstract
results will be clear in the next chapters, where we prove existence of solutions to differential
equations which are allowed to be discontinuous over countable families of curves, similar to
Filippov discontinuity sets [68].

Nevertheless, results based on degree theory need the operator to be defined in a suit-
able set with nonempty interior and this can be quite restrictive for certain applications. For
instance, when we are looking for positive solutions of boundary value problems in a cer-
tain cone of continuous functions, this cone could have empty interior and so degree–based
techniques become inapplicable. In the literature, this inconvenience is usually overcome by
using the so-called fixed point index [4,69], which allows us to obtain new fixed point results
as for example the well–known Krasnosel’skiı̆’s fixed point theorem in cones. Therefore, in
the last section of this chapter, we define a fixed point index theory, which applies to dis-
continuous operators, by using the fixed point theory for discontinuous operators that was
developed in Section 1.1 and a retraction trick, following the line of [4, 69].

The main results of this chapter are part of the papers [64] and [66].
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Degree theory for discontinuous operators

1.1 A topological degree for discontinuous operators

Here and henceforth, we consider a normed space (X, ‖ · ‖) and operators

T : D −→ X, ∅ 6= D ⊂ X,

not necessarily continuous, for which we want to define a degree.
The main idea in our definition of degree consists in replacing T by the following mul-

tivalued version of it for which a degree theory is already available under certain additional
assumptions to be detailed.

Definition 1.1.1. The closed–convex envelope of an operator T : D ⊂ X −→ X is the
multivalued mapping T : D −→ 2X given by

Tx =
⋂
ε>0

coT
(
Bε(x) ∩D

)
for every x ∈ D, (1.1.1)

where Bε(x) denotes the closed ball centered at x and radius ε, and co means closed convex
hull.

In other words, we say that y ∈ Tx if for every ε > 0 and every ρ > 0 there exist m ∈ N
and a finite family of vectors xi ∈ Bε(x) ∩D and coefficients λi ∈ [0, 1] (i = 1, 2, . . . ,m)
such that

∑
λi = 1 and ∥∥∥∥∥y −

m∑
i=1

λi Txi

∥∥∥∥∥ < ρ.

The following properties are straightforward consequences of the previous definition.

Proposition 1.1.2. In the conditions of Definition 1.1.1 the following statements are true:

1. Tx is closed and convex, and Tx ∈ Tx for all x ∈ D;

2. If T D ⊂ K for some closed and convex set K ⊂ X , then TD ⊂ K.

Closed–convex envelopes (cc–envelopes, for short) need not be upper semicontinuous
(usc, for short), see [50, Example 1.2], unless some additional assumptions are imposed on
T . In the following proposition we show that compactness in some sense is a sufficient
condition.

Proposition 1.1.3. Let T be an operator in the conditions of Definition 1.1.1. If T maps
bounded sets into relatively compact sets, then T assumes compact values and it is usc.
Moreover, if T D is relatively compact, then TD is relatively compact.

Proof. Let x ∈ D be fixed and let us prove that Tx is compact. We know that Tx is closed,
so it suffices to show that it is contained in a compact set. To do so, we note that

Tx =
⋂
ε>0

coT
(
Bε(x) ∩D

)
⊂ coT

(
B1(x) ∩D

)
⊂ coT

(
B1(x) ∩D

)
,

2



1.1 A topological degree for discontinuous operators

and coT
(
B1(x) ∩D

)
is compact because it is the closed convex hull of a compact subset

of a Banach space; see [3, Theorem 5.35]. Hence Tx is compact for every x ∈ D, and this
property allows us to check that T is usc by means of sequences, see Proposition A.2. To do
so, let xn → x in D and let yn ∈ Txn for all n ∈ N be such that yn → y, then we have to
prove that y ∈ Tx. Let ε > 0 be fixed and take N ∈ N such that Bε(xn) ⊂ B2ε(x) for all
n ≥ N . Then we have

yn ∈ coT (Bε(xn) ∩D) ⊂ coT (B2ε(x) ∩D) for all n ≥ N,

which implies that y ∈ coT (B2ε(x) ∩ D). Since ε > 0 was arbitrary, we conclude that
y ∈ Tx.

Arguments are similar for the second part of the proposition. For every x ∈ D and ε > 0
we have

coT (Bε(x) ∩D) ⊂ coT D,

and therefore Tx ⊂ coT D for all x ∈ D. Hence, TD is compact because it is a closed
subset of the compact set coT D.

Our next proposition shows that T is the smallest closed and convex–valued usc operator
which has T as a selection.

Proposition 1.1.4. Let T be the cc–envelope of an operator T : D −→ X .
If T̃ : D −→ 2X is an usc operator which assumes closed and convex values and,

moreover, Tx ∈ T̃x for all x ∈ D, then Tx ⊂ T̃x for all x ∈ D.

Proof. Let T̃ : D −→ 2X be an operator in the conditions of the statement, let x ∈ D be
fixed and take y ∈ Tx; we have to show that y ∈ T̃x.

First, we fix r > 0 and we consider the open set

V =
⋃
u∈T̃x

Br/2(u).

Obviously, we have T̃x ⊂ V and ρ(z, T̃x) < r/2 for all z ∈ V , where ρ denotes the metric
induced by the norm in X . Furthermore, as T̃x is convex, we have that

ρ(z, T̃x) < r/2 for all z ∈ coV . (1.1.2)

Since T̃ is upper semicontinuous, there exists ε0 > 0 such that T̃(Bε0(x) ∩ D) ⊂ V .
Since T is a selection of T̃, we also have that T (Bε0(x) ∩D) ⊂ V , and then

y ∈ Tx =
⋂
ε>0

coT
(
Bε(x) ∩D

)
⊂ coT (Bε0(x) ∩D) ⊂ coV.

Hence we can find zi ∈ V and λi ∈ [0, 1], for i = 1, 2, . . . ,m, such that
∑
λi = 1 and∥∥∥∥∥y −

m∑
i=1

λizi

∥∥∥∥∥ < r

2
.

3



Degree theory for discontinuous operators

Since
∑
λizi ∈ coV , we can use (1.1.2) to obtain that

ρ(y, T̃x) ≤ ρ

(
m∑
i=1

λizi, T̃x

)
+

∥∥∥∥∥y −
m∑
i=1

λizi

∥∥∥∥∥ < r,

which implies that y ∈ T̃x because r > 0 can be arbitrarily small and T̃x is closed.

As a remarkable corollary of the previous result we obtain the following.

Corollary 1.1.5. If T : D −→ X is continuous, then Tx = {Tx} for all x ∈ D.

We can also deduce the following useful property concerning cc-envelopes.

Lemma 1.1.6. Let T, S : D −→ X be mappings in the conditions of Definition 1.1.1. The
following properties hold:

i) If F = T + S and S is a continuous mapping, then Fx = Tx+ Sx for all x ∈ D.

ii) If F = λT with λ ∈ R, then Fx = λTx for all x ∈ D.

Proof. Let us prove the first statement. Observe that the mapping F = T + S is a selection
of T+ S, which is usc with closed and convex values, and thus Proposition 1.1.4, applied to
F , implies that Fx ⊂ Tx+ Sx for all x ∈ D.

On the other hand, T is a selection of F − S, which is also usc with closed and convex
values, so again Proposition 1.1.4 guarantees that Tx ⊂ Fx − Sx for all x ∈ D. Hence, we
have that Tx+ Sx ⊂ Fx for all x ∈ D.

The second part follows immediately from the definition of cc-envelopes.

We are already in a position to define a topological degree for some class of discontinuous
operators. In this case we replace continuity by condition (1.1.3), which just means that every
fixed point of T must be a fixed point of T . In the sequel, Id denotes the identity map.

Definition 1.1.7. Let Ω be a bounded open subset of a Banach spaceX and let T : Ω −→ X
be such that TΩ is relatively compact, Tx 6= x for every x ∈ ∂ Ω, and

{x} ∩ Tx ⊂ {Tx} for every x ∈ Ω, (1.1.3)

where T is the cc–envelope of T .
We define the degree of Id− T on Ω with respect to 0 ∈ X as follows:

deg (Id− T,Ω, 0) = deg (Id− T,Ω, 0) , (1.1.4)

where the degree in the right–hand side is that of usc multivalued operators (see Appendix
A).

Remark 1.1.8. As we mentioned above, condition (1.1.3) means that every fixed point of T
in Ω is a fixed point of T . Clearly, it is equivalent to the following

{x} ∩ Tx ⊂ {Tx} for every x ∈ Ω ∩ TΩ,

since the fixed points of the operator T are expected to be located in its image. This simple
fact helps to check condition (1.1.3) in applications.
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1.1 A topological degree for discontinuous operators

x

y T

(a) (b)

(c)

(d)

x

y T

Figure 1.1.1: Function T and its convex–closed envelope T

Let us see that deg (Id− T,Ω, 0) is well–defined in the conditions of Definition 1.1.7.
First, we know from Proposition 1.1.3 that TΩ is relatively compact. Second, if x ∈ Tx for
some x ∈ ∂ Ω, then

{x} ∩ Tx = {x} and x ∈ Ω ∩ TΩ,

which, together with condition (1.1.3), yields x = Tx, a contradiction with the assumptions
on T . Therefore, deg (Id− T,Ω, 0) is well defined and Definition 1.1.7 makes sense.

Moreover, Definition 1.1.7 reduces to the usual Leray–Schauder degree when T is con-
tinuous. Indeed, when T is continuous we have Tx = {Tx} for all x ∈ Ω, so condition
(1.1.3) is trivially satisfied, and (1.1.4) is just

deg (Id− T,Ω, 0) = deg (Id− {T},Ω, 0) ,

where deg (Id− {T},Ω, 0) is the degree for multivalued operators in the particular case of a
single–valued completely continuous operator T , which coincides with the Leray–Schauder
degree [95].

In what follows, as usual, we shall simplify notation and write deg (Id− T,Ω) instead of
deg (Id− T,Ω, 0). The definition of deg (Id− T,Ω, p) for any p ∈ X reduces to the case
p = 0, see [113].

Finally, we explain the geometrical meaning of condition (1.1.3) with a graphical example
in the one–dimensional case. See Figure 1.1.1 and observe that at the discontinuity points (a)
and (c) the jump in the graph of the function remains below and above the graph of the
identity function, respectively. Hence, {x} ∩ Tx is just the empty set at both points, and so
condition {x} ∩ Tx ⊂ {Tx} holds trivially there. In general, the behavior of the function
“does not matter” when its graph does not cross the line y = x. On the other hand, the point
(b) is a fixed point of the function T and thus condition {x}∩Tx ⊂ {Tx} is satisfied. Finally,

5



Degree theory for discontinuous operators

the point (d) is a fixed point of T and not a fixed point of T , which means that this type of
discontinuity points is not admissible (condition {x} ∩ Tx ⊂ {Tx} is not satisfied there). In
short, when the graph of T crosses the graph of the identity function, then it must do so at a
fixed point of T .

1.2 Basic properties of the degree
The degree we defined in the previous section provides, as we have seen, a generalization of
Leray–Schauder degree for some kind of discontinuous operators. As we said at the begin-
ning, Leray–Schauder degree is a very powerful tool that has been extensively used in many
contexts, particularly for guaranteeing the existence of solutions of differential equations, and
this is possible because of its topological and algebraic properties. Now we will show that
our new degree also fulfills these properties, and this will be a consequence of the properties
of degree for multivalued mappings.

Proposition 1.2.1. Let Ω be a bounded open subset of a Banach space X .
The degree introduced in Definition 1.1.7 satisfies the following properties:

1. (Homotopy invariance) LetH : Ω×[0, 1] −→ X be a mapping such thatH
(
Ω× [0, 1]

)
is relatively compact, x 6= H(x, t) for all x ∈ ∂ Ω and all t ∈ [0, 1], and for each
(x, t) ∈ Ω× [0, 1] we have

{x} ∩Ht(x) ⊂ {Ht(x)}, (1.2.1)

where Ht is the cc-envelope of the operator Ht(x) := H(x, t) for all x ∈ Ω.

If for each (x, t) ∈ Ω× [0, 1] and all ε > 0 there exists δ = δ(ε, x, t) > 0 such that

s ∈ [0, 1], |t− s| < δ =⇒ ‖H(z, t)−H(z, s)‖ < ε ∀ z ∈ Bδ(x) ∩ Ω, (1.2.2)

then deg(Id−Ht,Ω) does not depend on t.

In the next three properties, we assume that T : Ω −→ X is a mapping in the conditions of
Definition 1.1.7.

2. (Additivity) Let Ω1 and Ω2 be open, disjoint and such that Ω1 ∪ Ω2 ⊂ Ω.

If 0 /∈ (Id− T )(Ω\(Ω1 ∪ Ω2)), then we have

deg(Id− T,Ω) = deg(Id− T,Ω1) + deg(Id− T,Ω2).

3. (Excision) Let A ⊂ Ω be a closed set such that 0 /∈ (Id − T )(∂ Ω) ∪ (Id − T )(A).
Then

deg(Id− T,Ω) = deg(Id− T,Ω\A).

4. (Existence) If deg(Id− T,Ω) 6= 0, then there exists x ∈ Ω such that Tx = x.

5. (Normalization) deg(Id,Ω) = 1 if and only if 0 ∈ Ω.
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Proof.

1. We define H as the following multivalued mapping:

H(x, t) =
⋂
ε>0

coH
(
Bε(x) ∩ Ω, t

)
.

Observe that H(x, t) = Ht(x), where Ht is as in the statement.

Since H
(
Ω× [0, 1]

)
is a relatively compact set, H

(
Ω× [0, 1]

)
is relatively compact.

In addition, the multivalued mapping H is convex and closed valued. Let us prove that
H : Ω × [0, 1] → 2X is an upper semicontinuous operator. To see this, it suffices to
prove that if xn → x in Ω, tn → t in [0, 1] and yn ∈ H(xn, tn) with yn → y, then
y ∈ H(x, t). Let ε > 0 and µ > 0 be fixed; we have to find xi ∈ Bε(x) ∩ Ω and

λi ∈ [0, 1] (i = 1, . . . ,m) such that
m∑
i=1

λi = 1 and

∥∥∥∥∥y −
m∑
i=1

λiH(xi, t)

∥∥∥∥∥ < µ. (1.2.3)

We can assume without loss of generality that ε < δ(µ/4, x, t), where δ is as in 1., and
so we can take N ∈ N such that

xN ∈ Bε/2(x) ∩ Ω,

‖y − yN‖ <
µ

2
,

‖H(z, tN )−H(z, t)‖ < µ

4
∀ z ∈ Bε(x) ∩ Ω.

As yN ∈ H(xN , tN ) we know that there exist xi ∈ Bε/2(xN ) ∩ Ω and λi ∈ [0, 1]

(i = 1, . . . ,m) with
m∑
i=1

λi = 1 and

∥∥∥∥∥yN −
m∑
i=1

λiH(xi, tN )

∥∥∥∥∥ < µ

4
.

Hence, we have

‖x− xi‖ ≤ ‖x− xN‖+ ‖xN − xi‖ ≤
ε

2
+
ε

2
= ε,

so xi ∈ Bε(x) ∩ Ω. Moreover, by triangle inequality∥∥∥∥∥y −
m∑
i=1

λiH(xi, t)

∥∥∥∥∥ ≤ ‖y − yN‖+

∥∥∥∥∥yN −
m∑
i=1

λiH(xi, tN )

∥∥∥∥∥
+

∥∥∥∥∥
m∑
i=1

λi (H(xi, tN )−H(xi, t))

∥∥∥∥∥
<
µ

2
+
µ

4
+
µ

4
= µ,
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Degree theory for discontinuous operators

and thus (1.2.3) is satisfied.

On the other hand, condition (1.2.1) along with the fact that x 6= H(x, t) for every
(x, t) ∈ ∂ Ω × [0, 1], imply that x 6∈ H(x, t) for all (x, t) ∈ ∂ Ω × [0, 1], and so the
degree deg (Id−Ht,Ω) = deg (Id−Ht,Ω) is well–defined and it is independent of
t ∈ [0, 1], by homotopy property of degree for multivalued mappings, see Theorem
A.11.

2. Condition (1.1.3) and the hypothesis 0 6∈ (Id− T )
(
Ω \ (Ω1 ∪ Ω2)

)
imply that con-

dition x 6∈ Tx holds for all x ∈ Ω \ (Ω1 ∪ Ω2). Then, by direct application of the
additivity property of degree for multivalued mappings we conclude that

deg (Id− T,Ω) = deg (Id− T,Ω) = deg (Id− T,Ω1) + deg (Id− T,Ω2)

= deg (Id− T,Ω1) + deg (Id− T,Ω2) .

3. As 0 /∈ (Id− T )(A) ∪ (Id− T )(∂ Ω), condition (1.1.3) implies that

0 /∈ (Id− T)(A) ∪ (Id− T)(∂ Ω),

and so the conclusion follows from the excision property of the degree for multivalued
mappings.

4. As deg(Id− T,Ω) = deg(Id− T,Ω) 6= 0, then there exists x ∈ Ω such that x ∈ Tx,
and so condition (1.1.3) implies that x = Tx.

5. Since deg(Id,Ω) = deg(Id − 0,Ω), and the operator 0 is continuous, our degree
coincides with Leray–Schauder’s one, and the normalization property is fulfilled.

Remark 1.2.2. Note that condition (1.1.3) is not essential in order to define deg(Id− T,Ω)
in terms of deg(Id − T,Ω); in fact, to this end it suffices to require that {x} ∩ Tx ⊂ {Tx}
in ∂ Ω. However, we need this condition to be satisfied in the whole of Ω ∩ TΩ to guarantee
the desirable existence property. As an example, the reader can consider the mapping T :
(−1, 1) 7−→ (−1, 1) defined by 1

2 (χ(−1,0] − χ(0,1)). Thus defined, {x} ∩ Tx = ∅ for x ∈
{−1, 1} and deg(Id − T, (−1, 1)) 6= 0 (as a consequence of the multivalued version of
Borsuk’s Theorem [139]), but T has no fixed point in (−1, 1).

The homotopy invariance property that we proved above becomes not very useful in prac-
tice. It is due to the instability of condition (1.2.1) requested for all t ∈ [0, 1] and all x ∈ Ω,
because the set of functions satisfying this condition is not very well–behaved, as we show in
the following example.

Example 1.2.3. Let T : [0, 1] −→ [0, 1] be the piecewise constant function given by

T (x) =


1/3 if 0 ≤ x ≤ 1/3,

2/3 if 1/3 < x ≤ 2/3,

1 if 2/3 < x ≤ 1.

8



1.2 Basic properties of the degree

x

y

0 1

1
T

x

y

0 1

1
T

Function T Multivalued map T

x

y

0 1

1

S

x

y

0 1

1

S

Function S Multivalued map S

Figure 1.2.1: Functions T and S with their associated multivalued maps T and S

Then it is easy to check that condition (1.1.3) holds for all x ∈ [0, 1] (see Figure 1.2.1)
but this is not true for the mapping S = 1

2T at the point x = 1/3. Indeed, in this case we
have {

1

3

}⋂
S
(

1

3

)
=

{
1

3

}⋂[
1

6
,

1

3

]
=

{
1

3

}
6⊂
{

1

6

}
=

{
S

(
1

3

)}
.

The previous example shows that even for linear homotopies condition (1.2.1) can fail.
To overcome this difficulty improve on the previous proposition in order to avoid requesting
condition (1.2.1) for all t.

Theorem 1.2.4. Let H : Ω× [0, 1] −→ X be a map satisfying the following conditions:

(a) for each (x, t) ∈ Ω× [0, 1] and all ε > 0 there exists δ = δ(ε, x, t) > 0 such that

s ∈ [0, 1], |t− s| < δ =⇒ ‖H(z, t)−H(z, s)‖ < ε ∀ z ∈ Bδ(x) ∩ Ω;

9



Degree theory for discontinuous operators

(b) H
(
Ω× [0, 1]

)
is relatively compact;

(c) {x} ∩Ht(x) ⊂ {Ht(x)} is satisfied for all x ∈ Ω ∩HtΩ when t = 0 and t = 1.

If x 6∈ H(x, t) for all (x, t) ∈ ∂ Ω× [0, 1], then

deg (Id−H0,Ω) = deg (Id−H1,Ω) .

Proof. It is possibly to prove that the degree for multivalued mappings is well defined for

Ht(x) =
⋂
ε>0

co
(
Ht

(
Bε(x) ∩ Ω

))
,

for every t ∈ [0, 1], in a similar way that for homotopy invariance property above. There-
fore, the homotopy invariance property of the degree for multivalued mappings guarantees in
particular that

deg (Id−H0,Ω) = deg (Id−H0,Ω) = deg (Id−H1,Ω) = deg (Id−H1,Ω) ,

which ends the proof.

We finish this section by introducing two classical results in the context of Leray–Schauder
degree that remain true when considering our new degree for discontinuous operators satis-
fying (1.1.3). The first one is the well–known fact that for degree “only what happens in the
boundary matters,” and the second one is the natural extension of Borsuk’s Theorem in our
setting.

Proposition 1.2.5. Let T, S : Ω −→ X be two mappings in the conditions of Definition
1.1.7. If Tx = Sx for all x ∈ ∂ Ω and 0 /∈ (Id− T )(∂ Ω), then

deg(Id− T,Ω) = deg(Id− S,Ω).

Proof. The degree for the multivalued mappings T and S in Ω is well defined because T
and S are in the conditions of Definition 1.1.7, so Tx = Sx for all x ∈ ∂ Ω implies that
deg (Id− T,Ω) = deg (Id− S,Ω), see Proposition A.13. Therefore, by Definition 1.1.7,
we conclude that deg (Id− T,Ω) = deg (Id− S,Ω).

As the proof of the following result is similar to the previous one with the obvious changes
we will omit it.

Theorem 1.2.6. (Borsuk’s) Assume that 0 ∈ Ω and that x ∈ Ω implies −x ∈ Ω, and let
T : Ω −→ X be a mapping in the conditions of Definition 1.1.7. If 0 /∈ (Id − T )(∂ Ω) and
T(x) = −T(−x) for all x ∈ ∂ Ω, then deg(Id− T,Ω) is odd.

1.3 Fixed point index for discontinuous operators
In this section we introduce a fixed point index for discontinuous operators satisfying condi-
tion (1.1.3) and then we study its properties.

10



1.3 Fixed point index for discontinuous operators

Definition 1.3.1. LetK be a nonempty closed and convex subset of a Banach space (X, ‖·‖),
U a relatively open subset of K, and let T : U ⊂ K −→ K be an operator such that T U is
relatively compact, T has no fixed points on ∂KU and

{x} ∩ Tx ⊂ {Tx} for every x ∈ U, (1.3.1)

where T is the cc–envelope of T .
We define the fixed point index of T in K over U as

iK(T,U) = deg(Id− T ◦ r, r−1(U) ∩BR(0)),

where r is a continuous retraction of X onto K and BR(0) is an open ball centered at 0 and
radius R > 0 such that TU ⊂ BR(0).

Notice that the retraction r exists by virtue of the following well–known result by Dugundji
[54, Theorem 4.1].

Theorem 1.3.2 (Dugundji). Suppose that A is a closed subset of a metric space B, and let L
be a normed linear space. Every continuous function f : A −→ L has a continuous extension
g : B −→ L such that g(B) ⊂ cof(A).

Next we will show the number deg(Id− T ◦ r, r−1(U) ∩BR(0)) is well–defined.

Proposition 1.3.3. Let T be as in the conditions of Definition 1.3.1. Then the mapping

F = T ◦ r : r−1(U) −→ K

satisfies that F
(
r−1(U)

)
is relatively compact, Fx 6= x for all x ∈ ∂

(
r−1(U) ∩BR(0)

)
and

{x} ∩ Fx ⊂ {Fx} for all x ∈ r−1(U),

where F is the cc–envelope of F .

Proof. First, the set F
(
r−1(U)

)
is a relatively compact subset of X because it is contained

in T U , which is relatively compact.
Second, if for some x ∈ ∂

(
r−1(U) ∩BR(0)

)
we have x = F x ∈ K, then r(x) = x.

Hence x = Tx, and by hypothesis T is fixed point free on ∂KU , which implies that x belongs
to U ∩BR(0). Since U ∩BR(0) ⊂ r−1(U)∩BR(0) and r−1(U)∩BR(0) is open, we deduce
that x 6∈ ∂

(
r−1(U) ∩BR(0)

)
, a contradiction.

Finally we will see that {x} ∩ Fx ⊂ {Fx} for all x ∈ r−1(U). Clearly, it suffices to
check this for all x ∈ r−1(U) ∩ F

(
r−1(U)

)
. As F

(
r−1(U)

)
⊂ T U ⊂ K, and K is a

convex and closed set, we obtain F
(
r−1(U)

)
⊂ K and then

r−1(U) ∩ F
(
r−1(U)

)
⊂ r−1(U) ∩K ⊂ U.

11



Degree theory for discontinuous operators

Let x ∈ U , then F x = T x. Moreover, since r is continuous at x and r(x) = x we have
that for every ε > 0 there exists δ > 0 (we can choose δ < ε) such that

r
(
Bδ(x) ∩ r−1(U)

)
⊂ Bε (r(x)) ∩ U = Bε (x) ∩ U.

Hence we deduce

Fx =
⋂
δ>0

coF
(
Bδ(x) ∩ r−1(U)

)
=
⋂
δ>0

co (T ◦ r)
(
Bδ(x) ∩ r−1(U)

)
⊂
⋂
ε>0

coT
(
Bε(x) ∩ U

)
= Tx.

Therefore {x}∩Fx ⊂ {x}∩Tx ⊂ {T x} = {F x} for all x ∈ U ⊃ r−1(U)∩F
(
r−1(U)

)
and this ends the proof.

Let us show now that Definition 1.3.1 does not depend on the retraction or the ballBR(0)
chosen.

Proposition 1.3.4. In the conditions of Definition 1.3.1, iK(T,U) does not depend on the
retraction or the ball BR(0) chosen.

Proof. Let r1 : X −→ K and r2 : X −→ K be two retractions and let BR1
(0) and BR2

(0)
two open balls in the conditions of Definition 1.3.1. Assume that R1 < R2. For j = 1, 2, the
additivity property of the degree yields

deg
(
Id− T ◦ rj , r−1

j (U) ∩BR2
(0)
)

= deg
(
Id− T ◦ rj , r−1

j (U) ∩BR1
(0)
)

+ deg
(
Id− T ◦ rj , r−1

j (U) ∩BR2(0) \BR1(0)
)
.

Since T ◦ rj has no fixed point outside BR1
(0), we have

deg
(
Id− T ◦ rj , r−1

j (U) ∩BR2
(0)
)

= deg
(
Id− T ◦ rj , r−1

j (U) ∩BR1
(0)
)
.

It remains to prove that

deg
(
Id− T ◦ r1, r

−1
1 (U) ∩BR1

(0)
)

= deg
(
Id− T ◦ r2, r

−1
2 (U) ∩BR1

(0)
)
. (1.3.2)

Now consider the set V = r−1
1 (U) ∩ r−1

2 (U) ∩BR1
(0). We have

deg
(
Id− T ◦ rj , r−1

j (U) ∩BR1
(0)
)

= deg
(
Id− T ◦ rj , r−1

j (U) ∩BR1
(0) \ V

)
+ deg (Id− T ◦ rj , V )

= deg (Id− T ◦ rj , V ) ,

because T ◦ rj has no fixed point in r−1
j (U) ∩BR1(0) \ V .

Therefore, proving (1.3.2) reduces to check that

deg (Id− T ◦ r1, V ) = deg (Id− T ◦ r2, V ) .
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1.3 Fixed point index for discontinuous operators

Consider the homotopy H : V × [0, 1] −→ K given by

H(x, t) = tF1 x+ (1− t)F2 x,

where Fj x = T ◦ rj(x), j = 1, 2. Since the Fj’s are bounded, condition (1.2.2) is immedia-
tely satisfied.

Let us check now that condition

{x} ∩Ht(x) ⊂ {Ht(x)} (1.3.3)

is satisfied for every x ∈ V ∩Ht(V ) and all t ∈ [0, 1].
Since K is convex we have that Ht

(
V
)
⊂ K and since K is closed, it follows that

Ht
(
V
)
⊂ K. Hence, V ∩Ht(V ) ⊂ V ∩K. Let x ∈ V ∩K and t ∈ [0, 1] be fixed, then

Ht(x) = t T x+ (1− t)T x = T x.

By Proposition 1.3.3, we deduce Fj x ⊂ Tx, j = 1, 2. In a similar way we obtain that

Ht(x) ⊂ Tx,

so we have
{x} ∩Ht(x) ⊂ {x} ∩ Tx ⊂ {T x} = {Ht(x)} .

If we prove that x 6= H(x, t) for all (x, t) ∈ ∂ V × [0, 1], then we can conclude, by
means of condition (1.3.3), that x 6∈ H(x, t) for all (x, t) ∈ ∂ V × [0, 1]. So, assume that
x = H(x, t) for some x ∈ ∂ V and t ∈ [0, 1], then

x = t T (r1(x)) + (1− t)T (r2(x)) ∈ K,

and so r1(x) = x = r2(x). Hence x = T x, a contradiction.
Therefore, invariance under homotopy guarantees that

deg (Id− T ◦ r2, V ) = deg (Id−H0, V ) = deg (Id−H1, V ) = deg (Id− T ◦ r1, V ) ,

and we conclude.

As a direct consequence of Proposition 1.2.1, the following properties of the fixed point
index hold.

Theorem 1.3.5. Let T be a mapping with the conditions of Definition 1.3.1. Then the follow-
ing properties are satisfied

1. (Homotopy invariance) Let H : U × [0, 1] −→ K be a mapping such that:

(a) for each (x, t) ∈ U × [0, 1] and all ε > 0 there exists δ = δ(ε, x, t) > 0 such
that

s ∈ [0, 1], |t− s| < δ =⇒ ‖H(z, t)−H(z, s)‖ < ε ∀ z ∈ Bδ(x) ∩ U ;

(b) H
(
U × [0, 1]

)
is relatively compact;

13



Degree theory for discontinuous operators

(c) {x} ∩ Ht(x) ⊂ {Ht(x)} for all t ∈ [0, 1] and all x ∈ U ∩ HtU , where Ht
denotes the cc–envelope of operator Ht(x) = H(t, x).

If x 6= H(x, t) for all (x, t) ∈ ∂ U × [0, 1], then the index iK (Ht, U) does not depend
on t ∈ [0, 1].

2. (Additivity) Let U1 and U2 be open, disjoint and such that U1 ∪ U2 ⊂ U .

If 0 6∈ (Id− T )
(
U \ (U1 ∪ U2)

)
, then

iK (T,U) = iK (T,U1) + iK (T,U2) .

3. (Excision) Let A ⊂ U be a closed set. If 0 6∈ (Id− T ) (∂ U) ∪ (Id− T ) (A), then

iK (T,U) = iK (T,U \A) .

4. (Existence) If iK (T,U) 6= 0, then there exists x ∈ U such that Tx = x.

5. (Normalization) For every constant map T such that T U ⊂ U , iK (T,U) = 1.

Note that Theorem 1.3.5, when specialized to continuous operators, gives the usual pro-
perties of the Leray–Schauder fixed point index, see [4].

Proposition 1.3.6. Let H : U × [0, 1] −→ K be a map satisfying the following conditions:

(a) For each (x, t) ∈ U × [0, 1] and all ε > 0 there exists δ = δ(ε, x, t) > 0 such that

s ∈ [0, 1], |t− s| < δ =⇒ ‖H(z, t)−H(z, s)‖ < ε ∀ z ∈ Bδ(x) ∩ U ;

(b) H
(
U × [0, 1]

)
is relatively compact;

(c) {x} ∩Ht(x) ⊂ {Ht(x)} holds for all x ∈ U ∩HtU when t = 0 and t = 1.

If x 6∈ H(x, t) for all (x, t) ∈ ∂ U × [0, 1], then

iK (H0, U) = iK (H1, U) .

Remark 1.3.7. Continuity in the time variable is a natural assumption for an homotopy,
since its idea consists in producing a continuous deformation of a function H0 in time t = 0
to another function H1 in time t = 1. However, for every fixed t, the function Ht may be
discontinuous.

Proposition 1.3.8. Let T be a mapping in the conditions of Definition 1.3.1. The fixed point
index of T satisfies that

iK(T,U) = iK(T, U),

where the right–hand index is the fixed point index defined for multivalued mappings, see
[69].
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1.3 Fixed point index for discontinuous operators

Proof. First we have by Definitions 1.3.1 and 1.1.7 that

iK(T,U) = deg
(
Id− T ◦ r, r−1(U) ∩BR(0)

)
= deg

(
Id− F, r−1(U) ∩BR(0)

)
,

where F is the cc–envelope of F = T ◦ r.
On the other hand, the fixed point index for the multivalued mapping T reads as

iK(T, U) = deg
(
Id− T ◦ r, r−1(U) ∩BR(0)

)
.

Since T ◦ r(x) ∈ T ◦ r(x) for all x ∈ r−1(U), T ◦ r is a mapping with convex closed
values and, in addition, it is upper semicontinuous because it is the composition of two upper
semicontinuous mappings, Proposition 1.1.4 guarantees Fx ⊂ T(r(x)) for all x ∈ r−1(U).

Now we consider the homotopy H : r−1(U) ∩BR(0)× [0, 1] −→ 2K given by

H(x, t) = tFx+ (1− t)T ◦ r(x).

We will see that this homotopy is admissible, so assume on the contrary that there exists
x ∈ ∂ (r−1(U) ∩BR(0)) and t ∈ [0, 1] such that x ∈ H(x, t). Then,

x ∈ tFx+ (1− t)T ◦ r(x) ⊂ tT ◦ r(x) + (1− t)T ◦ r(x) = T ◦ r(x),

so x ∈ K, and this implies that x ∈ Tx. By virtue of the continuity of the retraction r it
follows that x = r(x) ∈ ∂ U , a contradiction. Therefore, the homotopy invariance of the
topological degree for multivalued mappings guarantees

deg
(
Id− F, r−1(U) ∩BR(0)

)
= deg

(
Id− T ◦ r, r−1(U) ∩BR(0)

)
,

and the proof is over.

By means of the previous proposition and the properties of fixed point index for multiva-
lued mappings [69, 116], it is possible to deduce the following result.

Proposition 1.3.9. Let S be a convex and closed subset of X and let T be a mapping in the
conditions of Definition 1.3.1 satisfying T U ⊂ S. Then,

iK (T,U) = iS (T,U ∩ S) .

Proof. First, since x 6= Tx for all x ∈ ∂ U and S ⊂ K, it follows ∂S(U ∩S) ⊂ ∂KU , and so
x 6= Tx for all x ∈ ∂S(U ∩ S). Hence, both hands of the previous equality are well–defined.

Now, as S is convex and closed and T U ⊂ S, then TU ⊂ S. Therefore we have

iK(T, U) = iS(T, U ∩ S),

and the conclusion is obtained by application of Proposition 1.3.8.

Remark 1.3.10. In Definition 1.3.1, TU is required to be a relatively compact set, but weaker
conditions about the compactness of this image can be sufficient in order to define a fixed
point index. Related to this, in [69, 137, 139] a fixed point index for continuous condensing
mappings is considered. The previous theory could be easily extended to that class of oper-
ators, following the paper by Väth [137], but it is not necessary for our applications so, for
simplicity, we omit it here.
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Chapter 2
Fixed point theorems for some

discontinuous operators

Fixed point theorems are powerful tools for proving existence, uniqueness or multiplicity of
solutions for a wide range of equations which, in particular, include integral equations derived
from nonlinear differential problems. Furthermore, choosing adequate domains makes it pos-
sible to deduce qualitative properties of the solutions of such problems, such as positivity or
localization. Having as much information on the solutions as we may is particularly impor-
tant when the considered problems are mathematical models coming from biology, physics,
economy or other applied sciences.

Two main types of assumptions are at the base of most fixed point theorems, namely,
continuity and monotonicity. By obvious reasons, discontinuous differential equations cannot
be studied by means of fixed point theorems for continuous operators, and the use of fixed
point theorems for monotone operators introduces rather strong monotonicity assumptions
on the nonlinear parts of the equations. In this chapter we use the degree theory introduced
in Chapter 1 to prove discontinuous analogues of well–known fixed point theorems for con-
tinuous operators which can be applied in the analysis of many non–monotone discontinuous
differential equations.

In particular, we prove discontinuous versions of Schauder [133] and Krasnosel’skiı̆ fixed
point theorems [91], whose classical versions have been extensively applied and generalized
to different classes of maps and spaces in the literature [56, 100, 144]. In addition, we shall
improve on two recent modifications of Krasnosel’skiı̆ fixed point theorem in cones. The first
one is due to Cabada, Cid, Infante and collaborators [28–30, 43], who obtained fixed point
theorems in cones by imposing compression or expansion conditions only at one boundary of
a conical shell instead of imposing conditions on the two boundaries, as in the original result.
The price they paid was the addition of a monotonicity hypothesis on the operator and the
assumption of the existence of an upper (or lower) fixed point.

The second modification of Krasnosel’skiı̆’s result concerns systems of operator equations
and it is due to Precup [118, 119]. It gives upper and lower bounds for the fixed points in
each variable independently. Moreover, this componentwise approach of the compression–
expansion type results allows different behaviors (that is, compression or expansion) in each
component of the system.

We remark that while some of our fixed point theorems are not particularly surprising
corollaries of the analogous results for upper semicontinuous multivalued mappings, they
have a much more general applicability range than their classical single–valued continuous
versions. This fact allows us to give new existence results for differential problems where the
classical assumptions about the nonlinearities are weaker, as shown in the following chapters.

The fixed point theorems studied here were presented in the papers [61, 64, 66, 103, 128].
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Fixed point theorems

2.1 Schauder type fixed point theorems

One of the most typical applications of degree theory is that of looking for topological spaces
which satisfy the so called fixed point property, that is, topological spaces M such that any
continuous mapping T : M −→M has a fixed point. It was proved by Dugundji [54] that in
every infinite–dimensional space there exists a fixed–point–free mapping from its closed unit
ball into itself, and so some extra–assumption regarding compactness of images is required
in the infinite–dimensional case. In this section we will use our new degree to extend these
results for operators which are not necessarily continuous but satisfy condition (1.1.3).

The investigation of this question was initiated in the papers by Pouso [101] and Figueroa
and Infante [58]. There, fixed point theorems are presented as direct consequences of the
analogous results for upper semicontinuous multivalued maps, namely, Bohnenblust–Karlin
fixed point theorem [49]. Nevertheless, here we shall prove our fixed point results directly,
by using the fixed point index defined in the previous chapter.

Theorem 2.1.1. Let M be a nonempty closed and convex subset of a Banach space X . Let
T : M −→M be a mapping satisfying that

{x} ∩ Tx ⊂ {Tx} for all x ∈M, (2.1.1)

where T is as in (1.1.1) with D = M , and such that TM is relatively compact. Then
iM (T,M) = 1.

Proof. Since M is closed and convex, iM (T,M) is well–defined. Let x0 ∈ M be fixed and
consider the homotopy H : M × [0, 1] −→M given by

H(x, t) = (1− t)x0 + t Tx.

Since TM is relatively compact, H(M × [0, 1]) is relatively compact too. Finally, taking
into account that ∂MM = ∅ and, by assumption, {x} ∩ Htx ⊂ {Htx} for all x ∈ M when
t = 0, 1, the properties of fixed point index imply iM (T,M) = iM (x0,M) = 1.

Theorem 2.1.2. Let M be a nonempty closed and convex subset of a Banach space X . Let
T : M −→ M be a mapping satisfying condition (2.1.1) and such that TM is relatively
compact. Then the operator T has at least a fixed point in M .

Proof. It is a straightforward consequence of Theorem 2.1.1 and the existence property of
the fixed point index.

As a consequence of the previous result we obtain a generalization of the usual statement
of Schauder’s fixed point theorem.

Theorem 2.1.3. Let M be a nonempty convex and compact subset of X . Let T : M −→ M
be a mapping satisfying (2.1.1). Then T has a fixed point in M .

Proof. Since TM ⊂ M and M is compact, TM is a relatively compact subset of X . As an
application of Theorem 2.1.2, the operator T has a fixed point in M .
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2.2 Krasnosel’skiı̆’s type fixed point theorems

2.2 Krasnosel’skiı̆’s compression–expansion type fixed point
theorems in cones

The classical compression–expansion fixed point theorem of Krasnosel’skiı̆, which provides
the existence of fixed points of compact operators inside conical shells (see [4] or [144]), is a
well–known tool of nonlinear analysis and it has been extensively used in literature in order
to obtain existence of positive solutions for some kind of nonlinear problems. In this section
we prove a generalization of that theorem where continuity will be replaced by our condition
(2.1.1).

For the sake of completeness, we recall some basic definitions about cones. A closed and
convex subset K of a Banach space (X, ‖ · ‖) is a cone if it satisfies the following conditions:

(i) if x ∈ K, then λx ∈ K for all λ ≥ 0;

(ii) if x ∈ K and −x ∈ K, then x = 0.

A cone K defines the partial ordering in X given by x � y if and only if y − x ∈ K. For
x, y ∈ X , with x � y, the set

[x, y] = {z ∈ X : x � z � y}

is said to be an order interval.
The cone K is called normal with a normal constant c > 0 if

‖x‖ ≤ c ‖y‖ for all x, y ∈ X with 0 � x � y.

Moreover, if K has nonempty interior, then it is said to be a solid cone.
For a given ρ > 0, we will denote

Kρ = {x ∈ K : ‖x‖ < ρ} .

Now we introduce the main results in this section.

Theorem 2.2.1. Let R > 0 and 0 ∈ Ωi ⊂ KR relatively open subsets of K (i = 1, 2). Let
T : KR −→ K be a mapping such that T KR is relatively compact and it fulfills condition
(2.1.1) in KR.

(a) If λx 6∈ Tx for all x ∈ K with x ∈ ∂ Ω1 and all λ ≥ 1, then iK(T,Ω1) = 1.

(b) If there exists w ∈ K with ‖w‖ 6= 0 such that x 6∈ Tx + λw for every λ ≥ 0 and all
x ∈ K with x ∈ ∂ Ω2, then iK(T,Ω2) = 0.

Proof.

(a) We define the homotopy H : Ω1 × [0, 1] −→ K given by

H(x, t) = t Tx.
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The set T KR is relatively compact and, then, so is H
(
Ω1 × [0, 1]

)
. By assumption,

we have
{x} ∩Ht(x) ⊂ {Ht(x)} for t = 0, 1 and all x ∈ Ω1.

Therefore, if there exists (x, t) ∈ ∂ Ω1 × [0, 1] such that x ∈ H(t, x), then it implies

that
1

t
x ∈ Tx for some t ∈ (0, 1] and x ∈ ∂ Ω1, a contradiction.

By Proposition 1.3.6 and the normalization property of the index, we have

iK(T,Ω1) = iK(0,Ω1) = 1.

(b) Assume on the contrary that iK(T,Ω2) 6= 0. Since T KR is relatively compact, we
can take µ > 0 such that ‖y‖ < µ for every y ∈ Tx and all x ∈ Ω2. Choose
λ > (R+ µ)/ ‖w‖ and consider the homotopy given by

H(x, t) = Tx+ tλw.

We have by assumption that x 6∈ H(x, t) for all x ∈ ∂ Ω2 and every t ∈ [0, 1]. Hence,
by virtue of the homotopy invariance property of fixed point index for multivalued
mappings, Theorem A.11, we obtain

iK(T,Ω2) = iK(T+ λw,Ω2).

Now, since iK(T,Ω2) = iK(T,Ω2) 6= 0 (see Proposition 1.3.8), there exists x ∈ Ω2

such that x ∈ Tx+ λw. Then,

‖x− λw‖ ≥ λ ‖w‖ − ‖x‖ > (R+ µ)− ‖x‖ > µ > ‖y‖ ,

for all y ∈ Tx, a contradiction. Therefore, iK(T,Ω2) = 0.

In particular, if we take Ω1 = Kr1 and Ω2 = Kr2 for some constants r1, r2 > 0, then we
obtain a new version of the classical Krasnosel’skiı̆ theorem in conical shells.

Theorem 2.2.2. Let 0 < ri ≤ R (i = 1, 2) and let T : KR −→ K be a mapping such that
T KR is relatively compact and it fulfills condition (2.1.1) in KR.

(a) If λx 6∈ Tx for all x ∈ K with ‖x‖ = r1 and all λ ≥ 1, then iK(T,Kr1) = 1.

(b) If there exists w ∈ K with ‖w‖ 6= 0 such that x 6∈ Tx + λw for every λ ≥ 0 and all
x ∈ K with ‖x‖ = r2, then iK(T,Kr2) = 0.

The following corollary is an immediate consequence of Theorem 2.2.2, where conditions
are now written in terms of the partial ordering of the cone.

Corollary 2.2.3. Let 0 < ri ≤ R (i = 1, 2) and let T : KR −→ K be a mapping such that
T KR is relatively compact and it fulfills condition (2.1.1) in KR.

(i) If y 6� x for all y ∈ Tx and all x ∈ K with ‖x‖ = r1, then iK(T,Kr1) = 1.

(ii) If y 6� x for all y ∈ Tx and all x ∈ K with ‖x‖ = r2, then iK(T,Kr2) = 0.
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Proof. It suffices to show that all the conditions in Theorem 2.2.2 are satisfied. First, we
prove that condition (i) implies condition (a) in Theorem 2.2.2. To do so, let x ∈ K be such
that ‖x‖ = r1 and let λ ≥ 1, and assume by contradiction that y = λx ∈ Tx. Then we have

y − x = (λ− 1)x ∈ K (because λ− 1 ≥ 0),

which implies that y � x, a contradiction with condition (i).
On the other hand, to show that condition (ii) implies (b) in Theorem 2.2.2, we again

assume by contradiction that for every w ∈ K such that ‖w‖ 6= 0 we can find x ∈ ∂Kr2

and λ ≥ 0 such that x ∈ Tx + λw, i.e., there exists y ∈ Tx such that x = y + λw. Hence,
x− y = λw ∈ K, which contradicts (ii).

These computations for fixed point index allow us to deduce some compression–expansion
type fixed point theorems.

Theorem 2.2.4. Let R > 0 and Ωi ⊂ KR relatively open subsets of K (i = 1, 2) such that
either 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 or 0 ∈ Ω2 ⊂ Ω2 ⊂ Ω1. Let T : KR −→ K be a mapping such
that T KR is relatively compact and it fulfills condition (2.1.1) in KR. Suppose that

(a) λx 6∈ Tx for all x ∈ K with x ∈ ∂ Ω1 and all λ ≥ 1,

(b) there exists w ∈ K with ‖w‖ 6= 0 such that x 6∈ Tx + λw for every λ ≥ 0 and all
x ∈ K with x ∈ ∂ Ω2.

Then T has a fixed point which belongs either to Ω2 \ Ω1 (if Ω1 ⊂ Ω2) or to Ω1 \ Ω2 (if
Ω2 ⊂ Ω1).

Proof. From Theorem 2.2.1, the conclusion is obtained by the additivity and existence pro-
perties of the fixed point index.

Theorem 2.2.5. Let 0 < r1, r2 ≤ R, r1 6= r2 and let T : KR −→ K be a mapping such that
T KR is relatively compact and it fulfills condition (2.1.1) in KR. Suppose that

(a) λx 6∈ Tx for all x ∈ K with ‖x‖ = r1 and all λ ≥ 1,

(b) there exists w ∈ K with ‖w‖ 6= 0 such that x 6∈ Tx + λw for every λ ≥ 0 and all
x ∈ K with ‖x‖ = r2.

Then T has a fixed point x ∈ K such that

min {r1, r2} < ‖x‖ < max {r1, r2} .

Remark 2.2.6. If r1 > r2, then conditions (a)–(b) are usually called compression type
conditions. On the other hand, if r1 < r2, they are said cone–expansion conditions.

Remark 2.2.7. Observe that Theorem 2.2.5 does not remain true if we replace T by T in the
assumptions, as we show in the following example.

21



Fixed point theorems

Example 2.2.8. In X = R2 we consider the cone K = R2
+ =

{
(x, y) ∈ R2 : x, y ≥ 0

}
.

Let 0 < r < R and define a mapping T : K −→ K in polar coordinates as

T (ρ, θ) =


(0, 0), if ρ 6= r,(
r,
π

2

)
, if θ ∈

[
0,
π

4

)
, ρ = r,

(r, 0), if θ ∈
[π

4
,
π

2

]
, ρ = r.

Note that Tx = {Tx} = {(0, 0)} for all x ∈ K such that ‖x‖ 6= r because T is conti-
nuous at those points. For points x = (r, θ), with θ ∈ [0, π/2], we have three possibilities:
if θ ∈ [0, π/4), then Tx is the segment with endpoints (0, 0) and (r, π/2); if θ ∈ (π/4, π/2],
then Tx is the segment with endpoints (0, 0) and (r, 0); finally, T(r, π/4) is the triangle with
vertices (0, 0), (r, 0) and (r, π/2). Therefore,

{x} ∩ Tx ⊂ {Tx} for all x ∈ K.

Moreover, conditions (a) and (b) in Theorem 2.2.5 are satisfied if we replace T by T (and we
take r1 = R, r2 = r and any w ∈ R2 \ {(0, 0)}). However, T has no fixed point satisfying
that r < ‖x‖ < R.

2.3 Krasnosel’skiı̆ type fixed point theorems in cones for
monotone operators

In the last years some authors studied new criteria for the existence of fixed points of com-
pletely continuous operators in cones, where the usual conditions regarding two different
boundaries were relaxed, see [28–30,43,70,72]. These new results only require assumptions
about the behavior of the operator on one boundary instead of on two boundaries as in the
classical fixed point theorems of compression–expansion type. The way to do that is by using
some monotone iterative techniques. In this section we will generalize the mentioned results
in order to allow their application to our class of possibly discontinuous operators.

First, we introduce a result on the existence of extremal fixed points for nondecreasing
operators due to Heikkilä et al. [78, Theorem 1.2.2], which will be useful for us throughout
this section.

Theorem 2.3.1. Let Y be a subset of an ordered metric space X , [a, b] a nonempty order
interval in Y , and G : [a, b] −→ [a, b] a nondecreasing mapping. If (Gxn)∞n=0 converges
in Y whenever (xn)∞n=0 is a monotone sequence in [a, b], then the well-ordered chain of G-
iterations of a has the maximum x∗, and the inversely well-ordered chain of G-iterations of b
has the minimum x∗, and

x∗ = min {y |Gy ≤ y} , x∗ = max {y | y ≤ Gy} .

In particular, x∗ and x∗ are the extremal fixed points of G.

Let (X, ‖·‖) be a real Banach space and K ⊂ X a solid cone. We state our results on the
existence of non-trivial fixed points.
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2.3 Fixed point theorems in cones for monotone operators

Theorem 2.3.2. Let T : K −→ K be an operator mapping bounded sets into relatively
compact sets. Assume that

1. there exists r > 0 such that Tx ⊂ {Tx} −K for all x ∈ K with ‖x‖ = r,

2. there exist β ∈ K, with T β � β, and R ≥ r such that BR(β) ⊂ K,

3. the mapping T is nondecreasing in P = {x ∈ K : x � β} and T P is relatively com-
pact,

4. there exists a bounded open set V ⊂ K such that iK(T, V ) = 0 and Kr ⊂ V or
V ⊂ Kr.

If T satisfies condition (2.1.1) on P ∪ V , then T has at least a non–trivial fixed point in K

which either belongs to P or to

{
V \Kr, if Kr ⊂ V,

Kr \ V , if V ⊂ Kr.

Proof. Since BR(β) ⊂ K, if x ∈ K with ‖x‖ ≤ R, then β − x ∈ K and so x � β.
Now we have two possibilities. First, if we have that there exists α ∈ K with ‖α‖ = r

and Tα � α, then α � β and if α � x � β, since T is a nondecreasing mapping and
Tβ � β, we obtain α � Tα � Tx � Tβ � β. Thus T maps the order interval [α, β] into
itself. Notice that [α, β] is a nonempty closed and convex set, T ([α, β]) ⊂ T P is relatively
compact and condition (2.1.1) is fulfilled in [α, β], so Theorem 2.1.2 implies that T has at
least a fixed point in [α, β].

On the other hand, if we have that Tx 6� x for all x ∈ K with ‖x‖ = r, then y 6� x
for all y ∈ Tx with x ∈ K, ‖x‖ = r. Indeed, for y ∈ Tx with x ∈ K and ‖x‖ = r, we
have y − x = Tx − x − k for some k ∈ K, by hypothesis 1. Thus Tx − x 6∈ K implies
that y − x 6∈ K. Therefore, by Corollary 2.2.3, iK(T,Kr) = 1. Since iK(T, V ) = 0, the
properties of fixed point index (see Theorem 1.3.5) ensure that there exists a non-trivial fixed
point of T in V \Kr (if Kr ⊂ V ) or in Kr \ V (if V ⊂ Kr).

Remark 2.3.3. Notice that hypothesis 1 in Theorem 2.3.2 is weaker than continuity of the
operator T in a neighborhood of the origin.

In fact, such a condition is satisfied if the operator T is “upper semicontinuous” for
x ∈ K with ‖x‖ = r, that is,

(1∗) for all ε > 0 there exists δ > 0 such that ‖y − x‖ < δ, y ∈ K, implies

Ty ∈ Bε(Tx)−K.

Indeed, if (1∗) holds, then for each ε > 0,

Tx ⊂ co
(
Bε(Tx)−K

)
= Bε(Tx)−K,

so Tx ⊂ {Tx} −K.

Remark 2.3.4. The previous result seems to be new even in the case of a completely con-
tinuous operator T . In [28–30, 43], the authors require the cone either to be normal or to
satisfy a suitable condition which involves the partial ordering induced by the cone and the
norm of the Banach space (see [29]). However, for some applications it can be useful to work
in cones which do not satisfy those conditions, as we will show.
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Some assumptions in Theorem 2.3.2 can be weakened if we ask the coneK to be normal,
as we prove in the following result.

Theorem 2.3.5. Let K be a solid and normal cone with normal constant d ≥ 1 and T :
K −→ K an operator which maps bounded sets into relatively compact ones. Assume that

(a) there exists r > 0 such that Tx ⊂ {Tx} −K for all x ∈ K with ‖x‖ = r,

(b) there exist β ∈ K, with T β � β, and R ≥ r such that BR(β) ⊂ K,

(c) the mapping T is nondecreasing in P =
{
x ∈ K : x � β and

r

d
≤ ‖x‖

}
,

(d) there exists a bounded open set V ⊂ K such that iK(T, V ) = 0 and Kr ⊂ V or
V ⊂ Kr.

If T satisfies condition (2.1.1) for all x ∈ V , then T has at least a non–trivial fixed point in

K which either belongs to P or to

{
V \Kr, if Kr ⊂ V,

Kr \ V , if V ⊂ Kr.

Proof. Now we consider two cases separately:
First, suppose that there exists α ∈ K with ‖α‖ = r and Tα � α. Then T maps

the set [α, β] into itself. Consider a nondecreasing sequence {xn}∞n=0 ⊂ [α, β]. The set
{Txn}∞n=0 ⊂ [α, β] is relatively compact and thus it has a convergent subsequence, say
{Txnk} → y. Since T is nondecreasing, there exists a N ∈ N such that for all n,m ≥ N
we have Txnk � Txn � Txnl and Txnk � Txm � Txnl for some k, l ∈ N. Therefore, for
all n,m ≥ N we have Txn − Txm � Txnl − Txnk , so from the normality of the cone we
obtain ‖Txn − Txm‖ ≤ d ‖Txnl − Txnk‖. It follows that {Txn}∞n=0 is a Cauchy sequence
and then the whole sequence {Txn}∞n=0 converges to y. In a similar way we can show that
{Txn}∞n=0 converges whenever {xn}∞n=0 is a non-increasing sequence. Hence, Theorem
2.3.1 ensures that T has a fixed point in [α, β].

On the other hand, assume that Tx � x for all x ∈ K with ‖x‖ = r, which implies y � x
for all y ∈ Tx with x ∈ K and ‖x‖ = r. By Corollary 2.2.3, iK(T,Kr) = 1, and since
iK(T, V ) = 0 the conclusion follows from the additivity and existence properties of the fixed
point index.

Following the ideas of [29, 30] we obtain now a result which applies for non-increasing
discontinuous operators.

Theorem 2.3.6. Let T : K −→ K be an operator which maps bounded sets into relatively
compact sets. Assume that

(a) there exists r > 0 such that Tx ⊂ {Tx}+K for all x ∈ K with ‖x‖ = r,

(b) there exist α ∈ K, with α � Tα, and R ≥ r such that BR(α) ⊂ K,

(c) the mapping T is non-increasing in P = {x ∈ K : r ≤ ‖x‖ ≤ ‖α‖},

(d) there exists a bounded open set V ⊂ K such that iK(T, V ) = 1 and Kr ⊂ V or
V ⊂ Kr.
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2.4 Leggett–Williams’ three–solutions theorem

If T satisfies condition (2.1.1) for all x ∈ V , then T has at least a non–trivial fixed point in

K which either belongs to P or to

{
V \Kr, if Kr ⊂ V,

Kr \ V , if V ⊂ Kr.

Proof. Let x ∈ K be with ‖x‖ = r. Then assumption (b) implies x � α and since x, α ∈ P ,
it follows from (c) that Tx � Tα � α � x.

If for some x ∈ K with ‖x‖ = r we have Tx � x, then Tx = x. Otherwise, by condition
(a), y � x for all y ∈ Tx, with x ∈ K and ‖x‖ = r. Hence Corollary 2.2.3 ensures that
iK(T,Kr) = 0. Therefore assumption (d) and the properties of the fixed point index imply
the existence of the desired fixed point.

Remark 2.3.7. Condition (a) holds if the operator T is “lower semicontinuous” at x ∈ K,
‖x‖ = r, that is,

(a∗) for all ε > 0 there exists δ > 0 such that ‖y − x‖ < δ, y ∈ K, implies

Ty ∈ Bε(Tx) +K.

2.4 A generalization of Leggett–Williams’ three–solutions
theorem

Multiplicity of solutions of nonlinear differential equations is a very desirable property for
some applications. Of course, this fact is closely related to the multiplicity of fixed points
for the corresponding associated operator. This is the reason why many authors dealt with
multiplicity of fixed points for nonlinear operators and a vast literature has been written in this
direction. Classical examples of this are the three–solutions theorems due to Amann [4] or to
Leggett and Williams [94]. Leggett–Williams’ theorem was generalized in several directions
in the last years, and among all these generalizations the result given by Avery [9] is one
of the most relevant. In addition, Leggett–Williams’ theorem was also extended to upper
semicontinuous multivalued mappings in [116]. Our purpose in this section is to obtain a
new generalization which applies for discontinuous operators satisfying condition (2.1.1).

Definition 2.4.1. Given a coneK in a Banach space, we define a concave positive functional
on K as a continuous mapping α : K −→ R+ satisfying

α (λx+ (1− λ)y) ≥ λα(x) + (1− λ)α(y), 0 ≤ λ ≤ 1, x, y ∈ K.

If α is a concave functional on K, then we denote

S(α, a, b) = {x ∈ K : α(x) ≥ a and ‖x‖ ≤ b} .

These sets were introduced in [94] and they play an analogous role as order intervals, as far
as they are also closed, convex and bounded subsets of K.

Moreover, for a given ρ > 0, we will use again the notation

Kρ = {x ∈ K : ‖x‖ < ρ} .

We recall now the classical Leggett–Williams’ theorem [94, Theorem 3.3].
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Theorem 2.4.2. Let T : Kc −→ Kc be a completely continuous mapping and assume that
there exist a concave positive functional α with α(x) ≤ ‖x‖ (x ∈ K) and constants a, b, d,
with 0 < d < a < b ≤ c, satisfying the following conditions:

(1) {x ∈ S(α, a, b) : α(x) > a} 6= ∅ and α(Tx) > a if x ∈ S(α, a, b);

(2) ‖Tx‖ < d if x ∈ Kd;

(3) α(Tx) > a for all x ∈ S(α, a, c) with ‖Tx‖ > b.

Then T has at least three fixed points in Kc.

As we said, our purpose is to replace the assumption of continuity by the weaker condition
(2.1.1). To do so, we follow the steps given in [94] and we begin with a result that provides
sufficient conditions on the existence of nontrivial fixed points.

Theorem 2.4.3. Let T : Kc −→ K be a mapping such that T Kc is relatively compact and
satisfies condition (2.1.1) in Kc. Suppose there exist a concave positive functional α such
that α(x) ≤ ‖x‖, x ∈ K, and constants b > a > 0, b ≤ c, satisfying the following:

1. {x ∈ S(α, a, b) : α(x) > a} 6= ∅ and α(z) > a if z ∈ Tx, x ∈ S(α, a, b);

2. Tx ⊂ Kc if x ∈ S(α, a, c);

3. α(z) > a for all z ∈ Tx, x ∈ S(α, a, c) with ‖z‖ > b.

Then T has at least one fixed point x ∈ S(α, a, c).

Proof. Put U = {x ∈ S(α, a, c) : α(x) > a} and take x0 ∈ S(α, a, b) such that α(x0) > a.
We define the mapping H : U × [0, 1] −→ Kc given by

H(x, t) = (1− t)Tx+ tx0.

It is clear that H
(
U × [0, 1]

)
is relatively compact and condition {x} ∩Htx ⊂ {Htx} holds

for all x ∈ U when t = 0, 1.
Now we show thatH is an admissible homotopy. Assume on the contrary that there exists

(x, t) ∈ ∂ U × [0, 1] such that x ∈ H(x, t). Then, α(x) = a and, in addition, there exists
z ∈ Tx such that x = (1− t)z + tx0. If ‖z‖ > b, then α(z) > a, so

α(x) = α((1− t)z + tx0) ≥ (1− t)α(z) + tα(x0) > a,

a contradiction. On the other hand, if ‖z‖ ≤ b, then

‖x‖ = ‖(1− t)z + tx0‖ ≤ (1− t) ‖z‖+ t ‖x0‖ ≤ b,

so x ∈ S(α, a, b). Hence, by hypothesis we have α(z) > a and we deduce again that
α(x) > a, a contradiction. Therefore, we obtain x 6∈ H(x, t) for all (x, t) ∈ ∂ U × [0, 1].

Now homotopy invariance provides that

iKc
(T,U) = iKc

(x0, U) = 1,

and therefore T has a fixed point in U .
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2.4 Leggett–Williams’ three–solutions theorem

Remark 2.4.4. Notice that condition α(x) ≤ ‖x‖ guarantees that the fixed point provided
by the previous theorem is, in fact, nontrivial.

Now we introduce our main result in this section.

Theorem 2.4.5. Let T : Kc −→ Kc be a mapping such that T Kc is relatively compact and
satisfies (2.1.1) in Kc. Assume there exist a concave positive functional α with α(x) ≤ ‖x‖,
x ∈ K, and constants a, b, d with 0 < d < a < b ≤ c, such that the following conditions
hold:

(1) {x ∈ S(α, a, b) : α(x) > a} 6= ∅ and α(z) > a if z ∈ Tx, x ∈ S(α, a, b);

(2) ‖Tx‖ < d if x ∈ Kd;

(3) for all x ∈ S(α, a, c) and all z ∈ Tx with ‖z‖ > b we have α(z) > a.

Then T has at least three fixed points x1, x2 and x3 in Kc such that ‖x1‖ < d, α(x2) > a
and, ‖x3‖ > d and α(x3) < a.

Proof. Put U1 =
{
x ∈ Kc : ‖x‖ < d

}
and U2 = {x ∈ S(α, a, c) : α(x) > a}. The sets U1

and U2 are open convex subsets of Kc and T has no fixed point in ∂ U1 ∪ ∂ U2. Indeed,
assumption (2) guarantees that T has no fixed points in ∂ U1 and an analogous argument to
that done in the proof of Theorem 2.4.3 ensures that T has no fixed points in ∂ U2.

By the additivity property of the index we have

iKc
(T,Kc) = iKc

(T,U1) + iKc
(T,U2) + iKc

(T,Kc \
(
U1 ∪ U2

)
). (2.4.1)

Now Theorem 2.1.1 and Proposition 1.3.9 ensure that iKc
(T,Kc) = iKc

(T,U1) = 1 and
then T has a fixed point in U1. Moreover, by application of Theorem 2.4.3, we obtain that
iKc

(T,U2) = 1 and thus T has another fixed point in U2. Finally, one deduces from (2.4.1)
that

iKc
(T,Kc \

(
U1 ∪ U2

)
) = 1− 2 = −1,

and so T has a third fixed point in Kc \
(
U1 ∪ U2

)
.

Remark 2.4.6. Theorem 2.4.5 guarantees that two fixed points are nonzero, but the third one
could be a trivial fixed point, as in the classical Leggett–Williams’ theorem, see Figure 2.4.1.

In the case b = c, the third assumption of the previous theorem is superfluous, so we can
write the following simpler result.

Corollary 2.4.7. Let T : Kc −→ Kc be a mapping such that T Kc is relatively compact and
satisfies (2.1.1) in Kc. Assume there exist a concave positive functional α with α(x) ≤ ‖x‖
(x ∈ K) and constants a and d with 0 < d < a < c, satisfying the following conditions:

1. {x ∈ S(α, a, c) : α(x) > a} 6= ∅ and α(z) > a if z ∈ Tx, x ∈ S(α, a, c);

2. ‖Tx‖ < d if x ∈ Kd.

Then T has at least three fixed points in Kc.
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K

Kd

S(α, a, c)

x1

x2

x3

d a b cα(x) = a

Figure 2.4.1: An illustration of the Leggett–Williams’ type Theorem 2.4.5.

Some assumptions in Theorem 2.4.5 may be difficult to check in practice. By this reason
we provide now another version where the required conditions about the operator T can be
established in an easier way.

Remark 2.4.8. Notice that assumption (3) in Theorem 2.4.5 is satisfied if one of the following
two conditions holds:

(i) α(z) ≥ a

b
‖z‖ if z ∈ Tx, x ∈ S(α, a, c);

(ii) ‖z‖ − α(z) ≤ b− a if z ∈ Tx, x ∈ S(α, a, c).

This remark is a modification of [94, Remark 1].

The following result is based on the previous inequalities and a small perturbation of the
set S(α, a, b).

Theorem 2.4.9. Let T : Kc −→ Kc be a mapping such that T Kc is relatively compact and
it satisfies (2.1.1) inKc. Assume there exist a concave positive functional α with α(x) ≤ ‖x‖,
x ∈ K, and constants a, aj , b, d with 0 < d < a < aj < b ≤ c, j = 1, 2, such that:

1. {x ∈ S(α, a, b) : α(x) > a, ‖x‖ < b} 6= ∅ and α(Tx) > a1 > a if x ∈ S(α, a, b);
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2.4 Leggett–Williams’ three–solutions theorem

2. ‖Tx‖ < d if x ∈ Kd;

3. One of the following conditions holds:

(3a) α(Tx) ≥ a2

b
‖Tx‖, if x ∈ S(α, a, c);

(3b) ‖Tx‖ − α(Tx) ≤ b− a2, if x ∈ S(α, a, c).

Then T has at least three fixed points in Kc.

Proof. Let x0 ∈ {x ∈ S(α, a, b) : α(x) > a, ‖x‖ < b} and ε > 0 be such that

ε < min

{
α(x0)− a, b− ‖x0‖ ,

aj − a
2

,
(a2 − a)b

a2 + b

}
.

Then x0 ∈ {x ∈ S(α, a+ ε, b− ε) : α(x) > a+ ε}, so this set is nonempty.
Take x ∈ S(α, a+ ε, b− ε) and z ∈ Tx. Since α is continuous, there exists δ > 0, δ ≤ ε,

such that α(y) ≥ a for all y ∈ Bδ(x). First, suppose that z =
∑
λiTxi with xi ∈ Bδ(x),

λi ∈ [0, 1] and
∑
λi = 1. Then, by condition 1. and the concavity of α, we deduce

α
(∑

λiTxi

)
≥
∑

λiα(Txi) >
∑

λia1 = a1 > a+ ε.

Note that if z ∈ Tx, then it is the limit of elements of the form
∑
λiTxi (see Definition

1.1.1) and hence the continuity of α implies that

α(z) ≥ a1 > a+ ε.

Now assume that (3a) holds. Then we have that

α(z) ≥ a+ ε

b− ε
‖z‖ , for all z ∈ Tx, x ∈ S(α, a+ ε, c). (2.4.2)

Indeed, if z is a convex combination of the form z =
∑
λiTxi, xi ∈ Bδ(x), we obtain by

condition (3a) and concavity of α that

α
(∑

λiTxi

)
≥
∑

λiα(Txi) ≥
∑

λi
a2

b
‖Txi‖ ≥

a2

b

∥∥∥∑λiTxi

∥∥∥ ,
and so

α(z) ≥ a2

b
‖z‖ .

By the definition of T, we have then

α(z) ≥ a2

b
‖z‖ , for all z ∈ Tx, x ∈ S(α, a+ ε, c),

and thus (2.4.2) follows from the choice of ε.
Assume, on the other hand, that (3b) holds and then we will check that

‖z‖ − α(z) ≤ b− a− 2ε, for all z ∈ Tx, x ∈ S(α, a+ ε, c). (2.4.3)
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Observe that it is sufficient to show condition (2.4.3) for those z such that z =
∑
λiTxi with

xi ∈ Bδ(x), λi ∈ [0, 1] and
∑
λi = 1. For such a z, we have

α(z) = α
(∑

λiTxi

)
≥
∑

λiα(Txi) ≥
∑

λi ‖Txi‖ − (b− a2)

≥
∥∥∥∑λiTxi

∥∥∥− (b− a2) = ‖z‖ − (b− a2),

and so
‖z‖ − α(z) ≤ b− a2.

Hence the inequality (2.4.3) follows again from the choice of ε.
Therefore, Theorem 2.4.5 implies that T has at least three fixed points in Kc.

Remark 2.4.10. In the case b = c, the third assumption in Theorem 2.4.9 can be again
removed and so we obtain a result in the line of Corollary 2.4.7, where assumptions on T are
now replaced by conditions on T .

2.5 A vectorial version of Krasnosel’skiı̆’s fixed point theo-
rem

Consider the following system of operator equations{
x1 = N1(x1, x2),
x2 = N2(x1, x2),

(2.5.1)

where K1 and K2 are cones of the Banach space (X, ‖·‖X) and so K1 × K2 is a cone of
the Banach space X2 (for instance, with the norm ‖(x1, x2)‖ = max{‖x1‖X , ‖x2‖X}), and
N = (N1, N2) : K1 ×K2 −→ X2 is an operator under the hypotheses of Krasnosel’skiı̆’s
fixed point theorem. As noticed by Precup [119], if we apply Krasnosel’skiı̆’s fixed point
theorem directly to (2.5.1), then we obtain a fixed point x = (x1, x2) of this operator N such
that

r ≤ ‖x‖ = max{‖x1‖X , ‖x2‖X} ≤ R,
which implies that 0 ≤ ‖x1‖X ≤ R and 0 ≤ ‖x2‖X ≤ R, but it is not possible to obtain
a lower bound for the norm of every component. This fact motivates the use of a vectorial
version of Krasnosel’skiı̆’s fixed point theorem, see Figure 2.5.1 for a comparison between
the localization given by Krasnosel’skiı̆’s fixed point theorem and that given by its vectorial
version. Another advantage of the vectorial approach is that it allows different behaviors (that
is, compression or expansion) in each component of the system.

We begin by recalling the result by Precup regarding single–valued completely conti-
nuous operators.

Let (X, ‖·‖) be a Banach space, K1,K2 ⊂ X two cones and K := K1 × K2 the co-
rresponding cone of X2 = X × X . For r,R ∈ R2

+, r = (r1, r2), R = (R1, R2), we
denote

(Ki)ri,Ri := {x ∈ Ki : ri ≤ ‖x‖ ≤ Ri} (i = 1, 2),

Kr,R := {x ∈ K : ri ≤ ‖xi‖ ≤ Ri for i = 1, 2} .

30



2.5 A vectorial version of Krasnosel’skiı̆’s fixed point theorem

Theorem 2.5.1 ( [119, Theorem 2.1]). Let αi, βi > 0 with αi 6= βi, ri = min{αi, βi} and
Ri = max {αi, βi} for i = 1, 2. Assume that N : Kr,R −→ K, N = (N1, N2), is a compact
map and that there exist hi ∈ Ki \ {0}, i = 1, 2, such that for each i ∈ {1, 2} the following
conditions hold in Kr,R:

λxi 6= Nix for all x ∈ Kr,R with ‖xi‖ = αi and all λ > 1;

xi 6= Nix+ µhi for all x ∈ Kr,R with ‖xi‖ = βi and all µ > 0.

Then N has a fixed point x = (x1, x2) in K with ri ≤ ‖xi‖ ≤ Ri for i = 1, 2.

r

r

R

R

K2

K1

(x1, x2)

r2

r1

R2

R1

K2

K1

(x1, x2)

Kr,R

Krasnosel’skiı̆’s fixed point theorem Its vectorial version

Figure 2.5.1: Comparison between localizations.

Remark 2.5.2. Theorem 2.5.1 can be stated for n–dimensional systems, see [83], but for
simplicity we only consider here two–dimensional systems.

Now we generalize the previous theorem to usc multivalued mappings. Its proof is based
on Bohnenblust–Karlin fixed point theorem.

Theorem 2.5.3. Let αi, βi > 0 with αi 6= βi, ri = min{αi, βi} and Ri = max {αi, βi} for
i = 1, 2. Assume thatN : Kr,R −→ 2K ,N = (N1, N2), is an usc map with nonempty closed
and convex values such thatN(Kr,R) is relatively compact, and that there exist hi ∈ Ki\{0},
i = 1, 2, such that for each i ∈ {1, 2} the following conditions hold in Kr,R:

λxi 6∈ Nix for all x ∈ Kr,R with ‖xi‖ = αi and all λ > 1; (2.5.2)
xi 6∈ Nix+ µhi for all x ∈ Kr,R with ‖xi‖ = βi and all µ > 0. (2.5.3)

Then N has a fixed point x = (x1, x2) in K with ri ≤ ‖xi‖ ≤ Ri for i = 1, 2.

Proof. We shall consider the four possible combinations of compression–expansion condi-
tions for N1 and N2.
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1. Assume first that βi < αi for both i = 1, 2 (compression forN1 andN2). Then ri = βi
and Ri = αi for i = 1, 2. Denote h = (h1, h2) and define the map Ñ : K −→ K
given, for x ∈ K, by

Ñx = η(x)N

(
δ1(x1)

x1

‖x1‖
, δ2(x2)

x2

‖x2‖

)
+ (1− η(x))h,

where δi(xi) = max{min{xi, Ri}, ri} for i = 1, 2, and

η(x) = min

{
‖x1‖
r1

,
‖x2‖
r2

, 1

}
.

The map Ñ is usc because N is so and, as

Ñ(K) ⊂ co (N(Kr,R) ∪ {h}) ,

Ñ(K) is relatively compact. Then by application of Bohnenblust–Karlin fixed point
theorem there exists x ∈ K such that x ∈ Ñx.

Clearly ‖xi‖ > 0 since hi 6= 0 for i = 1, 2. Now we will show by contradiction that
x ∈ Kr,R. To do so, we need to consider four cases separately, but we will study only
one of them because the other ones are analogous.

Assume 0 < ‖x1‖ < r1 and 0 < ‖x2‖ < r2. If min
{
‖x1‖
r1

, ‖x2‖
r2

}
= ‖x1‖

r1
, then

x ∈ ‖x1‖
r1

N

(
r1

‖x1‖
x1,

r2

‖x2‖
x2

)
+

(
1− ‖x1‖

r1

)
h,

and so
r1

‖x1‖
x1 ∈ N1

(
r1

‖x1‖
x1,

r2

‖x2‖
x2

)
+

r1

‖x1‖

(
1− ‖x1‖

r1

)
h1,

which contradicts (2.5.3) for i = 1.

2. Assume that β1 < α1 (compression for N1) and β2 > α2 (expansion for N2). Let
N∗i : Kr,R −→ Ki (i = 1, 2) be given by

N∗1x = N1

(
x1,

(
R2

‖x2‖
+

r2

‖x2‖
− 1

)
x2

)
,

N∗2x =

(
R2

‖x2‖
+

r2

‖x2‖
− 1

)−1

N2

(
x1,

(
R2

‖x2‖
+

r2

‖x2‖
− 1

)
x2

)
. (2.5.4)

Notice that the map N∗ = (N∗1 , N
∗
2 ) is in case 1, and thus N∗ has a fixed point

v ∈ Kr,R. Now, the point x = (x1, x2) given by

x1 = v1 and x2 =

(
R2

‖v2‖
+

r2

‖v2‖
− 1

)
v2

is a fixed point of N .
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2.5 A vectorial version of Krasnosel’skiı̆’s fixed point theorem

3. The case β1 > α1 (expansion for N1) and β2 < α2 (compression for N2) is similar to
the previous one. Consider the map N∗ = (N∗1 , N

∗
2 ) defined by

N∗1x =

(
R1

‖x1‖
+

r1

‖x1‖
− 1

)−1

N1

((
R1

‖x1‖
+

r1

‖x1‖
− 1

)
x1, x2

)
, (2.5.5)

N∗2x = N2

((
R1

‖x1‖
+

r1

‖x1‖
− 1

)
x1, x2

)
.

4. The case βi > αi for i = 1, 2 (expansion for N1 and N2) reduces to case 1, if we
consider the map N∗ = (N∗1 , N

∗
2 ) defined by (2.5.5) and (2.5.4), respectively.

This ends the proof.

Observe that Theorem 2.5.1 can be generalized to a class of possibly discontinuous ope-
rators in the sense of the previous sections as a simple application of Theorem 2.5.3. In order
to do that, given a single–valued (not necessarily continuous) operator T : U ⊂ K −→ K,
T = (T1, T2), we associate to it the following multivalued map T : U −→ 2K given by

T = (T1,T2), Tix =
⋂
ε>0

coTi
(
Bε(x) ∩ U

)
for every x ∈ U (i = 1, 2), (2.5.6)

and then we require the following condition to T :

Fix(T) ⊂ Fix(T ),

as usual. Therefore, under suitable conditions about T , Theorem 2.5.3 provides the existence
of a fixed point for the operator T which, in fact, will be a fixed point of T .

Theorem 2.5.4. Let αi, βi > 0 with αi 6= βi, ri = min{αi, βi} and Ri = max {αi, βi} for
i = 1, 2. Assume that T : Kr,R −→ K, T = (T1, T2), is a mapping such that T (Kr,R) is
relatively compact, it satisfies that

Fix(T) ⊂ Fix(T ),

and that there exist hi ∈ Ki \ {0}, i = 1, 2, such that for each i ∈ {1, 2} the following
conditions hold in Kr,R:

λxi 6∈ Tix for all x ∈ Kr,R with ‖xi‖ = αi and all λ > 1;

xi 6∈ Tix+ µhi for all x ∈ Kr,R with ‖xi‖ = βi and all µ > 0.

Then T has a fixed point x = (x1, x2) in K with ri ≤ ‖xi‖ ≤ Ri for i = 1, 2.
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Chapter 3

First order problems

It is well–known due to Peano’s theorem [115] that the Cauchy problem

x′(t) = f(t, x(t)) for a.a. t ∈ I = [0, 1], x(0) = x0 ∈ Rn, (3.0.1)

has at least one solution whenever f is continuous and bounded and, even more, by Kneser–
Hukuhara’s theorem we know that the set of solutions for (3.0.1) is connected when f is
continuous and bounded (see [51, 90]). However, if f is discontinuous, the behavior of the
set of solutions for problem (3.0.1) is more complicated. For instance, for the function

f(x) =

{
1, if x ≥ 0,
−1, if x < 0,

and the initial condition x(0) = 0, the Cauchy problem (3.0.1) has exactly two different
absolutely continuous solutions. Moreover, for

f(x) =

{
−1, if x ≥ 0,

1, if x < 0,
(3.0.2)

and the initial condition x(0) = 0, the Cauchy problem (3.0.1) has no solutions, so it is clear
that some additional condition is necessary at the discontinuity points.

Several papers in the literature (see [13, 25, 45, 59, 60, 76, 84, 132, 136]) generalize the
existence result due to Carathéodory which guarantees that problem (3.0.1) has at least one
absolutely continuous solution provided that the right-hand side f : I × Rn → Rn is a
L1-Carathéodory function, that is,

(C1) for all x ∈ Rn, f(·, x) is measurable;

(C2) for a.a. t ∈ I , f(t, ·) is continuous; and

(C3) there exists M ∈ L1(I) such that for a.a. t ∈ I and all x ∈ Rn, ‖f(t, x)‖ ≤M(t).

A function x : I → Rn is a Carathéodory solution of (3.0.1) if x(t) is absolutely continuous
(shortly, AC(I)), x(0) = x0 and x′(t) = f(t, x(t)) a.e. on I . All the mentioned papers give
conditions on f in order to replace condition (C2) by a weaker condition which allows the
nonlinearity to be discontinuous with respect to the spatial variable.

A very useful technique to study this kind of problems consists on considering a differ-
ential inclusion, where the original nonlinearity is replaced by a multivalued usc map. In this
case, new notions of solutions to problem (3.0.1) appear, depending on the regularization cho-
sen, and so we can talk about Filippov solutions, Krasovskij solutions, Hermes solutions and
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so on. Therefore, a comparison between such notions of solution is interesting and needed,
and it has been widely treated in literature. For example, a comparison between Carathéodory
and Filippov solutions can be seen in [134], between Carathéodory and Krasovskij solutions
in [84] or between Hermes, Filippov and Krasovskij solutions in [75]. Moreover, an overview
about different notions of solutions for discontinuous differential equations can be found
in [41, Chapter 1].

In particular, in Section 3.2, we will use the Krasovskij regularization, where the nonlin-
earity f is replaced by its ‘convexification’, namely

Kf(t, x) =
⋂
ε>0

cof(t, Bε(x)),

and then the Cauchy problem (3.0.1) turns into the differential inclusion

x′(t) ∈ Kf(t, x(t)) for a.a. t ∈ I, x(0) = x0 ∈ Rn. (3.0.3)

To do this, we follow the line of [45, 59, 84], where the authors provide some conditions on
the existence of solutions for the inclusion and then they prove that such solutions are, in fact,
solutions of the original Cauchy problem. On the other hand, in Section 3.1 we will use this
idea from a different of view, and so we will convexify the associated fixed point operator
instead of the nonlinearity itself. Then we apply the topological degree or the fixed point
theorems of the previous chapters to obtain existence results to discontinuous differential
equations.

This chapter is organized as follows: in Section 3.1 we prove the existence of solutions
for a scalar first order problem with functional initial conditions by using the degree defined
in Chapter 1; in Section 3.2 we improve an existence result for discontinuous autonomous
systems due to Bressan and Shen, and in Section 3.3 we obtain the existence of extremal so-
lutions for a first order functional differential equation under weak conditions in the nonlinear
part and monotonicity with respect to the functional variable. Our results are illustrated by
several examples and they can be found in the papers [64, 102, 105].

3.1 Existence result for first order scalar problems with func-
tional initial conditions

We shall consider the functional initial value problem

x′(t) = f(t, x(t)) for a.a. t ∈ I = [0, L], x(0) = F (x), (3.1.1)

where L > 0 is given and F : C(I) → R is assumed to be continuous, but not necessarily
linear or bounded.

Clearly, as a particular case, we have the initial value problem (3.0.1) when n = 1. Unlike
the classical situation, we do not assume that f : I × R → R is a Carathéodory function.
Indeed, we shall allow f to be discontinuous over the graphs of countably many functions in
the conditions of the following definition.
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3.1 Existence result for first order problems with functional conditions

Definition 3.1.1. An admissible discontinuity curve for the differential equation x′ = f(t, x)
is an absolutely continuous function γ : [c, d] ⊂ I → R satisfying one of the following
conditions:

either γ′(t) = f(t, γ(t)) for a.a. t ∈ [c, d] (and we say that γ is viable for the differential
equation),
or there exists ε > 0 and ψ ∈ L1(c, d), ψ(t) > 0 for a.a. t ∈ [c, d], such that

either

γ′(t) + ψ(t) < f(t, y) for a.a. t ∈ [c, d] and all y ∈ [γ(t)− ε, γ(t) + ε] , (3.1.2)

or

γ′(t)− ψ(t) > f(t, y) for a.a. t ∈ [c, d] and all y ∈ [γ(t)− ε, γ(t) + ε] . (3.1.3)

We say that γ is inviable for the differential equation if it satisfies (3.1.2) or (3.1.3).

Observe that conditions (3.1.2) and (3.1.3) recall the notion of strict lower and upper
solutions for the differential equation x′ = f(t, x).

Now, we state three technical results that we need in the proof of our main existence result
for (3.1.1). Their proofs can be lookep up in [101].

In the sequel m denotes Lebesgue measure in R.

Lemma 3.1.2. Let a, b ∈ R, a < b, and let g, h ∈ L1(a, b), g ≥ 0 a.e., and h > 0 a.e. on
(a, b).

For every measurable set J ⊂ (a, b) such thatm(J) > 0 there is a measurable set J0 ⊂ J
satisfying that m (J \ J0) = 0 and for all τ0 ∈ J0 we have

lim
t→τ+

0

∫
[τ0,t]\J g(s) ds∫ t
τ0
h(s) ds

= 0 = lim
t→τ−

0

∫
[t,τ0]\J g(s) ds∫ τ0
t
h(s) ds

.

Corollary 3.1.3. Let a, b ∈ R, a < b, and let h ∈ L1(a, b) be such that h > 0 a.e. on (a, b).
For every measurable set J ⊂ (a, b) such thatm(J) > 0 there is a measurable set J0 ⊂ J

satisfying that m (J \ J0) = 0 and for all τ0 ∈ J0 we have

lim
t→τ+

0

∫
[τ0,t]∩J h(s) ds∫ t
τ0
h(s) ds

= 1 = lim
t→τ−

0

∫
[t,τ0]∩J h(s) ds∫ τ0
t
h(s) ds

.

Corollary 3.1.4. Let a, b ∈ R, a < b, and let f, fn : [a, b] → R be absolutely continuous
functions on [a, b] (n ∈ N), such that fn → f uniformly on [a, b] and for a measurable set
A ⊂ [a, b] with m(A) > 0 we have

lim
n→∞

f ′n(t) = g(t) for a.a. t ∈ A.

If there exists M ∈ L1(a, b) such that |f ′(t)| ≤ M(t) a.e. in [a, b] and also |f ′n(t)| ≤ M(t)
a.e. in [a, b] (n ∈ N), then f ′(t) = g(t) for a.a. t ∈ A.

In addition, the following well–known result is crucial throughout the text. It is a straight-
forward consequence of [16, Lemma 5.8.13], [111, Theorem 38.2] or [135, Lemma 6.92].
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Lemma 3.1.5. Let a, b ∈ R, a < b.
If ϕ : [a, b] −→ R is almost everywhere differentiable on [a, b], then to any null measure

set A ⊂ R there exists a null measure set B ⊂ ϕ−1(A) such that

ϕ′(t) = 0 for all t ∈ ϕ−1(A) \B.

We are already in a position to prove an existence result for (3.1.1) by means of the degree
theory introduced in Chapter 1. We note that it is an alternative proof to that given in [60]
where the same result has been proven by means of Theorem 2.1.2, but we intend to show
how to apply our degree theory. Observe that f can be discontinuous with respect to both of
its variables.

We shall work in the Banach space (C(I), ‖·‖∞), where ‖·‖∞ denotes the usual maximum
norm. Given R > 0 fixed, we state the following assumptions regarding the nonlinearity f :

(H1) There exist r < R, N ≥ 0 and M ∈ L1 (I) such that N + ‖M‖L1 < r, |F (x)| ≤ N
if ‖x‖∞ ≤ R, and for a.a. t ∈ I and all x ∈ [−R,R] we have |f(t, x)| ≤M(t).

(H2) Any composition t ∈ I 7→ f (t, x(t)) is measurable if x ∈ C(I) and ‖x‖∞ ≤ R.

(H3) There exist admissible discontinuity curves γn : In = [an, bn]→ R (n ∈ N) such that
for a.a. t ∈ I the function x 7→ f(t, x) is continuous on [−R,R] \

⋃
{n:t∈In} {γn(t)}.

Theorem 3.1.6. Problem (3.1.1) has at least an absolutely continuous solution x : I → R
such that ‖x‖∞ < R provided that f satisfies conditions (H1)–(H3).

Proof. Consider the Banach space X = C(I) with the norm ‖·‖∞. We define the integral
operator T : BR(0)→ X given by

Tx(t) = F (x) +

∫ t

0

f(s, x(s)) ds (t ∈ I, x ∈ X). (3.1.4)

Clearly, finding fixed points of the operator T is equivalent to finding absolutely continuous
solutions of problem (3.1.1). To prove that T has at least one fixed point we shall use Theorem
1.2.4 and the normalization and existence properties of the degree.

First, note that operator T is bounded. Indeed, by virtue of conditions (H1) and (H2), we
have for all x ∈ BR(0) and for all t ∈ I that

|(Tx)(t)| ≤ |F (x)|+
∫ t

0

|f(s, x(s))| ds ≤ N + ‖M‖L1 < r,

so T (BR(0)) ⊂ Br(0) = {x ∈ X : ‖x‖∞ < r}. In addition, T is well defined and maps
BR(0) into itself.

Second, T BR(0) is equicontinuous. Since (Tx)′(t) = f(t, x(t)) for a.a. t ∈ I , we have

|(Tx)(t)− (Tx)(s)| =
∣∣∣∣∫ t

s

(Tx)′(r) dr

∣∣∣∣ =

∣∣∣∣∫ t

s

f(r, x(r)) dr

∣∣∣∣ (3.1.5)

≤
∫ t

s

|f(r, x(r))| dr ≤
∫ t

s

M(r) dr (s ≤ t).
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Therefore, T BR(0) is relatively compact in X .
On the other hand, we have that

T(BR(0)) ⊂ co
(
T (BR(0))

)
⊂ Br(0) ⊂ BR(0),

which implies that x 6∈ σTx for all (x, σ) ∈ ∂ BR(0) × [0, 1], where T is the cc–envelope
of T defined as in (1.1.1). Thus, deg (Id− σT, BR(0)) is well defined as the degree for
multivalued operators.

We consider the homotopy H : BR(0)× [0, 1]→ BR(0) given by

H(x, σ) = σ Tx.

It is obvious that H
(
BR(0)× [0, 1]

)
is relatively compact, because T BR(0) is so.

If the operator T satisfies the condition {x} ∩Tx ⊂ {Tx} for all x ∈ BR(0)∩TBR(0),
then Theorem 1.2.4 and the normalization property of Proposition 1.2.1 guarantee us that

deg (Id− T,BR(0)) = deg (Id,BR(0)) = 1,

so the operator T would have at least a fixed point as we want to see.
Therefore, to finish we only have to prove that

{x} ∩ Tx ⊂ {Tx} for all x ∈ BR(0) ∩ TBR(0).

To do so, fix x ∈ BR(0) ∩ TBR(0) and consider the following three cases.
Case 1: m ({t ∈ In : x(t) = γn(t)}) = 0 for all n ∈ N. Let us prove that then T is

continuous at x.
By assumption, for a.a. t ∈ I the mapping f(t, ·) is continuous at x(t). Thus, if xk → x

in BR(0) then
f(t, xk(t))→ f(t, x(t)) for a.a. t ∈ I,

which, along with (H1) and Lebesgue’s dominated convergence theorem, yield Txk → Tx
uniformly on I .

Case 2: m ({t ∈ In : x(t) = γn(t)}) > 0 for some n ∈ N such that γn is inviable. We
suppose that x ∈ Tx and we will prove, by reductio ad absurdum, that it is false.

We consider the set

K =

{
x ∈ C(I) : |x(t)− x(s)| ≤

∫ t

s

M(r) dr (s ≤ t)
}
,

which is a convex and closed subset of X .
It is clear, by inequality (3.1.5), that T BR(0) ⊂ K, so TBR(0) ⊂ K because K is a

convex and closed set. Hence, x ∈ K.
Now, we fix some notation. Let us assume that for some n ∈ N we have

m ({t ∈ In : x(t) = γn(t)}) > 0

and there exist ε > 0 and ψ ∈ L1(In), ψ(t) > 0 for a.a. t ∈ In, such that (3.1.3) holds with
γ replaced by γn. (We can prove the result in a similar way if we assume (3.1.2) instead of
(3.1.3), so we omit it).
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We denote J = {t ∈ In : x(t) = γn(t)}, and we deduce from Lemma 3.1.2 that there is
a measurable set J0 ⊂ J with m(J0) = m(J) > 0 such that for all τ0 ∈ J0 we have

lim
t→τ+

0

2
∫

[τ0,t]\JM(s) ds

(1/4)
∫ t
τ0
ψ(s) ds

= 0 = lim
t→τ−

0

2
∫

[t,τ0]\JM(s) ds

(1/4)
∫ τ0
t
ψ(s) ds

. (3.1.6)

By Corollary 3.1.3 there exists J1 ⊂ J0 with m(J0) = m(J1) such that for all τ0 ∈ J1 we
have

lim
t→τ+

0

∫
[τ0,t]∩J ψ(s) ds∫ t
τ0
ψ(s) ds

= lim
t→τ+

0

∫
[τ0,t]∩J0 ψ(s) ds∫ t

τ0
ψ(s) ds

= 1

= lim
t→τ−

0

∫
[t,τ0]∩J0 ψ(s) ds∫ τ0

t
ψ(s) ds

= lim
t→τ−

0

∫
[t,τ0]∩J ψ(s) ds∫ τ0
t
ψ(s) ds

, (3.1.7)

since J0 ⊂ J with m(J0) = m(J).
Let us fix a point τ0 ∈ J1. From (3.1.6) and (3.1.7) we deduce that there exist t− < τ0

and t+ > τ0, t± sufficiently close to τ0 so that the following inequalities are satisfied:

2

∫
[τ0,t+]\J

M(s) ds <
1

4

∫ t+

τ0

ψ(s) ds, (3.1.8)

2

∫
[t−,τ0]\J

M(s) ds <
1

4

∫ τ0

t−

ψ(s) ds, (3.1.9)∫
[τ0,t+]∩J

ψ(s) ds >
1

2

∫ t+

τ0

ψ(s) ds, (3.1.10)∫
[t−,τ0]∩J

ψ(s) ds >
1

2

∫ τ0

t−

ψ(s) ds. (3.1.11)

Now, we define a positive number

ρ = min

{
1

4

∫ τ0

t−

ψ(s) ds,
1

4

∫ t+

τ0

ψ(s) ds

}
. (3.1.12)

We will prove that for ε > 0 given by our assumptions over γn and ρ as in (3.1.12), for
every finite family xi ∈ Bε(x) ∩ K and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1, we

have ‖x−
∑
λiTxi‖∞ ≥ ρ. Hence, we will get a contradiction with the hypothesis x ∈ Tx,

so we can conclude that x 6∈ Tx.
Let us denote y =

∑
λiTxi. For a.a. t ∈ I we have

y′(t) =
m∑
i=1

λi(Txi)
′(t) =

m∑
i=1

λif (t, xi(t)) ≤M(t). (3.1.13)

On the other hand, for every t ∈ J = {t ∈ In : x(t) = γn(t)} we have

|xi(t)− γn(t)| = |xi(t)− x(t)| < ε,
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and then the assumptions on γn ensure that for a.a. t ∈ J we have

y′(t) =
m∑
i=1

λif(t, xi(t)) <
m∑
i=1

λi (γ′n(t)− ψ(t)) = γ′n(t)− ψ(t).

Lemma 3.1.5 guarantees that γ′n(t) = x′(t) for a.a. t ∈ J , hence

y′(t) < x′(t)− ψ(t) for a.a. t ∈ J. (3.1.14)

Now we use (3.1.13) and (3.1.14) first, and later (3.1.9) and (3.1.11), to deduce the fol-
lowing estimate:

y(τ0)− y(t−) =

∫ τ0

t−

y′(s) ds =

∫
[t−,τ0]∩J

y′(s) ds+

∫
[t−,τ0]\J

y′(s) ds

<

∫
[t−,τ0]∩J

x′(s) ds−
∫

[t−,τ0]∩J
ψ(s) ds+

∫
[t−,τ0]\J

M(s) ds

= x(τ0)− x(t−)−
∫

[t−,τ0]\J
x′(s) ds−

∫
[t−,τ0]∩J

ψ(s) ds

+

∫
[t−,τ0]\J

M(s) ds

≤ x(τ0)− x(t−)−
∫

[t−,τ0]∩J
ψ(s) ds+ 2

∫
[t−,τ0]\J

M(s) ds

< x(τ0)− x(t−)− 1

4

∫ τ0

t−

ψ(s) ds.

Hence ‖x− y‖∞ ≥ y(t−)− x(t−) ≥ ρ provided that y(τ0) ≥ x(τ0).
Similar computations with t+ instead of t− show that if y(τ0) ≤ x(τ0) then we have

‖x− y‖∞ ≥ ρ too and we conclude that x 6∈ Tx.
Case 3: m ({t ∈ In : x(t) = γn(t)}) > 0 only for some of those n ∈ N such that γn is

viable. We will assume that all admissible discontinuity curves are viable and m(Jn) > 0
for all n ∈ N, where Jn = {t ∈ In : x(t) = γn(t)}. Hence, by Definition 3.1.1, for a.a.
t ∈ A =

⋃
n∈N Jn we have x′(t) = f(t, x(t)).

We will show that in this case condition x ∈ Tx implies x = Tx.
First, since x ∈ Tx then for each k ∈ N we can choose ε = ρ = 1/k to guarantee that

we can find functions xk,i ∈ B1/k(x)∩K and coefficients λk,i ∈ [0, 1] (i = 1, 2, . . . ,m(k))
such that

∑
i λk,i = 1 and ∥∥∥∥∥∥x−

m(k)∑
i=1

λk,iTxk,i

∥∥∥∥∥∥
∞

<
1

k
.

Let us denote yk =
∑m(k)
i=1 λk,iTxk,i, and notice that yk → x uniformly in I and that

‖xk,i − x‖∞ ≤ 1/k for all k ∈ N and all i ∈ {1, 2, . . . ,m(k)}.
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On the other hand, for a.a. t ∈ I \ A we have that f(t, ·) is continuous at x(t) so for any
ε > 0 there is some k0 = k0(t) ∈ N such that for all k ∈ N, k ≥ k0, we have

|f(t, xk,i(t))− f(t, x(t))| < ε for all i ∈ {1, 2, . . . ,m(k)} ,

and hence

|y′k(t)− f(t, x(t))| ≤
m(k)∑
i=1

λk,i |f(t, xk,i(t))− f(t, x(t))| < ε.

Therefore y′k(t) → f(t, x(t)) for a.a. t ∈ I \ A, and then we conclude from Corollary 3.1.4
that x′(t) = f(t, x(t)) for a.a. t ∈ I \A.

To finish we only have to prove that x(0) = F (x). To do so, we use essentially the
continuity of F . Fix ρ > 0. Then there exists ε > 0 such that

|F (x)− F (y)| < ρ/2 for all y ∈ Bε(x). (3.1.15)

Since x ∈ Tx we can find functions xi ∈ Bε(x) ∩ K and coefficients λi ∈ [0, 1] (i =
1, 2, . . . ,m) such that

∑m
i=1 λi = 1 and∥∥∥∥∥x−

m∑
i=1

λiTxi

∥∥∥∥∥
∞

<
ρ

2
.

By the definition of T , we have
∑m
i=1 λiTxi(0) =

∑m
i=1 λiF (xi) and, thus∣∣∣∣∣x(0)−

m∑
i=1

λiF (xi)

∣∣∣∣∣ < ρ

2
. (3.1.16)

By (3.1.15) and (3.1.16), we obtain that

|x(0)− F (x)| ≤

∣∣∣∣∣x(0)−
m∑
i=1

λiF (xi)

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

λiF (xi)− F (x)

∣∣∣∣∣
≤ ρ

2
+

m∑
i=1

λi |F (xi)− F (x)| < ρ

2
+
ρ

2
= ρ.

Hence x(0) = F (x), since ρ > 0 is arbitrary, and we conclude.

Now we discuss briefly about Definition 3.1.1 and condition (H3) in order to clarify the
type of discontinuities we are considering.

First, notice that condition (H3) does not imply that the set of discontinuity points of
f(t, ·) is a sequence of points (depending on t), but it only needs to be contained in such a
sequence. Of course, a function f which is continuous with respect to the second variable
clearly satisfies condition (H3).

Moreover, we consider time-dependent discontinuity sets (see Example 3.1.7 below): the
graphs of the curves γn, so we allow the function f to be discontinuous over the graphs of a
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countable number of curves satisfying the ‘transversality’ condition given by Definition 3.1.1.
It is clear that such a condition is necessary, otherwise the existence result is not guaranteed.
For example, function f given by (3.0.2) does not satisfy this condition and the associated
Cauchy problem has no solution. Moreover, notice that conditions in Definition 3.1.1 are
local, that is, only the behavior of f in a neighborhood of the curves is taking into account,
in contrast with other results in the literature, see [25].

Example 3.1.7. Consider the Cauchy problem

x′ = f(t, x) :=
1√
t

+H(x+ at) for a.a. t ∈ I = [0, 1], x(0) = 0,

where a > 0 and H is the Heaviside step function

H(x) =

{
1, if x ≥ 0,
0, if x < 0.

(3.1.17)

Observe that for a.a. t ∈ I the function x 7→ f(t, x) is continuous on R \ {γ(t)} with
γ : I → R given by γ(t) = −at. In this case, γ′(t) = −a and then

γ′(t) + a < f(t, x) for a.a. t ∈ I and all x ∈ R,

so condition (3.1.2) in Definition 3.1.1 holds for ψ(t) ≡ a. Hence, (H3) is satisfied.

Notice that the function f in Example 3.1.7 is nonnegative. For nonnegative nonlinearities
any linear function with negative derivative is a simple example of an admissible curve, since
it satisfies condition (3.1.2) in Definition 3.1.1. For this class of functions some existence
results for (3.0.1) were established in [44] by means of different techniques to those employed
here.

Another interesting particular case is that of constant discontinuity curves, that is, non-
linearities f which are discontinuous at fixed points, not depending on t. In this context,
conditions in Definition 3.1.1 read as follows (since γ(t) ≡ γ and so, γ′(t) ≡ 0):
either f(t, γ) = 0 for a.a. t ∈ I ,
or there exists ε > 0 and ψ ∈ L1(I), ψ(t) > 0 for a.a. t ∈ I , such that

either
ψ(t) < f(t, y) for a.a. t ∈ I and all y ∈ [γ − ε, γ + ε] , (3.1.18)

or
− ψ(t) > f(t, y) for a.a. t ∈ I and all y ∈ [γ − ε, γ + ε] . (3.1.19)

In particular, we require to the function f to have constant sign in some neighborhood
of the point γ or, otherwise, to vanish at this point. Similar conditions are frequently used
in the literature, cf. [18, 19, 21, 84]. Observe that for autonomous problems time-dependent
discontinuity sets have no sense, and thus the discontinuity points must satisfy conditions as
above. Nevertheless, in the scalar autonomous case, necessary and sufficient conditions for
the existence of Carathéodory solutions for Cauchy problems are known, see [15].

A usual assumption in the literature concerning discontinuous nonlinearities is the fol-
lowing, see [22, 84]:

inf
t∈I, x∈R

f(t, x) > 0. (3.1.20)
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Then any constant curve is admissible for the differential equation since it is inviable, so the
following result is immediately deduced.

Corollary 3.1.8. Assume that f : I × R→ R satisfies conditions (H1), (H2) and (3.1.20),
and the function x 7→ f(t, x) is continuous except at most in a countable number of points.
Then problem (3.1.1) has at least one absolutely continuous solution.

This is not true if we replace (3.1.20) by f(t, x) > 0 for all t ∈ I and all x ∈ R, as it can
be seen by taking f(x) = 1 if x ≤ 0, f(x) = x/2 if x > 0 and x0 = 0.

Theorem 3.1.6 provides existence results even for nonnegative functions f for which
condition (3.1.20) fails.

Example 3.1.9. Consider the Cauchy problem (3.0.1) with n = 1, x0 = 0 and

f(t, x) =
1√
t
− 1 +H(x− c)

where c ∈ R and H is the Heaviside step function.
The function f is discontinuous in the second variable for x = c or, equivalently, it is

discontinuous over the graph of the constant curve γ ≡ c. By taking ψ(t) = (1/
√
t − 1)/2,

we have that
ψ(t) < f(t, x) for a.a. t ∈ I and all x ∈ R,

and ψ ∈ L1(I), ψ(t) > 0 for a.a. t ∈ I . Hence, γ is inviable.
However, inft∈I, x∈R f(t, x) = 0. Moreover, notice that condition (3.1.2) in Definition

3.1.1 is not satisfied for any constant function ψ.

Finally we illustrate the applicability of Theorem 3.1.6 with the following examples.

Example 3.1.10. The initial value problem (3.0.1) has at least one absolutely continuous
solution on I = [0, 1] for

f(t, x) =

{
1/
√
t+ sinb1/xc for x > 0,

1/
√
t for x ≤ 0,

and x0 = 0 (where bxc means integer part of x).
To check condition (H2) in Theorem 3.1.6, note that for every continuous function x, we

can write the composition t ∈ I 7→ f(t, x(t)) as

t ∈ I 7→ f(t, x(t)) =
1√
t

+
∞∑
n=1

sin(n)χ
En

(t), (3.1.21)

where χ denotes the characteristic function and En = x−1((1/(n + 1), 1/n]), n ∈ N, are
measurable sets. Therefore, (3.1.21) is a measurable function and so condition (H2) holds.

Moreover, in this case f(t, ·) is discontinuous at x = 0 or x = 1/n, n ∈ N, but it is not
monotone. Notice that γ0 = 0 and γn = 1/n (n ∈ N) are admissible discontinuity curves.
Moreover, all of them are necessarily crossed by any solution because x′(t) > 1/

√
t− 1 for

a.a. t ∈ [0, 1].
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Example 3.1.11. Consider the scalar initial value problem

x′(t) = f(t, x) = b1/(t+ 2 |x|)c1/2 + 1 for a.a. t ∈ [0, 1], x(0) = 0.

First, observe that f(t, x) ≤M(t) = 1/
√
t+1 for a.a. t ∈ [0, 1] and all x ∈ R, so condition

(H1) in Theorem 3.1.6 holds.
Now, to check (H2), let x ∈ C(I) be given. Then the function ϕ(t) = t+ 2 |x(t)| is also

continuous and, therefore, its composition with the monotone (and so, Borel–measurable)
function ψ(z) = (b1/zc)1/2 is measurable. This allows us to conclude that the composition
t ∈ I 7→ f(t, x(t)) is measurable because it coincides almost everywhere with the function
t ∈ I 7→ 1 + ψ(ϕ(t)).

Finally, the function f is discontinuous over the graphs of the following two families of
admissible curves (n ∈ N):

γ1
n(t) = − t

2
+

1

2n
, t ∈ In =

[
0,

1

n

]
,

and

γ2
n(t) =

t

2
− 1

2n
, t ∈ In =

[
0,

1

n

]
.

As f(t, x) ≥ 1 for a.a. t ∈ [0, 1] and all x ∈ R, we can conclude that such curves are in fact
inviable, since for each n ∈ N we have γ1

n
′
(t) = −1/2 and γ2

n
′
(t) = 1/2.

Therefore, Theorem 3.1.6 implies the existence of at least one absolutely continuous so-
lution for this problem.

In the following example we show the application of Theorem 3.1.6 to Cauchy problems
with functional initial conditions and unbounded nonlinearities.

Example 3.1.12. Consider the family of multipoint problems{
x′(t) = f(t, x(t)) for a.a. t ∈ I = [0, 1],
x(0) =

∑m
i=1 ci x(ηi),

(3.1.22)

where ηi ∈ [0, 1] for i = 1, . . . ,m, and

f(t, x) =
a√
t

+ b xα sinb1/xc, x 6= 0, f(t, 0) =
a√
t
,

with a, b, ci ∈ R and α ∈ N satisfying that |a| ≥ |b| and 4 |a| + |b| +
∑m
i=1 |ci| < 1. Then

problem (3.1.22) has at least one solution x such that ‖x‖∞ < 1.
Observe that the function f(t, ·) is discontinuous over the countable family of constant

curves {±1/n : n ∈ N} which are inviable by condition |a| ≥ |b|. Moreover, since∫ 1

−1
|s|−1/2

ds = 4 and 4 |a| + |b| +
∑m
i=1 |ci| < 1, condition (H1) in Theorem 3.1.6 is

satisfied for M(t) = |a| |t|−1/2
+ |b|, N =

∑m
i=1 |ci| and R = 1. Finally, condition (H2)

can be verified as in Example 3.1.10.
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3.2 Existence results for non–autonomous systems
In this section we study the existence of Carathéodory solutions for the system

x′(t) = f(t, x(t)) for a.a. t ∈ I = [0, L], x(0) = x0 ∈ Rn, (3.2.1)

where L > 0 and n ∈ N are fixed, and the nonlinear part f : I × Rn −→ Rn need not be
continuous.

The following theorem, due to Bressan and Shen, was our motivation for this section.

Theorem 3.2.1. [25, Theorem 1] Assume that f : Rn → Rn has the form

f(x) = F (g1(τ1(x), x), . . . , gN (τN (x), x)) for some N ∈ N,

where

(i) Each map τi : Rn → R is continuously differentiable. Each gi : R × Rn → R is
measurable in t and continuous in x, that is, it is a Carathéodory function. Moreover,
F : RN → Rn is continuous.

(ii) For some compact set K ⊂ Rn, at every point x there holds:

f(x) ∈ K, ∇τi(x) · z > 0 for every z ∈ K. (3.2.2)

Then the Cauchy problem

x′ = f(x), x(0) = x0 ∈ Rn, t ∈ I = [0, L], (3.2.3)

has at least one solution.

Theorem 3.2.1 was extended to discontinuous autonomous differential inclusions in [6]
and to non-autonomous perturbations of autonomous discontinuous equations in [7].

The transversality condition (3.2.2) is the key assumption in the proof of Theorem 3.2.1
to deduce the existence of solutions as a consequence of the continuity of the Picard operator
and the application of Schauder’s fixed point theorem. Observe that (3.2.2) is a global con-
dition, i.e. imposed at every point x ∈ Rn, and this is an important drawback in Theorem
3.2.1. For instance, condition (3.2.2) is not satisfied if f(x) = (0, 0, . . . , 0) for some x ∈ Rn,
thus leaving many nonlinearities outside its scope. The previous remark also shows that The-
orem 3.2.1 does not contain as a particular case the classical situation when f is continuous
everywhere.

Here we present an alternative version of Theorem 3.2.1 which

a) is valid for the general nonautonomous case;

b) relaxes condition (3.2.2) and imposes it where really needed (namely, discontinuity
sets);

c) includes the classical Peano theorem as a particular case.
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Our approach starts by replacing the differential equation in (3.2.1) by a differential in-
clusion

x′(t) ∈ Kf(t, x(t)) for a.a. t ∈ I = [0, L], x(0) = x0 ∈ Rn. (3.2.4)

We define the multivalued mapping Kf : I × Rn → P(Rn) as

Kf(t, x) =
⋂
ε>0

cof
(
t, Bε(x)

)
for every (t, x) ∈ I × Rn, (3.2.5)

where Bε(x) is the closed ball centered at x and radius ε > 0 (we consider the maximum
norm inRn). Observe that, in the scalar case (n = 1) one can easily deduce for (t, x) ∈ I×R
that

Kf(t, x) =

[
min

{
f(t, x), lim inf

y→x
f(t, y)

}
,max

{
f(t, x), lim sup

y→x
f(t, y)

}]
. (3.2.6)

Absolutely continuous solutions of (3.2.4) are usually called Krasovskij solutions of (3.2.1).
It is clear that every Carathéodory solution of (3.2.1) is also a solution for the inclusion
(3.2.4), but the converse is false in general. Following the spirit of [45], we will introduce
some assumptions on f (similar to those in Bressan and Shen’s paper [25]) so that, first, prob-
lem (3.2.1) has Krasovskij solutions and, second, every Krasovskij solution is a Carathéodory
solution.

We need the following known result concerning the existence of Krasovskij solutions. It
is just a part of [45, Proposition 2.1].

Proposition 3.2.2. Let f : I × Rn → Rn be such that

(1) There exists M ∈ L1(I) such that for a.a. t ∈ I and all x ∈ Rn, we have

‖f(t, x)‖ ≤M(t)(1 + ‖x‖);

(2) For all x ∈ Rn, f(·, x) is measurable.

Then the set of Krasovskij solutions to (3.2.1) is a nonempty, compact and convex subset of
C(I;Rn).

We are already in a position to state and prove our main existence result in this section.

Theorem 3.2.3. Assume that f : I × Rn −→ Rn satisfies the following conditions:

(1) (Sublinear growth) There exists M ∈ L1(I) such that for a.a. t ∈ I and all x ∈ Rn,
we have

‖f(t, x)‖ ≤M(t)(1 + ‖x‖);

(2) (Measurability) For all x ∈ Rn, f(·, x) is measurable;

(3) (Inviable discontinuity sets) The function f : I × Rn −→ Rn can be expressed in the
form

f(t, x) = F (t, g1(τ1(t, x), x), g2(τ2(t, x), x), . . . ), (3.2.7)

where for each i ∈ N (N is a nonempty countable set) we have that
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(i) a) Each function τi : I × Rn −→ R is differentiable;
b) Each function gi : R× Rn −→ R is continuous in (R \Ai)× Rn, where

Ai is a null–measure set;
c) For a.a. t ∈ I and all x ∈ Rn, the condition τi(t, x) ∈ R \ Ai for all
i ∈ N implies that f(t, ·) is continuous at x.

(ii) For each (t, x) ∈ τ−1
i (Ai) ∩D we have

∇τi(t, x) · (1, z) 6= 0 for all z ∈ Kf(t, x), (3.2.8)

where D = {(t, x) ∈ I × Rn : f is discontinuous at (t, x)} and Kf(t, x) is as
in (3.2.5).

Then the set of Carathéodory solutions to (3.2.1) is a nonempty, compact and convex subset
of C(I;Rn).

Proof. Let us consider the Banach space X = C(I;Rn) with the maximum norm (also de-
noted by ‖·‖). Since for a.a. t ∈ I the multivalued mapping Kf(t, ·) is upper semicontinuous
with nonempty, convex and compact values (see, for instance, Example 1.2 in [50] for de-
tails), we can ensure, by virtue of Proposition 3.2.2, that the set of Krasovskij solutions to
(3.2.1) is a nonempty, compact and convex subset of C(I;Rn).

To finish the proof, we will show that the assumptions imply that every Krasovskij solu-
tion to (3.2.1) is a Carathéodory solution. To do so, we need the following claim.

Claim: If u is a Krasovskij solution, then

m({t ∈ I : τi(t, u(t)) ∈ Ai, (t, u(t)) ∈ D}) = 0

for all i ∈ N (here m denotes the Lebesgue measure).
Let us denote Ji = {t ∈ I : τi(t, u(t)) ∈ Ai, (t, u(t)) ∈ D} and ϕi(t) = τi(t, u(t))

for all t ∈ I . Since m(Ai) = 0, Lemma 3.1.5 ensures the existence of some null set Bi ⊂
ϕ−1
i (Ai) such that for every t ∈ ϕ−1

i (Ai) \Bi we have

dτi(t, u(t))

dt
= 0.

By the chain rule we deduce

dτi(t, u(t))

dt
= ∇τi(t, u(t)) · (1, u′(t)),

so
∇τi(t, u(t)) · (1, u′(t)) = 0 for all t ∈ ϕ−1

i (Ai) \Bi. (3.2.9)

The definition of Krasovskij solution implies the existence of a null measure set Ci ⊂
ϕ−1(Ai) such that u′(t) ∈ Kf(t, u(t)) for all t ∈ ϕ−1

i (Ai)\Ci, so condition (3.2.9) restricted
to ϕ−1

i (Ai) \ (Bi ∪ Ci) and the assumption (3.2.8) are contradictory unless ϕ−1
i (Ai) =

Bi ∪ Ci. The claim is proven.
Therefore, if u is a Krasovskij solution, then condition (3) (i) c) implies that for a.a. t ∈ I

the mapping f(t, ·) is continuous at u(t), and thus Kf(t, u(t)) = {f(t, u(t))} for a.a. t ∈ I .
Since u is a Krasovskij solution, u′(t) ∈ Kf(t, u(t)) = {f(t, u(t))} for a.a. t ∈ I , so u is a
solution in the Carathéodory sense.
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Remark 3.2.4. Theorem 3.2.3 includes the classical Peano theorem as a particular case
because condition (ii) is only required at the points where the function f may present dis-
continuities.

Remark 3.2.5. Condition (3) (i) implies that the set of discontinuity points of the function
f(t, ·) is determined by those points satisfying that τi(t, x) ∈ Ai for some i ∈ N . Moreover,
the behavior of f at the discontinuity points is controlled by the transversality condition
(3) (ii).

On the other hand, notice that in the case of a finite setN condition (3) (i) c) holds trivially
if for a.a. t ∈ I , the function F (t, ·) is continuous.

Observe that the specific form of f given by (3.2.7) allows to consider any Carathéodory
function just by taking N = {1, 2, . . . , n} and gi(t, x) = xi with i ∈ N . Even though in
the previous papers where f was considered as the composition (3.2.7) the set N was finite
(see [7, 25]), the following example motivates to consider a countable set N .

Example 3.2.6. Consider the problem (3.2.1) with n = 2, L = 1, x0 = (0, 0) and the
function f = (f1, f2) where

f1(t, x, y) =

 2, if
1− t2m

2m
≤ x+ y <

1− t2m−1

2m− 1
, m ∈ N,

1, otherwise,

and

f2(t, x, y) =

 |y| , if
1

2m
≤ x < 1

2m− 1
, m ∈ N,

0, otherwise.

It is not clear how to express f = (f1, f2) as the function composition (3.2.7) with a finite set
N . Nevertheless, that difficulty can be easily overcome with a countable set N . Define the
auxiliary functions H1, H2 : R→ R given by

H1(y) =

{
1, if y ≥ 0,

0, if y < 0,
and H2(y) =

 1, if
1

2m
≤ y < 1

2m− 1
, m ∈ N,

0, otherwise.

Then the functions f1 and f2 can be written as

f1(t, x, y) = 1 +
∑
n∈N

[
H1

(
x+ y − 1− t2n

2n

)
−H1

(
x+ y − 1− t2n−1

2n− 1

)]
.

and

f2(t, x, y) = |y|H2(x).

Finally, taking N = N ∪ {0}, τ0(t, x, y) = x, g0(t, x, y) = |y|H2(t) and for each i ∈ N,
τi(t, x, y) = x+ y − (1− ti)/i, gi(t, x, y) = H1(t) and

F (t, x0, x1, x2, . . .) =

(
1 +

∑
i∈N

(x2i − x2i−1) , x0

)
,
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we obtain f in the form (3.2.7).
Now, it only remains to check the transversality condition (3.2.8). Notice that

f1(t, x, y) ≥ 1 and f2(t, x, y) ≥ 0 for all (t, x, y) ∈ I × R2,

and so
z1 ≥ 1 and z2 ≥ 0 for every (z1, z2) ∈ Kf(t, x, y).

Then for every (z1, z2) ∈ Kf(t, x, y) we have

∂ τ0
∂ t

(t, x, y) +
∂ τ0
∂ x

(t, x, y)z1 +
∂ τ0
∂ y

(t, x, y)z2 = z1 ≥ 1

and for each i ∈ N,

∂ τi
∂ t

(t, x, y) +
∂ τi
∂ x

(t, x, y)z1 +
∂ τi
∂ y

(t, x, y)z2 = ti−1 + z1 + z2 ≥ 1.

Therefore, Theorem 3.2.3 ensures that the above problem has at least one solution.

Remark 3.2.7. Condition (3.2.8) seems to be difficult to check in concrete examples when
n > 1. The reason is that it could be hard to determine exactly what are the points which be-
long to the set Kf(t, x). Therefore, we present two sufficient conditions for verifying (3.2.8):

(a) There exist ε, δ > 0 such that

∇τi(t, x) · (1, z) > δ for all z ∈ f(t, Bε(x));

(b) There exist ε, δ > 0 such that

∇τi(t, x) · (1, z) < −δ for all z ∈ f(t, Bε(x)).

Indeed, if condition (a) holds, then for z1, z2 ∈ f(t, Bε(x)) and λ ∈ [0, 1], we have

∇τi(t, x) · (1, λz1 + (1− λ)z2) = λ∇τi(t, x) · (1, z1) + (1− λ)∇τi(t, x) · (1, z2) > δ,

which implies
∇τi(t, x) · (1, z) > δ for all z ∈ cof(t, Bε(x)),

and thus

∇τi(t, x) · (1, z) ≥ δ > 0 for all z ∈ Kf(t, x) ⊂ cof(t, Bε(x)).

Similarly, if condition (b) holds, it is possible to show that (3.2.8) is satisfied.

Remark 3.2.8. Carathéodory solutions of (3.2.1) can be localized a priori, which allows us
to consider a weaker version of condition (3.2.8). Indeed, in the conditions of Theorem 3.2.3,
assume that u is a Carathéodory solution of the Cauchy problem (3.2.1). Then

‖u(t)‖ =

∥∥∥∥u0 +

∫ t

0

f(s, u(s)) ds

∥∥∥∥ ≤ ‖u0‖+ ‖M‖L1(I) +

∫ t

0

M(s) ‖u(s)‖ ds.
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By Gronwall’s inequality,

‖u(t)‖ ≤
(
‖u0‖+ ‖M‖L1(I)

)
exp

(∫ t

0

M(s) ds

)
,

and thus there exists R > 0 such that ‖u(t)‖ ≤ R for all t ∈ I .
Define f̃(t, x) = f(t, ρ(x)) with ρ(x) = max{min{R, x},−R}. It is clear that∥∥∥f̃(t, x)

∥∥∥ ≤M(t)(1 +R) =: M̃(t) for a.a. t ∈ I and for all x ∈ Rn,

and M̃ ∈ L1(I).
Observe that the solutions of (3.2.1) belong to the set

K =

{
u ∈ C(I;Rn) : u(0) = x0, ‖u(t)− u(s)‖ ≤

∫ t

s

M̃(r) dr (s ≤ t)
}
, (3.2.10)

which is a compact and convex subset of C(I;Rn). Note that solutions of (3.2.4) belong to
K too.

Therefore, condition (3.2.8) need not to be required for each (t, x) ∈ τ−1
i (Ai) ∩D, but

only for those such that

‖x‖ ≤ ‖x0‖+

∫ t

0

M̃(s) ds.

In the case of the autonomous problem (3.2.3) we obtain the following existence result.

Corollary 3.2.9. Assume that f : Rn −→ Rn is a sublinear function which can be expressed
in the form

f(x) = F (g1(τ1(x), x), g2(τ2(x), x), . . . , gN (τN (x), x)),

where:

(i) a) Each function τi : Rn −→ R is differentiable;

b) Each function gi : R×Rn −→ R is continuous in (R\Ai)×Rn, whereAi ⊂ R
is a null–measure set;

c) F : RN → Rn is continuous.

(ii) For each i ∈ {1, 2, . . . , N} and every x ∈ τ−1
i (Ai) ∩ D the following condition is

satisfied
∇τi(x) · z 6= 0 for all z ∈ Kf(x). (3.2.11)

Then problem (3.2.3) has at least one solution.

Remark 3.2.10. Corollary 3.2.9 replaces the global condition (3.2.2) in Theorem 3.2.1 by
the local assumption (3.2.11). To do so, we need to impose stronger conditions on functions
gi, namely, that they are continuous with respect to its first variable except on a null–measure
set, instead of being only measurable, as in Theorem 3.2.1. Nevertheless, the assumptions
on gi in Theorem 3.2.1 imply that for a given ε > 0 there exists a closed set Ji such that
m(R \ Ji) ≤ ε and gi is continuous when restricted to the set Ji ×Rn, by Scorza-Dragoni’s
theorem.
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Now we give an example which shows that our results are more applicable than Theorem
3.2.1.

Example 3.2.11. Consider the Cauchy problem (3.2.3) with n = 2, x0 = (0, 0), and f =
(f1, f2) given by

f1(x, y) =

{
sin2b1/xc+ x cos y + 2 if x 6= 0,
2 if x = 0,

(3.2.12)

and

f2(x, y) =

{
(1 + sinb1/yc) |y|+ 1− cosx if y 6= 0,
1− cosx if y = 0,

(3.2.13)

where bzc denotes the integer part of z.
Observe that f1 and f2 have infinitely many discontinuity points in any neighborhood

of the initial condition. However, we shall show that f = (f1, f2) satisfies the conditions
of Corollary 3.2.9, and therefore the corresponding initial value problem has at least one
absolutely continuous solution. To do so, we start by rewriting

f1(x, y) = g1(τ1(x, y), (x, y)), (3.2.14)
f2(x, y) = g2(τ2(x, y), (x, y)), (3.2.15)

so that
f(x, y) = F (g1(τ1(x, y), (x, y)), g2(τ2(x, y), (x, y))), (3.2.16)

for F (u, v) = (u, v).
Now in (3.2.14) we define τ1(x, y) = x and g1(t, (x, y)) = sin2b1/tc + x cos y + 2 if

t 6= 0 and g1(0, (x, y)) = x cos y+ 2. The function g1 is continuous in (R \A1)×R2, where
A1 is the countable set

A1 =

{
± 1

n
: n ∈ N

}
∪ {0}.

We have that for every (x, y) ∈ R2 and for all (z1, z2) ∈ ([−3/2, 3/2] \ {0})× R,

∇τ1(x, y) · f(z1, z2) = (1, 0) · f(z1, z2)

= sin2b1/z1c+ z1 cos z2 + 2

≥ 2− 3/2 = 1/2 > 0

and
∇τ1(x, y) · f(0, z2) = f1(0, z2) = 2 > 0,

so, in virtue of Remark 3.2.7, condition (ii) in Corollary 3.2.9 is satisfied for i = 1.
On the other hand, in (3.2.15) it suffices to define τ2(x, y) = y and

g2(t, (x, y)) = (1 + sinb1/tc) |t|+ 1− cosx

if t 6= 0 and g2(0, (x, y)) = 1− cosx. The function g2 is continuous in (R\A2)×R2, where
A2 is the countable set

A2 =

{
± 1

n
: n ∈ N

}
.

52
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For each n ∈ N, every (x, y) ∈ τ−1
2 (±1/n) and all (z1, |z2|) ∈ R× (1/(n+ 1), 1/(n− 1)),

we have

∇τ2(x, y) · f(z1, z2) = (1 + sinb1/z2c) |z2|+ 1− cos z1

≥ (1−max{|sinn| , |sin(n− 1)|}) 1

n+ 1
> 0,

and thus condition (ii) holds.
Therefore, Corollary 3.2.9 ensures the existence of at least one solution for this Cauchy

problem. However, Theorem 3.2.1 is not applicable here, since f2(0, 0) = 0 and∇τ2(x, y) =
(0, 1) and thus condition (3.2.2) is not satisfied.

The Cauchy problem considered in the previous example cannot be analyzed by means
of the existence results in [45, 84], since in those results the set of discontinuity points of the
nonlinearity f can be at most the Cartesian product of null–measure sets. The results in [132]
are also not applicable because only differential equations with right-hand sides bounded
from the origin are considered, whereas in Example 3.2.11 it is f2(0, 0) = 0. Moreover, the
example falls outside the scope of the existence principles established in [38, 76, 78] because
the right–hand side is neither monotone nor quasimonotone.

More information can be given for the scalar case of (3.2.1). Exactly as in the classical
setting of continuous right–hand sides, we can deduce the existence of extremal solutions,
that is, a least and a greatest one. The proof is based on the following result on existence of
extremal solutions for problem (3.2.4), which is the second part of [45, Proposition 2.1].

Proposition 3.2.12. Let n = 1. In the conditions of Proposition 3.2.2, the set of Krasovskij
solutions to (3.2.1) has a pointwise maximum x∗ and minimum x∗, which are the extremal
Krasovskij solutions to (3.2.1).

Moreover, for each t ∈ I we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) ∈ Kf(s, v(s))− R+ a.e., v(0) ≤ x0},
x∗(t) = min{v(t) : v ∈ AC(I), v′(s) ∈ Kf(s, v(s)) + R+ a.e., v(0) ≥ x0}.

From Proposition 3.2.12 and the proof of Theorem 3.2.3, it is easily obtained the follow-
ing result on extremal Carathéodory solutions for the scalar case of (3.2.1).

Theorem 3.2.13. Assume that f : I × R −→ R satisfies the following conditions:

(1) (Sublinear growth) There exists M ∈ L1(I) such that for a.a. t ∈ I and all x ∈ R, we
have

|f(t, x)| ≤M(t)(1 + |x|);

(2) (Measurability) For all x ∈ R, f(·, x) is measurable;

(3) (Inviable discontinuity sets) The function f : I × R→ R can be expressed in the form

f(t, x) = F (t, g1(τ1(t, x), x), g2(τ2(t, x), x), . . . ),

where for each i ∈ N (N is a nonempty countable set) we have that
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(i) a) Each function τi : I × R −→ R is differentiable;
b) Each function gi : R × R −→ R is continuous in (R \ Ai) × R, where

Ai ⊂ R is a null–measure set;
c) For a.a. t ∈ I and all x ∈ R, the condition τi(t, x) ∈ R\Ai for all i ∈ N

implies that f(t, ·) is continuous at x.

(ii) For each (t, x) ∈ τ−1
i (Ai) ∩D we have

∂ τi
∂ t

(t, x) +
∂ τi
∂ x

(t, x)z 6= 0 for all z ∈ Kf(t, x). (3.2.17)

Then problem (3.2.1) has the least solution, x∗, and the greatest solution, x∗. Moreover, for
each t ∈ I we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) ≤ f(s, v(s)) a.e., v(0) ≤ x0},
x∗(t) = min{v(t) : v ∈ AC(I), v′(s) ≥ f(s, v(s)) a.e., v(0) ≥ x0}.

Remark 3.2.14. We cannot expect to obtain extremal solutions to (3.2.1) when n ≥ 2, even
if f is continuous, see [45, Remark 1, p. 624].

Next we present a general family of problems whose solvability can be deduced from
Theorem 3.2.13. We base our examples on a function ψ : R −→ R which is discontinuous
at every point of Cantor’s ternary set C. We define ψ as a 1-periodic function such that
ψ = 0 on C, and if (a, b) is one of the open intervals removed from [0, 1] at some step of the
construction of C (see Figure 3.2.1), then define

ψ(x) =
2x− a− b
b− a

for all x ∈ (a, b).

Note that ψ is linear with slope 2/(b − a) on (a, b), lim
x→a+

ψ(x) = −1 and lim
x→b−

ψ(x) = 1.

Therefore, ψ is continuous on R \ C̃, where C̃ = C +Z, and discontinuous at every x0 ∈ C̃.
More precisely, for each x0 ∈ C̃ we have

lim inf
x→x0

ψ(x) = −1 and lim sup
x→x0

ψ(x) = 1.

We emphasize that the set of discontinuities of ψ is uncountable.

Proposition 3.2.15. For any continuously differentiable function p = p(x) and any bounded
and continuous function ϕ : R −→ R, the problem

x′ = ψ(p(x) + α t) + ϕ(x), t ∈ I = [0, 1], x(0) = 0, (3.2.18)

has the extremal solutions provided that |α| is sufficiently large.

Proof. Problem (3.2.18) is the particular case of (3.2.1) corresponding to

f(t, x) = g(τ(t, x), x)
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x

ψ

1

1

1

Figure 3.2.1: First three steps of the construction of the function ψ on [0, 1].

for τ(t, x) = p(x) +α t and g(t, x) = ψ(t) +ϕ(x). Observe that τ is continuously differen-
tiable, g is continuous on (R \ C̃)× R and C̃ is a null–measure set.

Let M > 0 be such that |ϕ(x)| ≤ M for all x ∈ R; then we have |f(t, x)| ≤ 1 + M
for all (t, x) ∈ I × R, so one deduces by integration that any possible solution of (3.2.18)
satisfies

|x(t)| ≤ 1 +M for all t ∈ I .

This allows us to restrict the verification of condition (3.2.8) at points (t, x) ∈ I × R such
that |x| ≤ 1 +M . Observe that for every (t, x) ∈ I × [−(1 +M), 1 +M ] we have

Kf(t, x) ⊂ [−(1 +M), 1 +M ],

so if we take
M̄ = (1 +M) sup

|x|≤1+M

|p′(x)| ≥ 0,

then we have

|zp′(x)| ≤ M̄ for all x ∈ [−(1 +M), 1 +M ] and all z ∈ Kf(t, x).

Therefore, if |α| > M̄ , then for every (t, x) ∈ I × [−(1 +M), 1 +M ] such that τ(t, x) ∈ C̃
we have

∇τ(t, x) · (1, z) = α+ zp′(x) 6= 0 for all z ∈ Kf(t, x).

Then, Theorem 3.2.13 implies the existence of extremal solutions to problem (3.2.18) pro-
vided that |α| > M̄ .

55



First order problems

Remark 3.2.16. Proposition 3.2.15 cannot be deduced from Theorem 3.1.6. There, the non-
linearity f may be discontinuous over the graphs of a countable number of admissible curves,
whereas here such a number is given by the set of discontinuities of ψ and so being uncount-
able. Even it is not clear in general how to write the set of points (t, x) ∈ I × R such that
p(x) + α t ∈ C̃ as the union of several graphs of curves γ(t).

Remark 3.2.17. If we try to apply Theorem 3.2.13 to the Cauchy problem in Example 3.1.11,
then we need to write the function

f(t, x) = b1/(t+ 2 |x|)c1/2 + 1,

in the form (3.2.7). One first attempt would be to take f(t, x) = g(τ(t, x), x) with g(t, x) =
b1/tc1/2 + 1 if t > 0 and g(t, x) = 1, otherwise; and τ(t, x) = t + 2 |x|. Unfortunately,
Theorem 3.2.13 cannot be directly applied since τ is not differentiable.

Nevertheless, we can still expect to write f in the form (3.2.7). Consider the auxiliary
functions

H1(y) =

{
0, if y < 0,
1, if y ≥ 0,

, H2(y) =

{
0, if y ≤ 0,
1, if y > 0.

Observe that we can express the function b1/(t+ 2 |x|)c as

b1/(t+ 2 |x|)c =
∑
n∈N

(
H1

(
1

n
− 2x− t

)
−H2

(
t− 2x− 1

n

))
,

and thus f can be written as in (3.2.7) in the obvious way.

Even though the previous comments and examples suggest that Theorem 3.2.13 is more
general than Theorem 3.1.6 when restricted to the scalar Cauchy problem (3.0.1), that is not
true since Theorem 3.2.13 does not allow to consider the case of viable discontinuity curves.

To finish this section, we generalize Theorem 3.2.13 by assuming the existence of well–
ordered lower and upper solutions for problem (3.2.1).

Definition 3.2.18. A function α : I → R, α ∈ AC(I), is a lower solution for problem (3.2.1)
if

α′(t) ≤ f(t, α(t)) for a.a. t ∈ I, α(0) ≤ x0.

Similarly, a function β ∈ AC(I) is an upper solution for (3.2.1) if it satisfies the inequalities
in the reverse order.

Theorem 3.2.19. Suppose that f : I × R→ R satisfies the following conditions:

(H1) (Lower and upper solutions) There exist α, β ∈ AC(I) lower and upper solutions for
(3.2.1), respectively, such that α ≤ β on I .

Let us denote ∆ = {(t, x) ∈ I × R : α(t) ≤ x ≤ β(t)}.

(H2) (L1 bound) There exists M ∈ L1(I) such that for a.a. t ∈ I and for all x ∈
[α(t), β(t)], we have |f(t, x)| ≤M(t).

(H3) (Measurability) For all x ∈ R, f(·, x) is measurable.
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(H4) (Inviable discontinuity sets) The function f : I × R→ R can be expressed in the form

f(t, x) = F (t, g1(τ1(t, x), x), g2(τ2(t, x), x), . . .),

where for each i ∈ N (N is a nonempty countable set) we have that

(i) a) Each function τi : I × R −→ R is differentiable on ∆;
b) Each function gi : R×R −→ R is continuous in (R \Ai)×R, where Ai

is a null–measure set;
c) For a.a. t ∈ I and all x ∈ [α(t), β(t)], the condition τi(t, x) ∈ R \Ai for

all i ∈ N implies that f(t, ·) is continuous at x.

(ii) For each (t, x) ∈ τ−1
i (Ai) ∩D, x ∈ [α(t), β(t)], condition (3.2.17) holds.

Then the set of Carathéodory solutions between α and β on I to the problem (3.2.1) is a
nonempty, compact and convex subset of C(I). Moreover, such a set has pointwise maximum,
x∗, and minimum, x∗, which are extremal solutions to (3.2.1) between α and β, and satisfy

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) ≤ f(s, v(s)) a.e., v(0) ≤ x0, α ≤ v ≤ β on I},
x∗(t) = min{v(t) : v ∈ AC(I), v′(s) ≥ f(s, v(s)) a.e., v(0) ≥ x0, α ≤ v ≤ β on I}.

Proof. Consider the modified problem

x′(t) ∈ Kf̃(t, x(t)) for a.a. t ∈ I, x(0) = x0, (3.2.19)

where

f̃(t, x) =

 β′(t) if x > β(t),
f(t, x) if α(t) ≤ x ≤ β(t),
α′(t) if x < α(t).

Let us divide the proof in several steps.
Step 1: Problem (3.2.19) has extremal solutions.
Clearly, for a.a. t ∈ I and all x ∈ R, we have

∣∣∣f̃(t, x)
∣∣∣ ≤ M̃(t) with M̃(t) :=

max{|α′(t)| , |β′(t)| ,M(t)}. Then Proposition 3.2.12 implies that (3.2.19) has extremal so-
lutions.

Step 2: All solutions of (3.2.19) belong to [α, β].
Let u ∈ AC(I) be such that u′(t) ∈ Kf̃(t, u(t)) for a.a. t ∈ I and u(0) = x0. Let

us show that α(t) ≤ u(t) ≤ β(t) for all t ∈ I . Suppose that there exists t ∈ I such
that u(t) > β(t). Since u and β are continuous functions and u(0) = x0 ≤ β(0), there
exist t̄ ∈ I and ε > 0 such that u(t̄) = β(t̄) and u(t) > β(t) for all t ∈ (t̄, t̄ + ε) ⊂ I .
Hence, f̃(t, u(t)) = β′(t) for all t ∈ (t̄, t̄ + ε) and by the definition of Kf̃ we deduce that
Kf̃(t, u(t)) = {β′(t)} for all t ∈ (t̄, t̄ + ε). Since u is a solution of the modified problem
(3.2.19), we have that u′(t) = β′(t) for a.a. t ∈ (t̄, t̄ + ε). Now, u(t̄) = β(t̄) implies that
u(t) = β(t) in (t̄, t̄+ ε), a contradiction. Similarly, α ≤ u for all t ∈ I .

Therefore, the set of solutions to (3.2.19) coincides with the set of Krasovskij solutions
between α and β to the problem (3.2.1).

Step 3: If u is a Krasovskij solution between α and β to (3.2.1), then u is a Carathéodory
solution to (3.2.1).

It can be shown exactly as in the proof of Theorem 3.2.3.
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Remark 3.2.20. Theorem 3.2.19 allows to obtain a new result for infinite quasimonotone
systems of functional equations following the technique described in [42].

3.3 Discontinuous first–order functional boundary value pro-
blems

Now we prove the existence of extremal absolutely continuous solutions to the functional
problem {

x′(t) = f(t, x(t), x) for a.a. t ∈ I = [0, L],
B(x(0), x) = 0,

(3.3.1)

where L > 0, and f : I × R×AC(I)→ R and B : R×AC(I)→ R may be discontinuous
with respect to all of their arguments.

The functional boundary condition in (3.3.1) includes initial and periodic conditions, but
also some more sophisticated types as multipoint, integral and other conditions with, for
example, maximum or minimum arguments.

We need the following version of Bolzano’s theorem whose proof can be looked up in [71,
Lemma 2.3].

Lemma 3.3.1. Let a, b ∈ R, a ≤ b, and let h : R→ R be such that h(a) ≤ 0 ≤ h(b) and

lim inf
z→x−

h(z) ≥ h(x) ≥ lim sup
z→x+

h(z) for all x ∈ [a, b].

Then there exist c1, c2 ∈ [a, b] such that h(c1) = 0 = h(c2) and if h(c) = 0 for some
c ∈ [a, b] then c1 ≤ c ≤ c2, i.e., c1 and c2 are, respectively, the least and the greatest of the
zeros of h in [a, b].

The following fixed point theorem is an immediate consequence of [78, Proposition
1.4.4].

Proposition 3.3.2. Given a nonempty order interval [α, β] in AC(J), where J is a compact
real interval, and a nondecreasing mapping G : [α, β] → [α, β], assume that there is M ∈
L1(J) such that

|(Gx)′(t)| ≤M(t) for all x ∈ [α, β] and for a.a. t ∈ J.

Then G has in [α, β] a maximum, x∗, and the minimum, x∗, fixed points, and

x∗ = max{x ∈ [α, β] : x ≤ Gx}, x∗ = min{x ∈ [α, β] : Gx ≤ x}.

We also need the notion of lower and upper solutions for (3.3.1), see [42, 59].

Definition 3.3.3. A function α : I → R, α ∈ AC(I), is a lower solution for problem (3.3.1)
if

α′(t) ≤ f(t, α(t), α) for a.a. t ∈ I, B(α(0), α) ≤ 0.

Similarly, a function β ∈ AC(I) is an upper solution for (3.3.1) if it satisfies the inequalities
in the reverse order.
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Next we proceed to establish the main existence result concerning problem (3.3.1).

Theorem 3.3.4. Suppose that f : I × R×AC(I)→ R satisfies the following conditions:

(C1) (Lower and upper solutions) There exist α, β ∈ AC(I) lower and upper solutions for
(3.3.1), respectively, such that α ≤ β on I .

(C2) (L1 bound) There exists M ∈ L1(I) such that for a.a. t ∈ I , all x ∈ [α(t), β(t)] and
all γ ∈ [α, β] := {x ∈ AC(I) : α ≤ x ≤ β on I}, we have |f(t, x, γ)| ≤M(t).

(C3) (Measurability and inviable discontinuity sets) For each γ ∈ [α, β] the mapping

(t, x) ∈ I × R 7→ fγ(t, x) := f(t, x, γ)

satisfies the conditions (H3) and (H4) in Theorem 3.2.19.

(C4) (Functional dependence) For a.a. t ∈ I and all x ∈ [α(t), β(t)], f(t, x, ·) is nonde-
creasing in [α, β].

(C5) (Functional BCs) For all γ ∈ [α, β] and all x ∈ R we have

lim inf
y→x−

B(y, γ) ≥ B(x, γ) ≥ lim sup
y→x+

B(y, γ),

and B(x, ·) is nonincreasing in [α, β].

Then problem (3.3.1) has extremal solutions between α and β.

Proof. Consider the mapping G : [α, β]→ [α, β] defined as follows: for each γ ∈ [α, β], Gγ
is the greatest solution between α and β to the Cauchy problem

x′(t) = f(t, x(t), γ) for a.a. t ∈ I, x(0) = xγ , (3.3.2)

where xγ is the greatest solution in [α(0), β(0)] of the algebraic equation B(x, γ) = 0.
Note that, since B(x, ·) is nonincreasing in [α, β], we have

B(α(0), γ) ≤ B(α(0), α) ≤ 0 ≤ B(β(0), β) ≤ B(β(0), γ),

and thus, by assumption (C5) and Lemma 3.3.1, we obtain that xγ is well–defined. The
existence of the greatest solution between α and β to (3.3.2) is guaranteed by Theorem 3.2.19,
so the mapping G is also well–defined.

Observe that if x ∈ [α, β] is a fixed point of G, then x is a solution to (3.3.1) between α
and β.

Let us prove that G is nondecreasing in [α, β]. Let γ1, γ2 ∈ [α, β] be such that γ1 ≤ γ2.
By definition, xγi is the greatest solution in [α(0), β(0)] of B(x, γi) = 0. Hence, since for
all x ∈ (xγ2 , β(0)], we have 0 < B(x, γ2) ≤ B(x, γ1), then xγ1 ≤ xγ2 . Let us denote
y1 = Gγ1, which is a solution to

x′(t) = f(t, x(t), γ1) for a.a. t ∈ I, x(0) = xγ1 ,
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so, by (C4),
y′1(t) ≤ f(t, y1(t), γ2) for a.a. t ∈ I, y1(0) ≤ xγ2 ,

and thus y1 is a lower solution for problem

x′(t) = f(t, x(t), γ2) for a.a. t ∈ I, x(0) = xγ2 . (3.3.3)

Hence, Theorem 3.2.19 implies that problem (3.3.3) has at least one solution between y1

and β. On the other hand, y2 = Gγ2 is the greatest solution between α and β to (3.3.3).
Therefore, y1 ≤ y2 and so G is nondecreasing in [α, β].

Moreover, by (C2), there exists M ∈ L1(I) such that for every γ ∈ [α, β] we have
|(Gγ)′(t)| ≤ M(t) for a.a. t ∈ I . Hence, Proposition 3.3.2 guarantees that G has in [α, β] a
maximum fixed point, x∗. Furthermore, it satisfies

x∗ = max{x ∈ [α, β] : x ≤ Gx}. (3.3.4)

Let us show that x∗ is the greatest solution to (3.3.1) in [α, β]. If x̄ ∈ [α, β] is another solution
to (3.3.1), then we have

x̄′(t) = f(t, x̄(t), x̄) for a.a. t ∈ I, B(x̄(0), x̄) = 0.

Then B(x̄(0), x̄) = 0 and x̄(0) ∈ [α(0), β(0)] imply that x̄(0) ≤ xx̄, so x̄ is a lower solution
for the problem

x′(t) = f(t, x(t), x̄) for a.a. t ∈ I, x(0) = xx̄. (3.3.5)

Since Gx̄ is the greatest solution in [α, β] to (3.3.5), then x̄ ≤ Gx̄, and by (3.3.4), x̄ ≤ x∗.
The existence of the least solution to (3.3.1) in [α, β] can be deduced by redefining the

operator G in the obvious way.

We illustrate the previous result with a couple of examples. The first one is devoted
to a periodic problem and in the second one we deal with the existence of solutions to a
generalized logistic equation.

Example 3.3.5. Consider the periodic problem{
x′ = ψ(x+ 5t) + x cos(πx) for a.a. t ∈ [0, 1],
x(0) = x(1),

(3.3.6)

where ψ is defined as in Proposition 3.2.15.
First, note that the periodic problem can be seen as a particular case of (3.3.1) by defining

B(x, γ) = x−γ(1). Moreover, the constant functions α1 ≡ −3, α2 ≡ −1, α3 = 2, β1 ≡ −2,
β2 ≡ 1 and β2 ≡ 3 are three pairs of well–ordered lower and upper solutions for (3.3.6).

On the other hand, the function f(t, x) = ψ(x + 5t) + x cos(πx) can be written as the
composition f(t, x) = g(τ(t, x), x) where τ(t, x) = x+ 5t and g(t, x) = ψ(t) + x cos(πx).
In order to prove that the transversality condition (3.2.17) is satisfied for all x ∈ [−3,−2] ∪
[−1, 1] ∪ [2, 3], observe that if x ∈ [−3, 3], then f(t, x) ∈ [−4, 4] and thus z ∈ [−4, 4] for
all z ∈ Kf(t, x). Therefore, for a.a. t ∈ [0, 1] and x ∈ [−3, 3],

∂ τ

∂ t
(t, x) +

∂ τ

∂ x
(t, x)z = 5 + z ≥ 1 for all z ∈ Kf(t, x).
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3.3 Discontinuous first–order functional boundary value problems

In conclusion, problem (3.3.6) has at least three solutions located in the intervals [−3,−2],
[−1, 1] and [2, 3], respectively.

We highlight that this example is not covered by [59, Corollary 4.3] since ψ has an un-
countable number of discontinuity points.

Example 3.3.6. The logistic equation

x′(t) = rx(t)(N − x(t)), x(0) = x0,

where r,N > 0 and x0 ∈ (0, N), is a well–known model of population growth. The constant
r represents the growth rate and N is the carrying capacity.

We propose a generalized logistic equation which includes a functional dependence (e.g.
a delay or an integral term) to control not only the present state of the population, but also the
previous ones. Also the carrying capacityN is replaced by a functionN : R→ R which may
be discontinuous. It symbolizes how the carrying capacity may be modified due to external
factors depending on the number of individuals. For instance, we may think of a population
of bacteria where we introduce (or remove) resources when the size of the population exceed
some fixed value.

We consider the following generalized logistic equation

x′(t) = r(t, x)(N(x(t))− x(t)) t ∈ I, x(0) = x0, (3.3.7)

where

• N : R→ R satisfies that

– there exist N1, N2 > 0 such that N1 ≤ N(x) ≤ N2 for all x ∈ [N1, N2];

– N is continuous on [N1, N2] \A with m(A) = 0, and for each x ∈ A either

min{N(x), lim inf
y→x

N(y)} > x (3.3.8)

or
max{N(x), lim sup

y→x
N(y)} < x. (3.3.9)

• r : I × AC(I) → R is a positive and L1 bounded function on I × [N1, N2] such that
for a.a. t ∈ I , we have that r(t, ·) is nondecreasing; and

• x0 ∈ [N1, N2].

Problem (3.3.7) is a particular case of the functional problems of type (3.3.1) with

f(t, x, γ) = r(t, γ)(N(x)− x).

Observe that the constant functions α = N1 and β = N2 are, respectively, lower and upper
solutions for (3.3.7). Moreover, we note that for each γ ∈ [N1, N2] the mapping x 7→ fγ(t, x)
can be expressed in the form (3.2.7) as

fγ(t, x) = F (t, g(τ(t, x), x)),

61



First order problems

where F (t, y) = r(t, γ)y, g(t, x) = N(t) − x and τ(t, x) = x. Then the transversality
condition (3.2.17) is satisfied if for each t ∈ I and x ∈ A,

z 6= 0 for all z ∈ Kfγ(t, x),

what is an immediate consequence of assumptions (3.3.8) and (3.3.9) together with (3.2.6).
Therefore, Theorem 3.3.4 implies that problem (3.3.7) has extremal solutions between α and
β.

We remark that, when modeling population growth, condition (3.3.8) may just mean that
we give additional resources to the population (for instance, food) before the limiting capacity
for x individuals is attained.

In particular, we can takeN(x) = 1+b1/(2x)cx if x 6= 0 andN(0) = 3/2, and r(t, x) =

c
∫ t

0
x(s) ds, where c > 0 and byc denotes the integer part of y. Then the assumptions on N

hold for N1 ∈ (0, 1], N2 = 3/2 and A = {1/2n}n∈N since N(x) ≥ 1 on [0, 3/2] implies
that condition (3.3.8) is satisfied for all x ∈ A.

3.3.1 An application to second–order problems with functional boun-
dary conditions

As an application, we consider the existence of extremal solutions to the second–order prob-
lem {

x′′(t) = f(t, x(t), x′(t)) for a.a. t ∈ I = [0, L],
x(0) = A(x), B(x′(0), x′) = 0,

(3.3.10)

where L > 0, f : I × R2 → R and B : R×AC(I)→ R may be discontinuous with respect
to all of their arguments and A : AC(I)→ R is linear and nondecreasing.

Note that the function A is suitable to cover some usual conditions, such as initial, multi-
point or integral conditions.

Problem (3.3.10) will be reduced to a functional problem of type (3.3.1) by order reduc-
tion, following similar reasonings to those from [32, 106].

First, we recall a result for the following first–order linear problem{
x′(t) = q(t) for a.a. t ∈ I,
x(0) = A(x),

(3.3.11)

where q ∈ L1(I) and A : AC(I)→ R is linear.

Lemma 3.3.7 ( [71, Proposition 3.1]). Let q ∈ L1(I) and a linear mapping A : AC(I)→ R
be fixed.

(a) If A(1) = 1, then (3.3.11) is solvable if and only if

A

(∫ ·
0

q(s) ds

)
= 0,

and, in such a case, the problem has infinitely many solutions which are given by

x(t) = C +

∫ t

0

q(s) ds, C ∈ R.
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3.3 Discontinuous first–order functional boundary value problems

(b) If A(1) 6= 1, then (3.3.11) has a unique solution given by

x(t) =
A
(∫ ·

0
q(s) ds

)
1−A(1)

+

∫ t

0

q(s) ds.

Moreover, if q(t) ≥ 0 for a.a. t ∈ I and A is a nondecreasing linear mapping such
that A(1) < 1, then the unique solution to (3.3.11) is nonnegative.

Note that if x is a solution to (3.3.10) and A(1) < 1, then y = x′ solves the first–order
functional boundary value problem{

y′(t) = f (t,F(y)(t), y(t)) for a.a. t ∈ I,
B(y(0), y) = 0,

(3.3.12)

where F(y) is the unique solution of the linear problem{
x′(t) = y(t) for a.a. t ∈ I,
x(0) = A(x).

Observe that F(y) is well–defined and the operator F : AC(I) → AC(I) is nondecrea-
sing. Indeed, if y1 ≤ y2, then x = F(y2)−F(y1) is a solution of the problem{

x′(t) = (y2 − y1)(t) for a.a. t ∈ I,
x(0) = A(x),

and, by Lemma 3.3.7 (b), we have that x = F(y2)−F(y1) ≥ 0, so F(y1) ≤ F(y2).
In addition, problem (3.3.12) is a particular case of the functional problems of type

(3.3.1). Hence, we shall apply Theorem 3.3.4 to it in order to obtain a new existence result
for (3.3.10), which allows the function f to be discontinuous with respect to all its variables.

Theorem 3.3.8. Suppose that f : I × R2 → R satisfies the following conditions:

(H1∗) (Lower and upper solutions) There exist α, β ∈W 2,1(I) such that α′ ≤ β′ on I and

α′′(t) ≤ f(t, α(t), α′(t)) for a.a. t ∈ I,
B(α′(0), α′) ≤ 0, α(0) ≤ A(α),

β′′(t) ≥ f(t, β(t), β′(t)) for a.a. t ∈ I,
B(β′(0), β′) ≥ 0, β(0) ≥ A(β).

(H2∗) (L1 bound) There exists M ∈ L1(I) such that for a.a. t ∈ I , for all x ∈ [α(t) −
α(0), β(t)− β(0)] and all y ∈ [α′(t), β′(t)], we have |f(t, x, y)| ≤M(t).

(H3∗) (Inviable discontinuity sets) For each x ∈ [mint∈I α(t) − α(0),maxt∈I β(t) − β(0)]
the mapping

(t, y) ∈ I × R→ fx(t, y) := f(t, x, y)

satisfies the conditions (H3) and (H4) in Theorem 3.2.19.
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(H4∗) (Monotonicity) For a.a. t ∈ I and all y ∈ [α′(t), β′(t)], f(t, ·, y) is nondecreasing in
[α(t)− α(0), β(t)− β(0)].

(H5∗) (Functional BCs) For all γ ∈ [α′, β′] and all x ∈ R we have

lim inf
y→x−

B(y, γ) ≥ B(x, γ) ≥ lim sup
y→x+

B(y, γ),

and B(x, ·) is nonincreasing in [α′, β′].

(H6∗) (Initial BCs) The mapping A : AC(I) → R is linear nondecreasing and such that
A(1) < 1.

Then the problem (3.3.10) has extremal solutions between α− α(0) and β − β(0).

Proof. As mentioned above it is possible to reduce the second–order problem (3.3.10) to the
first–order functional problem (3.3.12).

Let us show that α̃ = α′ and β̃ = β′ are lower and upper solutions for (3.3.12), respec-
tively, where α and β are given by condition (H1∗). To prove that α̃ is a lower solution for
(3.3.12) we have to verify that

α̃′(t) ≤ f (t,F(α̃)(t), α̃(t)) for a.a. t ∈ I, B(α̃(0), α̃) ≤ 0.

Since α̃ = α′ and α′′(t) ≤ f(t, α(t), α′(t)) for a.a. t ∈ I , we have

α̃′(t) ≤ f
(
t, α(0) +

∫ t

0

α̃(s) ds, α̃(t)

)
for a.a. t ∈ I.

By α(0) ≤ A(α), we obtain that α(0) +
∫ t

0
α̃(s) ds ≤ F(α̃)(t) for a.a. t ∈ I (recall that, by

Lemma 3.3.7, F(α̃)(t) = A(t 7→
∫ t

0
α̃(s) ds)/(1 − A(1)) +

∫ t
0
α̃(s) ds) and thus condition

(H4∗) implies that

α̃′(t) ≤ f (t,F(α̃)(t), α̃(t)) for a.a. t ∈ I.

Similarly β̃ is an upper solution for (3.3.12).
Therefore, the conclusion is obtained from applying Theorem 3.3.4 to problem (3.3.12).

Remark 3.3.9. Observe that the definition of the lower and upper solutions for the second–
order problem given in condition (H1∗) is not the standard one in the literature, cf. [27,46].

As an example, we study the existence of solutions to the following multipoint second–
order problem x′′ = µx+ h(x′) + p(t)sgn(x′) + c(t) for a.a. t ∈ I = [0, 1],

x′(0) = x′(1),
x(0) =

∑n
k=1 ck x(ηk),

(3.3.13)
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where n ∈ N, ck ≥ 0,
∑n
k=1 ck < 1, ηk ∈ I and µ ≥ 0. Moreover, c, p ∈ C(I), h : R → R

is a continuous function and sgn denotes the sign function which is defined as

sgn(y) =

 1, if y > 0,
0, if y = 0,
−1, if y < 0.

Observe that the discontinuities on the right-hand side of (3.3.13) are precisely given by this
sign function. This kind of discontinuous perturbation appears in some physical models such
as those treating with a mechanical system subjected to dry friction, see e.g. [24, 108].

Proposition 3.3.10. Assume that c, p, h are continuous functions and that there exist cons-
tants r,R ∈ R, r ≤ R, such that for a.a. t ∈ I , we have

0 ≤ h(r) + p(t)sgn(r) + c(t) + µr

(
t+

∑n
k=1 ckηk

1−
∑n
k=1 ck

)
, (3.3.14)

0 ≥ h(R) + p(t)sgn(R) + c(t) + µR

(
t+

∑n
k=1 ckηk

1−
∑n
k=1 ck

)
. (3.3.15)

Then α(t) = r (t+
∑
ckηk/(1−

∑
ck)) and β(t) = R (t+

∑
ckηk/(1−

∑
ck)) are, res-

pectively, a lower and an upper solutions for problem (3.3.13).
Moreover, if

h(0) + µmin{0, r}+ inf
t∈I
{c(t)− |p(t)|} > 0 (3.3.16)

or

h(0) + µmax{0, R}+ sup
t∈I
{c(t) + |p(t)|} < 0, (3.3.17)

then problem (3.3.13) has extremal solutions in [α∗, β∗] with α∗(t) = rt and β∗(t) = Rt.

Proof. Note that problem (3.3.13) is a particular case of (3.3.10) with f defined as

f(t, x, y) = µx+ h(y) + p(t)sgn(y) + c(t),

A(x) =
∑n
k=1 ckx(ηk) and B(x, γ) = x − γ(1). Hence, the first statement can be directly

verified by applying the definition of the lower and upper solutions to α and β, respectively.
Indeed, α satisfies that

α′′(t) = 0 ≤ h(r) + p(t)sgn(r) + c(t) + µr

(
t+

∑n
k=1 ckηk

1−
∑n
k=1 ck

)
= h(α′(t)) + p(t)sgn(α′(t)) + c(t) + µα(t)

= f(t, α(t), α′(t)).

Moreover, we have

B(α′(0), α′) = α′(0)− α′(1) = r − r = 0
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and

A(α) =
n∑
k=1

ckα(ηk) = r
n∑
k=1

ck

(
ηk +

∑n
j=1 cjηj

1−
∑n
j=1 cj

)

= r

∑n
k=1 ckηk −

∑n
k=1 ckηk

∑n
j=1 cj +

∑n
k=1 ck

∑n
j=1 cjηj

1−
∑n
j=1 cj

= r

∑n
k=1 ckηk

1−
∑n
j=1 cj

= α(0).

In a similar way, one may check that β is an upper solution for problem (3.3.13).
As conditions (H2∗), (H4∗), (H5∗) and (H6∗) are trivially satisfied, it only remains to

check condition (H3∗). For each x ∈ R, the function (t, y) 7→ fx(t, y) can be expressed in
the form (3.2.7) with g1(t, y) = sgn(t), τ1(t, y) = y, g2(t, y) = h(y) and F (t, x1, x2) =
µx+ x2 + p(t)x1 + c(t). Since

∂τ1
∂t

(t, y) = 0 and
∂τ1
∂y

(t, y) = 1,

the transversality condition (3.2.17) holds if for each t ∈ [0, 1] and x ∈ [min{r, 0},max{0, R}]
we have that

z 6= 0 for all z ∈ Kfx(t, 0).

Notice that
Kfx(t, 0) = µx+ h(0) + c(t) + [− |p(t)| , |p(t)|],

by (3.2.6). Therefore, condition (H3∗) is fulfilled if one of the conditions (3.3.16) or (3.3.17)
holds.

Remark 3.3.11 (Asymptotic conditions). A sufficient condition for the existence of a constant
r satisfying (3.3.14) is that:

lim inf
y→−∞

h(y)

y
< −µ

(
L+

∑n
k=1 ckηk

1−
∑n
j=1 cj

)
. (3.3.18)

Similarly, if

lim inf
y→+∞

h(y)

y
< −µ

(
L+

∑n
k=1 ckηk

1−
∑n
j=1 cj

)
(3.3.19)

holds, then condition (3.3.15) is satisfied for R > 0 large enough.
Therefore, if the function h satisfies the asymptotic conditions (3.3.18) and (3.3.19), then

there exist r,R ∈ R, r < 0 < R, such that the functions α and β, defined as in Proposition
3.3.10, are a lower and an upper solutions for (3.3.13), respectively.
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Chapter 4
Second order problems and lower

and upper solutions

The method of lower and upper solutions was extensively employed to deal with second-
order boundary value problems under Carathéodory assumptions. The aim of this technique,
as shown in the previous chapter, is to replace the difficult problem of finding a solution by
that of encountering lower and upper solutions for the problem. In addition, in the classical
case of well–ordered lower and upper solutions, it provides not only existence results, but
also localization for the solutions. Readers interested in the method of lower and upper
solutions are referred to the monograph by Coster and Habets [46] and the expository paper
by Cabada [27].

Our main goal in this chapter is to use this method to study the existence and multiplicity
of solutions for the differential equation

x′′(t) = f(t, x(t), x′(t)), t ∈ I = [a, b], (4.0.1)

where the nonlinear term f may be discontinuous in all the arguments. More specifically,
we shall prove existence of extremal solutions and multiplicity results to (4.0.1) coupled with
nonlinear functional boundary conditions of the form

0 = L1(x(a), x(b), x′(a), x′(b), x),
0 = L2(x(a), x(b)),

(4.0.2)

where L1 : R4 × C(I) → R is continuous and it is nonincreasing with respect to its third
and fifth variables, and nondecreasing with respect to the fourth one; and L2 : R2 → R is a
continuous function and it is nondecreasing with respect to its first argument.

In particular, the nonlinear boundary conditions (4.0.2) contain Dirichlet boundary con-
ditions

x(a) = x(b) = 0,

and periodic conditions
x(a) = x(b), x′(a) = x′(b).

Since f may be discontinuous in all the arguments, we will employ the degree theory and
the Schauder type fixed point theorems developed in Chapters 1 and 2, respectively, combined
with the lower and upper solution method.

As a starting point for our work we consider the papers by Pouso [101] and Figueroa
and Infante [58], where they study sufficient conditions for the existence of solutions for the
differential equation

x′′(t) = f(t, x(t)), t ∈ I = [a, b],
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coupled with Dirichlet and Sturm–Liouville boundary conditions. Here we will generalize
their results in several directions: we consider derivative dependence, the boundary condi-
tions are more general and we combine their technique with lower and upper solutions.

This chapter is organized as follows: in Section 4.1 we prove existence of Carathéodory
solutions to (4.0.1)–(4.0.2) between a pair of well–ordered lower and upper solutions and,
moreover, we give additional conditions in order to guarantee the existence of extremal solu-
tions; in Section 4.2, inspired by the techniques used in [124–127], we get existence results
when the lower and upper solutions are not well–ordered; in Section 4.3 we present multi-
plicity results in presence of more than a pair of lower and upper solutions; and, finally, in
Section 4.4, we study a second–order problem on unbounded domains.

The main results in this chapter can be seen in the papers [62, 63, 65, 104].

4.1 Existence results via well–ordered lower and upper so-
lutions

In the sequel we will work in the Banach space X = C1(I) endowed with its usual norm

‖x‖C1 = ‖x‖∞ + ‖x′‖∞ = max
t∈I
|x(t)|+ max

t∈I
|x′(t)|.

Following [46] and the review article [27] we will use lower and upper solutions in order
to obtain an existence result for problem (4.0.1)–(4.0.2). In the proof of the main result we
consider a modified problem in the line of [34]. The notion of lower and upper solutions that
we use is based on that introduced by De Coster and Habets in [46].

Definition 4.1.1. We say that α ∈ C(I) is a lower solution for the differential problem
(4.0.1)–(4.0.2) if it satisfies the following conditions:

(i) For any t0 ∈ (a, b), either D−α(t0) < D+α(t0), where D− and D+ refers, respec-
tively, to the lower–left and upper–right Dini derivatives,
or there exists an open interval I0 such that t0 ∈ I0, α ∈W 2,1(I0) and

α′′(t) ≥ f(t, α(t), α′(t)) for a.a. t ∈ I0;

(ii) D+α(a), D−α(b) ∈ R and L1 (α(a), α(b), D+α(a), D−α(b), α) ≤ 0;

(iii) L2 (α(a), α(b)) = 0 and L2 (α(a), ·) is injective.

Similarly β ∈ C(I) is an upper solution for (4.0.1)–(4.0.2) if it satisfies:

(i) For any t0 ∈ (a, b), either D−β(t0) > D+β(t0), where D− and D+ refers, respec-
tively, to the upper–left and lower–right Dini derivatives,
or there exists an open interval I0 such that t0 ∈ I0, β ∈W 2,1(I0) and

β′′(t) ≤ f(t, β(t), β′(t)) for a.a. t ∈ I0;

(ii) D+β(a), D−α(b) ∈ R and L1 (β(a), β(b), D+β(a), D−β(b), β) ≥ 0;
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4.1 Existence results via well–ordered lower and upper solutions

(iii) L2 (β(a), β(b)) = 0 and L2 (β(a), ·) is injective.

If α and β are, respectively, a lower and an upper solution for problem (4.0.1)–(4.0.2),
we say that they are well–ordered if α(t) ≤ β(t) for all t ∈ I .

When working with differential equations with derivative dependence it is usually needed
to obtain a priori bounds on the derivative of the solutions. The usual way to do so is to
impose the so–called Nagumo condition, see [46, 112], which in our case reads as follows.

Proposition 4.1.2. Let ᾱ, β̄ ∈ C(I) be such that ᾱ ≤ β̄ and define

r = max
{
β̄(b)− ᾱ(a), β̄(a)− ᾱ(b)

}
/(b− a).

Assume there exist a continuous function N̄ : [0,∞)→ (0,∞), M̄ ∈ L1(I) and R > r such
that ∫ R

r

1

N̄(s)
ds >

∥∥M̄∥∥
L1 .

Define E :=
{

(t, x, y) ∈ I × R2 : ᾱ(t) ≤ x ≤ β̄(t)
}

. If f : E → R is a function satisfying

|f(t, x, y)| ≤ M̄(t)N̄(|y|)

for a.a. t ∈ I and all (x, y) ∈ R2 with (t, x, y) ∈ E, then for every solution x of (4.0.1) such
that ᾱ ≤ x ≤ β̄, we have

‖x′‖∞ < R.

Proof. Let x be a solution of (4.0.1) and assume that t ∈ I is such that x′(t) > R. Notice
that

−r ≤ ᾱ(b)− β̄(a)

b− a
≤ x(b)− x(a)

b− a
≤ β̄(b)− ᾱ(a)

b− a
≤ r,

and then by virtue of Mean Value Theorem there exists τ ∈ I such that

|x′(τ)| =
∣∣∣∣x(b)− x(a)

b− a

∣∣∣∣ ≤ r.
Thus we can choose t0 < t1 (or t1 < t0) such that x′(t0) = r, x′(t1) = R and r ≤ x′(s) ≤ R
in [t0, t1] (or [t1, t0]).

Therefore we have∫ R

r

1

N̄(s)
ds =

∫ t1

t0

x′′(s)

N̄(x′(s))
ds =

∫ t1

t0

f(s, x(s), x′(s))

N̄(x′(s))
ds

≤
∣∣∣∣∫ t1

t0

M̄(s) ds

∣∣∣∣ ≤ ∥∥M̄∥∥L1 ,

a contradiction, so we deduce that x′(t) < R for all t ∈ I . In a similar way we prove that
x′(t) > −R for all t ∈ I .

Now we will introduce our result on the existence ofW 2,1–solutions for problem (4.0.1)–
(4.0.2). There, we will allow the nonlinearity to be discontinuous in the second argument over
countably many curves satisfying again a type of ‘transversality’ condition, whose geome-
trical idea recalls that of the discontinuity surfaces described in [68], and their definition is
similar to Definition 3.1.1 in the context of first–order problems.
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Definition 4.1.3. An admissible discontinuity curve for the differential equation (4.0.1) is a
W 2,1 function γ : [c, d] ⊂ I −→ R satisfying one of the following conditions:

either γ′′(t) = f(t, γ(t), γ′(t)) for a.a. t ∈ [c, d] (and we then say that γ is viable for the
differential equation),

or there exist ε > 0 and ψ ∈ L1(c, d), ψ(t) > 0 for a.a. t ∈ [c, d], such that
either

γ′′(t) + ψ(t) < f(t, y, z) for a.a. t ∈ [c, d], all y ∈ [γ(t)− ε, γ(t) + ε] (4.1.1)
and all z ∈ [γ′(t)− ε, γ′(t) + ε],

or

γ′′(t)− ψ(t) > f(t, y, z) for a.a. t ∈ [c, d], all y ∈ [γ(t)− ε, γ(t) + ε] (4.1.2)
and all z ∈ [γ′(t)− ε, γ′(t) + ε].

We say that the admissible discontinuity curve γ is inviable for the differential equation if it
satisfies (4.1.1) or (4.1.2).

Moreover, we shall allow f to be discontinuous in the third argument over some curves
satisfying the conditions of the following definition, slightly different from the previous one.
As far as we are aware, this is the first time that such discontinuity sets are considered.

Definition 4.1.4. Given α and β lower and upper solutions for problem (4.0.1)–(4.0.2) such
that α ≤ β on I , an inviable discontinuity curve for the derivative is an absolutely continuous
function Γ : [c, d] ⊂ I −→ R satisfying that there exist ε > 0 and ψ ∈ L1(c, d), ψ(t) > 0
for a.a. t ∈ [c, d], such that

either

Γ′(t) + ψ(t) < f(t, y, z) for a.a. t ∈ [c, d], all y ∈ [α(t), β(t)] (4.1.3)
and all z ∈ [Γ(t)− ε,Γ(t) + ε] ∪ {α′(t), β′(t)},

or

Γ′(t)− ψ(t) > f(t, y, z) for a.a. t ∈ [c, d], all y ∈ [α(t), β(t)] (4.1.4)
and all z ∈ [Γ(t)− ε,Γ(t) + ε] ∪ {α′(t), β′(t)}.

Observe that the conditions in Definition 4.1.3 are local (they only depend on the behavior
of f in a neighborhood of γ). However, in the case of an inviable discontinuity curve for the
derivative it is necessary to verify the inequalities not only in a neighborhood of the curve,
but in the whole interval between the lower and upper solutions.

Now we present the main existence result in this section.

Theorem 4.1.5. Suppose that there exist α, β ∈ W 1,∞(I) lower and upper solutions to
(4.0.1)–(4.0.2), respectively, such that α ≤ β on I . Let

r = max {β(b)− α(a), β(a)− α(b)} /(b− a).

Assume that for f : I × R2 → R the following conditions hold:
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(C1) Compositions t ∈ I 7→ f(t, x(t), y(t)) are measurable whenever x(t) is continuous
and y(t) is measurable;

(C2) There exist a continuous function N : [0,∞)→ (0,∞) and M ∈ L1(I) such that:

(a) For a.a. t ∈ I , all x ∈ [α(t), β(t)] and all y ∈ R, we have

|f(t, x, y)| ≤M(t)N(|y|);

(b) There exists R > r such that∫ R

r

1

N(s)
ds > ‖M‖L1 .

(C3) For a.a. t ∈ I , the mapping (x, y) 7→ f(t, x, y) is continuous on[α(t), β(t)] \
⋃

{n : t∈In}

{γn(t)}

×
[−R,R] \

⋃
{n : t∈Ĩn}

{Γn(t)}

 ,

where γn : In = [an, bn] −→ R with α ≤ γn ≤ β on In, n ∈ N, are admissible
discontinuity curves with uniformly bounded derivatives and the functions Γn : Ĩn =
[cn, dn] −→ R, n ∈ N, are inviable discontinuity curves for the derivative which are
uniformly bounded.

Then problem (4.0.1)–(4.0.2) has at least a solution x ∈W 2,1(I) between α and β such that
‖x′‖∞ < R.

Proof. Without loss of generality, suppose that

R > max
t∈I
{|α′(t)| , |β′(t)| , |γ′n(t)| , |Γn(t)|}

for all n ∈ N and define an integrable function

M̃(t) := max
s∈[0,R]

{N(s)}M(t).

Let us also define δR(z) = max {min {z,R} ,−R} for all z ∈ R and

f∗(t, x, y) = f(t, x, δR(y)) for all (t, x, y) ∈ I × R2. (4.1.5)

Consider the modified problem x′′(t) = f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′) for a.a. t ∈ I,
x(a) = L∗1 (x(a), x(b), x′(a), x′(b), x) ,
x(b) = L∗2 (x(a), x(b)) ,

(4.1.6)

where
ϕ(t, x) = max {min {x, β(t)} , α(t)} for (t, x) ∈ I × R, (4.1.7)

and L∗1 (x, y, z, w, ξ) = ϕ (a, x− L1 (x, y, z, w, ξ)) for all (x, y, z, w, ξ) ∈ R4 × C(I) and
L∗2 (x, y) = ϕ (b, y + L2(x, y)) for all (x, y) ∈ R2.

We know from [138, Lemma 2] that if v, vn ∈ C1(I) are such that vn → v in C1(I), then
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1. (ϕ(t, v(t)))′ exists for a.a. t ∈ I;

2. (ϕ(t, vn(t)))′ → (ϕ(t, v(t)))′ for a.a. t ∈ I .

Now we consider the compact and convex subset of X = C1(I),

K =

x ∈ X :

α(a) ≤ x(a) ≤ β(a), α(b) ≤ x(b) ≤ β(b),

|x′(t)− x′(s)| ≤
∫ t

s

M̃(r) dr (a ≤ s ≤ t ≤ b)

 (4.1.8)

and for each x ∈ K we define

Tx(t) = L∗1(x) +
t− a
b− a

(
L∗2(x)− L∗1(x)−

∫ b

a

∫ s

a

f∗(r, ϕ(r, x(r)), (ϕ(r, x(r)))′) dr ds

)

+

∫ t

a

∫ s

a

f∗(r, ϕ(r, x(r)), (ϕ(r, x(r)))′) dr ds, (4.1.9)

where, for simplicity, we use the following notation: L∗1(x) = L∗1 (x(a), x(b), x′(a), x′(b), x)
and L∗2(x) = L∗2 (x(a), x(b)). Observe that y = Tx is just the solution of{

y′′(t) = f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′) for a.a. t ∈ I,
y(a) = L∗1(x), y(b) = L∗2(x),

(4.1.10)

and so fixed points of T , if they exist, correspond with solutions of problem (4.1.6).
Conditions (C1) and (C2) guarantee that the operator T is well defined. Moreover, T

maps K into itself. Indeed, for any x ∈ K and y = Tx we have, thanks to (C2) (a), that

|y′′(t)| = |f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′)| ≤M(t)N(|δR((ϕ(t, x(t)))′)|) ≤ M̃(t),

which, along with y(a) = L∗1(x) and y(b) = L∗2(x), imply that y ∈ K.
Next we prove that the operator T satisfies condition (2.1.1) for all x ∈ K and then The-

orem 2.1.3 ensures the existence of a fixed point or, equivalently, a solution to the modified
problem (4.1.6). This part of the proof follows the steps of that in [101, Theorem 4.4] or
Theorem 3.1.6 in Chapter 3, but here some changes are necessary due to the use of lower and
upper solutions and the derivative dependence in the differential equation.

We fix an arbitrary function x ∈ K and we consider four different cases.

Case 1: m({t ∈ In : x(t) = γn(t)} ∪ {t ∈ Ĩn : x′(t) = Γn(t)}) = 0 for all n ∈ N.
Let us prove that then T is continuous at x.

The assumption implies that for a.a. t ∈ I the mapping f(t, ·, ·) is continuous at the point
(ϕ(t, x(t)), (ϕ(t, x(t))′). Hence if xk → x in K, then

f∗(t, ϕ(t, xk(t)), (ϕ(t, xk(t)))′)→ f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′) for a.a. t ∈ I ,

as one can easily check by considering all possible combinations of the cases x(t) ∈ [α(t), β(t)],
x(t) > β(t) or x(t) < α(t), and |x′(t)| ≤ R or |x′(t)| > R.

Moreover,
|f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′)| ≤ M̃(t) (4.1.11)
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for a.a. t ∈ I , hence Txk → Tx in C1(I).

Case 2: m({t ∈ In : x(t) = γn(t)}) > 0 for some n ∈ N such that γn is inviable. In
this case we can prove that x 6∈ Tx.

First, we fix some notation. Let us assume that for some n ∈ N we have

m({t ∈ In : x(t) = γn(t)}) > 0

and there exist ε > 0 and ψ ∈ L1(In), ψ(t) > 0 for a.a. t ∈ In, such that (4.1.2) holds with
γ replaced by γn. (The proof is similar if we assume (4.1.1) instead of (4.1.2), so we omit it.)

We denote J = {t ∈ In : x(t) = γn(t)}, and we observe that

m({t ∈ J : γn(t) = β(t)}) = 0.

Indeed, if m({t ∈ J : γn(t) = β(t)}) > 0, then from (4.1.2) it follows that

β′′(t)− ψ(t) > f(t, β(t), β′(t))

on a set of positive measure, which is a contradiction with the definition of upper solution.
Now we distinguish between two sub-cases.
Case 2.1: m({t ∈ J : x(t) = γn(t) = α(t)}) > 0.
Since m({t ∈ J : γn(t) = β(t)}) = 0, we deduce that

m({t ∈ J : x(t) = α(t) 6= β(t)}) > 0,

so there exists n0 ∈ N such that

m

({
t ∈ J : x(t) = α(t), x(t) < β(t)− 1

n0

})
> 0.

We denoteA = {t ∈ J : x(t) = α(t), x(t) < β(t)−1/n0} and we deduce from Lemma
3.1.2 that there is a measurable set J0 ⊂ Awithm(J0) = m(A) > 0 such that for all τ0 ∈ J0

we have

lim
t→τ+

0

2
∫

[τ0,t]\A M̃(s) ds

(1/4)
∫ t
τ0
ψ(s) ds

= 0 = lim
t→τ−

0

2
∫

[t,τ0]\A M̃(s) ds

(1/4)
∫ τ0
t
ψ(s) ds

. (4.1.12)

By Corollary 3.1.3 there exists J1 ⊂ J0 with m(J0 \ J1) = 0 such that for all τ0 ∈ J1 we
have

lim
t→τ+

0

∫
[τ0,t]∩J0 ψ(s) ds∫ t

τ0
ψ(s) ds

= 1 = lim
t→τ−

0

∫
[t,τ0]∩J0 ψ(s) ds∫ τ0

t
ψ(s) ds

. (4.1.13)

Let us now fix a point τ0 ∈ J1. From (4.1.12) and (4.1.13) we deduce that there exist
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t− < τ0 and t+ > τ0, t± sufficiently close to τ0 so that the following inequalities are satisfied:

2

∫
[τ0,t+]\A

M̃(s) ds <
1

4

∫ t+

τ0

ψ(s) ds, (4.1.14)∫
[τ0,t+]∩A

ψ(s) ds ≥
∫

[τ0,t+]∩J0
ψ(s) ds >

1

2

∫ t+

τ0

ψ(s) ds, (4.1.15)

2

∫
[t−,τ0]\A

M̃(s) ds <
1

4

∫ τ0

t−

ψ(s) ds, (4.1.16)∫
[t−,τ0]∩A

ψ(s) ds >
1

2

∫ τ0

t−

ψ(s) ds. (4.1.17)

Finally, we define a positive number

ρ = min

{
1

4

∫ τ0

t−

ψ(s) ds,
1

4

∫ t+

τ0

ψ(s) ds

}
, (4.1.18)

and we are now in a position to prove that x 6∈ Tx. It is sufficient to prove the following
claim:

Claim: Let ε̃ > 0 be defined as ε̃ = min{ε, 1/n0}, where ε is given by our assumptions
over γn and n0 by the definition of the set A, and let ρ be as in (4.1.18). For every finite
family xi ∈ Bε̃(x) ∩K and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1, we have∥∥∥x−∑λiTxi

∥∥∥
C1
≥ ρ.

Let xi and λi be as in the Claim and, for simplicity, denote y =
∑
λiTxi. For a.a.

t ∈ J = {t ∈ In : x(t) = γn(t)} we have

y′′(t) =
m∑
i=1

λi(Txi)
′′(t) =

m∑
i=1

λi f
∗(t, ϕ(t, xi(t)), (ϕ(t, xi(t)))

′). (4.1.19)

On the other hand, for every i ∈ {1, 2, . . . ,m} and for a.a. t ∈ J we have

|xi(t)− γn(t)|+ |x′i(t)− γ′n(t)| = |xi(t)− x(t)|+ |x′i(t)− x′(t)| < ε. (4.1.20)

Since γn(t) ∈ [α(t), β(t)], for a.a. t ∈ A we have

|ϕ(t, xi(t))− γn(t)| ≤ |xi(t)− γn(t)| < ε

and
|(ϕ(t, xi(t)))

′ − γ′n(t)| ≤ |x′i(t)− γ′n(t)| < ε,

taking into account that if xi(t) < α(t), then (ϕ(t, xi(t)))
′ = α′(t) = γ′n(t).

Hence, from (4.1.2) it follows that

γ′′n(t)− ψ(t) > f(t, ϕ(t, xi(t)), (ϕ(t, xi(t)))
′)
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4.1 Existence results via well–ordered lower and upper solutions

for a.a. t ∈ A and for all xi(t) satisfying (4.1.20).
Moreover, since for a.a. t ∈ A we have |γ′n(t)| < R and |x′i(t)− γ′n(t)| < ε, without

loss of generality we can suppose |(ϕ(t, xi(t)))
′| ≤ R and thus

γ′′n(t)− ψ(t) > f∗(t, ϕ(t, xi(t)), (ϕ(t, xi(t)))
′)

for a.a. t ∈ A.
Therefore the assumptions on γn ensure that for a.a. t ∈ A we have

y′′(t) =

m∑
i=1

λi f
∗(t, ϕ(t, xi(t)), (ϕ(t, xi(t)))

′) (4.1.21)

<
m∑
i=1

λi (γ′′n(t)− ψ(t)) = x′′(t)− ψ(t).

Now we compute

y′(τ0)− y′(t−) =

∫ τ0

t−

y′′(s) ds =

∫
[t−,τ0]∩A

y′′(s) ds+

∫
[t−,τ0]\A

y′′(s) ds

<

∫
[t−,τ0]∩A

x′′(s) ds−
∫

[t−,τ0]∩A
ψ(s) ds

+

∫
[t−,τ0]\A

M̃(s) ds (by (4.1.21), (4.1.19) and (4.1.11))

= x′(τ0)− x′(t−)−
∫

[t−,τ0]\A
x′′(s) ds−

∫
[t−,τ0]∩A

ψ(s) ds

+

∫
[t−,τ0]\A

M̃(s) ds

≤ x′(τ0)− x′(t−)−
∫

[t−,τ0]∩A
ψ(s) ds+ 2

∫
[t−,τ0]\A

M̃(s) ds

< x′(τ0)− x′(t−)− 1

4

∫ τ0

t−

ψ(s) ds (by (4.1.16) and (4.1.17)),

hence ‖x− y‖C1 ≥ y′(t−)− x′(t−) ≥ ρ provided that y′(τ0) ≥ x′(τ0).
Similar computations with t+ instead of t− show that if y′(τ0) ≤ x′(τ0) then we also

have ‖x− y‖C1 ≥ ρ. The claim is proven.

Case 2.2: m({t ∈ J : γn(t) ∈ (α(t), β(t))}) > 0.
The set {t ∈ J : γn(t) ∈ (α(t), β(t))} can be written as the following countable union⋃

n∈N

{
t ∈ J : α(t) +

1

n
< x(t) < β(t)− 1

n

}
,

so there exists some n0 ∈ N such that

m({t ∈ J : α(t) + 1/n0 < x(t) < β(t)− 1/n0}) > 0.
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Now we denote A = {t ∈ J : α(t) + 1/n0 < x(t) < β(t) − 1/n0}. Since A is a set of
positive measure we can argue as in Case 2.1 for obtaining inequalities (4.1.14)–(4.1.17) and
we are in a position to prove the Claim again.

Let xi and λi be as in the Claim and, for simplicity, denote y =
∑
λiTxi. Then for every

i ∈ {1, 2, . . . ,m} and all t ∈ A we have xi(t) ∈ (α(t), β(t)), and so ϕ(t, xi(t)) = xi(t) and
(ϕ(t, xi(t)))

′ = x′i(t) and thus

|ϕ(t, xi(t))− γn(t)|+ |(ϕ(t, xi(t)))
′ − γ′n(t)| = |xi(t)− x(t)|+ |x′i(t)− x′(t)| < ε,

for a.a. t ∈ A.
Hence, from (4.1.2) it follows that

γ′′n(t)− ψ(t) > f(t, ϕ(t, xi(t)), (ϕ(t, xi(t)))
′)

for a.a. t ∈ A and all xi ∈ Bε̃(x).
Now the proof of the Claim follows exactly as in Case 2.1.

Case 3: m({t ∈ Ĩn : x′(t) = Γn(t)}) > 0 for some n ∈ N such that Γn is an inviable
discontinuity curve for the derivative. In this case, we can prove again that x 6∈ Tx.

As done before, let us assume that for some n ∈ N we have

m({t ∈ Ĩn : x′(t) = Γn(t)}) > 0

and there exist ε > 0 and ψ ∈ L1(Ĩn), ψ(t) > 0 for a.a. t ∈ Ĩn, such that (4.1.4) holds with
Γ replaced by Γn. Similarly, we can define ρ as in (4.1.18) and we shall prove the Claim.

Let xi and λi be as in the Claim and, for simplicity, denote y =
∑
λiTxi. For a.a.

t ∈ J = {t ∈ Ĩn : x′(t) = Γn(t)} we have (4.1.19). On the other hand, for every
i ∈ {1, 2, . . . ,m} and for every t ∈ J we have

|x′i(t)− Γn(t)| = |x′i(t)− x′(t)| < ε.

Moreover, from (4.1.4) it follows that

Γ′n(t)− ψ(t) > f∗(t, ϕ(t, xi(t)), (ϕ(t, xi(t)))
′)

for a.a. t ∈ In and for all xi(t) taking into account that ϕ(t, xi(t)) ∈ [α(t), β(t)] and
(ϕ(t, xi(t)))

′ ∈ {x′i(t), α′(t), β′(t)}.
Therefore the assumptions on Γn ensure that for a.a. t ∈ J we have

y′′(t) =
m∑
i=1

λi f
∗(t, ϕ(t, xi(t)), (ϕ(t, xi(t)))

′)

<
m∑
i=1

λi (Γ′n(t)− ψ(t)) = x′′(t)− ψ(t),

and the proof of Case 3 follows as in Case 2.1, but now the set J plays the role of the set A
there.

76



4.1 Existence results via well–ordered lower and upper solutions

Case 4: m({t ∈ In : x(t) = γn(t)}) > 0 only for some of those n ∈ N such that γn is
viable and m({t ∈ Ĩn : x′(t) = Γn(t)}) = 0 for all n ∈ N. Let us prove that in this case
the relation x ∈ Tx implies x = Tx.

Note first that x ∈ Tx implies that x satisfies the boundary conditions in (4.1.6), because
every element in Tx is, roughly speaking, a limit of convex combinations of functions y
satisfying (4.1.10) and L1 and L2 are continuous functions.

Now it only remains to show that x ∈ Tx implies that x satisfies the ODE in (4.1.6).
Let us consider the subsequence of all viable admissible discontinuity curves in the con-

ditions of Case 4, which we denote again by {γn}n∈N to avoid overloading notation. We
have m(Jn) > 0 for all n ∈ N, where

Jn = {t ∈ In : x(t) = γn(t)}.

For each n ∈ N and for a.a. t ∈ Jn we have γ′′n(t) = f (t, γn(t), γ′n(t)) and from α ≤ γn ≤ β
and |γ′n(t)| < R it follows that γ′′n(t) = f∗(t, ϕ(t, γn(t)), (ϕ(t, γn(t)))′), so γn is viable for
(4.1.6). Then for a.a. t ∈ Jn we have

x′′(t) = γ′′n(t) = f∗(t, ϕ(t, γn(t)), (ϕ(t, γn(t)))′) = f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′),

and therefore

x′′(t) = f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′) a.e. in J =
⋃
n∈N Jn. (4.1.22)

Now we assume that x ∈ Tx and we prove that it implies that

x′′(t) = f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′)

a.e. in I \ J , thus showing that x = Tx.
Since x ∈ Tx then for each k ∈ N we can choose ε = ρ = 1/k to guarantee that we can

find functions xk,i ∈ B1/k(x) ∩K and coefficients λk,i ∈ [0, 1] (i = 1, 2, . . . ,m(k)) such
that

∑
λk,i = 1 and ∥∥∥∥∥∥x−

m(k)∑
i=1

λk,iTxk,i

∥∥∥∥∥∥
C1

<
1

k
.

Let us denote yk =
∑m(k)
i=1 λk,iTxk,i, and notice that y′k → x′ uniformly in I and,

moreover, ‖xk,i − x‖C1 ≤ 1/k for all k ∈ N and all i ∈ {1, 2, . . . ,m(k)}. Note also that

y′′k (t) =

m(k)∑
i=1

λk,if
∗(t, ϕ(t, xk,i(t)), (ϕ(t, xk,i(t)))

′) for a.a. t ∈ I . (4.1.23)

For a.a. t ∈ I \J we have that either x(t) ∈ [α(t), β(t)], and then f∗(t, ϕ(t, ·), (ϕ(t, ·))′)
is continuous at x(t), so for any ε > 0 there is some k0 = k0(t) ∈ N such that for all k ∈ N,
k ≥ k0, we have

|f∗(t, ϕ(t, xk,i(t)), (ϕ(t, xk,i(t)))
′)− f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′)| < ε
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for all i ∈ {1, 2, . . . ,m(k)}, or x(t) < α(t) (analogously if x(t) > β(t)), so there is some
k0 = k0(t) ∈ N such that for all k ∈ N, k ≥ k0 we have xk,i(t) < α(t) for all i ∈
{1, 2, . . . ,m(k)} and then ϕ(t, x(t)) = α(t) = ϕ(t, xk,i(t)), which implies

|f∗(t, ϕ(t, xk,i(t)), (ϕ(t, xk,i(t)))
′)− f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′)| = 0

for all i ∈ {1, 2, . . . ,m(k)}.
Now we deduce from (4.1.23) that y′′k (t) → f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′) for a.a. t ∈

I \ J , and then Corollary 3.1.4 guarantees that

x′′(t) = f∗(t, ϕ(t, x(t)), (ϕ(t, x(t)))′) for a.a. t ∈ I \ J.

Combining this result with (4.1.22), we see that x solves (4.1.6), which implies that x is a
fixed point of T .

So far, we have proven that the operator T satisfies condition (2.1.1) for all x ∈ K and
then Theorem 2.1.3 ensures the existence of a fixed point of T or, equivalently, a solution
to the modified problem (4.1.6). It remains to prove that every solution of (4.1.6) is also a
solution of the former problem (4.0.1)–(4.0.2).

First we will see that if x is a solution for (4.1.6), then α(t) ≤ x(t) ≤ β(t) for all t ∈ I .
Assume on the contrary that there exists t0 ∈ I such that

x(t0)− α(t0) = min
t∈I

(x(t)− α(t)) < 0.

By the boundary conditions we have α(a) ≤ x(a) ≤ β(a) and α(b) ≤ x(b) ≤ β(b), and so
t0 ∈ (a, b). Suppose that x(t0)− α(t0) < x(t)− α(t) for all t ∈ (t0, b]. Then we have

x′(t0)−D−α(t0) ≤ x′(t0)−D+α(t0)

so, by the definition of lower solution, there exists an open interval I0 such that t0 ∈ I0 and

α′′(t) ≥ f(t, α(t), α′(t)) for a.a. t ∈ I0.

Further x′(t0) = α′(t0) and

∀r > 0 ∃ tr ∈ (t0, t0 + r) such that α′(tr) < x′(tr). (4.1.24)

On the other hand, the continuity of x − α implies that there exists ε > 0 such that for all
t ∈ (t0 − ε, t0 + ε) we have x(t)− α(t) < 0. Then by definition of solution for (4.1.6), we
obtain that

x′′(t) = f(t, α(t), α′(t)) for a.a. t ∈ [t0, t0 + ε],

and for t ∈ [t0, t0 + ε],

x′(t)− α′(t) =

∫ t

t0

(x′′(s)− α′′(s)) ds =

∫ t

t0

(f(s, α(s), α′(s))− α′′(s)) ds ≤ 0,

a contradiction with (4.1.24). In a similar way we can see that x ≤ β, so ϕ(t, x(t)) = x(t).
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4.1 Existence results via well–ordered lower and upper solutions

In addition, by the Nagumo condition given in Proposition 4.1.2 it is immediate that
‖x′‖∞ < R.

To finish we will see that if x is a solution of (4.1.6) then x satisfies the boundary condi-
tions (4.0.2). To do so, we follow the steps of [34, Lemma 3.5].

If x(b) +L2(x(a), x(b)) < α(b) the definition of L∗2 gives us that x(b) = α(b). Since L2

is nondecreasing with respect to its first variable we get a contradiction:

α(b) > x(b) + L2(x(a), x(b)) ≥ α(b) + L2(α(a), α(b)) = α(b).

Similarly if x(b) + L2(x(a), x(b)) > β(b) we have x(b) = β(b) and we get a contra-
diction as above. Then α(b) ≤ x(b) + L2(x(a), x(b)) ≤ β(b), so L∗2(x(a), x(b)) =
x(b) + L2(x(a), x(b)) and L∗2(x(a), x(b)) = x(b) imply L2(x(a), x(b)) = 0.

In a similar way, to prove that L1(x(a), x(b), x′(a), x′(b), x) = 0 it is enough to show
that

α(a) ≤ x(a)− L1(x(a), x(b), x′(a), x′(b), x) ≤ β(a).

If x(a)− L1(x(a), x(b), x′(a), x′(b), x) < α(a) then x(a) = α(a) and thus

0 = L2(x(a), x(b)) = L2(α(a), x(b)).

Now, since L2(α(a), ·) is injective and L2(α(a), α(b)) = 0, we obtain that x(b) = α(b).
Previously, we saw that x − α is nonnegative in I and thus it attains its minimum at a and
b, so x′(a) ≥ D+α(a) and x′(b) ≤ D−α(b). Using the definition of lower solution and the
properties of L1 we obtain a contradiction:

α(a) > x(a)− L1(x(a), x(b), x′(a), x′(b), x)

≥ α(a)− L1(α(a), α(b), D+α(a), D−α(b), α) ≥ α(a).

In an analogous way we can prove that x(a)− L1(x(a), x(b), x′(a), x′(b), x) ≤ β(a).
Hence every solution for the modified problem (4.1.6) is a solution for problem (4.0.1)–

(4.0.2).

Now we present some simple examples which illustrate the applicability of our existence
result.

Example 4.1.6. We will study the existence of solutions to the following second–order pro-
blem

x′′(t) =


1√
t

cos2 (b1/(x+ at)c) if x > 0, for a.a. t ∈ [0, 1],

0 if x ≤ 0, for a.a. t ∈ [0, 1],

(4.1.25)

where a ≥ 0, coupled with the following nonlinear boundary conditions

x(1)− x(0) = 1,

x(0)x(1)−
∫ 1

0

x(t) dt = 0,
(4.1.26)
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where bxc denotes the integer part of x.
The nonlinearity in equation (4.1.25) is discontinuous over the curves

γn(t) = −at+
1

n
for t ∈

[
0,min

{
1,

1

an

}]
, n ∈ N, and γ0(t) ≡ 0,

so it falls outside the scope of the usual existence results and the applicability of the standard
topological methods. Moreover, it is not monotone and thus the monotone iterative techniques
for discontinuous differential equations are neither applicable here (see [78]).

Notice that problem (4.1.25)–(4.1.26) is a particular case of problem (4.0.1)–(4.0.2)
where

f(t, x) =


1√
t

cos2 (b1/(x+ at)c) if x > 0,

0 if x ≤ 0,

and we have the following boundary conditions

L1(x(0), x(1), x′(0), x′(1), x) = x(0)x(1)−
∫ 1

0

x(t) dt = 0,

L2(x(0), x(1)) = x(0)− x(1) + 1 = 0.

Observe that L1 and L2 are continuous functions satisfying the required monotonicity
conditions and L2(x, ·) is an injective function for each x ∈ R.

First, we will show that α(t) = (4 t
√
t−t)/3 and β(t) = t+1 are, respectively, lower and

upper solutions for problem (4.1.25)–(4.1.26) such that α(t) ≤ β(t) for all t ∈ I . Indeed,

α′′(t) =
1√
t
≥ 1√

t
cos2 (b1/(α(t) + at)c) ≥ f(t, α(t)),

L1(α(0), α(1), α′(0), α′(1), α) = α(0)α(1)−
∫ 1

0

α(t) dt = −11/30 ≤ 0,

L2(α(0), α(1)) = α(0)− α(1) + 1 = 0− 1 + 1 = 0,

and

β′′(t) = 0 ≤ 1√
t

cos2 (b1/(β(t) + at)c) = f(t, β(t)),

L1(β(0), β(1), β′(0), β′(1), β) = β(0)β(1)−
∫ 1

0

β(t) dt = 2− 3/2 ≥ 0,

L2(β(0), β(1)) = β(0)− β(1) + 1 = 1− 2 + 1 = 0.

Moreover, condition (C1) in Theorem 4.1.5 holds with a similar argument to that done in
Example 3.1.10, and condition (C2) is also satisfied with M(t) = 1/

√
t and N(s) = 1.

On the other hand, for a.a. t ∈ I the function x 7→ f(t, x) is continuous on

[α(t), β(t)] \
⋃
n∈N
{γn(t), γ0(t)},

where the curves γn, n ∈ N, are inviable admissible discontinuity curves. Indeed, for each
n ∈ N, we have

γ′′n(t) = 0 < min{cos2(n− 1), cos2(n)} 1√
t
≤ f(t, x)
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for a.a. t ∈ I and for all x ∈
[
γn(t)− 1

2n(n+ 1)
, γn(t) +

1

2n(n+ 1)

]
, so condition (4.1.1)

in Definition 4.1.3 is satisfied by taking

ψn(t) = min{cos2(n− 1), cos2(n)} 1

2
√
t

and εn =
1

2n(n+ 1)
.

The curve γ0 is clearly a viable admissible discontinuity curve.
Therefore, Theorem 4.1.5 implies that problem (4.1.25)–(4.1.26) has at least one solution

between α and β.

Example 4.1.7. Consider the following second-order equation

x′′(t) =


1√
t

cos2(b1/ |1− x|c) if x 6= 1,

0 if x = 1,

coupled with the boundary conditions in (4.1.26).
Now the admissible discontinuity curves are γn ≡ 1 ± 1/n, which are inviable for each

n ∈ N, and γ0 ≡ 1, which is a viable admissible discontinuity curve. It is possible to prove,
as in Example 4.1.6, that this problem has at least a solution between the curves α and β
defined above. Notice that x ≡ 1 is not a solution for the problem and then any solution
between α and β must cross an infinity number of admissible discontinuity curves, see Figure
4.1.1.

1

1

β

α

Figure 4.1.1: Lower and upper solutions in blue and some discontinuity curves in red.

Theorem 4.1.5 establishes sufficient conditions for the existence of a solution between
well–ordered lower and upper solutions for problem (4.0.1)–(4.0.2) under general conditions
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by applying our extension of Schauder’s fixed point theorem, namely, Theorem 2.1.3. Never-
theless, in Section 4.2, it will be useful for us to have a reformulation of that result in terms
of degree, for example to obtain results to (4.0.1)–(4.0.2) when the lower and upper solutions
are non well ordered. For this reason, we include now two versions of Theorem 4.1.5 which
are written in terms of degree. For simplicity we will assume here that f is continuous in the
last variable.

Assume that there exist α, β ∈ W 1,∞(I) lower and upper solutions to (4.0.1)–(4.0.2)
such that α < β on I , and that f : I × R2 → R satisfies conditions (C1), (C2) and

(C̃3) There exist admissible discontinuity curves γn : In = [an, bn] −→ R (n ∈ N) such
that α ≤ γn ≤ β on In and their derivatives are uniformly bounded. For a.a. t ∈ I ,
the mapping (x, y) 7→ f(t, x, y) is continuous on[α(t), β(t)] \

⋃
{n : t∈In}

{γn(t)}

× [−R,R].

As done above, the idea is to transform the problem (4.0.1)–(4.0.2) with nonlinear boun-
dary conditions into a Dirichlet BVP in the line of [34] or [127], where the periodic problem
was studied. Hence we consider the following equivalent BVP x′′ = f(t, x, x′), t ∈ I,

x(a) = x(a)− L1(x(a), x(b), x′(a), x′(b), x),
x(b) = x(b) + L2(x(a), x(b)),

(4.1.27)

whose associated fixed point operator, T : C1(I)→ C1(I), is given by

Tx(t) =x(a)− L1(x) (4.1.28)

+
t− a
b− a

[
x(b)− x(a) + L1(x) + L2(x)−

∫ b

a

∫ s

a

f(r, x(r), x′(r)) drds

]

+

∫ t

a

∫ s

a

f(r, x(r), x′(r)) drds,

whereL1(x) andL2(x) denote, respectively,L1(x(a), x(b), x′(a), x′(b), x) andL2(x(a), x(b)).
For each l > 0 we define the open set

Ωl =
{
x ∈ C1(I) : α < x < β on I and ‖x′‖ < l

}
.

Theorem 4.1.8. Assume that there exist α, β ∈ W 1,∞(I) lower and upper solutions to
(4.0.1)–(4.0.2) such that α < β on I , and that for f : I × R2 → R conditions (C1), (C2)

and (C̃3) hold.
Let R be as in (C2) and such that R ≥ max {‖α′‖∞ , ‖β′‖∞ , ‖γ′n‖∞} for all n ∈ N.
Then for all values of l ≥ R we have

deg (Id− T,Ωl) = 1 provided that Tx 6= x for x ∈ ∂ Ωl.

In particular, problem (4.0.1)–(4.0.2) has at least one solution x such that α ≤ x ≤ β.
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Proof. Let l ≥ R, define Ω := Ωl, and assume that

Tx 6= x for every x ∈ ∂ Ω. (4.1.29)

Now consider the modified problem (4.1.6) and denote by T̃ the integral operator associated
to it. For all x ∈ C1(I) and a.a. t ∈ I , we have

|f(t, ϕ(t, x(t)), δ((ϕ(t, x(t)))′))| ≤ M̃(t) := max
s∈[0,l]

{N(s)}M(t),

so there exists R0 > 0 such that Ω ⊂ BR0/2(0) and T̃ x ∈ BR0/2(0) for all x ∈ C1(I). In
particular, ‖x‖ < R0/2 for every λ ∈ [0, 1] and x ∈ C1(I) such that x = λ T̃x. Hence
x 6∈ λT̃x if ‖x‖ = R0.

Now we define the homotopy H : BR0
(0)× [0, 1]→ BR0

(0) given by H(x, λ) = λ T̃x.
By virtue of Theorem 1.2.4 we have that

deg
(
Id− T̃ , BR0

(0)
)

= deg (Id,BR0
(0)) = 1, (4.1.30)

provided that {x} ∩ T̃x ⊂
{
T̃ x
}

for all x ∈ BR0(0) ∩ T̃BR0(0). Observe that

BR0
(0) ∩ T̃BR0

(0) ⊂ K,

where K is defined as in (4.1.8), and for every function x ∈ K we can prove that x ∈ T̃x
implies x = T̃ x just by following the steps in the proof of Theorem 4.1.5. Thus (4.1.30) is
justified.

Let

Ω̃ = {x ∈ Ω : α(a) < x(a)− L1(x) < β(a), α(b) < x(b) + L2(x) < β(b)} .

We shall see that T̃ x = x implies that x ∈ Ω̃.
Indeed, if x is a fixed point of T̃ , then we claim the following, which can be proven as in

Theorem 4.1.5:

(a) α(t) ≤ x(t) ≤ β(t) for all t ∈ I;

(b) ‖x′‖∞ < R ≤ l, as a consequence of Proposition 4.1.2;

(c) α(a) ≤ x(a)− L1(x) ≤ β(a) and α(b) ≤ x(b) + L2(x) ≤ β(b).

Therefore x ∈ Ω̃. Notice that T̃ = T on Ω̃, so from (4.1.29) it follows that x ∈ Ω̃.
Finally, by the excision property of the degree (see Proposition 1.2.1), we can conclude that

deg (Id− T,Ω) = deg
(
Id− T, Ω̃

)
= deg

(
Id− T̃ , Ω̃

)
= deg

(
Id− T̃ , BR0

(0)
)

= 1,

which ends the proof.

If we check the proofs of Theorem 4.1.5 or Theorem 4.1.8, we observe that the derivatives
of the admissible discontinuity curves need not be uniformly bounded if the nonlinearity f
is globally bounded with respect to its third variable. That is the reason why we finish this
subsection with a result which concretes this fact.
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Theorem 4.1.9. Assume that there exist α, β ∈ W 1,∞(I) lower and upper solutions to
(4.0.1)–(4.0.2) such that α < β and that f : I × R2 → R satisfies conditions (C1) and

(C2) There exists M ∈ L1(I) such that for a.a. t ∈ I , all x ∈ [α(t), β(t)] and y ∈ R, we
have |f(t, x, y)| ≤M(t);

(C3) There exist admissible discontinuity curves γn : In = [an, bn] −→ R (n ∈ N) such
that α ≤ γn ≤ β on In, and for a.a. t ∈ I the function (x, y) 7→ f(t, x, y) is

continuous on
(

[α(t), β(t)] \
⋃
{n : t∈In}{γn(t)}

)
× R.

Let R be as given by Proposition 4.1.2 and such that R ≥ max {‖α′‖∞ , ‖β′‖∞}.
Then for all values of l ≥ R we have

deg (Id− T,Ωl) = 1 provided that Tx 6= x for x ∈ ∂ Ωl.

In particular, problem (4.0.1)–(4.0.2) has at least one solution x such that α ≤ x ≤ β.

4.1.1 Existence of extremal solutions between the lower and upper so-
lutions

Now sufficient conditions for the existence of extremal solutions for problem (4.0.1)–(4.0.2)
are given.

Theorem 4.1.10. Assume that the hypotheses of Theorem 4.1.5 hold and L2(x, ·) is injective
for all x ∈ [α(a), β(a)]. Then problem (4.0.1)–(4.0.2) has extremal solutions between α and
β.

Proof. Let S = {x ∈ [α, β] : x is a solution for (4.0.1)− (4.0.2)}, which is a nonempty sub-
set of [α, β] by virtue of Theorem 4.1.5. Moreover, if now K ⊂ C1 and T : K → K are
given, respectively, by (4.1.8) and (4.1.9), then we have

S =
{
x ∈ C1(I) : x is a solution for (4.1.6)

}
= {x ∈ K : x = Tx} .

Since condition {x} ∩ Tx ⊂ {Tx} is satisfied for every x ∈ K we obtain

S = {x ∈ K : x ∈ Tx} = (Id− T)−1({0})

which is a closed set because T is an upper semicontinuous mapping and {0} is a closed
subset of the Banach space. Now the fact that S ⊂ K implies that S is compact.

Define xmin(t) = inf {x(t) : x ∈ S} for t ∈ I . By the compactness of S in C1(I) there
exists, for each t0 ∈ I , a function x0 ∈ S such that x0(t0) = xmin(t0) and xmin is continuous
in I . Indeed, given ε > 0, by the equicontinuity of S, there exists δ > 0 such that t, s ∈ I
with |t− s| < δ implies

|x(t)− x(s)| < ε/2 for all x ∈ S.

Now, for t, s ∈ I with |t− s| < δ, there exist xt, xs ∈ S such that xt(t) = xmin(t) and
xs(s) = xmin(s). Notice that Bolzano’s theorem guarantees the existence of a point r ∈ [t, s]
(or r ∈ [s, t]) such that xt(r) = xs(r). Therefore,

|xmin(t)− xmin(s)| = |xt(t)− xs(s)| ≤ |xt(t)− xt(r)|+ |xs(r)− xs(s)| < ε,
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4.1 Existence results via well–ordered lower and upper solutions

so xmin is continuous in I .
Let us show that xmin is the least solution. To do so, we follow the steps in [34, Theorem

4.1].
First, observe that if y ∈ S and y(a) = xmin(a), then y(b) = xmin(b). Indeed, if we

have that y(b) > xmin(b), we can find x ∈ S such that x(b) = xmin(b). Note that, due to the
definitions of lower and upper solutions, condition L2(x, ·) injective is equivalent to L2(x, ·)
decreasing. Hence, we have that L2(y(a), ·) is decreasing, L2(·, xmin(b)) is nondecreasing
and y(a) ≤ x(a), and so

0 = L2(y(a), y(b)) < L2(y(a), xmin(b)) ≤ L2(x(a), xmin(b)) = 0,

a contradiction.
Let us see that xmin is a solution to problem (4.1.6). To do so, we shall prove that xmin is

a limit in C1(I) of a sequence of elements of S. Clearly, it will be the least solution.
Given ε > 0, we shall show that there exists v ∈ S such that

‖v − xmin‖∞ < ε.

Hence, there exists a sequence of elements in S which converges pointwise to xmin and by
the compactness of S, up to a subsequence, it converges in S.

By the equicontinuity of S and the continuity of xmin on I , there exists δ > 0 such that
t, s ∈ I with |t− s| < δ implies

|x(t)− x(s)| < ε/2 for all x ∈ S ∪ {xmin}.

Let {t0, t1, . . . , tn} ⊂ I such that t0 = a, tn = b and ti+1 − ti < δ for i = 0, 1, . . . , n− 1.
Choose a function x0 ∈ S such that x0(a) = xmin(a), x0(b) = xmin(b) and denote β0 ≡ x0.

For each i ∈ {1, 2, . . . , n − 1}, define recursively βi ≡ βi−1 if βi−1(ti) = xmin(ti) and
otherwise, take xi ∈ S such that xi(ti) = xmin(ti), define

si = inf{t ∈ [ti−1, ti] : xi(s) < βi−1(s) for all s ∈ [t, ti]},
si+1 = sup{t ∈ [ti, b] : xi(s) < βi−1(s) for all s ∈ [ti, t]}

and the function

βi(t) =

{
βi−1(t) if t ∈ [a, si] ∪ [si+1, b],
xi(t) if t ∈ (si, si+1).

Then βn−1(a) = x0(a), βn−1(b) = x0(b), β′n−1(a) ≤ x′0(a), β′n−1(b) ≥ x′0(b) and
βn−1(t) ≤ x0(t) for all t ∈ I , so from the monotonicity hypotheses on L1 and the fact
that x0 ∈ S, we have

L1(βn−1(a), βn−1(b), β′n−1(a), β′n−1(b), βn−1)

≥ L1(x0(a), x0(b), x′0(a), x′0(b), x0) = 0,

and now it is immediate to check that βn−1 is an upper solution for problem (4.0.1)–(4.0.2).
By Theorem 4.1.5, we obtain that there exists v ∈ S such that α(t) ≤ v(t) ≤ βn−1(t) for

t ∈ I and, by the construction of βn−1 and the definition of xmin, we have v(ti) = xmin(ti)
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for i = 0, 1, . . . , n − 1. Hence, for each t ∈ I there is i ∈ {0, 1, . . . , n − 1} such that
t ∈ [ti, ti+1], so

|v(t)− xmin(t)| ≤ |v(t)− v(ti)|+ |xmin(ti)− xmin(t)| < ε.

A similar reasoning shows that problem (4.1.6) has the greatest solution between α and
β.

Remark 4.1.11. Observe thatL2(x, ·) is injective for all x ∈ R, for example, whenL2(x, y) =
x− y.

Remark 4.1.12. Notice that both problems in Example 4.1.6 and 4.1.7 are under the hy-
potheses of Theorem 4.1.10, and thus they have extremal solutions between their lower and
upper solutions.

Finally, we illustrate the previous results with an example which includes discontinuities
in the third variable.

Example 4.1.13. Consider in I = [0, 1] the differential equation

x′′ = t2b1/(t2 + |x|)c cos(x′) +
(x− 1)2 |x′|

54
sin2(x′)

[
1 +H

(
sin

(
1

x′ + at

))
H(x′)

]
where a ∈ (1, π/2), bxc denotes the integer part of x and H is the Heaviside step function
(3.1.17), joint with the boundary conditions

max
t∈[0,1]

x(t) = 0, x(1) = 0.

Note that this problem falls inside the scope of Theorem 4.1.5 and Theorem 4.1.10 with the
differential equation given by the nonlinearity

f(t, x, y) = t2b1/(t2 + |x|)c cos(y)+
(x− 1)2 |y|

54
sin2(y)

[
1 +H

(
sin

(
1

y + at

))
H(y)

]
and the boundary conditions given by

L1(x, y, z, w, γ) = − max
t∈[0,1]

γ(t), L2(x, y) = y.

Observe that f is unbounded and discontinuous with respect to the second and third
arguments.

First, to check condition (C1) in Theorem 4.1.5, note that it suffices to show that the
function

t ∈ I 7→ H

(
sin

(
1

y(t) + at

))
H(y(t))

is measurable for any measurable function y, since it can be proven as in Example 3.1.11
that the function t 7→ b1/(t2 + |x(t)|)c is measurable for every continuous function x and
the sum and product of measurable functions is so. Now observe that we can write

t ∈ I 7→ H

(
sin

(
1

y(t) + at

))
H(y(t)) = χϕ−1(E)(t)χy−1([0,+∞))(t), (4.1.31)
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where E and ϕ are, respectively, the following measurable set and function

E =
∞⋃
n=1

[
1

(2n+ 1)π
,

1

2nπ

]⋃[
1

π
,+∞

)
and ϕ(t) = y(t) + at.

Then (4.1.31) is a measurable function and thus condition (C1) holds.
Functions α(t) = πt − π and β(t) = 0 for t ∈ [0, 1] are, respectively, a lower and an

upper solutions for our problem. Indeed, they satisfy the boundary conditions and for a.a.
t ∈ I we have

f(t, α(t), α′(t)) = −t2b1/(t2 + π(1− t))c ≤ 0 = α′′(t)

and

f(t, β(t), β′(t)) = t2b1/t2c ≥ 0 = β′′(t).

On the other hand, for a.a. t ∈ [0, 1], the function f(t, ·, ·) is continuous on[α(t), β(t)] \
⋃

{n:t∈Iin, i=1,2}

{
γin(t)

}×
R \ ⋃

{n:t∈Ĩn}
{Γn(t)}


where for each n ∈ N,

γ1
n(t) = t2 − n−1 for all t ∈ I1

n = [0, n−1/2],

γ2
n(t) = −t2 + n−1 for all t ∈ I2

n = [n−1/2, 1],

and

Γn(t) = −at+
1

nπ
for all t ∈ Ĩn = [0, (anπ)−1].

The curves γ1
n and γ2

n are inviable for the differential equation. Indeed, we can choose

ε1
n =

1

2n(n+ 1)
and ψ1

n ≡ 1/4 and then for all u ∈ [γ1
n(t) − ε1

n, γ
1
n(t) + ε1

n] and all

v ∈ [γ1
n
′
(t)− ε1

n, γ
1
n
′
(t) + ε1

n] we have

f(t, u, v) ≤ 1 +
1

9
max

{
t2 − 1

n
+ ε1

n − 1, t2 − 1

n
− ε1

n − 1

}2

≤ 1 +
1

9

(
9

4

)2

= 1 +
9

16
,

so (4.1.2) holds. In a similar way, we may show that condition (4.1.1) holds for γ2
n, n ∈ N.

Moreover, for all t ∈ [0, 1], x ∈ [α(t), β(t)] and y ∈ [−a + (nπ)−1 − ε, (nπ)−1 + ε],
for ε > 0 small enough, we have |y| ≤ π/2 what implies that f(t, x, y) ≥ 0; and for all
t ∈ [0, 1], x ∈ [α(t), β(t)] and y = α′(t) = π we have

f(t, x, π) = −t2b1/(t2 + |x|)c ≥ −1.
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Therefore the curves Γn satisfy (4.1.3), so they are inviable discontinuity curves for the
derivative, and condition (C3) in Theorem 4.1.5 is satisfied.

Hence, this problem has extremal solutions betweenα and β as a consequence of Theorem
4.1.10.

4.2 Existence results via non–ordered lower and upper so-
lutions

Our purpose in this section is to consider the case where the lower and upper solutions are
not well–ordered. To do so, we follow the ideas of [127], where the authors consider the
particular case of (4.0.1)–(4.0.2) with a Carathéodory nonlinearity and periodic boundary
conditions. The main idea is the following: given a pair of not well–ordered lower and
upper solutions, we will be able to construct a pair of constant well–ordered lower and upper
solutions and then the existence of solutions will be a consequence of the results proven in
Section 4.1.

Here and henceforth, we shall be concerned with the following problem:

x′′(t) = f(t, x(t), x′(t)), t ∈ I = [a, b],
0 = L1(x(a), x(b), x′(a), x′(b), x),
x(a) = x(b),

(4.2.1)

where L1 is as in the previous sections. Notice that (4.2.1) is the particular case of (4.0.1)–
(4.0.2) with L2(x(a), x(b)) = x(a)− x(b).

Let us start with a technical result. The reader is referred to [127, Lemma 3.1] for its
proof.

Lemma 4.2.1. Let α, β ∈ C(I) and x ∈ C(I) be such that

x(tx) < α(tx) and x(sx) > β(sx) for some tx, sx ∈ I. (4.2.2)

Then there exist τx ∈ I such that

min
{
α(τx), β(τx)

}
≤ x(τx) ≤ max

{
α(τx), β(τx)

}
.

We are ready for our main result in this section.

Theorem 4.2.2. Assume that there exist α, β ∈ W 1,∞(I) lower and upper solutions to
(4.2.1), respectively, such that

α(τ) > β(τ) for some τ ∈ I,

and that f satisfies the following conditions:

(C1∗) Compositions t ∈ I 7→ f(t, x(t), y(t)) are measurable whenever x(t) and y(t) are
continuous;
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4.2 Existence results via non–ordered lower and upper solutions

(C2∗) There exists M ∈ L1(I) such that for a.a. t ∈ I and all x, y ∈ R, we have
|f(t, x, y)| ≤M(t);

(C3∗) There exist admissible discontinuity curves γn : In = [an, bn] −→ R (n ∈ N) such
that they are uniformly bounded, and for a.a. t ∈ I the function (x, y) 7→ f(t, x, y) is

continuous on
(
R \

⋃
{n : t∈In}{γn(t)}

)
× R.

Then problem (4.2.1) has a solution x such that for some τx ∈ I

min {α(τx), β(τx)} ≤ x(τx) ≤ max {α(τx), β(τx)} . (4.2.3)

Proof. Define M̃(t) := 2M(t) + 1 and take R > 0 such that ‖x′‖∞ < R for all x ∈ X =
C1(I) satisfying

|x′′(t)| ≤ M̃(t), x(a) = x(b). (4.2.4)

Now fix some value r ≥ ‖α‖∞+‖β‖∞+(b−a)R and r ≥ ‖γn‖∞ for all n ∈ N, and define

f̃(t, x, y) =


f(t, x, y)−M(t)− 1 if x ≤ −(r + 1),
f(t, x, y) + (x+ r)(M(t) + 1) if − (r + 1) < x < −r,
f(t, x, y) if − r ≤ x ≤ r,
f(t, x, y) + (x− r)(M(t) + 1) if r < x < r + 1,
f(t, x, y) +M(t) + 1 if x ≥ r + 1,

(4.2.5)

and

L̃1(x, y, z, w, ξ) =


w − z if x ≤ −(r + 1),
(r + 1 + x)L1(x, y, z, w, ξ)− (x+ r)(w − z) if r < −x < r + 1,
L1(x, y, z, w, ξ) if − r ≤ x ≤ r,
(r + 1− x)L1(x, y, z, w, ξ) + (x− r)(w − z) if r < x < r + 1,
w − z if x ≥ r + 1.

(4.2.6)
Consider the auxiliary problem x′′ = f̃(t, x, x′) t ∈ I,

0 = L̃1(x(a), x(b), x′(a), x′(b), x),
x(a) = x(b).

(4.2.7)

Notice that α and β are, respectively, lower and upper solutions of (4.2.7).
In addition∣∣∣f̃(t, x, y)

∣∣∣ ≤ M̃(t) := 2M(t) + 1 for a.a. t ∈ I and all x, y ∈ R, (4.2.8)

and
f̃(t, x, y) < 0 for a.a. t ∈ I and all x ∈ (−∞,−r − 1], y ∈ R,
f̃(t, x, y) > 0 for a.a. t ∈ I and all x ∈ [r + 1,∞), y ∈ R. (4.2.9)

In particular, α̃(t) ≡ −ρ and β̃(t) ≡ ρ (where ρ = r + 2) are, respectively, lower and upper
solutions for the auxiliary problem (4.2.7).
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Denote
Ω0 =

{
x ∈ C1(I) : α̃ < x < β̃ on I, ‖x′‖∞ < R

}
,

Ω1 = {x ∈ Ω0 : α̃ < x < β on I} ,

Ω2 =
{
x ∈ Ω0 : α < x < β̃ on I

}
and

Ω = Ω0 \
(
Ω1 ∪ Ω2

)
, (4.2.10)

which is the set of points x ∈ Ω0 such that (4.2.2) holds with α = α and β = β.
Problem (4.2.7) is equivalent to the equation T̃ x = xwhere T̃ : C1(I)→ C1(I) is defined

as in (4.1.28) but replacing f by f̃ and L1(x) by L̃1(x). Observe that T̃ maps bounded sets
into relatively compact sets.

Now we shall show that if T̃ x = x and x ∈ Ω0, then x ∈ Ω0. Assume on the contrary
that x ∈ ∂ Ω0 is such that T̃ x = x. As ‖x′‖∞ < R, by virtue of (4.2.4) and (4.2.8), then the
only possibility is

x(σ1) = max
t∈I

x(t) = ρ or x(σ1) = min
t∈I

x(t) = −ρ

for some σ1 ∈ [a, b). In the first case, if σ1 ∈ (a, b), then we have that x′(σ1) = 0 and
x(t) > r + 1 on [σ1, σ2] for some σ2 ∈ (σ1, b]. By (4.2.9), x′′(t) = f̃(t, x(t), x′(t)) > 0 for
a.a. t ∈ [σ1, σ2], which implies x′(t) > 0 on (σ1, σ2], a contradiction with the fact that there
is a maximum for x at σ1. If σ1 = a, since x′(a) ≤ 0, x′(b) ≥ 0 and

0 = L̃1(x(a), x(b), x′(a), x′(b), x) = x′(b)− x′(a),

then x′(a) = 0 and we can argue as before. A similar reasoning shows the impossibility of
the case x(σ1) = mint∈I x(t) = −ρ.

Moreover if T̃ x = x with x ∈ Ω, then ‖x‖∞ < r, because by (4.2.4) and (4.2.8) we
obtain ‖x′‖∞ < R and by Lemma 4.2.1 we have

‖x‖∞ < ‖α‖∞ + ‖β‖∞ + (b− a)R = r.

Then there are two possible cases:

(i) T̃ x = x for some x ∈ ∂ Ω0 ∪ ∂ Ω1 ∪ ∂ Ω2. Then ‖x‖∞ < r, so Tx = T̃ x = x and x
is a solution for (4.2.1).

(ii) T̃ x 6= x on ∂ Ω0 ∪ ∂ Ω1 ∪ ∂ Ω2. By Theorem 4.1.9,

deg
(
Id− T̃ ,Ω0

)
= deg

(
Id− T̃ ,Ω1

)
= deg

(
Id− T̃ ,Ω2

)
= 1.

Since α(τ) > β(τ) for some τ ∈ I , Ω1∩Ω2 = ∅. Therefore, by the additivity property
of the degree

deg
(
Id− T̃ ,Ω

)
= deg

(
Id− T̃ ,Ω0

)
− deg

(
Id− T̃ ,Ω1

)
− deg

(
Id− T̃ ,Ω2

)
= −1.

Hence there exists x ∈ Ω such that T̃ x = x. Then ‖x‖∞ < r which implies f̃ = f

and L̃1(x) = L1(x), so Tx = T̃ x = x, that is, x is a solution for problem (4.2.1).
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To finish we have to show that

{x} ∩ T̃x ⊂
{
T̃ x
}

for every x ∈ Ω0 ∩ T̃Ω0 (4.2.11)

in order to guarantee that the degree is well–defined. The function (x, y) 7→ f̃(t, x, y) is
continuous except over the graphs of the curves γn and these curves satisfy that−r ≤ γn ≤ r,
so at these points f̃ = f and condition (4.2.11) can be proven as in Theorem 4.1.5.

Remark 4.2.3. Observe that Theorem 4.2.2 allows to obtain solutions via non-ordered lower
and upper solutions to BVP with functional nonlinear boundary conditions, such as multi-
point or maximum conditions, which fall outside the scope of the papers [123–127] where the
periodic conditions were considered. In this sense, as far as the authors are aware, Theorem
4.2.2 gives new existence results even in the case of Carathéodory nonlinearities.

The following example illustrates the existence of solutions for (4.2.1) with non-ordered
lower and upper solutions.

Example 4.2.4. Consider the problem (4.0.1)–(4.0.2) along with the following functional
boundary conditions

0 = L1(x(0), x(1), x′(0), x′(1), x) = −x(1/2)−maxt∈[0,1] x(t),
0 = L2(x(0), x(1)) = x(0)− x(1),

and
f(t, x, y) = b1/(t+ |x|)c1/2 cos(y) + 1/2,

for all x ∈ R, t ∈ [0, 1], t > 0 and where bxc denotes the integer part of x.
First, standard arguments similar to those done in Example 3.1.11 show that condition

(C1∗) is satisfied. Moreover, (C2∗) holds by taking M(t) = t−1/2 + 1/2.
Now we consider the functions α(t) = π (t− 1/2)

2 and β(t) = 0 for t ∈ [0, 1], which
are a lower and an upper solutions for our problem, respectively. Indeed,

f(t, α(t), α′(t)) = b1/(t+ π(t− 1/2)2)c1/2 cos(2π(t− 1/2)) + 1/2

≤ b4π/(2π − 1)c1/2 + 1/2

=
√

2 + 1/2 < 2π = α′′(t),

and

L1(α(0), α(1), α′(0), α′(1), α) = −α(1/2)− max
t∈[0,1]

α(t) = 0− π/4 ≤ 0,

L2(α(0), α(1)) = α(0)− α(1) = π/4− π/4 = 0.

Notice that α and β are not well–ordered.
On the other hand, for a.a. t ∈ [0, 1], the function f(t, ·, ·) is continuous onR \ ⋃

{n:t∈Iin, i=1,2}

{
γin(t)

}× R,
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where for each n ∈ N,

γn,1(t) = −t+ n−1 for all t ∈ I1
n = [0, n−1],

and
γn,2(t) = t− n−1 for all t ∈ I2

n = [n−1, 1].

These curves are inviable for the differential equation (see Definition 4.1.3). Indeed, there
exists ε > 0 small enough such that cos(1 + ε) ≥ 0 and thus for all n ∈ N and i = 1, 2,

f(t, x, y) ≥ 1/2 > 1/4 + γ′′n,i(t)

for a.a. t ∈ Iin, all x ∈ [γn,i(t)− ε, γn,i(t) + ε] and all y ∈ [(−1)i − ε, (−1)i + ε].
Hence Theorem 4.2.2 guarantees the existence of a solution x ∈W 2,1(0, 1) such that

min {α(τx), β(τx)} ≤ x(τx) ≤ max {α(τx), β(τx)}

for some τx ∈ [0, 1].

4.3 Multiplicity results
The existence of multiple solutions for second–order boundary value problems was largely
studied in the literature. For instance, in the papers [47, 123, 131, 143] the authors obtain
results based on degree theory and the lower and upper solutions technique. Here, by com-
bining the results we got in Sections 4.1 and 4.2, we obtain new multiplicity results in this
line.

To this end we need to present the notion of strict lower and upper solutions, in order to
guarantee that the boundary of the set where we compute the degree does not contain fixed
points of the fixed point operator associated to our problem.

Definition 4.3.1. We say that α ∈ C(I) is a strict lower solution for the differential problem
(4.0.1)–(4.0.2) if it satisfies the following conditions:

(i) For any t0 ∈ (a, b), either D−α(t0) < D+α(t0),
or there exist an open interval I0 and ε0 > 0 such that t0 ∈ I0, α ∈ W 2,1(I0) and for
a.a. t ∈ I0, all u ∈ [α(t), α(t) + ε0] and all v ∈ [α′(t)− ε0, α

′(t) + ε0],

α′′(t) ≥ f(t, u, v).

(ii) D+α(a), D−α(b) ∈ R and L1 (α(a), α(b), D+α(a), D−α(b), α) < 0.

(iii) L2 (α(a), α(b)) = 0, L2 (α(a), ·) and L2 (·, α(b)) are injective.

Similarly β ∈ C(I) is a strict upper solution for (4.0.1)–(4.0.2) if it satisfies:

(i) For any t0 ∈ (a, b), either D−β(t0) > D+β(t0),
or there exist an open interval I0 and ε0 > 0 such that t0 ∈ I0, β ∈ W 2,1(I0) and for
a.a. t ∈ I0, all u ∈ [β(t)− ε0, β(t)] and all v ∈ [β′(t)− ε0, β

′(t) + ε0],

β′′(t) ≤ f(t, u, v).
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(ii) D+β(a), D−β(b) ∈ R and L1 (β(a), β(b), D+β(a), D−β(b), β) > 0.

(iii) L2 (β(a), β(b)) = 0, L2 (β(a), ·) and L2 (·, β(b)) are injective.

Lemma 4.3.2. Let α, β be strict lower and upper solutions and let x be a solution for problem
(4.0.1)–(4.0.2). Then α ≤ x implies α < x and x ≤ β implies x < β.

Proof. Let α ≤ x. If x(a) = α(a), since L2(x(a), x(b)) = 0 = L2(α(a), α(b)) and
L2(α(a), ·) is injective, then x(b) = α(b), so x− α attains its minimum at a and b, and thus
x′(a) ≥ α′(a) and x′(b) ≤ α′(b). Therefore, by using the monotonicity conditions on L1,
we obtain the contradiction

0 = L1(x(a), x(b), x′(a), x′(b), x) ≤ L1(α(a), α(b), α′(a), α′(b), α) < 0.

If x(b) = α(b), the fact that L2 (·, α(b)) is injective implies that x(a) = α(a). Then we
reach another contradiction as above.

Now assume that there exists t0 ∈ (a, b) such that 0 = x(t0)−α(t0) and x(t) > α(t) for
all t ∈ (t0, b]. As x− α attains its minimum at t0, we have that

x′(t0)−D−α(t0) ≤ x′(t0)−D+α(t0)

so, by the definition of strict lower solution, x′(t0) = α′(t0) and there exist an open interval
I0 and ε0 > 0 such that t0 ∈ I0 and for a.a. t ∈ I0, all u ∈ [α(t), α(t) + ε0] and all
v ∈ [α′(t)− ε0, α

′(t) + ε0],
α′′(t) ≥ f(t, u, v).

On the other hand,

∀r > 0 ∃ tr ∈ (t0, t0 + r) such that α′(tr) < x′(tr).

Hence, we can choose tr ∈ I0, tr > t0 such that α′(tr) < x′(tr) and for every t ∈ (t0, tr),

x(t) ≤ α(t) + ε0, |x′(t)− α′(t)| < ε0.

Then for a.a. t ∈ (t0, tr) we have that

α′′(t) ≥ f(t, x(t), x′(t)),

and thus

x′(tr)− α′(tr) =

∫ tr

t0

(x′′(s)− α′′(s)) ds =

∫ tr

t0

(f(s, x(s), x′(s))− α′′(s)) ds ≤ 0,

a contradiction.

Notice that even in the case of Carathéodory nonlinearities Lemma 4.3.2 does not hold if
the strict lower and upper solutions are defined just by taking strict inequalities in Definition
4.1.1, see [46, Chapter III-1].
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Remark 4.3.3. Notice that the proof of Lemma 4.3.2 remains valid for the following state-
ment:

Let α be a strict lower solution for problem (4.0.1)–(4.0.2) and let β ∈ W 2,1(I) be an
upper solution. Then α ≤ β implies α < β.

Theorem 4.3.4. Assume there exist α1, α2 ∈ W 1,∞(I) lower solutions and β ∈ W 1,∞(I)
an upper solution for (4.2.1) such that α1 ≤ β, α2(τ) > β(τ) for some τ ∈ I and α2, β are
strict lower and upper solutions, respectively.

Suppose that the function f satisfies the hypotheses (C1), (C2∗) and (C3∗).
Then the problem (4.2.1) has at least two solutions x1, x2 ∈ W 2,1(I) satisfying that

α1 ≤ x1 < β and there exist t1, t2 ∈ I such that x2(t1) < α2(t1) and x2(t2) > β(t2).

Proof. By Theorem 4.1.9 there exists a solution x1 ∈ W 2,1(I) for problem (4.2.1) such that
α1 ≤ x1 ≤ β. On the other hand, the fact that α2 and β are strict lower and upper solutions,
respectively, implies that the case (i) in the proof of Theorem 4.2.2 is not possible (due to
Lemma 4.3.2), so (4.2.1) has a solution x2 ∈ Ω where Ω is defined as in (4.2.10) taking
α = α2. Observe that Ω is the set of functions satisfying (4.2.2) with α = α2.

Remark 4.3.5. A similar result can be obtained by interchanging the role of lower and upper
solutions.

Example 4.3.6. Consider the problem (4.0.1) along with the boundary conditions

0 = L1(x(0), x(1), x′(0), x′(1), x) = −x(0)2 − x(1/4),
0 = L2(x(0), x(1)) = x(0)− x(1),

and the nonlinearity

f(t, x, y) = b1/(t+ |x|)c1/2 cos(y) + 1/2,

for all x ∈ R, t ∈ [0, 1], t > 0.
This function f satisfies conditions (C1), (C2∗) and (C3∗) (see Example 4.2.4). On the

other hand, one can easily verify that α1(t) = π(t − 1/2)2 − π and α2(t) = π(t − 1/2)2

are strict lower solutions for the previous problem and that β(t) = −(t− 1/2)2/2 is a strict
upper solution. Moreover, they satisfy the following order conditions: α1 ≤ β ≤ α2. Hence,
Theorem 4.3.4 ensures that the considered problem has at least two different solutions.

Following the ideas of Amann [5], in [47] a three solution theorem is given in presence
of two pairs of lower and upper solutions with order relations, see Figure 4.3.1. Here an anal-
ogous result is possible for our problem (4.2.1) as an immediate consequence of Theorems
4.1.9 and 4.2.2.

Theorem 4.3.7. Assume there existα1, α2 ∈W 1,∞(I) lower solutions and β1, β2 ∈W 1,∞(I)
upper solutions for (4.2.1) such that α1 ≤ β1, α2 ≤ β2, α2(τ) > β1(τ) for some τ ∈ I and
α2, β1 are strict lower and upper solutions, respectively.

Suppose that the function f satisfies the hypotheses (C1), (C2∗) and (C3∗).
Then problem (4.2.1) has at least three solutions x1, x2, x3 ∈ W 2,1(I) satisfying that

α1 ≤ x1 < β1, α2 < x2 ≤ β2 and there exist t1, t2 ∈ I such that x3(t1) < α2(t1) and
x3(t2) > β1(t2).
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a b

β1

α1

α2

β2

Figure 4.3.1: Order relations for the lower and upper solutions in Theorem 4.3.7.

If the lower and upper solutions are strict, then by means of the topological degree it is
possible to obtain a three-solution result, see [143], where f need not be bounded with respect
to the spatial variables and, moreover, the more general boundary conditions (4.0.2) can be
considered. However, to do so, more restrictive conditions about the order relations for the
lower and upper solutions are required in this case, see Figure 4.3.2. This is the idea of the
following result.

Theorem 4.3.8. Assume there exist α1, α2 ∈ W 1,∞(I) strict lower solutions and β1, β2 ∈
W 1,∞(I) strict upper solutions for problem (4.0.1)–(4.0.2) with the following order rela-
tions: α1 < β1 ≤ β2, α1 ≤ α2 < β2, α2(τ) > β1(τ) for some τ ∈ I .

Suppose that the function f satisfies the hypotheses (C1), (C2) and (C̃3) taking α = α1

and β = β2.
Then problem (4.0.1)–(4.0.2) has at least three solutions x1, x2, x3 ∈ W 2,1(I) such that

α1 < x1 < β1, α2 < x2 < β2 and there exist t1, t2 ∈ I such that x3(t1) < α2(t1) and
x3(t2) > β1(t2).

Proof. Consider the sets

Ω0 =
{
x ∈ C1(I) : α1 < x < β2 on I, ‖x′‖∞ < R

}
,

Ω1 = {x ∈ Ω0 : α1 < x < β1 on I} ,

Ω2 = {x ∈ Ω0 : α2 < x < β2 on I} ,

where R is given by condition (C2). Note that since the lower and upper solutions are
strict, then the operator T , defined as in (4.1.28), has no fixed points on the boundary of Ωi,
i = 0, 1, 2. Hence, by Theorem 4.1.8,

deg (Id− T,Ω0) = deg (Id− T,Ω1) = deg (Id− T,Ω2) = 1.
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Then T has fixed points x1 ∈ Ω1 and x2 ∈ Ω2 which are different fixed points because
Ω1 ∩ Ω2 = ∅ due to the order hypotheses about the lower and upper solutions. Now the
properties of the degree ensure that

deg
(
Id− T,Ω0 \

(
Ω1 ∪ Ω2

))
= deg (Id− T,Ω0)− deg (Id− T,Ω1)− deg (Id− T,Ω2)

= −1,

so T has a third fixed point x3 ∈ Ω0 \
(
Ω1 ∪ Ω2

)
. Since x3 6∈ Ω1 ∪Ω2, there exist t1, t2 ∈ I

such that x3(t1) < α2(t1) and x3(t2) > β1(t2).

a b

β1

α1

α2

β2

Figure 4.3.2: Order relations for the lower and upper solutions in Theorem 4.3.8.

To finish we illustrate our multiplicity results by an example.

Example 4.3.9. Consider the problem (4.0.1) along with the following nonlinear boundary
conditions

0 = L1(x(0), x(3π), x′(0), x′(3π), x) = cos(x(0)),
0 = L2(x(0), x(3π)) = x(0)− x(3π)− sin(x(3π)),

and the function
f(t, x, y) = φ(x− t2) cos(x)− |y| ,

for all x, y ∈ R and t ∈ [0, 3π], where the function φ is defined below. Consider a bijection
between the rational numbers and the positive integers and denote as {qn}n∈N the sequence
of rational numbers. The function φ : R→ R is given by

φ(u) =
∑

n: qn<u

2−n.

Notice that φ is continuous at the irrational points and discontinuous at the rational numbers,
see [130, Prop. 2, p. 108-109]. Moreover, φ(u) ∈ (0, 1) for each u ∈ R as far as it is
φ(u) <

∑∞
n=1 2−n = 1.
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Observe that α1 ≡ −π and α2 ≡ π are strict lower solutions for the problem and β1 ≡ 0
and β2 ≡ 2π are strict upper solutions.

On the other hand, for a.a. t ∈ [0, 3π] the function (x, y) 7→ f(t, x, y) is continuous on(
[−π, 2π] \

⋃
{n : t∈In}{γn(t)}

)
× R, where for each n ∈ N,

γn(t) = t2 + qn for all t ∈ In = [0, 3π].

In addition, the curves γn are inviable admissible discontinuity curves. Indeed, for every
n ∈ N and for all x, y ∈ R and t ∈ [0, 3π], we have

f(t, x, y) = φ(x− t2) cos(x)− |y| ≤ 1 < 2 = γ′′n(t).

Therefore, Theorem 4.3.8 guarantees the existence of at least three solutions for the con-
sidered problem satisfying some suitable localization conditions.

4.4 Second order problems on unbounded domains

We study the existence of solutions of the nonlinear equation on the half–line

x′′(t) = f(t, x(t), x′(t)), t ∈ R+, (4.4.1)

coupled with the functional boundary conditions

L(x(0), x′(0), x) = 0, x′(+∞) := lim
t→+∞

x′(t) = B, (4.4.2)

where B ∈ R and L : R2 × C(R+) → R is a continuous function and it is nonincreasing in
the second and third variables.

The functional boundary conditions considered here are quite general and were recently
studied in [57]. They include the extensively studied Sturm–Liouville conditions [96, 97],
integral boundary conditions [2], multipoint [145] and other boundary conditions with, for
example, maximum or minimum arguments. Observe that the boundary condition at infinity
implies that solutions, if they exist, are unbounded if B 6= 0.

The main novelty here is that we allow the function f to satisfy weaker conditions than
the usual ones in the literature. In particular, it may be discontinuous in the second variable
over a countable number of admissible curves.

We shall assume the existence of well ordered upper and lower solutions on unbounded
domains and a Nagumo condition to control the first derivative in order to obtain existence
results for (4.4.1)–(4.4.2). Another interesting point is that we are able to relax the usual
definition of lower and upper solutions, cf. [2, 57, 96–98], and therefore our main existence
result is new even in the classical case of continuous right–hand sides in (4.4.1). See Remark
4.4.13 for details.

Furthermore, we also prove the existence of extremal solutions for (4.4.1)–(4.4.2) by
adapting the arguments in [34] to unbounded domains. This is also a new result even for a
continuous nonlinearity.
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4.4.1 Existence results on the half line
First we present some definitions and results concerning the problem (4.4.1)–(4.4.2). Con-
sider the space

X =

{
x ∈ C1(R+) : lim

t→∞

x(t)

1 + t
∈ R and lim

t→∞
x′(t) ∈ R

}
endowed with a Bielecki–type norm in C1(R+),

‖x‖ := max {‖x‖0 , ‖x‖1} ,

where

‖x‖0 = sup
0≤t<∞

|x(t)|
1 + t

and ‖x‖1 = sup
0≤t<∞

|x′(t)|.

It is clear that (X, ‖·‖) is a Banach space. For convenience we denote

Y =

{
x ∈ C(R+) : lim

t→∞

x(t)

1 + t
∈ R

}
.

Our approach is based on lower and upper solutions method and fixed point theory. Thus
we define the lower and upper solutions for problem (4.4.1)–(4.4.2) and we present a Nagumo
condition which gives some a priori bound on the first derivative for all possible solutions of
the differential equation (4.4.1) between the lower and the upper solutions.

Definition 4.4.1. A function α ∈ Y is said to be a lower solution for the problem (4.4.1)–
(4.4.2) if the following conditions are satisfied:

(i) For any t0 ∈ (0,∞), either D−α(t0) < D+α(t0),
or there exists an open interval I0 such that t0 ∈ I0, α ∈W 2,1(I0) and

α′′(t) ≥ f(t, α(t), α′(t)) for a.a. t ∈ I0.

(ii) D+α(0) ∈ R and L(α(0), D+α(0), α) ≤ 0.

(iii) There exists N ∈ N such that α ∈W 2,1((N,∞)) and α′(+∞) ≤ B.

Similarly β ∈ Y is an upper solution for (4.4.1)–(4.4.2) if it satisfies:

(i) For any t0 ∈ (0,∞), either D−β(t0) > D+β(t0),
or there exists an open interval I0 such that t0 ∈ I0, β ∈W 2,1(I0) and

β′′(t) ≤ f(t, β(t), β′(t)) for a.a. t ∈ I0.

(ii) D+β(0) ∈ R and L(β(0), D+β(0), β) ≥ 0.

(iii) There exists N ∈ N such that β ∈W 2,1((N,∞)) and β′(+∞) ≥ B.
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Proposition 4.4.2. Let ᾱ, β̄ ∈ Y be such that ᾱ ≤ β̄. Assume there exist a continuous
function N̄ : [0,∞)→ (0,∞) and M̄ ∈ L1(R+) such that for each r > 0 we have∫ ∞

r

1

N̄(s)
ds = +∞. (4.4.3)

Define E :=
{

(t, x, y) ∈ R+ × R2 : ᾱ(t) ≤ x ≤ β̄(t)
}

. Then, there exists R > 0 such
that for every function f : E → R satisfying for a.a. t ∈ R+ and all (x, y) ∈ R2 with
(t, x, y) ∈ E,

|f(t, x, y)| ≤ M̄(t)N̄(|y|),

and for every solution x of (4.4.1) such that ᾱ ≤ x ≤ β̄, we have

‖x‖1 < R.

Proof. Choose δ > 0 and let r > 0 such that

r > max

{
sup

δ≤t<∞

β̄(t)− ᾱ(0)

t
, sup
δ≤t<∞

β̄(0)− ᾱ(t)

t

}
,

which is well–defined since ᾱ, β̄ ∈ Y . Let R > r be big enough such that∫ R

r

1

N̄(s)
ds >

∫ ∞
0

M̄(s) ds. (4.4.4)

Let x be a solution of (4.4.1) and t ∈ R+ such that x′(t) > R.
If x′(t) > r for all t ∈ R+, then for any T > δ we have

β̄(T )− ᾱ(0)

T
≥ x(T )− x(0)

T
=

∫ T
0
x′(s) ds

T
> r ≥ β̄(T )− ᾱ(0)

T
,

a contradiction.
Therefore, there exist t0 < t1 (or t1 < t0) such that x′(t0) = r, x′(t1) = R and,

moreover, r ≤ x′(s) ≤ R in [t0, t1] (or [t1, t0]). Then we have∫ R

r

1

N̄(s)
ds =

∫ t1

t0

x′′(s)

N̄(x′(s))
ds =

∫ t1

t0

f(s, x(s), x′(s))

N̄(x′(s))
ds

≤
∫ t1

t0

M̄(s) ds ≤
∫ ∞

0

M̄(s) ds,

a contradiction, so we deduce that x′(t) < R.
In the same way we prove that x′(t) > −R.

Remark 4.4.3. Observe that condition (4.4.3) in Proposition 4.4.2 could just be replaced by
condition (4.4.4). However, the first one is easier to check in practice.
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Remark 4.4.4. Notice that a better condition about N̄ , which allows a quadratic growth
with respect to the third variable of the nonlinear term f for the differential equation (4.4.1),
is commonly employed in the literature (see, e.g. [2, 96, 97, 99]), namely,∫ ∞

r

s

N̄(s)
ds = +∞.

Unfortunately, this type of conditions require harder assumptions about M̄ such as

sup
0≤t<∞

(1 + t)kM̄(t) < +∞ for some k > 1.

In particular, the previous hypothesis avoids that M̄ could be singular at t = 0.

Lemma 4.4.5. Let h ∈ L1(R+). Then x ∈ X is the unique solution of the problem

x′′(t) = h(t) t ∈ R+,
x(0) = A,

x′(+∞) = B,

with A,B ∈ R, if and only if,

x(t) = A+

∫ t

0

(
B −

∫ ∞
s

h(r) dr

)
ds.

Proof. It is immediate, see [57, Lemma 2.3].

In order to apply fixed point theorems of Chapter 2 it is necessary to guarantee that certain
sets are relatively compact. Nevertheless, the classical Ascoli–Arzelà’s theorem fails due
to the non–compactness of the infinite interval R+, so this difficulty is overcome by the
following result, see [1].

Lemma 4.4.6. Let A ⊂ X . The set A is relatively compact if the following conditions hold:

(a) A is uniformly bounded in X;

(b) the functions belonging to A are equicontinuous on any compact interval of R+;

(c) the functions f from A are equiconvergent at +∞, i.e., given ε > 0 there exists
T (ε) > 0 such that ‖f(t)− f(+∞)‖ < ε for any t > T (ε) and f ∈ A.

Now we shall construct a modified problem for proving the existence of solutions for
(4.4.1)–(4.4.2) under well–ordered lower and upper solutions.

Suppose that there exist α, β ∈ W 1,∞((0,∞)) a lower and an upper solutions for prob-
lem (4.4.1)–(4.4.2), respectively, such that α(t) ≤ β(t) for all t ∈ R+.

Assume that for f : R+ × R2 → R the following conditions hold:

(H1) Compositions t ∈ R+ 7→ f(t, x(t), y(t)) are measurable whenever x(t) is continuous
and y(t) is measurable;
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(H2) There exist a continuous function N : [0,∞) → (0,∞) and M ∈ L1(R+) such that
for each r > 0, ∫ ∞

r

1

N(s)
ds = +∞,

and for a.a. t ∈ R+, all x ∈ [α(t), β(t)] and all y ∈ R, we have

|f(t, x, y)| ≤M(t)N(|y|).

Consider the modified problem x′′(t) = f(t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′)),
x(0) = ϕ(0, x(0)− L(x(0), x′(0), x)),

x′(+∞) = B,
(4.4.5)

where
ϕ(t, x) = max {min {x, β(t)} , α(t)} for (t, x) ∈ R+ × R, (4.4.6)

and
δR(y) = max {min {y,R} ,−R} for all y ∈ R, (4.4.7)

with R given by Proposition 4.4.2.
Notice that for t ∈ R+,

ϕ(t, x(t)) = x(t) + (α− x)+(t)− (x− β)+(t),

where (u)+(t) = max{u(t), 0}. Hence, we have ϕ(·, x) ∈W 1,∞((0,∞)) and

(ϕ(t, x(t)))′ =
d

dt
ϕ(t, x(t)) =

 α′(t), if x(t) < α(t),
x′(t), if α(t) ≤ x(t) ≤ β(t),
β′(t), if x(t) > β(t).

Furthermore, if {xn} ⊂ X is such that xn → x in X , then

lim
n→∞

(ϕ(t, xn(t)))′ = (ϕ(t, x(t)))′,

see [46, 138].
The operator T : X → X associated to the modified problem (4.4.5) is defined as

Tx(t) = L∗(x) +

∫ t

0

(
B −

∫ ∞
s

f(r, ϕ(r, x(r)), δR((ϕ(r, x(r)))′)) dr

)
ds, (4.4.8)

where L∗(x) = ϕ(0, x(0)− L(x(0), x′(0), x)).
In order to achieve an existence result for problem (4.4.1)–(4.4.2) we shall prove that the

operator T has a fixed point by applying Theorem 2.1.2. In this direction we present some
previous lemmas.

Lemma 4.4.7. Assume that conditions (H1) and (H2) hold. Then the operator T is well
defined.
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Proof. Given x ∈ X , we shall show that Tx ∈ X . First, we have

lim
t→∞

(Tx)(t)

1 + t
= lim
t→∞

∫ t
0

(
B −

∫∞
s
f(r, ϕ(r, x(r)), δR((ϕ(r, x(r)))′)) dr

)
ds

1 + t

= lim
t→∞

Bt−
∫ t

0

(∫∞
s
f(r, ϕ(r, x(r)), δR((ϕ(r, x(r)))′)) dr

)
ds

1 + t
.

Now, from (H2), (4.4.6) and (4.4.7) we obtain that

lim
t→∞

∣∣∣∫ t0 (∫∞s f(r, ϕ(r, x(r)), δR((ϕ(r, x(r)))′)) dr
)
ds
∣∣∣

1 + t
≤ lim
t→∞

∫ t
0

(∫∞
s
M̃(r) dr

)
ds

1 + t
,

where M̃(t) = maxs∈[0,R]N(s)M(t).
Let us show that

lim
t→∞

∫ t
0

(∫∞
s
M̃(r) dr

)
ds

1 + t
= 0.

Observe that the function F : R+ → R+ defined as F (s) =
∫∞
s
M̃(r) dr is continuous

and nonincreasing, so the function t 7→
∫ t

0
F (s) ds is nondecreasing and thus there exists the

limit

l := lim
t→∞

∫ t

0

F (s) ds.

We consider two different cases. If l < +∞, then we have

lim
t→∞

∫ t
0

(∫∞
s
M̃(r) dr

)
ds

1 + t
= lim
t→∞

∫ t
0
F (s) ds

1 + t
= 0. (4.4.9)

On the other hand, if l = +∞, then L’Hôpital’s rule ensures again that (4.4.9) holds. There-
fore, we conclude that

lim
t→∞

(Tx)(t)

1 + t
= B < +∞. (4.4.10)

Moreover,

lim
t→∞

(Tx)′(t) = lim
t→∞

(
B −

∫ ∞
t

f(s, ϕ(s, x(s)), δR((ϕ(s, x(s)))′)) ds

)
= B. (4.4.11)

Therefore T is well defined.

Lemma 4.4.8. Assume that conditions (H1) and (H2) hold. Then TX is relatively compact.

Proof. Let us apply Lemma 4.4.6. First, let us show that TX is uniformly bounded in X .
For x ∈ X we have

‖Tx‖0 = sup
t∈R+

|(Tx)(t)|
1 + t

≤ sup
t∈R+

(
max{|α(0)| , |β(0)|}+

(|B|+ k1)t

1 + t

)
≤ ρ
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and

‖Tx‖1 = sup
t∈R+

|(Tx)′(t)|

≤ sup
t∈R+

∣∣∣∣B − ∫ ∞
t

f(s, ϕ(s, x), δR((ϕ(s, x))′)) ds

∣∣∣∣ ≤ |B|+ k1 ≤ ρ,

where ρ := max{|α(0)| , |β(0)|}+ |B|+ k1 and k1 :=
∫∞

0
M̃(r) dr.

Next, given T0 > 0 let us prove that the functions in TX are equicontinuous on [0, T0].
Let us consider t1, t2 ∈ [0, T0], then we have∣∣∣∣Tx(t1)

1 + t1
− Tx(t2)

1 + t2

∣∣∣∣ ≤ |(t2 − t1)L∗(x)|
(1 + t1)(1 + t2)

+

∣∣∣∫ t2t1 (B − ∫∞s f(r, ϕ(r, x(r)), δR((ϕ(r, x(r)))′)) dr
)
ds
∣∣∣

(1 + t1)(1 + t2)

≤ 1

(1 + t1)(1 + t2)
(max{|α(0)| , |β(0)|}+ |B|+ k1) |t2 − t1|

≤ (max{|α(0)| , |β(0)|}+ |B|+ k1) |t2 − t1| ,

which tends to zero as |t2 − t1| → 0. Moreover,

|(Tx)′(t1)− (Tx)′(t2)| =
∣∣∣∣∫ t2

t1

f(s, ϕ(s, x(s)), δR((ϕ(s, x(s)))′)) ds

∣∣∣∣
≤
∣∣∣∣∫ t2

t1

M̃(s) ds

∣∣∣∣→ 0,

as |t2 − t1| → 0.
Finally, let us prove that TX is equiconvergent at +∞. Let x ∈ X , then by (4.4.9) and

(4.4.10) we have∣∣∣∣Tx(t)

1 + t
− lim
t→∞

Tx(t)

1 + t

∣∣∣∣ =

∣∣∣∣Tx(t)

1 + t
−B

∣∣∣∣
≤ |L

∗(x)|+ |B|
1 + t

+

∫ t
0

∫∞
s
f(r, ϕ(r, x(r)), δR((ϕ(r, x(r)))′)) drds

1 + t

≤ |L
∗(x)|+ |B|

1 + t
+

∫ t
0

∫∞
s
M̃(r) drds

1 + t
→ 0,

as t→ +∞. In addition, by (4.4.11),∣∣∣(Tx)′(t)− lim
t→∞

(Tx)′(t)
∣∣∣ = |(Tx)′(t)−B| ≤

∫ ∞
t

M̃(s) ds→ 0,

as t→ +∞.

We shall allow the nonlinearity f to be discontinuous in the second variable over some
curves as in Definition 4.1.3. As far as we know, this is the first time that such type of
discontinuity conditions were presented for boundary value problems on infinity intervals.
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Definition 4.4.9. An admissible discontinuity curve for the differential equation (4.4.1) is a
W 2,1 function γ : [a, b] ⊂ R+ −→ R satisfying one of the following conditions:

either γ′′(t) = f(t, γ(t), γ′(t)) for a.a. t ∈ [a, b] (and we then say that γ is viable for the
differential equation),

or there exist ε > 0 and ψ ∈ L1(a, b), ψ(t) > 0 for a.a. t ∈ [a, b], such that
either

γ′′(t) + ψ(t) < f(t, y, z) for a.a. t ∈ [a, b], all y ∈ [γ(t)− ε, γ(t) + ε] (4.4.12)
and all z ∈ [γ′(t)− ε, γ′(t) + ε],

or

γ′′(t)− ψ(t) > f(t, y, z) for a.a. t ∈ [a, b], all y ∈ [γ(t)− ε, γ(t) + ε] (4.4.13)
and all z ∈ [γ′(t)− ε, γ′(t) + ε].

We say that the admissible discontinuity curve γ is inviable for the differential equation if it
satisfies (4.4.12) or (4.4.13).

Now we present the result which gives the main difference between our existence results
and the classical ones. It guarantees that condition (2.1.1) holds what allows to avoid the
continuity of the operator T and thus the continuity of f .

Lemma 4.4.10. Assume that conditions (H1), (H2) and

(H3) There exist admissible discontinuity curves γn : In = [an, bn] −→ R (n ∈ N) such
that α ≤ γn ≤ β on R+, their derivatives are uniformly bounded and for a.a. t ∈ R+,
the function (x, y) 7→ f(t, x, y) is continuous on[α(t), β(t)] \

⋃
{n : t∈In}

{γn(t)}

× R;

hold.
Then the operator T satisfies condition (2.1.1) for all x ∈ X , i.e., Fix(T) ⊂ Fix(T )

where T is the cc-envelope of T .

Its proof is similar to that done in Theorem 4.1.5, so we omit it here.

Remark 4.4.11. Admissible discontinuity curves may be defined in infinite intervals as the
union of those in Definition 4.4.9.

Now we establish an existence and localization result for (4.4.1)–(4.4.2).

Theorem 4.4.12. Suppose that there exist α and β lower and upper solutions to (4.4.1)–
(4.4.2), respectively, such that α ≤ β on R+ and α, β ∈ W 1,∞((0,∞)). Assume that
conditions (H1)–(H3) hold. Then problem (4.4.1)–(4.4.2) has at least one solution x ∈ X
such that α(t) ≤ x(t) ≤ β(t).
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Proof. For simplicity, we divide the proof in several steps. First, we will prove that the
modified problem (4.4.5) has at least one solution, that is, we will ensure that the operator T
defined as in (4.4.8) has a fixed point. Then, we will show that this fixed point is a solution
for problem (4.4.1)–(4.4.2).
Step 1. Problem (4.4.5) has at least a solution x ∈ X .

By Lemma 4.4.7, the operator T is well defined. Consider the closed and convex set D
defined as

D = {x ∈ X : ‖x‖ ≤ ρ} ,

where
ρ := max{|α(0)| , |β(0)|}+ |B|+ k1,

and k1 =
∫∞

0
M̃(r) dr.

For x ∈ D we have

‖Tx‖0 = sup
t∈R+

|(Tx)(t)|
1 + t

≤ sup
t∈R+

(
max{|α(0)| , |β(0)|}+

(|B|+ k1)t

1 + t

)
≤ ρ

and

‖Tx‖1 = sup
t∈R+

|(Tx)′(t)|

≤ sup
t∈R+

∣∣∣∣B − ∫ ∞
t

f(s, ϕ(s, x), δR((ϕ(s, x))′)) ds

∣∣∣∣ ≤ |B|+ k1 ≤ ρ.

Therefore, TD ⊂ D. In addition, TD is relatively compact by virtue of Lemma 4.4.8 and
T satisfies condition (2.1.1), by Lemma 4.4.10. Then Theorem 2.1.2 implies that the operator
T has at least one fixed point x ∈ D.
Step 2. Every solution of (4.4.5) satisfies α(t) ≤ x(t) ≤ β(t) for all t ∈ R+.

Let x ∈ X be a solution of (4.4.5). Suppose that there exists t ∈ R+ such that α(t) >
x(t). Then

inf
t∈R+

{x(t)− α(t)} < 0.

First, this cannot happen at t = 0 since

x(0) = ϕ (0, x(0)− L(x(0), x′(0), x)) ≥ α(0).

On the other hand, if the infimum is attained as t tends to infinity, then there exists T > 0
such that

x(t)− α(t) < 0 for all t ∈ [T,∞),

and α ∈W 2,1((T,∞)). Hence, we have

x′′(t) = f(t, ϕ(t, x), δR((ϕ(t, x))′)) = f(t, α(t), α′(t)) ≤ α′′(t) for a.a. t ∈ [T,∞),
(4.4.14)

and so x− α is a concave function on [T,∞).

105



Second order problems and lower and upper solutions

Then there are two options: either there exists t0 > T such that t0 is a relative minimum
(in this case the reasoning is analogous to that we do below when the infimum is attained at
t0 ∈ (0,∞)) or there exists T̃ > T such that (x− α)′(T̃ ) < 0 and, by (4.4.14),

(x− α)′(t) ≤ (x− α)′(T̃ ) for all t ≥ T̃ ,

which implies
lim
t→∞

(x′(t)− α′(t)) = x′(+∞)− α′(+∞) < 0.

However, by the definition of α,

0 > x′(+∞)− α′(+∞) = B − α′(+∞) ≥ 0,

a contradiction.
Hence there exist t0 ∈ (0,∞) such that

min
t∈R+

(x(t)− α(t)) = x(t0)− α(t0) < 0.

Then we have
x′(t0)−D−α(t0) ≤ x′(t0)−D+α(t0)

so, by the definition of lower solution, there exists an open interval I0 such that t0 ∈ I0 and

α′′(t) ≥ f(t, α(t), α′(t)) for a.a. t ∈ I0.

Further x′(t0) = α′(t0) and for all r > 0 there exists tr ∈ (t0 − r, t0) such that x′(tr) <
α′(tr).

On the other hand, by the continuity of x − α, there exists ε > 0 such that for all t ∈
(t0 − ε, t0 + ε) we have x(t)− α(t) < 0. Then,

x′′(t) = f(t, ϕ(t, x), δR((ϕ(t, x))′)) = f(t, α(t), α′(t)) ≤ α′′(t) for a.a. t ∈ [t0−ε, t0]∩I0.

Thus, the function x′(t)−α′(t) is nonincreasing on (t0−ε, t0)∩I0, so for t ∈ (t0−ε, t0)∩I0
it is

x′(t)− α′(t) ≥ x′(t0)− α′(t0) = 0,

a contradiction.
Step 3. Every solution x of problem (4.4.5) satisfies |x′(t)| < R for all t ∈ R+.

It is an immediate consequence of the Nagumo condition, see Proposition 4.4.2.
Step 4. Every solution x of problem (4.4.5) is a solution to (4.4.1)–(4.4.2).

Let x be a solution of the modified problem (4.4.5). It is enough to show that

α(0) ≤ x(0)− L(x(0), x′(0), x) ≤ β(0).

Assume on the contrary that

α(0) > x(0)− L(x(0), x′(0), x).

Then, x(0) = ϕ(0, x(0) − L(x(0), x′(0), x)) = α(0). Therefore, since α ≤ x and x′(0) ≥
D+α(0), from the monotonicity properties of L, we get the contradiction

0 > x(0)− L(x(0), x′(0), x)− α(0) = −L(x(0), x′(0), x) ≥ −L(α(0), D+α(0), α) ≥ 0.

In an analogous way it can be proven that x(0)− L(x(0), x′(0), x) ≤ β(0).
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Remark 4.4.13. It is usual in the literature (see [57, 96–98]) to require the upper and lower
solutions to satisfy strict inequalities at infinity, that is, α′(+∞) < B and β′(+∞) > B.
Moreover, in the recent paper [98, Remark 3.3], the authors observe that it is unknown if this
strict inequality can be weakened. Notice that this difficulty was overcome in our previous
theorem.

Now we illustrate our existence result with an example which shows its applicability.

Example 4.4.14. Define φ : R → R as in Example 4.3.9. Notice that φ is continuous at
the irrational points and discontinuous at the rational numbers. Moreover, φ(u) ∈ (0, 1) for
each u ∈ R.

Consider the problem (4.4.1)–(4.4.2) with the following functional boundary conditions

L(x(0), x′(0), x) = 3(x(0))3 − x′(0)−
∫ η

0

x(t) dt = 0,

x′(+∞) = 0,

where 0 ≤ η ≤ 1, and nonlinearity

f(t, x, y) =
1

1 + t2
φ(t− x) + min

{
1√
t
,

1

t2

}
y cos(2πy),

for all x, y ∈ R and t ∈ R+.
First, the functionsM(t) = min

{
1/
√
t, 1/t2

}
andN(y) = 1+y satisfy condition (H2).

For a.a. t ∈ R+, the function (x, y) 7→ f(t, x, y) is continuous onR \ ⋃
{n : t∈In}

{γn(t)}

× R,
where for each n ∈ N,

γn(t) = t+ qn for all t ∈ In = R+.

Notice that these curves can be defined in compact domains as in Definition 4.4.9 by writing
the infinite interval R+ as a countable union of compact intervals.

The curves γn are inviable admissible discontinuity curves. Indeed, for ε > 0 small
enough we have

γ′′(t) = 0 <
1

2
min

{
1√
t
,

1

t2

}
< f(t, y, z)

for a.a. t ∈ In, all y ∈ [γn(t)− ε, γn(t) + ε] and z ∈ [γ′n(t)− ε, γ′n(t) + ε].
It is easy to check that the functions α(t) = −t − 1 and β(t) = 0 are, respectively, a

lower and an upper solutions for this problem.
Therefore, Theorem 4.4.12 ensures that it has a solution between α and β.
Observe that the function f is not monotone in the third argument, changes sign and it is

discontinuous over a set of curves which is dense inR+×R. Moreover, it is singular at t = 0,
and even in the case of being continuous, it would fall outside the scope of other results in
the literature, as for example those in [57], because the function M is not a possible bound
for the nonlinearities considered there, see Remark 4.4.4.
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Multiplicity results can be also derived by means of degree theory and the existence of
two pairs of lower and upper solutions as done, for example, in [2, 96, 98].

4.4.2 Extremal solutions between the lower and upper solutions
To finish, we provide sufficient conditions for the existence of extremal solutions for the
following problem {

x′′(t) = f(t, x(t), x′(t)), t ∈ R+,
L(x(0), x′(0)) = 0, x′(+∞) = B,

(4.4.15)

where B ∈ R and L is continuous and nonincreasing in the second argument.
Since problem (4.4.15) is a particular case of (4.4.1)–(4.4.2) (by removing the functional

dependence in the boundary conditions), the existence of solutions is guaranteed by Theorem
4.4.12 when well ordered lower and upper solutions exist. Now we establish the existence of
extremal solutions between them.

Theorem 4.4.15. In the conditions of Theorem 4.4.12, problem (4.4.15) has extremal solu-
tions between α and β.

Proof. Consider the set of solutions for problem (4.4.15) located between the lower and upper
solution

S = {x ∈ [α, β] : x solution of (4.4.15)}
= {x ∈ X : x solution of (4.4.5)}
= {x ∈ X : x = Tx}.

By Lemma 4.4.10,

S = {x ∈ X : x ∈ Tx} = (Id− T)−1({0}),

which implies that S is a closed subset of X due to T is upper semicontinuous and {0} is a
closed set. Hence, since TX is relatively compact and S ⊂ TX , S is a compact set.

Define xmin(t) = inf{x(t) : x ∈ S} for t ∈ R+. The evaluation map δt : X → R given
by δt(x) = x(t) is a continuous map and then δt(S) = {x(t) : x ∈ S} is compact. Thus,
for each t0 ∈ R+, there exists a function x0 ∈ S such that x0(t0) = xmin(t0) and xmin is a
continuous function on R+.

Let us see that xmin is a solution of (4.4.5), and in such a case it will be the least one
between α and β.

By the upper semicontinuity of the operator T and the condition Fix(T) = Fix(T ), the
limit in X of a sequence of elements in S must be a solution of (4.4.5). Indeed, given τ > 0
and ε > 0, if we prove that there exists v ∈ S such that

|v(t)− xmin(t)| ≤ ε for all t ∈ [0, τ ], (4.4.16)

then we obtain a sequence of elements in S which converges pointwise to xmin and by the
compactness of S, up to a subsequence, it converges in S.
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To do so, and following the proof of Theorem 4.1.10, the idea is to construct an upper
solution for problem (4.4.15) and to apply Theorem 4.4.12 in order to obtain a function v ∈ S
satisfying (4.4.16).

So, fix τ, ε > 0. By the equicontinuity of S and the continuity of xmin on [0, τ ], there
exists δ > 0 such that t, s ∈ [0, τ ] with |t− s| < δ implies

|x(t)− x(s)| < ε/2 for all x ∈ S ∪ {xmin}.

Let {t0, t1, . . . , tn} ⊂ [0, τ ] such that t0 = 0, tn = τ and ti+1−ti < δ for i = 0, 1, . . . , n− 1.
Choose a function x0 ∈ S such that x0(0) = xmin(0) and denote β0 ≡ x0.

For each i ∈ {1, 2, . . . , n− 1}, define recursively βi ≡ βi−1 if βi−1(ti) = xmin(ti) and,
otherwise, take xi ∈ S such that xi(ti) = xmin(ti), define

si = inf{t ∈ [ti−1, ti] : xi(s) < βi−1(s) for all s ∈ [t, ti]}

and the function

βi(t) =

{
βi−1(t) if t ∈ [0, si],
xi(t) if t ∈ (si,∞).

Then βn−1(0) = x0(0) and β′n−1(0) ≤ x′0(0), so from the monotonicity hypotheses about L
and the fact that x0 ∈ S, we have

L(βn−1(0), β′n−1(0)) ≥ L(x0(0), x′0(0)) = 0,

and it is immediate to check that βn−1 is an upper solution for problem (4.4.15).
From Theorem 4.4.12 it follows that there exists v ∈ S such that α(t) ≤ v(t) ≤ βn−1(t)

for t ∈ R+ and, by the construction of βn−1 and the definition of xmin, we have that v(ti) =
xmin(ti) for i = 0, 1, . . . , n−1. Hence, for each t ∈ [0, τ ] there is i ∈ {0, 1, . . . , n−1} such
that t ∈ [ti, ti+1], and so

|v(t)− xmin(t)| ≤ |v(t)− v(ti)|+ |xmin(ti)− xmin(t)| < ε.

A similar reasoning shows that problem (4.4.15) has the greatest solution between α and
β.

Remark 4.4.16. We note that the existence of extremal solutions in addition to some infor-
mation about the set of solutions for problem (4.4.15) provides a method to achieve new exis-
tence results for problems where the nonlinearity has a functional dependence, see [35, 42]
and Section 3.3.
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Chapter 5
Positive solutions for second and

higher order problems

The existence of positive solutions to integral and differential equations has been widely
studied in the literature, see for example [30, 43, 48, 53, 55, 67, 70, 86–88, 92–94, 107, 118,
120, 141, 142] and the references therein. The importance of this property is due to the fact
that in most applications differential equations model physical or biological processes where
the magnitudes cannot attain negative values. That is the case, for instance, of the number
of individuals in a population or the temperature measured in Kelvin. The Krasnosel’skiı̆’s
fixed point theorem and, more in general, the fixed point index in cones are the main tools to
study the existence of positive solutions for different boundary value problems in most of the
papers mentioned above.

A classical problem [92, 93, 141] is that of the existence of positive solutions for the
differential equation

u′′(t) + g(t)f(u(t)) = 0, (0 < t < 1), (5.0.1)

along with suitable boundary conditions. This problem arises in the study of radial solutions
in Rn, n ≥ 2, for the partial differential equation

∆v + h(‖x‖)f(v) = 0, x ∈ Rn, ‖x‖ ∈ [R1, R2] ,

with the appropriate boundary conditions, see [55, 92, 93].
Recently, in the paper [87], the authors studied the existence of non trivial radial solutions

for a system of PDEs of the previous type. The key on that work was to transform the former
problem into a system of ordinary differential equations similar to (5.0.1).

Here we will consider both scalar and systems of second order differential equations
with discontinuous nonlinearities and Sturm–Liouville BCs. Going from scalar discontinu-
ous problems to systems of discontinuous equations is not a trivial matter and two different
notions of discontinuity sets can be considered at this point: the first of them is related to
consider discontinuities in a, roughly speaking, componentwise form and the second one
considers discontinuous time–dependent curves in R2

+. For example, the first approach (see
Definition 5.2.4 and Theorem 5.2.5) is used to guarantee the existence of one positive solution
for a system like {

−x′′(t) = x2 + x2y2H(1− x)H(1− y),
−y′′(t) =

√
x+
√
y +H(1− x)H(1− y),

subject to the Sturm–Liouville BCs, meanwhile the second approach, see Theorem 5.2.11,
allows us to establish the existence of a positive solution for a system like{

−x′′(t) = (xy)1/3,
−y′′(t) =

(
1 + (xy)1/3

)
(1−H(−x2 − y2)),
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subject to the Sturm–Liouville boundary conditions. In both examples H denotes the Heavi-
side step function.

In the first two sections of this chapter we will study the existence and localization of pos-
itive solutions for second order scalar and multidimensional equations coupled with Sturm–
Liouville BCs. Our results will rely on our generalization of Krasnosel’skiı̆’s fixed point
theorem and its multidimensional version for multivalued maps, respectively. Section 5.3 is
devoted to obtain multiplicity results for a kind of three point boundary value problem via our
extension of Leggett–Williams’ fixed point theorem. Finally, in Section 5.4, we will focus
on the existence and multiplicity of positive solutions for a kind of two point fourth–order
problems.

The results of this chapter can be found in the papers [61, 66, 103, 128, 129].

5.1 Second order problems with Sturm–Liouville boundary
conditions

We consider the following generalization of equation (5.0.1) with separated BCs: u′′(t) + g(t)f(t, u(t)) = 0, t ∈ I = [0, 1],
αu(0)− βu′(0) = 0,
γu(1) + δu′(1) = 0,

(5.1.1)

where α, β, γ, δ ∈ R+ and Γ := γβ + αγ + αδ > 0.
The usual approach to this problem consists in turning it into a fixed point problem with

the integral operator

Tu(t) :=

∫ 1

0

G(t, s)g(s)f(s, u(s)) ds,

where G is the Green’s function associated to the differential problem.
Motivated by this situation, we study existence of fixed points of Hammerstein integral

operators

Tu(t) :=

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds, (5.1.2)

defined in a suitable space. Here we consider C(I), endowed with the usual supremum norm
‖u‖∞ = maxt∈I |u(t)|.

Fixed points of T will be looked for in the cone

K =

{
u ∈ C(I) : u ≥ 0, min

t∈[a,b]
u(t) ≥ c ‖u‖∞

}
,

where [a, b] ⊂ I and c ∈ (0, 1]. This cone was introduced by Guo and it was intensively
employed in recent years, see for example [86, 92, 141].

In the sequel we will assume the following hypotheses:

(H1) f : I × R+ −→ R+ is such that:

(a) Compositions f(·, u(·)) are measurable whenever u ∈ C(I); and
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5.1 Second order problems with Sturm–Liouville boundary conditions

(b) For each r > 0 there exists R > 0 such that f(t, u) ≤ R for a.a. t ∈ I and all
u ∈ [0, r].

(H2) g is measurable and g(s) ≥ 0 almost everywhere.

(H3) For every ε > 0 there exists δ > 0 such that t1, t2 ∈ I , |t1 − t2| < δ implies

|k(t1, s)− k(t2, s)| < ε for all s ∈ I.

(H4) There exists a measurable function Φ : I → R+ satisfying

Φg ∈ L1(I) and
∫ b

a

Φ(s)g(s) ds > 0,

and a constant c ∈ (0, 1] such that

k(t, s) ≤ Φ(s) for all t, s ∈ I,
cΦ(s) ≤ k(t, s) for all t ∈ [a, b], s ∈ I.

Remark 5.1.1. Conditions (H1) − (H4) are similar to those requested in [92] with the
exception that we do not require f to be continuous. In addition, our assumptions are more
general than those in [93] or [141], where the authors require g ∈ L1(I) and Φ ∈ C(I).

Lemma 5.1.2. If conditions (H1) − (H4) are satisfied, then the operator T : K → K
introduced in (5.1.2) is well–defined and maps bounded sets into relatively compact sets.

Proof. The operator T maps K into K. Indeed, we have

‖Tu‖∞ = max
t∈I

{∫ 1

0

k(t, s)g(s)f(s, u(s)) ds

}
≤
∫ 1

0

Φ(s)g(s)f(s, u(s)) ds,

and so (H4) implies

min
t∈[a,b]

{Tu(t)} ≥ c
∫ 1

0

Φ(s)g(s)f(s, u(s)) ds.

Hence, Tu ∈ K for every u ∈ K.
Now we prove that if B ⊂ K is an arbitrary nonempty bounded set, then TB is relatively

compact. By assumption (H1) (b), there exists R > 0 such that f(t, u) ≤ R for a.a. t ∈ I
and all u ∈ B. Then for u ∈ B we have∫ 1

0

k(t, s)g(s)f(s, u(s)) ds ≤ R
∫ 1

0

Φ(s)g(s) ds <∞,

so TB is uniformly bounded. To see that TB is equicontinuous, it suffices to show that for
every τ ∈ I and tn → τ , we have

lim
tn→τ

∫ 1

0

|k(tn, s)g(s)f(s, u(s))− k(τ, s)g(s)f(s, u(s))| ds = 0 uniformly in u ∈ B.

(5.1.3)
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Positive solutions for second and higher order problems

To prove it, we note that for every u ∈ B we have

|k(tn, s)g(s)f(s, u(s))− k(τ, s)g(s)f(s, u(s))| ≤ Rg(s) |k(tn, s)− k(τ, s)| , (5.1.4)

which tends to zero uniformly on s by virtue of condition (H3). Moreover,

Rg(s) |k(tn, s)− k(τ, s)| ≤ 2RΦ(s)g(s) for all n ∈ N,

and 2RΦ g ∈ L1(I), by (H4), so the dominated convergence theorem and (5.1.4) yield
(5.1.3).

In addition, assume that the discontinuities of f allow the operator T to satisfy the condi-
tion

{u} ∩ Tu ⊂ {Tu} for all u ∈ K ∩ TK, (5.1.5)

where T is the multivalued mapping associated to T defined as in (1.1.1). Examples of this
type of nonlinearities f can be seen in the previous chapters.

Lemma 5.1.3. Suppose that condition (5.1.5) holds and that

(I1
ρ) There exist ρ > 0 and ε > 0 such that fρ,ε < m, where

fρ,ε := sup
0≤t≤1, 0≤u≤ρ+ε

{
f(t, u)

ρ

}
and

1

m
:= sup

t∈[0,1]

∫ 1

0

k(t, s)g(s) ds.

Then λu 6∈ Tu for all u ∈ ∂KBρ(0) and all λ ≥ 1.

Proof. Suppose that there exist λ ≥ 1 and u ∈ ∂KBρ(0) such that λu = Tv for some
v ∈ Bε(u) ∩K, i.e.,

λu(t) =

∫ 1

0

k(t, s)g(s)f(s, v(s)) ds.

Taking the supremum for t ∈ [0, 1],

λρ ≤ sup
t∈[0,1]

∫ 1

0

k(t, s)g(s)f(s, v(s)) ds

≤ ρfρ,ε sup
t∈[0,1]

∫ 1

0

k(t, s)g(s) ds

≤ ρfρ,ε 1

m
< ρ, (5.1.6)

a contradiction.
Now, given p ∈ N, we prove similarly that λu 6=

∑p
i=1 λiTvi for any vi ∈ Bε(u) ∩K

and λi ∈ [0, 1] with
∑p
i=1 λi = 1. Hence, λu 6∈ co

(
T
(
Bε(u) ∩K

))
.

Finally, to see that λu 6∈ co
(
T
(
Bε(u) ∩K

))
we consider two cases: λ = 1 and λ > 1.

If λ = 1, we obtain by the reasonings done above that u 6= Tu and so condition {u} ∩
Tu ⊂ {Tu} implies u 6∈ Tu.

If λ > 1, by inequality (5.1.6), we obtain that λρ ≤ ρ, a contradiction.
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5.1 Second order problems with Sturm–Liouville boundary conditions

In the sequel, given ρ > 0 we will denote

Vρ =

{
u ∈ K : min

a≤t≤b
u(t) < ρ

}
.

In addition, it is trivial to see that Bρ(0) ∩ K ⊂ Vρ ⊂ Bρ/c(0) ∩ K, and Vρ is a relatively
open subset of K (since minimum function is continuous).

Lemma 5.1.4. Suppose that condition (5.1.5) holds and that

(I0
ρ) There exist ρ > 0 and ε > 0 such that fρ,ε > M(a, b), where

fρ,ε := inf
a≤t≤b, ρ−ε≤u≤ ρc+ε

{
f(t, u)

ρ

}
and

1

M(a, b)
:= inf

t∈[a,b]

∫ b

a

k(t, s)g(s) ds.

Then u 6∈ Tu+ λe for all u ∈ ∂K Vρ, all λ ≥ 0 and e(t) ≡ 1.

Proof. Suppose that there exist u ∈ ∂K Vρ and λ ≥ 0 such that u = Tv + λe for some
v ∈ Bε(u) ∩K. Then

u(t) =

∫ 1

0

k(t, s)g(s)f(s, v(s)) ds+ λ.

Notice that ‖v‖∞ ≤ ‖u‖∞ + ε ≤ ρ/c+ ε and

min
t∈[a,b]

v(t) ≥ min
t∈[a,b]

u(t)− ε = ρ− ε.

Therefore, for t ∈ [a, b]

u(t) =

∫ 1

0

k(t, s)g(s)f(s, v(s)) ds+ λ

≥
∫ b

a

k(t, s)g(s)f(s, v(s)) ds+ λ

≥ ρfρ,ε
∫ b

a

k(t, s)g(s) ds+ λ.

Taking the infimum in [a, b] we have

ρ ≥ ρfρ,ε inf
t∈[a,b]

∫ b

a

k(t, s)g(s) ds+ λ > ρ+ λ, (5.1.7)

a contradiction because λ ≥ 0.
Now, given p ∈ N, it is similar to check that u 6=

∑p
i=1 λiTvi + λe for any vi ∈ Bε(u)

and λi ∈ [0, 1] (i = 1, . . . , p) with
∑p
i=1 λi = 1. Hence,

u 6∈ co
(
T
(
Bε(u) ∩K

))
+ λe.

Finally to see that u 6∈ Tu + λe, we argue in a similar way that in the previous lemma:
if λ = 0, then the conclusion follows from condition {u} ∩ Tu ⊂ {Tu} and the fact that
Tu 6= u; if λ > 0, then we obtain from (5.1.7) that ρ ≥ ρ+ λ, a contradiction.

115



Positive solutions for second and higher order problems

Theorem 5.1.5. Under the hypotheses (H1)–(H4) and (5.1.5), the Hammerstein integral
operator (5.1.2) has at least a nonzero fixed point in K if either of the following conditions
holds:

(a) There exist ρ1, ρ2 ∈ (0,∞) with ρ1/c < ρ2 such that (I0
ρ1) and (I1

ρ2) hold.

(b) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (I1
ρ1) and (I0

ρ2) hold.

Proof. The conclusion will be a consequence of our Krasnoselskii’s–type theorem, Theorem
2.2.4. Indeed, if we take R > ρ2, then we obtain by Lemma 5.1.2 that T (KR) is relatively
compact.

Now, condition (a) implies by virtue of Theorem 2.2.1 that

iK(T, Vρ1) = 0, iK(T,Bρ2(0) ∩K) = 1,

and therefore the operator T has a fixed point in (Bρ2(0) ∩K) \ V ρ1 . On the other hand, if
condition (b) holds, then we obtain again by application of Theorem 2.2.1 that

iK(T, Vρ2) = 0, iK(T,Bρ1(0) ∩K) = 1,

which implies that iK(T, Vρ2 \ (Bρ1(0) ∩ K)) = −1 and hence T has a fixed point in
Vρ2 \ (Bρ1(0) ∩K).

Remark 5.1.6. Multiplicity results can be obtained by combining the previous conditions
(see [92]).

Now we return to the differential BVP (5.1.1). We will say that u is a solution of that
problem if u ∈W 2,1(I) and satisfies both the boundary conditions and the differential equa-
tion almost everywhere on I .

We can write the differential problem (5.1.1) in terms of the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(s, u(s)) ds =: Tu(t),

where G is the associated Green function, that in this case (see [92]) is given by

G(t, s) =
1

Γ

{
(γ + δ − γ t)(β + α s), if 0 ≤ s ≤ t ≤ 1,
(β + α t)(γ + δ − γ s), if 0 ≤ t < s ≤ 1,

(5.1.8)

and it is nonnegative.
Now we define

Φ(s) = G(s, s) =
1

Γ
(γ + δ − γ s)(β + α s),

and we choose a, b and c in the following way [92]:

(C1) a, b ∈ [0, 1] such that −β/α < a < b < 1 + δ/γ, where we consider β/α = ∞ if
α = 0 and δ/γ =∞ if γ = 0;
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5.1 Second order problems with Sturm–Liouville boundary conditions

(C2) c = min {(γ + δ − γ b)/(γ + δ), (β + αa)/(α+ β)}.

These choices guarantee that cΦ(s) ≤ G(t, s) for t ∈ [a, b] and s ∈ [0, 1].

We shall work, as done before, in the cone

K =

{
u ∈ C(I) : u ≥ 0, min

t∈[a,b]
u(t) ≥ c ‖u‖∞

}
.

As in Chapter 4, we allow f : I × R+ → R+ to have discontinuities over the graphs of
some time–dependent admissible curves.

Definition 5.1.7. We say that γ : [r, s] ⊂ I = [0, 1] → R+, γ ∈ W 2,1([r, s]), is an
admissible discontinuity curve for the differential equation u′′ = −g(t)f(t, u) if one of the
following conditions holds:

(a) γ′′(t) = −g(t)f(t, γ(t)) for a.a. t ∈ [r, s] (then we say γ is viable for the differential
equation),

(b) There exist ε > 0 and ψ ∈ L1(r, s), ψ(t) > 0 for a.a. t ∈ [r, s] such that either

γ′′(t) + ψ(t) < −g(t)f(t, y) for a.a. t ∈ [r, s] and all y ∈ [γ(t)− ε, γ(t) + ε] ,
(5.1.9)

or

γ′′(t)− ψ(t) > −g(t)f(t, y) for a.a. t ∈ [r, s] and all y ∈ [γ(t)− ε, γ(t) + ε] .
(5.1.10)

In this case we say that γ is inviable.

In the proof of our main result in this section we shall need the following technical lemma.

Lemma 5.1.8. If M ∈ L1(I), M ≥ 0 almost everywhere, then the set

Q =

{
u ∈ C1(I) : |u′(t)− u′(s)| ≤

∫ t

s

M(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
,

is closed in C(I) with the maximum norm topology.
Moreover, if un ∈ Q for all n ∈ N and un → u uniformly in I , then there exists a

subsequence {unk} which tends to u in the C1 norm.

Proof. Let {un} be a sequence of elements ofQ which converges uniformly on [0, 1] to some
function u ∈ C(I); we have to show that u ∈ Q and a subsequence {unk} tends to u in the
C1 norm.

Since each un is continuously differentiable, the Mean Value Theorem guarantees the
existence of some tn ∈ (0, 1) such that

u′n(tn) = un(1)− un(0).

This implies the existence of some K > 0 such that |u′n(tn)| ≤ K for all n ∈ N, because
{un} is uniformly bounded in [0, 1]. Hence, for every n ∈ N and every t ∈ [0, 1], we have

|u′n(t)| ≤ |u′n(t)− u′n(tn)|+ |u′n(tn)| ≤
∫ 1

0

M(s) ds+K,
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Positive solutions for second and higher order problems

so {un} is bounded in the C1 norm. Moreover, the definition of Q implies that the sequence
{u′n} is equicontinuous in [0, 1], so the Ascoli–Arzelá Theorem ensures that there exists some
subsequence of {un}, say {unk}, which converges in the C1 norm to some v ∈ C1(I). As
a result, u = v, so u is continuously differentiable in [0, 1] and {unk} tends to u in the C1

norm. In particular, {u′nk} tends to u′ uniformly in [0, 1].
Moreover, for s, t ∈ [0, 1], s ≤ t, and all k ∈ N, we have

|u′nk(t)− u′nk(s)| ≤
∫ t

s

M(r) dr,

and going to the limit as k tends to infinity we deduce that |u′(t)−u′(s)| ≤
∫ t
s
M(r) dr.

We are now ready for the proof of the main result in this section.

Theorem 5.1.9. Suppose that f and g satisfy the following hypotheses:

i. f : I × R+ −→ R+ is such that:

• Compositions f(·, u(·)) are measurable whenever u ∈ C(I); and

• For each r > 0 there exists R > 0 such that f(t, u) ≤ R for a.a. t ∈ I and all
u ∈ [0, r].

ii. There exist admissible discontinuity curves γn : In = [an, bn] → R+, n ∈ N, such
that for a.a. t ∈ I the function u 7→ f(t, u) is continuous on R+ \

⋃
{n:t∈In} {γn(t)}.

iii. g ∈ L1(I) and g(s) ≥ 0 almost everywhere with
∫ b
a
g(s) ds > 0, where a and b are

given in (C1).

Moreover, assume that one of the following two conditions hold:

(a) There exist ρ1, ρ2 ∈ (0,∞) with ρ1/c < ρ2 such that (I0
ρ1) and (I1

ρ2) hold.

(b) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (I1
ρ1) and (I0

ρ2) hold.

Then the differential problem with separated BCs (5.1.1) has at least one positive solution
u ∈W 2,1(I).

Proof. The operator T : K → K given by

Tu(t) =

∫ 1

0

G(t, s)g(s)f(s, u(s)) ds

is well–defined and maps bounded sets into relatively compact ones, as a consequence of
Lemma 5.1.2. In addition, as G is the Green’s function associated to a second–order ho-
mogeneous differential problem, Tu ∈ W 2,1(I) for all u ∈ K. On the other hand, given
u ∈ Bρ2/c(0) ∩ K = K2, conditions on f guarantee that there exists R > 0 such that
f(t, u) ≤ R for a.a. t ∈ I and all u ∈ K2. Therefore, we have t 7→ g(t)f(t, u(t)) ∈ L1(I),
and there exists M(t) ∈ L1(I) such that

h(t, u) := g(t)f(t, u) ≤M(t) for a.a. t ∈ I and all u ∈ K2. (5.1.11)
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5.1 Second order problems with Sturm–Liouville boundary conditions

We consider the set

Q =

{
u ∈ C1(I) : |u′(t)− u′(s)| ≤

∫ t

s

M(r) dr (s ≤ t)
}
, (5.1.12)

which is closed in (C(I), ‖·‖∞) by virtue of Lemma 5.1.8.
Hence, since T K2 ⊂ Q andQ is a closed and convex subset of C(I), we have TK2 ⊂ Q.
Now we will prove that

{u} ∩ Tu ⊂ {Tu} for all u ∈ K2 ∩ TK2. (5.1.13)

To do so, we fix an arbitrary function u ∈ K2 ∩Q and we consider three different cases.

Case 1: m({t ∈ In : u(t) = γn(t)}) = 0 for all n ∈ N. Let us prove that then T is
continuous at u.

The assumption implies that for a.a. t ∈ I the mapping h(t, ·) is continuous at u(t).
Hence if uk → u in K2 ∩Q then

h(t, uk(t))→ h(t, u(t)) for a.a. t ∈ I ,

which, along with (5.1.11), yield Tuk → Tu in C(I).

Case 2: m({t ∈ In : u(t) = γn(t)}) > 0 for some n ∈ N such that γn is inviable. In
this case we can prove that u 6∈ Tu.

First, we fix some notation. Let us assume that for some n ∈ N we have

m({t ∈ In : u(t) = γn(t)}) > 0

and there exist ε > 0 and ψ ∈ L1(In), ψ(t) > 0 for a.a. t ∈ In, such that (5.1.10) holds with
γ replaced by γn. (The proof is similar if we assume (5.1.9) instead of (5.1.10), so we omit
it.)

We denote J = {t ∈ In : u(t) = γn(t)}, and we deduce from Lemma 3.1.2 that there is
a measurable set J0 ⊂ J with m(J0) = m(J) > 0 such that for all τ0 ∈ J0 we have

lim
t→τ+

0

2
∫

[τ0,t]\JM(s) ds

(1/4)
∫ t
τ0
ψ(s) ds

= 0 = lim
t→τ−

0

2
∫

[t,τ0]\JM(s) ds

(1/4)
∫ τ0
t
ψ(s) ds

. (5.1.14)

By Corollary 3.1.3 there exists J1 ⊂ J0 with m(J0 \ J1) = 0 such that for all τ0 ∈ J1 we
have

lim
t→τ+

0

∫
[τ0,t]∩J0 ψ(s) ds∫ t

τ0
ψ(s) ds

= 1 = lim
t→τ−

0

∫
[t,τ0]∩J0 ψ(s) ds∫ τ0

t
ψ(s) ds

. (5.1.15)

Let us now fix a point τ0 ∈ J1. From (5.1.14) and (5.1.15) we deduce that there exist
t− < t̃− < τ0 and t+ > t̃+ > τ0, t± sufficiently close to τ0 so that the following inequalities
are satisfied for all t ∈ [t̃+, t+]:

2

∫
[τ0,t]\J

M(s) ds <
1

4

∫ t

τ0

ψ(s) ds, (5.1.16)∫
[τ0,t]∩J

ψ(s) ds ≥
∫

[τ0,t]∩J0
ψ(s) ds >

1

2

∫ t

τ0

ψ(s) ds, (5.1.17)
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and for all t ∈ [t−, t̃−]:

2

∫
[t,τ0]\J

M(s) ds <
1

4

∫ τ0

t

ψ(s) ds, (5.1.18)∫
[t,τ0]∩J

ψ(s) ds >
1

2

∫ τ0

t

ψ(s) ds. (5.1.19)

Finally, we define a positive number

ρ̃ = min

{
1

4

∫ τ0

t̃−

ψ(s) ds,
1

4

∫ t̃+

τ0

ψ(s) ds

}
, (5.1.20)

and we are now in a position to prove that u 6∈ Tu. It suffices to prove the following claim:
Claim: Let ε > 0 be given by our assumptions over γn and let

ρ =
ρ̃

2
min

{
t̃− − t−, t+ − t̃+

}
,

where ρ̃ is as in (5.1.20). For every finite family ui ∈ Bε(x) ∩ K and λi ∈ [0, 1] (i =
1, 2, . . . ,m), with

∑
λi = 1, we have ‖u−

∑
λiTui‖∞ ≥ ρ.

Let ui and λi be as in the Claim and, for simplicity, denote y =
∑
λiTui. For a.a.

t ∈ J = {t ∈ In : u(t) = γn(t)} we have

y′′(t) =
m∑
i=1

λi(Tui)
′′(t) = −

m∑
i=1

λi h(t, ui(t)). (5.1.21)

On the other hand, for every i ∈ {1, 2, . . . ,m} and every t ∈ J we have

|ui(t)− γn(t)| = |ui(t)− u(t)| < ε,

and then the assumptions on γn ensure that for a.a. t ∈ J we have

y′′(t) = −
m∑
i=1

λi h(t, ui(t)) <

m∑
i=1

λi (γ′′n(t)− ψ(t)) = u′′(t)− ψ(t). (5.1.22)

Now for t ∈ [t−, t̃−] we compute

y′(τ0)− y′(t) =

∫ τ0

t

y′′(s) ds =

∫
[t,τ0]∩J

y′′(s) ds+

∫
[t,τ0]\J

y′′(s) ds

<

∫
[t,τ0]∩J

u′′(s) ds−
∫

[t,τ0]∩J
ψ(s) ds

+

∫
[t,τ0]\J

M(s) ds (by (5.1.22), (5.1.21) and (5.1.11))

= u′(τ0)− u′(t)−
∫

[t,τ0]\J
u′′(s) ds−

∫
[t,τ0]∩J

ψ(s) ds+

∫
[t,τ0]\J

M(s) ds

≤ u′(τ0)− u′(t)−
∫

[t,τ0]∩J
ψ(s) ds+ 2

∫
[t,τ0]\J

M(s) ds

< u′(τ0)− u′(t)− 1

4

∫ τ0

t

ψ(s) ds (by (5.1.18) and (5.1.19)),
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hence y′(t)− u′(t) ≥ ρ̃ provided that y′(τ0) ≥ u′(τ0). Therefore, by integration we obtain

y(t̃−)− u(t̃−) = y(t−)− u(t−) +

∫ t̃−

t−

(y′(t)− u′(t)) dt

≥ y(t−)− u(t−) + ρ̃(t̃− − t−),

so if y(t−)−u(t−) ≤ −ρ, then ‖y − u‖∞ ≥ ρ. Otherwise, if y(t−)−u(t−) > −ρ, then we
have y(t̃−)− u(t̃−) > ρ and thus ‖y − u‖∞ ≥ ρ too.

Similar computations in the interval [t̃+, t+] show that if y′(τ0) ≤ u′(τ0), then we have
u′(t) − y′(t) ≥ ρ̃ for all t ∈ [t̃+, t+] and this also implies ‖y − u‖∞ ≥ ρ. The claim is
proven.

Case 3: m({t ∈ In : u(t) = γn(t)}) > 0 only for some of those n ∈ N such that γn is
viable. Let us prove that in this case the relation u ∈ Tu implies u = Tu.

Let us consider the subsequence of all viable admissible discontinuity curves in the con-
ditions of Case 3, which we denote again by {γn}n∈N to avoid overloading notation. We
have m(Jn) > 0 for all n ∈ N, where

Jn = {t ∈ In : u(t) = γn(t)}.

For each n ∈ N and for a.a. t ∈ Jn we have

u′′(t) = γ′′n(t) = −h(t, γn(t)) = −h(t, u(t)),

and therefore u′′(t) = −h(t, u(t)) a.e. in J = ∪n∈NJn.
Now we assume that u ∈ Tu and we prove that it implies that u′′(t) = −h(t, u(t)) a.e.

in I \ J , thus showing that u = Tu.
Since u ∈ Tu, then for each k ∈ N we can find functions uk,i ∈ B1/k(u) ∩ K2 and

coefficients λk,i ∈ [0, 1] (i = 1, 2, . . . ,m(k)) such that
∑
λk,i = 1 and∥∥∥∥∥∥u−

m(k)∑
i=1

λk,iTuk,i

∥∥∥∥∥∥
∞

<
1

k
.

Let us denote yk =
∑m(k)
i=1 λk,iTuk,i, and notice that yk → u uniformly in I and that

‖uk,i − u‖ ≤ 1/k for all k ∈ N and all i ∈ {1, 2, . . . ,m(k)}.
For every k ∈ N we have yk ∈ Q as defined in (5.1.12), and therefore Lemma 5.1.8

guarantees that u ∈ Q and, up to a subsequence, yk → u in the C1 – topology.
For a.a. t ∈ I \J we have that h(t, ·) is continuous at u(t), so for any ε > 0 there is some

k0 = k0(t) ∈ N such that for all k ∈ N, k ≥ k0, we have

|h(t, uk,i(t))− h(t, u(t))| < ε for all i ∈ {1, 2, . . . ,m(k)},

and therefore

|y′′k (t) + h(t, u(t))| ≤
m(k)∑
i=1

λk,i|h(t, uk,i(t))− h(t, u(t))| < ε.
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Hence y′′k (t) → −h(t, u(t)) for a.a. t ∈ I \ J , and then Corollary 3.1.4 guarantees that
u′′(t) = −h(t, u(t)) for a.a. t ∈ I \ J .

Therefore the proof of condition (5.1.13) is over and the conclusion is obtained by means
of Theorem 5.1.5.

Remark 5.1.10. The differential problem (5.1.1) contains Dirichlet and Robin problems as
particular cases, so the previous result generalizes the existence results given in [93].

Finally, we illustrate the applicability of our result with a discontinuous modification of
an example due to Infante [86].

Example 5.1.11. Let λ > 0 and consider the following second–order Dirichlet problem{
u′′(t) + g(t)f(t, u(t)) = 0 (0 < t < 1),
u(0) = u(1) = 0,

(5.1.23)

where g(t) = t−α with α ∈ (0, 1) and f is given by

f(t, u) = λu2
(
cos2

(
b1/(t2 − u)c

)
+ 1
)

if u 6= t2, f(t, t2) = 2λt4.

First, standard arguments show that f satisfies condition i. in Theorem 5.1.9.
On the other hand, for a.a. t ∈ I , the function u 7→ f(t, u) is continuous on

R+ \
⋃

{n:t∈In}

{γn(t)} ,

where for each n ∈ Z \ {0} the curves

γn(t) = t2 − n−1 and γ0(t) = t2,

are admissible discontinuity curves as far as

2 > γ′′n(t)− 1 > 0 ≥ −g(t)f(t, u(t)) for a.a. t ∈ I and all u ∈ R+,

which shows that condition (5.1.10) holds with ψ ≡ 1.
Finally, we can take a = 1/4 and b = 3/4 in (C1), so c = 1/4. In addition it is easy to

check that

m = (2− α)
3−2α
1−α and M(1/4, 3/4) =

43−α(2− α)

32−α − 1
,

as defined in Lemma 5.1.3 and Lemma 5.1.4, respectively. Moreover, we have the following
bounds for f

λu2 ≤ f(t, u) ≤ 2λu2 for a.a. t ∈ I and all u ∈ R+.

Since

fρ1,ε := sup
0≤t≤1, 0≤u≤ρ1+ε

{
f(t, u)

ρ1

}
≤ 2λ(ρ1 + ε)2

ρ1
,
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5.2 Second order systems

it is sufficient to choose

ρ1 <
(2− α)

3−2α
1−α

2λ

for ensuring that fρ1,ε < m and so (I1
ρ1) is satisfied. Now if we take ρ0 = 1, then

fρ0,ε := inf
1/4≤t≤3/4, 1−ε≤u≤4+ε

{f(t, u)} ≥ λ (1− ε)2
> λ/2

if ε is small enough and so fρ0,ε > M(1/4, 3/4) provided that

λ >
43−α(4− 2α)

32−α − 1
.

Hence Theorem 5.1.9 guarantees that the differential problem (5.1.23) has at least a po-
sitive solution for every λ > 43−α(4− 2α)/(32−α − 1).

5.2 Second order systems
In this section we will extend the previous results concerning positive solutions to the follo-
wing two–dimensional Sturm–Liouville problem{

u′′1(t) + g1(t)f1(t, u1(t), u2(t)) = 0,
u′′2(t) + g2(t)f2(t, u1(t), u2(t)) = 0,

(5.2.1)

for t ∈ I = [0, 1], coupled with the following boundary conditions

αiui(0)− βiu′i(0) = 0, γiui(1) + δiu
′
i(1) = 0, (5.2.2)

for i = 1, 2, where αi, βi, γi, δi ∈ R+ and Γi := βiγi + αiγi + αiδi > 0 for i = 1, 2.
Assume that, for i = 1, 2,

(H1) gi ∈ L1(I), gi(t) ≥ 0 for a.a. t ∈ I and
∫ bi
ai
gi(s) ds > 0;

(H2) fi : I × R2
+ → R+ satisfies that

(i) fi(·, u1(·), u2(·)) are measurable whenever (u1, u2) ∈ C(I)2;

(ii) for each r > 0 there exists Ri,r > 0 such that

fi(t, u1, u2) ≤ Ri,r for u1, u2 ∈ [0, r] and a.a. t ∈ I.

Let X = C(I) be endowed with the usual norm ‖v‖∞ = maxt∈I |v(t)| and let P be the
cone of all nonnegative functions ofX . The existence of positive solutions to problem (5.2.1)-
(5.2.2) is equivalent to the existence of fixed points of the integral operator T : P 2 → P 2,
T = (T1, T2), given by

(Tiu)(t) =

∫ 1

0

Gi(t, s)gi(s)fi(s, u1(s), u2(s)) ds, i = 1, 2, (5.2.3)
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where Gi(t, s) are the corresponding Green’s functions which are explicitly given by

Gi(t, s) =
1

Γi

{
(γi + δi − γit)(βi + αis), if 0 ≤ s ≤ t ≤ 1,
(βi + αit)(γi + δi − γis), if 0 ≤ t ≤ s ≤ 1.

Now we can choose the constants ai, bi and ci in the following way:

(C1) ai, bi ∈ [0, 1] such that−βi/αi < ai < bi < 1+δi/γi, where we consider βi/αi =∞
if αi = 0 and δi/γi =∞ if γi = 0;

(C2) ci = min {(γi + δi − γi bi)/(γi + δi), (βi + αi ai)/(αi + βi)}.

Then it is possible to check the following inequalities:

Gi(t, s) ≤ Gi(s, s) for t, s ∈ I,
ciGi(s, s) ≤ Gi(t, s) for t ∈ [ai, bi], s ∈ I.

Consider in X the cones K1 and K2 defined as

Ki = {v ∈ P : v(t) ≥ ci ‖v‖∞ for all t ∈ [ai, bi]} ,

and the corresponding cone K := K1 ×K2 in X2. Then, TK ⊂ K. Indeed, for u ∈ K and
i = 1, 2,

ci ‖Tiu‖∞ = ci max
t∈[0,1]

∫ 1

0

Gi(t, s)gi(s)fi(s, u1(s), u2(s)) ds

≤ ci
∫ 1

0

Gi(s, s)gi(s)fi(s, u1(s), u2(s)) ds ≤ min
t∈[ai,bi]

Tiu(t).

Hence, Tiu ∈ Ki for every u ∈ K and i = 1, 2.
Our purpose is to apply the vectorial version of Krasnosel’skiı̆’s fixed point theorem to a

multivalued regularization of the discontinuous system of single-valued operators Ti. To do
so, we will consider the closed–convex envelope of T componentwise, in the following way:

Tiu =
⋂
ε>0

coTi
(
Bε(u) ∩Ki

)
for every u ∈ Ki (i = 1, 2). (5.2.4)

Therefore, we proceed in the following way: first, we intend to apply Theorem 2.5.3
to the multivalued operator T = (T1,T2) associated to the discontinuous operator T =
(T1, T2). Later, we shall provide conditions on the nonlinearities fi (i = 1, 2) to guarantee
that Fix(T) ⊂ Fix(T ) and, as a consequence, we will obtain some results concerning the
existence of positive solutions for system (5.2.1)-(5.2.2).

Let us introduce some notations. For ρ0
i , ρ

1
i > 0 with ρ0

i 6= ρ1
i and ε > 0, we denote

ri = min{ρ0
i , ρ

1
i }, Ri = max{ρ0

i , ρ
1
i } and we consider the following subset of K:

Kr,R = {u = (u1, u2) ∈ K : ri ≤ ‖ui‖∞ ≤ Ri, i = 1, 2}.
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Moreover, we denote

f0,ε
1 := inf{f1(t, u1, u2) : t ∈ [a1, b1], c1(ρ0

1 − ε) ≤ u1 ≤ ρ0
1 + ε, c2r2 ≤ u2 ≤ R2},

f0,ε
2 := inf{f2(t, u1, u2) : t ∈ [a2, b2], c1r1 ≤ u1 ≤ R1, c2(ρ0

2 − ε) ≤ u2 ≤ ρ0
2 + ε},

f1,ε
1 := sup{f1(t, u1, u2) : t ∈ [0, 1], 0 ≤ u1 ≤ ρ1

1 + ε, 0 ≤ u2 ≤ R2},
f1,ε

2 := sup{f2(t, u1, u2) : t ∈ [0, 1], 0 ≤ u1 ≤ R1, 0 ≤ u2 ≤ ρ1
2 + ε}.

and

1

Mi(ai, bi)
:= inf

t∈[ai,bi]

∫ bi

ai

Gi(t, s)gi(s) ds,
1

mi
:= sup

t∈[0,1]

∫ 1

0

Gi(t, s)gi(s) ds

for i = 1, 2.

Lemma 5.2.1. Assume that there exist ρ0
i , ρ

1
i > 0 with ρ0

i 6= ρ1
i , i = 1, 2, and ε > 0 such

that

f1,ε
i < miρ

1
i , f0,ε

i > Mi(ai, bi)ρ
0
i for i = 1, 2. (5.2.5)

Then, for each i ∈ {1, 2}, the following conditions are satisfied in Kr,R:

λui 6∈ Tiu for ‖ui‖∞ = ρ1
i and λ > 1, (5.2.6)

ui 6∈ Tiu+ µhi for ‖ui‖∞ = ρ0
i and µ > 0, (5.2.7)

where h1 = h2 ≡ 1.
Moreover, the map T defined as in (5.2.4) has at least one fixed point in Kr,R.

Proof. First, observe that if v ∈ Kr,R, then

ciri ≤ vi(t) ≤ Ri for all t ∈ [ai, bi] (i = 1, 2),

and if v ∈ Bε(u) ∩Kr,R for some u ∈ Kr,R, and ‖u1‖∞ = ρ1
1, then v1(t) ≤ ρ1

1 + ε for all
t ∈ [0, 1] and

c1(ρ1
1 − ε) ≤ v1(t) ≤ ρ1

1 + ε for all t ∈ [a1, b1] .

Now we prove (5.2.6) for i = 1. Assume that ‖u1‖∞ = ρ1
1 and let us see that λu1 6∈ T1u

for λ > 1. First, we shall show that given a family of vectors vk ∈ Bε(u) ∩ Kr,R and
numbers λk ∈ [0, 1] such that

∑
λk = 1 (k = 1, . . . ,m), then

λu1 6=
m∑
k=1

λk T1vk,

what implies that λu1 6∈ co
(
T1

(
Bε(u) ∩Kr,R

))
. Indeed, assume on the contrary that the
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previous equation holds, then taking the supremum for t ∈ [0, 1],

λρ1
1 = sup

t∈[0,1]

m∑
k=1

λk

∫ 1

0

G1(t, s)g1(s)f1(s, vk,1(s), vk,2(s)) ds

≤
m∑
k=1

λk sup
t∈[0,1]

∫ 1

0

G1(t, s)g1(s)f1(s, vk,1(s), vk,2(s)) ds

≤
m∑
k=1

λkf
1,ε
1 /m1 = f1,ε

1 /m1 < ρ1
1,

a contradiction. Notice that if λu1 ∈ co
(
T1

(
Bε(u) ∩Kr,R

))
, then λu1 is the limit of a

sequence of functions satisfying the previous inequality and thus it satisfies λ ρ1
1 ≤ ρ1

1, which
is also a contradiction since λ > 1. Therefore, λu1 6∈ T1u for λ > 1.

In order to prove (5.2.7), assume that ‖u1‖∞ = ρ0
1 where u1 =

∑m
k=1 λk T1vk + µ for

some family of vectors vk ∈ Bε(u) ∩ Kr,R and numbers λk ∈ [0, 1] such that
∑
λk = 1

(k = 1, . . . ,m) and some µ > 0. Then for t ∈ [a1, b1],

u1(t) =
m∑
k=1

λk

∫ 1

0

G1(t, s)g1(s)f1(s, vk,1(s), vk,2(s)) ds+ µ

≥
m∑
k=1

λk

∫ b1

a1

G1(t, s)g1(s)f1(s, vk,1(s), vk,2(s)) ds+ µ

≥
m∑
k=1

λk f
0,ε
1

∫ b1

a1

G1(t, s)g1(s) ds+ µ

≥ f0,ε
1 /M1(a1, b1) + µ > ρ0

1 + µ,

so ρ0
1 > ρ0

1 + µ, a contradiction. Hence, u1 6∈ co
(
T1

(
Bε(u) ∩Kr,R

))
+ µh1. As before,

u1 6∈ co
(
T1

(
Bε(u) ∩Kr,R

))
+ µh1

because in that case we arrive to the inequality ρ0
1 ≥ ρ0

1 + µ for µ > 0. Therefore, we obtain
u1 6∈ T1(u) + µh1.

In a similar way we show that conditions (5.2.6) and (5.2.7) hold for i = 2.
Then we obtain by application of Theorem 2.5.3 that operator T has at least one fixed

point in Kr,R.

Remark 5.2.2 (Asymptotic conditions). The existence of ρ0
i , ρ

1
i > 0 with ρ0

i 6= ρ1
i , i = 1, 2,

and ε > 0 satisfying (5.2.5) is guaranteed, in the autonomous case, by any of the following
sufficient conditions:

(a) f1(·, y) has a superlinear behavior and f2(x, ·), a sublinear one, that is,

lim
x→∞

f1(x, y)

x
= +∞ for all y > 0, lim

x→0

f1(x, y)

x
= 0 for all y ≥ 0;

lim
y→∞

f2(x, y)

y
= 0 for all x ≥ 0, lim

y→0

f2(x, y)

y
= +∞ for all x > 0.
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(b) Both f1(·, y) and f2(x, ·) have a superlinear behavior, that is,

lim
x→∞

f1(x, y)

x
= +∞ for all y > 0, lim

x→0

f1(x, y)

x
= 0 for all y ≥ 0;

lim
y→∞

f2(x, y)

y
= +∞ for all x > 0, lim

y→0

f2(x, y)

y
= 0 for all x ≥ 0.

(c) Both f1(·, y) and f2(x, ·) have a sublinear behavior, that is,

lim
x→∞

f1(x, y)

x
= 0 for all y ≥ 0, lim

x→0

f1(x, y)

x
= +∞ for all y > 0;

lim
y→∞

f2(x, y)

y
= 0 for all x ≥ 0, lim

y→0

f2(x, y)

y
= +∞ for all x > 0.

Remark 5.2.3. If f1 and f2 are monotone in both variables, then it is possible to compute
the numbers f0,ε

i and f1,ε
i (i = 1, 2), so in this case, conditions (5.2.5) only depend on the

behavior of the functions at four points in R2
+, see [118, 119].

Note that Lemma 5.2.1 gives us sufficient conditions for the existence of a fixed point in
Kr,R of the multivalued operator T. Hence, it remains to provide some hypotheses on the
functions fi (i = 1, 2) which imply Fix(T) ⊂ Fix(T ) in order to obtain a solution for the
system (5.2.1)–(5.2.2). Observe moreover that no continuity hypotheses were required to the
functions fi until now. Related to this, we introduce now a definition which extends to the
present problem the notion of inviable discontinuity time–dependent curves that we are using
throughout this work.

Definition 5.2.4. We say that Γ1 : [a, b] ⊂ I = [0, 1] → R+, Γ1 ∈ W 2,1(a, b), is an
inviable discontinuity curve with respect to the first variable u1 if there exist ε > 0 and
ψ1 ∈ L1(a, b), ψ1(t) > 0 for a.a. t ∈ [a, b] such that either

Γ′′1(t) + ψ1(t) < −g1(t)f1(t, y, z) for a.a. t ∈ [a, b], all y ∈ [Γ1(t)− ε,Γ1(t) + ε]

and all z ∈ R+, (5.2.8)

or

Γ′′1(t)− ψ1(t) > −g1(t)f1(t, y, z) for a.a. t ∈ [a, b], all y ∈ [Γ1(t)− ε,Γ1(t) + ε]

and all z ∈ R+. (5.2.9)

Similarly, we say that Γ2 : [a, b] ⊂ I = [0, 1] → R+, Γ2 ∈ W 2,1(a, b), is an inviable
discontinuity curve with respect to the second variable u2 if there exist ε > 0 and ψ2 ∈
L1(a, b), ψ2(t) > 0 for a.a. t ∈ [a, b] such that either

Γ′′2(t) + ψ2(t) < −g2(t)f2(t, y, z) for a.a. t ∈ [a, b], all y ∈ R+

and all z ∈ [Γ2(t)− ε,Γ2(t) + ε] ,

or

Γ′′2(t)− ψ2(t) > −g2(t)f2(t, y, z) for a.a. t ∈ [a, b], all y ∈ R+

and all z ∈ [Γ2(t)− ε,Γ2(t) + ε] .
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Now we are ready to present the following existence and localization result for the differ-
ential system (5.2.1)–(5.2.2).

Theorem 5.2.5. Suppose that the functions fi and gi (i = 1, 2) satisfy conditions (H1), (H2)
and

(H3) There exist inviable discontinuity curves Γ1,n : I1,n := [a1,n, b1,n] ⊂ I → R+ with
respect to the first variable, n ∈ N, and inviable discontinuity curves Γ2,n : I2,n :=
[a2,n, b2,n] ⊂ I → R+ with respect to the second variable, n ∈ N, such that for each
i ∈ {1, 2} and for a.a. t ∈ I the function (u1, u2) 7→ fi(t, u1, u2) is continuous onR+ \

⋃
{n:t∈I1,n}

{Γ1,n(t)}

×
R+ \

⋃
{n:t∈I2,n}

{Γ2,n(t)}

 .

Moreover, assume that there exist ρ0
i , ρ

1
i > 0 with ρ0

i 6= ρ1
i , i = 1, 2, and ε > 0 such that

f1,ε
i < miρ

1
i , f0,ε

i > Mi(ai, bi)ρ
0
i for i = 1, 2.

Then system (5.2.1)–(5.2.2) has at least one solution in Kr,R.

Proof. The operator T : Kr,R → K, T = (T1, T2), given by (5.2.3), is well–defined and
the hypotheses (H1) and (H2) imply that TKr,R is relatively compact as an immediate con-
sequence of the Ascoli–Arzelá theorem. Moreover, by (H1) and (H2), there exist functions
Mi ∈ L1(I) (i = 1, 2) such that

gi(t)fi(t, u1, u2) ≤Mi(t) for a.a. t ∈ I and all u1 ∈ [0, R1], u2 ∈ [0, R2]. (5.2.10)

Therefore, TKr,R ⊂ Q1 ×Q2, where

Qi =

{
u ∈ C1([0, 1]) : |u′(t)− u′(s)| ≤

∫ t

s

Mi(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
,

for i = 1, 2, which by virtue of Lemma 5.1.8 is a closed and convex subset of X = C(I).
Then, by ‘convexification’, TKr,R ⊂ Q1 × Q2, where T is the multivalued map associated
to T defined as in (5.2.4).

By Lemma 5.2.1, the multivalued map T has a fixed point in Kr,R. Hence, if we show
that all the fixed points of the operator T are fixed points of T , the conclusion is obtained. To
do so, we fix an arbitrary function u ∈ Kr,R ∩ (Q1 × Q2) and we consider three different
cases.

Case 1: m({t ∈ I1,n : u1(t) = Γ1,n(t)} ∪ {t ∈ I2,n : u2(t) = Γ2,n(t)}) = 0 for all
n ∈ N. Let us prove that T is continuous at u, which implies that Tu = {Tu}, and therefore
the relation u ∈ Tu gives that u = Tu.

The assumption implies that for a.a. t ∈ I the mappings f1(t, ·) and f2(t, ·) are continu-
ous at u(t) = (u1(t), u2(t)). Hence if uk → u in Kr,R then

fi(t, uk(t))→ fi(t, u(t)) for a.a. t ∈ I and for i = 1, 2,
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which, along with (5.2.10), yield Tuk → Tu in C(I)2, so T is continuous at u.
Case 2: m({t ∈ I1,n : u1(t) = Γ1,n(t)}) > 0 for some n ∈ N. In this case we can prove

that u1 6∈ T1u, and thus u 6∈ Tu. The details are similar to those in Case 2 from Theorem
5.1.9, with obvious changes, so we omit them.

Case 3: m({t ∈ I2,n : u2(t) = Γ2,n(t)}) > 0 for some n ∈ N. This case is analogous
to the previous one, and then we can show that u2 6∈ T2u.

Remark 5.2.6. Observe that Definition 5.2.4 allows us to study the discontinuities of the
functions fi componentwise, as shown in condition (H3).

In addition, a continuum set of discontinuity points is possible: for instance, the function
f1 may be discontinuous at the point x = 1 for all y ∈ R+ provided that the constant function
Γ1 ≡ 1 is an inviable discontinuity curve with respect to the first variable. This fact improves
the ideas given in [84] for first–order autonomous systems where “only” a countable set of
discontinuity points are allowed.

Remark 5.2.7. Notice that conditions (5.2.8) and (5.2.9) are not local in the last variable.
However, the condition

inf
t∈I,x,y∈R+

f1(t, x, y) > 0

implies that any constant function stands for an inviable discontinuity curve with respect to
the first variable (since condition (5.2.9) holds). Moreover, any function with strictly positive
second derivative is always an inviable discontinuity curve with respect to the first variable
without any additional condition on f1.

Now we illustrate our existence result with some examples.

Example 5.2.8. Consider the coupled autonomous system{
−x′′(t) = x2 + x2y2H(a− x)H(b− y),
−y′′(t) =

√
x+
√
y +H(c− x)H(d− y),

(5.2.11)

subject to the BCs (5.2.2), where a, b, c, d > 0 and H denotes the Heaviside function.
First it is clear that conditions (H1) and (H2) hold with g1 = g2 ≡ 1, f1(x, y) =

x2 + x2y2H(a − x)H(b − y) and f2(x, y) =
√
x +
√
y + H(c − x)H(d − y). On the

other hand, the existence of numbers ρ0
i and ρ1

i in the conditions of (5.2.5) is guaranteed by
Remark 5.2.2 (a) since f1(·, y) is a superlinear function and f2(x, ·) is a sublinear one.

Finally, the function (x, y) 7→ f1(x, y) is continuous on (R+ \ {a}) × (R+ \ {b}) and
the constant function Γ1 ≡ a stands for an inviable curve with respect to the first variable.
Indeed,

−Γ′′1(t) +
a2

8
=
a2

8
< f1(y, z) for a.a. t ∈ [0, 1] and for all y ∈

[
a

2
,

3a

2

]
and z ∈ R+,

hence (5.2.9) holds with ψ1 ≡ a2/8.
Moreover, the constant function Γ2 ≡ b is an inviable curve with respect to the second

variable, according to Remark 5.2.7 since

inf
x,y∈R+

f2(x, y) > 0.
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Similarly, the function f2(x, y) =
√
x+
√
y+H(c−x)H(d− y) satisfies the hypothesis

(H3) too.
Then we conclude by application of Theorem 5.2.5 that the system (5.2.11)–(5.2.2) has at

least one positive solution.

Example 5.2.9. Consider now the nonautonomous system{
−x′′(t) = x2 + x2y2H(a+ t2 − x)H(b+ pt− y),
−y′′(t) =

√
x+
√
y +H(c− x)H(d− y),

(5.2.12)

subject to the BCs (5.2.2), where a, b, c, d > 0 and p ∈ R.
Now, for a.a. t ∈ I , the function (x, y) 7→ f1(t, x, y), where

f1(t, x, y) = x2 + x2y2H(a+ t2 − x)H(b+ pt− y),

is continuous on
(
R+ \ {a+ t2}

)
×(R+ \ {b+ pt}) and the curve Γ1(t) = a+t2 is inviable

with respect to the first variable. Indeed, (5.2.9) is satisfied with ψ1 ≡ 1 since

−Γ′′1(t) + 1 = −1 < f1(t, y, z) for a.a. t ∈ [0, 1] and for all y, z ∈ R+.

On the other hand, the curve Γ2(t) = b + pt is inviable with respect to the variable y,
according to Remark 5.2.7, since Γ′′2(t) ≡ 0 and infx,y∈R+

f2(x, y) > 0.
As conditions (H1) and (H2) in Theorem 5.2.5 also hold by virtue of standard arguments,

we can conclude the existence of one positive solution for problem (5.2.12)–(5.2.2).

In some applications conditions of Definition 5.2.4 are too strong, even for functions
which have discontinuities only at single isolated points. This is the motivation of introduc-
ing another definition of the notion of discontinuity curves, which is a generalization of the
admissible curves presented in Section 5.1.

Definition 5.2.10. We say that γ = (γ1, γ2) : [a, b] ⊂ I = [0, 1]→ R2
+, γi ∈W 2,1(a, b) (i =

1, 2), is an admissible discontinuity curve for the equation u′′1 = −g1(t)f1(t, u1(t), u2(t)) if
one of the following conditions holds:

(a) γ′′1 (t) = −g1(t)f1(t, γ1(t), γ2(t)) for a.a. t ∈ [a, b] (then we say γ is viable for the
differential equation),

(b) There exist ε > 0 and ψ ∈ L1(a, b), ψ(t) > 0 for a.a. t ∈ [a, b] such that either

γ′′1 (t) + ψ(t) < −g1(t)f1(t, y, z) for a.a. t ∈ [a, b], all y ∈ [γ1(t)− ε, γ1(t) + ε]

and all z ∈ [γ2(t)− ε, γ2(t) + ε] ,

or

γ′′1 (t)− ψ(t) > −g1(t)f1(t, y, z) for a.a. t ∈ [a, b], all y ∈ [γ1(t)− ε, γ1(t) + ε]

and all z ∈ [γ2(t)− ε, γ2(t) + ε] .

In this case we say that γ is inviable.
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We define admissible discontinuity curves for u′′2 = −g2(t)f2(t, u1(t), u2(t)) in a similar
way.

Theorem 5.2.11. Suppose that the functions fi and gi (i = 1, 2) satisfy conditions (H1),
(H2) and

(H∗3 ) There exist admissible discontinuity curves for the first differential equation γn : In :=
[an, bn] → R2

+, n ∈ N, such that for a.a. t ∈ I the function (u1, u2) 7→ f1(t, u1, u2)
is continuous on R2

+ \
⋃
{n:t∈In} {(γn,1(t), γn,2(t))};

(H∗4 ) There exist admissible discontinuity curves for the second differential equation γ̃n :
Ĩn → R2

+, n ∈ N, such that for a.a. t ∈ I the function (u1, u2) 7→ f2(t, u1, u2) is
continuous on R2

+ \
⋃
{n:t∈Ĩn} {(γ̃n,1(t), γ̃n,2(t))}.

Moreover, assume that there exist ρ0
i , ρ

1
i > 0 with ρ0

i 6= ρ1
i , i = 1, 2, and ε > 0 such that

f1,ε
i < miρ

1
i , f0,ε

i > Mi(ai, bi)ρ
0
i for i = 1, 2.

Then the differential system (5.2.1)-(5.2.2) has at least one solution in Kr,R.

Proof. Notice that by virtue of Lemma 5.2.1 it is sufficient to show Fix(T) ⊂ Fix(T ).
Reasoning as in the proof of Theorem 5.2.5, if we fix a function u ∈ Kr,R ∩ (Q1 ×Q2), we
have to consider three different cases.

Case 1: m({t ∈ In : u(t) = γn(t)} ∪ {t ∈ Ĩn : u(t) = γ̃n(t)}) = 0 for all n ∈ N.
Then T is continuous at u.

Case 2: m({t ∈ In : u(t) = γn(t)}) > 0 or m({t ∈ Ĩn : u(t) = γ̃n(t)}) > 0 for some
γn or γ̃n inviable. Then u 6∈ Tu. The proof follows the reasonings from Case 2 in Theorem
5.1.9.

Case 3: m({t ∈ In : u(t) = γn(t)}) > 0 or m({t ∈ Ĩn : u(t) = γ̃n(t)}) > 0 only
for viable curves. Then the relation u ∈ Tu implies u = Tu. In this case the idea is to show
that u is a solution of the differential system. The proof is analogous to that of the Case 3 in
Theorem 5.1.9, so we omit it here.

Remark 5.2.12. Notice that, in the case of a function (u1, u2) 7→ f1(t, u1, u2) which is
discontinuous at a single point (x0, y0), Definition 5.2.10 requires that one of the following
two conditions holds:

(i) f1(t, x0, y0) = 0 for a.a. t ∈ [0, 1];

(ii) there exist ε > 0 and ψ ∈ L1(0, 1), ψ(t) > 0 for a.a. t ∈ I such that

0 < ψ(t) < g1(t)f1(t, x, y) for a.a. t ∈ I, all x ∈ [x0 − ε, x0 + ε]

and all y ∈ [y0 − ε, y0 + ε].

In particular, condition (ii) hold if there exist ε, δ > 0 such that

0 < δ < f1(t, x, y) for a.a. t ∈ I, all x ∈ [x0 − ε, x0 + ε] and all y ∈ [y0 − ε, y0 + ε].
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Remark 5.2.13. It could be interesting to give an unified notion of the inviable curves from
Definitions 5.2.4 and 5.2.10. An analogous approach to that in Section 3.2 in the case of first
order systems may be helpful, but that research exceeds the aims of the present chapter.

To finish, we present two simple examples which fall outside of the applicability of The-
orem 5.2.5, but which can be studied by means of Theorem 5.2.11.

Example 5.2.14. Consider the problem{
−x′′(t) = f1(x, y),
−y′′(t) = f2(x, y),

(5.2.13)

subject to the boundary conditions (5.2.2), where

f1(x, y) = (xy)1/3
[
2− cos

(
1/((x− 1)2 + (y − 1)2)

)
(1−H

(
−(x− 1)2 − (y − 1)2

)
)
]
,

f2(x, y) = (xy)1/3.

It is clear that f1 and f2 satisfy conditions (H1) and (H2). Moreover, they have a
sublinear behavior, see Remark 5.2.2.

On the other hand, the function (x, y) 7→ f1(x, y) is continuous on R2
+ \ {(1, 1)} and

the constant function γ(t) = (γ1(t), γ2(t)) ≡ (1, 1) is an inviable admissible discontinuity
curve for the differential equation −x′′(t) = f1(x, y) since 0 < 1/ 3

√
4 ≤ f1(x, y) for all

x ∈ [1/2, 3/2] and all y ∈ [1/2, 3/2]; and γ′′1 (t) = 0.
Therefore, Theorem 5.2.11 guarantees the existence of a positive solution for problem

(5.2.13)–(5.2.2).

Example 5.2.15. Consider the following system{
−x′′(t) = f1(x, y) = (xy)1/3,
−y′′(t) = f2(x, y) =

(
1 + (xy)1/3

)
(1−H(−x2 − y2)),

(5.2.14)

subject to the boundary conditions (5.2.2).
The nonlinearities in this system satisfy (H1) and (H2) and have a sublinear behavior.

Now, the function (x, y) 7→ f2(x, y) is continuous on R2
+ \{(0, 0)} and the constant function

γ(t) = (γ1(t), γ2(t)) ≡ (0, 0)

is a viable admissible discontinuity curve for the differential equation.
Hence, the system (5.2.14)–(5.2.2) has at least one positive solution as a consequence of

Theorem 5.2.11.

5.3 Multiplicity result to a three–point problem
Now we consider the following second order three–point boundary value problem:{

u′′(t) + f(t, u(t)) = 0, t ∈ I = [0, 1],
u(0) = 0, α u(η) = u(1),

(5.3.1)
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where 0 < η < 1, 0 < αη < 1.
The existence of solutions for problem (5.3.1) for continuous or Carathéodory nonlinea-

rities was intensively studied in the literature (see [77, 107, 141] and references therein) by
using fixed point techniques. For instance, Krasnoselskii’s fixed point theorem was applied
in [107, 141] to obtain the existence of positive solutions and Leggett–Williams’ fixed point
theorem was used in [77, 89] for multiplicity results. Moreover, Leggett–Williams’ theorem
and its generalizations are useful in order to establish existence and multiplicity results for a
wide assortment of BVPs, as we can see for example in the recent paper [37].

Our previous generalizations of some well–known fixed point theorems, in particular that
of Leggett–Williams’ fixed point theorem (see Section 2.4), now allow us to obtain new
results for this problem in the case that f has some discontinuities in both arguments. Indeed,
f : I × R+ −→ R+ may be discontinuous over the graphs of countable many functions in
the conditions of the following definition, which is analogous to Definition 5.1.7.

Definition 5.3.1. An admissible discontinuity curve for the equation −u′′ = f(t, u) is a
W 2,1– function γ : [a, b] ⊂ I −→ R+ satisfying one of the following conditions:

either −γ′′(t) = f(t, γ(t)) for a.a. t ∈ [a, b] (and we say that γ is viable for the differen-
tial equation),
or there exists ε > 0 and ψ ∈ L1(a, b), ψ(t) > 0 for a.a. t ∈ [a, b], such that

either

− γ′′(t) + ψ(t) < f(t, y) for a.a. t ∈ [a, b] and all y ∈ [γ(t)− ε, γ(t) + ε] , (5.3.2)

or

− γ′′(t)− ψ(t) > f(t, y) for a.a. t ∈ [a, b] and all y ∈ [γ(t)− ε, γ(t) + ε] . (5.3.3)

We say that γ is inviable for the differential equation if it satisfies (5.3.2) or (5.3.3).

In this section we will work in the coneK = {u ∈ C(I) : u ≥ 0} contained in the Banach
space C(I) with the maximum norm ‖·‖∞. It is easy to check, by routine integration, that the
Green’s function related to the boundary value problem (5.3.1) is given by

G(t, s) =
1

1− αη
t(1− s)−


α

1− αη
t(η − s), s ≤ η

0, s > η
−
{
t− s, s ≤ t,

0, s > t.

Now we look for upper and lower bounds for G, and following [141] we have

G(t, s) ≤ Φ(s) := max {1, α} s(1− s)
1− αη

for all t, s ∈ [0, 1].

Then for all s, t ∈ [0, 1],

G(t, s) ≤ max {1, α} 1

4(1− αη)
=: m.

Taking arbitrary a1 > 0 and a2 ≤ 1, we can choose

r = min {a1, α η, 4a1(1− η), α(1− η)} if α < 1, (5.3.4)
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r = min {a1η, 4a1(1− αη)η, η(1− αη)} if α ≥ 1, (5.3.5)

such that rΦ(s) ≤ G(t, s) for all t ∈ [a1, a2], s ∈ [0, 1].
Now we assume that the nonlinearity f satisfies the following conditions:

(H1) There exist c > 0 and M ∈ L1 (I), M ≥ 0 a.e., such that f(t, u) ≤ M(t) for a.a.
t ∈ I and all u ∈ [0, c]. Moreover, c > m ‖M‖L1 .

(H2) Any composition t ∈ I 7−→ f (t, u(t)) is measurable if u ∈ C(I).

(H3) There exist admissible discontinuity curves γn : In = [an, bn] −→ R+, n ∈ N, such
that for a.a. t ∈ I the function u 7−→ f(t, u) is continuous on R+ \

⋃
{n:t∈In} {γn(t)}.

To prove the existence of positive solutions for the differential problem (5.3.1) we will
look for the fixed points of the equivalent integral operator T : Kc −→ Kc given by

Tu(t) :=

∫ 1

0

G(t, s)f(s, u(s)) ds,

where Kc = {x ∈ K : ‖x‖∞ < c} and Kc denotes its closure, following the notation in
Chapter 2.

Proposition 5.3.2. Under the assumptions (H1)–(H2), the operator T : Kc −→ Kc is
well–defined and T Kc is relatively compact.

Proof. Since the Green’s function G is nonnegative and condition (H1) holds, it is clear that
TKc ⊂ Kc. Now, given u ∈ Kc, we have

‖Tu‖∞ ≤ m
∫ 1

0

f(s, u(s)) ds ≤ m ‖M‖L1 ,

so T Kc is uniformly bounded. To see that T Kc is equicontinuous, notice that for a.a. t ∈ I
and all u ∈ Kc, we have

|(Tu)′(t)| ≤
∫ 1

0

∣∣∣∣∂G∂t (t, s)

∣∣∣∣M(s) ds ≤ 1

1− αη
‖M‖L1 ,

since a simple computation shows that∣∣∣∣∂G∂t (t, s)

∣∣∣∣ ≤ 1

1− αη
a.e. on [0, 1]× [0, 1].

This implies that

|Tu(t)− Tu(s)| ≤
∫ t

s

|(Tu)′(r)| dr ≤ 1

1− αη
‖M‖L1 |t− s| .

Hence T Kc is a relatively compact subset of C(I), by Áscoli–Arzela’s theorem.

Proposition 5.3.3. If (H1)–(H3) holds, then the operator T : Kc −→ Kc satisfies condition
(2.1.1) in Kc.
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Proof. It follows exactly as in the proof of Theorem 5.1.9.

Now we are ready to use our new version of Leggett–William’s theorem to obtain mul-
tiplicity of solutions for problem (5.3.1). To do that, we consider the concave positive func-
tional α : K −→ R+ given by

α(u) = min
t∈[a1,a2]

u(t).

Lemma 5.3.4. For each u ∈ K we have α(Tu) ≥ r ‖Tu‖∞, where r is defined as in
(5.3.4)–(5.3.5).

Proof. On the one hand, we have

‖Tu‖∞ = max
t∈[0,1]

{∫ 1

0

G(t, s)f(s, u(s)) ds

}
≤
∫ 1

0

Φ(s)f(s, u(s)) ds.

On the other hand,

α(Tu) = min
t∈[a1,a2]

{Tu(t)} ≥ r
∫ 1

0

Φ(s)f(s, u(s)) ds.

Hence, α(Tu) ≥ r ‖Tu‖∞.

Denote

δ =
1

2(1− αη)
min
i=1,2

{
ai (1−max {ai, η})2

+ (1− ai + αai)a
2
i

}
.

A new result regarding the existence of positive solutions for the differential problem
(5.3.1) is obtained by applying our Leggett–Williams’ type Theorem 2.4.9.

Theorem 5.3.5. Assume (H1)–(H3) and that there exist constants 0 < a < b < b d/r ≤ c
with d > 1 such that

1. There exists Ma ∈ L1 (I) such that f(t, u) ≤ Ma(t) for a.a. t ∈ I and all u ∈ [0, a]
where a > m ‖Ma‖L1 .

2. f(t, u) > b δ−1 for all a1 ≤ t ≤ a2, b ≤ u ≤ b d/r.

Then the boundary value problem (5.3.1) has at least three nonnegative solutions.

Proof. We will see that under these conditions we can apply Theorem 2.4.9. First, it is clear
that α(u) ≤ ‖u‖∞ for all u ∈ K. Given u ∈ Kc, by assumption (H1) we have

‖Tu‖∞ = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s)) ds ≤ m
∫ 1

0

f(s, u(s)) ds ≤ c,

and hence T : Kc −→ Kc. By condition 1 we deduce in a similar way that ‖Tu‖∞ < a if
u ∈ Ka.

On the other hand, the set {S(α, b, b d/r) : α(u) > b} is nonempty. If u ∈ S(α, b, b d/r)
then b ≤ u(t) ≤ b d/r for all t ∈ [a1, a2], so hypothesis 2 implies that f(t, u(t)) > b δ−1.
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Moreover, since (Tu)′′(t) = −f(t, u(t)) ≤ 0 for all 0 ≤ t ≤ 1, we deduce that Tu is
concave and by the definition of αwe obtain α(Tu) = Tu(a1) or α(Tu) = Tu(a2). Suppose
that α(Tu) = Tu(a1). Then if η ≥ a1 we have

Tu(a1) = −
∫ a1

0

(a1 − s)f(s, u) ds− αa1

1− αη

∫ η

0

(η − s)f(s, u) ds

+
a1

1− αη

∫ 1

0

(1− s)f(s, u) ds

= −a1

∫ a1

0

f(s, u) ds− αa1η

1− αη

∫ η

0

f(s, u) ds+
a1

1− αη

∫ 1

0

f(s, u) ds

+

∫ a1

0

sf(s, u) ds+
αa1

1− αη

∫ η

0

sf(s, u) ds− a1

1− αη

∫ 1

0

sf(s, u) ds

=
−a1

1− αη

∫ a1

0

f(s, u) ds− αa1η

1− αη

∫ η

a1

f(s, u) ds+
a1

1− αη

∫ 1

0

f(s, u) ds

+
1 + αa1

1− αη

∫ a1

0

sf(s, u) ds+
αa1

1− αη

∫ η

a1

sf(s, u) ds

− a1

1− αη

∫ 1

0

sf(s, u) ds

=
−αa1η

1− αη

∫ η

a1

f(s, u) ds+
a1

1− αη

∫ 1

a1

f(s, u) ds

+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

+
αa1

1− αη

∫ η

a1

sf(s, u) ds− a1

1− αη

∫ 1

a1

sf(s, u) ds

=
a1 − αa1η

1− αη

∫ η

a1

f(s, u) ds+
a1

1− αη

∫ 1

η

f(s, u) ds

+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

+
αa1 − a1

1− αη

∫ η

a1

sf(s, u) ds− a1

1− αη

∫ 1

η

sf(s, u) ds

> a1

∫ η

a1

(1− s)f(s, u) ds+
a1

1− αη

∫ 1

η

(1− s)f(s, u) ds

+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

≥ a1

1− αη

∫ 1

η

(1− s)f(s, u) ds+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

>
a1(1− η)2 + (1− a1 + αa1)a2

1

2(1− αη)

b

δ
≥ b, taking into account that f(s, u) > b δ−1.
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If η < a1, we have

Tu(a1) =
αa1η − a1

1− αη

∫ a1

η

f(s, u) ds+
a1

1− αη

∫ 1

η

f(s, u) ds

+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

+
a1 − αa1

1− αη

∫ a1

η

sf(s, u) ds− a1

1− αη

∫ 1

η

sf(s, u) ds

=
αa1η

1− αη

∫ a1

η

f(s, u) ds+
a1

1− αη

∫ 1

a1

f(s, u) ds

+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

− αa1

1− αη

∫ a1

η

sf(s, u) ds− a1

1− αη

∫ 1

a1

sf(s, u) ds

>
αa1η

1− αη

∫ a1

η

(1− s)f(s, u) ds+
a1

1− αη

∫ 1

a1

(1− s)f(s, u) ds

+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

>
a1

1− αη

∫ 1

a1

(1− s)f(s, u) ds+
1− a1 + αa1

1− αη

∫ a1

0

sf(s, u) ds

>
a1(1− a1)2 + (1− a1 + αa1)a2

1

2(1− αη)

b

δ
≥ b.

In a similar way we prove that Tu(a2) > k2 > b for some k2. Therefore, we obtain
α(Tu) > k > b for all u ∈ S(α, b, b d/r) and some k.

Assume that u ∈ S(α, b, c). Then

α(Tu) ≥ r ‖Tu‖∞ =
b d

b d/r
‖Tu‖∞ >

b

b d/r
‖Tu‖∞ .

By Theorem 2.4.9, we conclude that T has at least three fixed points in K. Therefore, the
boundary value problem (5.3.1) has at least three different nonnegative solutions.

The applicability of the inviable discontinuity curves has been shown by several exam-
ples along the document. In the following example, we illustrate the utility of the viable
discontinuity curves.

Example 5.3.6. Consider the problem{
u′′(t) + f(t, u(t)) = 0, t ∈ I = [0, 1],
u(0) = 0, u(1/2) = u(1),

(5.3.6)

that is, problem (5.3.1) with α = 1 and η = 1/2, and suppose that the nonlinearity f is given
by

f(t, u) =
1

2
√
t

sin2
(π

2
b1/(t2 + u)c

)
+ u+ 1,
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where bxc denotes the integer part of x.
Notice that f is unbounded, has infinitely many discontinuities in the second argument

and it has a singularity at t = 0.
For a.a. t ∈ I , the function f(t, ·) is continuous on R+ \

⋃
{n:t∈In} {γn(t)} where for

every n ∈ N,
γn(t) = −t2 + n−1 for all t ∈ In = [0, n−1/2].

The problem is that some of these discontinuity curves are not admissible. To solve this
difficulty we consider a modified problem (5.3.6) by replacing f by f̃ , where for every n ∈ N,
we define

f̃(t, γn(t)) = 2(= −γ′′n(t)) a.e. in In,

and f̃(t, u) = f(t, u) otherwise. Therefore, now γn are viable discontinuity curves for f̃ for
each n ∈ N.

We will check that Theorem 5.3.5 can be applied to the modified problem and then this
problem has at least three solutions.

First, since α = 1 and η = 1/2, we have m = 1/2 and then for condition (H1) we can

take c = 10 and M(t) =
1

2
√
t

+ 11. Indeed, ‖M‖L1 = 12 and then c > m ‖M‖L1 .

Moreover, for verifying conditions 1. and 2. in Theorem 5.3.5 it suffices to take, for
example, the constants a = 2.01, b = 2.02, d = 9/8, a1 = 8/10 and a2 = 9/10 and the

function Ma(t) =
1

2
√
t

+ a+ 1. In this case, we have r = 1/4 and δ = 672/1000, and then

it is immediate to check that the mentioned conditions are satisfied.
Hence the modified problem (5.3.6) with f replaced by f̃ has at least three positive solu-

tions in W 2,1(I).

t

u

11/2

γ1

γ2

γn

u

Figure 5.3.1: Possible solution u and discontinuity curves γn.

If u is one of these solutions, then u is concave, u(0) = 0 and u(1/2) = u(1), so u
can only intersect each γn once, see Figure 5.3.1. Thus u is also a solution for our problem
(5.3.6) which has at least three positive solutions too.
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5.4 Positive solutions to a one dimensional beam equation

5.4 Positive solutions to a one dimensional beam equation

We study the existence of positive solutions for the following fourth-order equation{
u(4)(t) = g(t)f(u(t)), t ∈ (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1),

(5.4.1)

where g ≥ 0 a.e. on I = [0, 1] and g ∈ L1(I) and the function f : R+ → R+ is such that
f(u(·)) is measurable for every u ∈ C2(I) and f ∈ L∞loc(R+).

Problem (5.4.1) was intensively studied in the literature (see, for example [31, 36, 43,
53, 142]) and it arises in many applications. For instance, fourth-order problems appear in
nonlinear suspension bridge models (see [52, 142] and the references therein).

Following the spirit of this manuscript, our purpose is to remove the usual continuity as-
sumptions regarding nonlinearity f . Therefore, in this section we achieve an existence result
when f is not necessarily continuous with respect to the spatial variable but satisfies some
superlinear or sublinear behavior at zero and infinity. Moreover, the fixed point results in
Section 2.3 will be used to obtain the existence of a positive solution to the fourth order two-
points boundary value problem (5.4.1) by assuming the existence of a strict upper solution for
(5.4.1) and some asymptotic behavior near the origin or infinity. Therefore, Theorem 5.4.12
below is new even in the classical case of continuous right-hand sides in (5.4.1), see Corollary
5.4.13. Furthermore, a result concerning the existence of two positive solutions for problem
(5.4.1) will be also obtained.

5.4.1 Existence results

In this section we shall work in the Banach space (C2(I), ‖·‖), where

‖u‖ = max{‖u‖∞ , ‖u′‖∞ , ‖u′′‖∞}

and ‖·‖∞ is the usual supremum norm. We consider an operator T defined by

Tu(t) :=

∫ 1

0

G(t, s)g(s)f(u(s)) ds, (5.4.2)

where G is the Green’s function for problem (5.4.1). It is given by

G(t, s) =


1

6
s(1− t)(2t− s2 − t2), s ≤ t,

1

6
t(1− s)(2s− t2 − s2), s > t,

which is nonnegative and satisfies (see [43, 142])

G(t, s) ≤ Φ(s), for t, s ∈ [0, 1],

cΦ(s) ≤ G(t, s), for t ∈
[

1

4
,

3

4

]
, s ∈ [0, 1],
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where

Φ(s) =


√

3

27
s(1− s2)3/2, for 0 ≤ s ≤ 1

2
,

√
3

27
(1− s)s3/2(2− s)3/2, for

1

2
≤ s ≤ 1,

and c = 45
√

3/128 ≈ 0.608924.
We will look for fixed points of T inside the cone

K =

{
u ∈ C2(I) : u ≥ 0, min

t∈[ 1
4 ,

3
4 ]
u(t) ≥ c̃ ‖u‖∞

}
,

where 0 < c̃ ≤ c will be fixed later.

Proposition 5.4.1. The operator T : K → K is well-defined and maps bounded sets into
relatively compact sets.

Proof. The fact that T K ⊂ K can be verified by using the properties of the Green’s function
G and the mapping Φ. In addition, from the hypotheses about f and g and the regularity of the
Green’s function it is routine to conclude that T maps bounded sets into relatively compact
ones by means of the Áscoli–Arzela’s theorem.

Now we introduce the class of discontinuities that we will consider. The following defi-
nition is an adjustment of the admissible discontinuity curves of the previous chapters.

Definition 5.4.2. An admissible discontinuity point is a nonnegative real number x satisfying
one of the following conditions:

(a) f(x) = 0 (x is said a viable point),

(b) There exist ε > 0 and ψ ∈ L1(I), ψ(t) > 0 for a.a. t ∈ [0, 1] such that

ψ(t) < g(t)f(y) for a.a. t ∈ [0, 1] and all y ∈ [x− ε, x+ ε] (x is inviable).
(5.4.3)

Remark 5.4.3. Notice that if g ≡ 1, then a nonnegative real number x is an admissible
discontinuity point if and only if

0 ∈ Kf(x) =
⋂
ε>0

cof(Bε(x)) implies f(x) = 0;

which is the same condition that given in [84] for first-order discontinuous autonomous sys-
tems.

Moreover, if g(t) > 0 for a.a. t ∈ [0, 1], then the existence of ε > 0 such that

inf
y∈[x−ε,x+ε]

f(y) > 0

implies condition (5.4.3). Similar assumptions were required in [18,19] in the study of second
order problems.
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5.4 Positive solutions to a one dimensional beam equation

We state the following technical result whose proof is similar to that of Lemma 5.1.8.

Lemma 5.4.4. If M ∈ L1(I), M ≥ 0 almost everywhere, then the set

Q =

{
u ∈ C3(I) : |u′′′(t)− u′′′(s)| ≤

∫ t

s

M(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
,

is closed in C2(I).
Moreover, if un ∈ Q for all n ∈ N and un → u in the C2 norm, then there exists a

subsequence {unk} which tends to u in the C3 norm.

Following the notation of [29], we define

γ∗ = inf
t∈[1/4,3/4]

∫ 3/4

1/4

G(t, s)g(s) ds, γ∗ = sup
t∈[0,1]

∫ 1

0

G(t, s)g(s) ds,

γ∗1 = sup
t∈[0,1]

∫ 1

0

∣∣∣∣∂G∂t (t, s)

∣∣∣∣ g(s) ds, γ∗2 = sup
t∈[0,1]

∫ 1

0

∣∣∣∣∂2G

∂t2
(t, s)

∣∣∣∣ g(s) ds

and we suppose γ∗ > 0.
Now we prove the first existence result of this section.

Theorem 5.4.5. Assume that the functions f and g satisfy the following hypotheses:

(H1) g ≥ 0 a.e. on I = [0, 1] and g ∈ L1(I);

(H2) f : R+ → R+ is such that

• t 7→ f(u(t)) is measurable for every u ∈ C2(I);

• f is locally bounded;

(H3) There exist admissible discontinuity points xn ≥ 0 such that the function f is continu-
ous in R+ \

⋃
n∈N {xn}.

Moreover, assume that either

(i) f0 := limu→0+

f(u)

u
= +∞ and f∞ := limu→∞

f(u)

u
= 0 (sublinear case); or

(ii) f0 = 0 and f∞ =∞ (superlinear case).

Then BVP (5.4.1) has at least one positive solution.

Proof. The key of the proof is to show that operator T defined in (5.4.2) satisfies the condi-
tions of Theorem 2.2.5. In the sequel we suppose that f satisfies (i) since the other case is
analogous.

Claim 1: There exists r1 > 0 such that ‖y‖ < ‖u‖ for all y ∈ Tu and all u ∈ K with
‖u‖ = r1.

Since f∞ = 0, for each L > 0 there exists M > 0 such that

f(s) ≤M + Ls for s ≥ 0.
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Positive solutions for second and higher order problems

We can choose L > 0 small enough such that 5 max{γ∗, γ∗1 , γ∗2}L < 2 and r1 > 0 large
enough such that 2 max{γ∗, γ∗1 , γ∗2}M < r1. Let u ∈ K with ‖u‖ = r1, then for every finite
family ui ∈ Br(u) ∩K and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1 and r = ‖u‖∞ /4,

we have

v(t) =
m∑
i=1

λiTui(t) ≤
m∑
i=1

λi

∫ 1

0

G(t, s)g(s) [M + Lui(s)] ds

≤
m∑
i=1

λiγ
∗[M + L ‖ui‖∞] ≤ γ∗[M + 5L ‖u‖∞ /4] < ‖u‖ .

In addition,

|v′(t)| =

∣∣∣∣∣
m∑
i=1

λi(Tui)
′(t)

∣∣∣∣∣ ≤
m∑
i=1

λi

∫ 1

0

∣∣∣∣∂G∂t (t, s)

∣∣∣∣ g(s) [M + Lui(s)] ds

≤ γ∗1 [M + 5L ‖u‖∞ /4] < ‖u‖ ,

and

|v′′(t)| =

∣∣∣∣∣
m∑
i=1

λi(Tui)
′′(t)

∣∣∣∣∣ ≤
m∑
i=1

λi

∫ 1

0

∣∣∣∣∂2G

∂t2
(t, s)

∣∣∣∣ g(s) [M + Lui(s)] ds

≤ γ∗2 [M + 5L ‖u‖∞ /4] < ‖u‖ .

Hence, if y ∈ Tu, then it is the limit of a sequence of functions v as above, so ‖y‖ < ‖u‖
for all y ∈ Tu and all u ∈ K with ‖u‖ = r1.

Notice that Claim 1 implies that λu 6∈ Tu for all u ∈ K with ‖u‖ = r1 and all λ ≥ 1.
Claim 2: There exists r2 > 0 such that y 6� u for all y ∈ Tu and all u ∈ K with

‖u‖ = r2.
As f0 = ∞, then we can choose L > 0 large enough such that γ∗Lc̃ > 2 and C > 0

satisfying f(s) ≥ Ls provided that 0 ≤ s ≤ C. Suppose that u ∈ K with ‖u‖ = C/2 =: r2,
then for every finite family ui ∈ Br(u)∩K and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1

and r = ‖u‖∞ /2, we have ‖ui‖∞ ≤ 3r2/2 < C, so 0 ≤ ui(t) ≤ C for all t ∈ [1/4, 3/4]
and

m∑
i=1

λiTui(t) ≥
m∑
i=1

λi

∫ 3/4

1/4

G(t, s)g(s)f(ui(s)) ds

≥ γ∗Lc̃
m∑
i=1

λi ‖ui‖∞ ≥ γ∗Lc̃ (‖u‖∞ − r) > ‖u‖∞ ,

which implies that y 6� u for all y ∈ Tu with u ∈ K and ‖u‖ = r2.
As shown in the proof of Corollary 2.2.3, it follows from Claim 2 that there exists w ∈ K

with ‖w‖ 6= 0 such that x 6∈ Tx+ λw for every λ ≥ 0 and all x ∈ K with ‖x‖ = r2.
Claim 3: The operator T satisfies the condition {u} ∩ Tu ⊂ {Tu} for all u ∈ KR with

R ≥ r1.
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5.4 Positive solutions to a one dimensional beam equation

The proof is similar to that in Theorem 5.1.9, so we omit it here.

Therefore the conditions of Theorem 2.2.5 are satisfied and we can ensure that BVP
(5.4.1) has at least one positive solution.

Remark 5.4.6. Observe that the boundary conditions do not play an essential role when
defining the admissible discontinuities of the function f . By this reason, the previous result
can be generalized to other BCs whenever suitable sign conditions hold for the corresponding
Green’s functions, see [29, 142].

We illustrate our theory with an example inspired by [43, Example 2].

Example 5.4.7. Consider the BVP{
u(4) = b7u3 − 18u2 + 12uce−u +

√
u,

u(0) = u(1) = 0 = u′′(0) = u′′(1),

where bxc denotes the integer part of x.
The mapping f(u) = b7u3 − 18u2 + 12uce−u +

√
u is discontinuous at infinitely many

points and these points are admissible inviable discontinuity points (it suffices to take ψ ≡ 0.1
and ε = 0.05 in Definition 5.4.2). In addition, it is not monotone and, clearly, f0 = +∞ and
f∞ = 0.

Therefore, Theorem 5.4.5 implies the existence of a positive solution for this problem.

Now we will use Theorem 2.3.2 in order to obtain the existence of positive solutions for
problem (5.4.1) under monotonicity conditions. To do so, we will study the existence of
upper fixed points for the operator T defined in (5.4.2) by means of maximum principles for
the linear operator LMu := u(4) +Mu.

Definition 5.4.8. Let B ⊂ C4(I) and consider the operator LM : B → C(I) given by

(LMu)(t) := u(4)(t) +Mu(t) for all t ∈ I.

We say that LM is inverse positive in B if

u ∈ B, (LMu)(t) ≥ 0 for all t ∈ I implies u(t) ≥ 0 for all t ∈ I,

and LM is strongly inverse positive in B if it is inverse positive in B and

u ∈ B, LMu 	 0 in I implies u(t) > 0 in (0, 1).

Proposition 5.4.9 ( [31, Corollary 2.1]). LetM ≥ 0. Then the linear operatorLM is strongly
inverse positive in the space

W = {u ∈ C4(I) : u(0) ≥ 0, u(1) ≥ 0, u′′(0) ≤ 0, u′′(1) ≤ 0}

if, and only if, 0 ≤ M ≤ c1, where c1 = 4k4
1 ≈ 125.137 and k1 is the smallest positive

solution of the equation tan k = −tanh k.
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Definition 5.4.10. We say that β ∈W 4,1(I) is an upper solution for problem (5.4.1) if

β(4)(t) ≥ g(t)f(β(t)) for a.a. t ∈ I,
β(0) ≥ 0, β(1) ≥ 0, β′′(0) ≤ 0, β′′(1) ≤ 0.

Further, β ∈W 4,1(I) is a strict upper solution if it is an upper solution and, moreover, there
exists an open subinterval I0 ⊂ I such that

β(4)(t) > g(t)f(β(t)) for a.a. t ∈ I0.

We are in a position to present some sufficient conditions for the existence of an upper
fixed point for the operator T , that is, β ∈ K such that T β � β.

Lemma 5.4.11. Suppose that one of the following two conditions holds:

(i) there exists β > 0 such that γ∗f(β) < β; or

(ii) there exists a strict upper solution β for problem (5.4.1) with mint∈I β(t) > 0.

Then Tβ � β and there exists R > 0 such that BR(β) ⊂ K.

Proof. First, assume that condition (i) holds. By inequality γ∗f(β) < β, we obtain that

Tβ =

∫ 1

0

G(t, s)g(s)f(β) ds ≤ γ∗f(β) < β.

Moreover, since ‖β − Tβ‖∞ = β and there exists 0 < c̃ < c such that β − γ∗f(β) > c̃ β
we have for every t ∈ [1/4, 3/4],

β(t)− Tβ(t) ≥ β − γ∗f(β) > c̃ β = c̃ ‖β − Tβ‖∞ .

In addition, β is an interior point of K. Indeed, if u ∈ BR(β) for 0 < R < β then
‖u− β‖∞ ≤ R, that is, β − R ≤ u(t) ≤ β + R for all t ∈ [0, 1], so u(t) > 0 for all
t ∈ [0, 1] and whenever R is small enough we have

min
t∈[1/4,3/4]

u(t) ≥ β −R ≥ c̃(β +R) ≥ c̃ ‖u‖∞ .

Now, suppose that condition (ii) is satisfied. It ensures the existence of a nonnegative
function h ∈ L1(I), A,B ≥ 0 and C,D ≤ 0 such that

β(4)(t)− g(t)f(β(t)) = h(t) for a.a. t ∈ (0, 1),
β(0) = A, β(1) = B, β′′(0) = C, β′′(1) = D,

or equivalently,

β(t)− Tβ(t) =

∫ 1

0

G(t, s)h(s) ds+ ϑ(t),

where ϑ is the unique solution of the problem

y(4)(t) = 0 for a.a. t ∈ (0, 1),
y(0) = A, y(1) = B, y′′(0) = C, y′′(1) = D.
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5.4 Positive solutions to a one dimensional beam equation

SinceM = 0, by Proposition 5.4.9, we deduce that β(t)−Tβ(t) ≥ 0 in [0, 1] and, moreover,
β(t) − Tβ(t) > 0 in (0, 1). Hence, there exists 0 < c̃ < c small enough such that for
t ∈ [1/4, 3/4],

β(t)− Tβ(t) > c̃ ‖β − Tβ‖∞ .

It can be shown in a similar as that done above that β is an interior point of K.

Now we present a new existence result to (5.4.1).

Theorem 5.4.12. Assume (H1), (H2) and

(H̃3) There exist admissible discontinuity points xn ≥ 0 such that the function f is contin-
uous in R+ \

⋃
n∈N {xn} and there exists r > 0 such that f is right–continuous in

[0, r].

Moreover, assume that

(i) there exist β ∈ K, with T β � β, and R > 0 such that BR(β) ⊂ K;

(ii) f is nondecreasing on [0, ‖β‖∞];

(iii) f0 = +∞ or f∞ = +∞.

Then BVP (5.4.1) has at least one positive solution.

Proof. We will prove that the conditions of Theorem 2.3.2 are satisfied. Claims 1 and 3 are
similar to the proof of [43, Theorem 3.1] and the last one is a technical result which follows
the ideas of the proof of Theorem 5.1.9.

Claim 1: T is monotone nondecreasing in the set P = {u ∈ K : u � β} and T P is
relatively compact.

Since f is nondecreasing in [0, ‖β‖∞], it is clear that if we take u, v ∈ K with u(t) ≤
v(t) ≤ β(t) for all t ∈ [0, 1], we have Tv(t) − Tu(t) ≥ 0 and for t ∈ [1/4, 3/4] and
r ∈ [0, 1],

Tv(t)− Tu(t) =

∫ 1

0

G(t, s)g(s) [f(v(s))− f(u(s))] ds

≥ c
∫ 1

0

Φ(s)g(s) [f(v(s))− f(u(s))] ds

≥ c
∫ 1

0

G(r, s)g(s) [f(v(s))− f(u(s))] ds ≥ c̃ [Tv(r)− Tu(r)] ,

so min
t∈[1/4,3/4]

[Tv(t)− Tu(t)] ≥ c̃ ‖Tv − Tu‖∞. Therefore Tv − Tu ∈ K, i.e., Tu � Tv.

Thus T is nondecreasing.
Notice that T P is relatively compact because if u ∈ P then 0 ≤ u(t) ≤ ‖β‖∞ for all

t ∈ [0, 1] so, since f ∈ L∞loc(R+), there exists N > 0 such that f(u) ≤ N for all u ∈ P .
Therefore the conclusion is easily obtained by Áscoli-Arzela’s theorem.

Claim 2: The operator T satisfies that Tu ⊂ {Tu} −K for all u ∈ K with ‖u‖ = r.
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Without loss of generality, assume that r ≤ ‖β‖∞. Let u ∈ K with ‖u‖ = r and
ε > 0 given. By the right–continuity and the monotonicity of f in [0, r], we have that for all
x ∈ [0, r] there exists δ > 0 such that −x ≤ y − x < δ implies that f(y) ≤ f(x) + ε/γ∗.
Therefore, for ‖v − u‖ < δ, v ∈ K, we have

Tv(t) =

∫ 1

0

G(t, s)g(s)f(v(s)) ds ≤
∫ 1

0

G(t, s)g(s)

[
f(u(s)) +

ε

γ∗

]
ds

≤
∫ 1

0

G(t, s)g(s)f(u(s)) ds+ ε = Tu(t) + ε,

so Tv � Tu + ε and thus Tv ∈ Bε(Tu) −K. Now, using Remark 2.3.3, the conclusion is
obtained.

Claim 3: There exists a bounded open set V ⊂ K such that iK(T, V ) = 0 and either
V ⊂ Kr or Kr ⊂ V .

Suppose that f0 = ∞ (the case f∞ = ∞ is similar). In this case we can show that there
exists a bounded open set V ⊂ K such that iK(T, V ) = 0 and V ⊂ Kr. Indeed, hypothesis
(ii) guarantees that we can choose L > 0 large enough such that γ∗Lc̃ > 2 and chooseC > 0
satisfying f(s) ≥ Ls provided that 0 ≤ s ≤ C. Let u ∈ K with ‖u‖ = min{r/2, C/2} =: r,
then for every finite family ui ∈ Bε(u)∩K and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1

and ε = ‖u‖∞ /2, we have ‖ui‖∞ ≤ 3r/2 < C, so 0 ≤ ui(t) ≤ C for all t ∈ [1/4, 3/4] and

m∑
i=1

λiTui(t) ≥
m∑
i=1

λi

∫ 3/4

1/4

G(t, s)g(s)f(ui(s)) ds

≥ γ∗Lc̃
m∑
i=1

λi ‖ui‖∞ ≥ γ∗Lc̃ (‖u‖∞ − ε) > ‖u‖∞ ,

which implies that y 6� u for all y ∈ Tu with u ∈ K and ‖u‖ = r. By Corollary 2.2.3 we
obtain that iK(T,Kr) = 0, so we can choose V = Kr.

Claim 4: The operator T satisfies the condition {u} ∩ Tu ⊂ {Tu} for all u ∈ P ∪KR.
The proof is similar to that in Theorem 5.1.9, so we omit it here.
Therefore, all the conditions of Theorem 2.3.2 are satisfied and we can ensure that BVP

(5.4.1) has at least one positive solution.

We emphasize that, even in the case of a continuous function f , Theorem 5.4.12 comple-
ments the existence results presented in [43]. As far as we know, the following corollary is
new.

Corollary 5.4.13. Assume that f is continuous and g ≥ 0 a.e. on I and g ∈ L1(I).
Moreover, assume that

(i) there exists a strict upper solution β for problem (5.4.1) with mint∈I β(t) > 0;

(ii) f is nondecreasing on [0, ‖β‖∞];

(iii) f0 = +∞ or f∞ = +∞.
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5.4 Positive solutions to a one dimensional beam equation

Then BVP (5.4.1) has at least one positive solution.

We illustrate our theory with an example which falls outside the scope of the fixed point
theorems presented in [28–30, 43] because here the corresponding fixed point operator is not
continuous.

Example 5.4.14. Consider the BVP{
u(4) = bh1(u)c+ h2(u),
u(0) = u(1) = 0 = u′′(0) = u′′(1),

(5.4.4)

where bxc denotes the integer part of x.
Assume that hi : R+ → R+, i = 1, 2, are continuous functions such that h1(0) = 0,

h2(x) > 0 for all x ∈ (0,∞), both functions h1 and h2 are nondecreasing in [0, β] for some
β > 0 and

γ∗(bh1(β)c+ h2(β)) < β,

where γ∗ = 5/384 (see [43]). Moreover,

lim
u→∞

h1(u)

u
= +∞ or lim

u→∞

h2(u)

u
= +∞. (5.4.5)

Then Theorem 5.4.12 guarantees the existence of a positive solution for problem (5.4.4).
Indeed, the mapping f(u) = bh1(u)c + h2(u) is discontinuous in h−1

1 (Z), and so the
positivity of the function h2 implies that these points are admissible inviable discontinuity
points (see Definition 5.4.2). In addition, the asymptotic condition (5.4.5) clearly guarantees
that f∞ = +∞.

For instance, we can choose h1(u) = 7u3 − 18u2 + 12u and h2(u) =
√
u. Then the

previous conditions are satisfied by taking β = 0.69341. Notice that, in this case, f is not
monotone in R+, but it is nondecreasing in [0, 0.69341].

5.4.2 A multiplicity result
Finally, we establish the existence of two positive solutions for problem (5.4.1). Our mul-
tiplicity result is based on the following Lemma and a suitable asymptotic behavior of the
function f at zero and at infinity.

Lemma 5.4.15. Assume that the functions f and g satisfy conditions (H1) and (H2).
If there exist r1 > 0 and ε > 0 such that

max{γ∗, γ∗1 , γ∗2} sup
x∈[0,r1+ε]

f(x) < r1, (5.4.6)

then ‖y‖ < ‖u‖ for all y ∈ Tu and all u ∈ K with ‖u‖ = r1.

Proof. Let u ∈ K with ‖u‖ = r1. Then for every finite family ui ∈ Bε(u) ∩ K and
λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1, we have by virtue of condition (5.4.6) that

v(t) =

m∑
i=1

λiTui(t) =

m∑
i=1

λi

∫ 1

0

G(t, s)g(s)f(ui(s)) ds

≤
m∑
i=1

λiγ
∗ sup
x∈[0,r1+ε]

f(x) ≤ γ∗ sup
x∈[0,r1+ε]

f(x) < r1 = ‖u‖ .
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In addition,

|v′(t)| =

∣∣∣∣∣
m∑
i=1

λi(Tui)
′(t)

∣∣∣∣∣ ≤
m∑
i=1

λi

∫ 1

0

∣∣∣∣∂G∂t (t, s)

∣∣∣∣ g(s)f(ui(s)) ds

≤ γ∗1 sup
x∈[0,r1+ε]

f(x) < r1 = ‖u‖ ,

and

|v′′(t)| =

∣∣∣∣∣
m∑
i=1

λi(Tui)
′′(t)

∣∣∣∣∣ =
m∑
i=1

λi

∫ 1

0

−∂
2G

∂t2
(t, s)g(s)f(ui(s)) ds

≤ γ∗2 sup
x∈[0,r1+ε]

f(x) < r1 = ‖u‖ .

Hence, if y ∈ Tu, then it is the limit of a sequence of functions v as above, so ‖y‖ < r1.

Remark 5.4.16. Notice that if f is a nondecreasing function, then condition (5.4.6) can be
simply written as

max{γ∗, γ∗1 , γ∗2}f(r1 + ε) < r1.

Now we present our multiplicity result concerning the existence of a “small” and a “large”
positive solutions for problem (5.4.1).

Theorem 5.4.17. Assume that the functions f and g satisfy conditions (H1)–(H3). Moreover,

(1) f0 =∞ and f∞ =∞;

(2) there exist r1 > 0 and ε > 0 such that

max{γ∗, γ∗1 , γ∗2} sup
x∈[0,r1+ε]

f(x) < r1.

Then problem (5.4.1) has at least two positive solutions u1 and u2 such that ‖u1‖ < r1 and
‖u2‖ > r1.

Proof. First, as in Claim 3 of Theorem 5.4.5, condition (H3) guarantees that u ∈ Tu implies
u = Tu.

On the other hand, f0 = ∞ implies that there exists 0 < r2 < r1 such that y 6� u for
all y ∈ Tu and all u ∈ K with ‖u‖ = r2 (see Claim 2 in Theorem 5.4.5). Analogously,
since f∞ = ∞, there exists R2 > r1 such that y 6� u for all y ∈ Tu and all u ∈ K with
‖u‖ = R2. Moreover, Lemma 5.4.15 implies that λu 6∈ Tu for all u ∈ K with ‖u‖ = r1 and
all λ ≥ 1.

Therefore, by applying Theorem 2.2.5 twice, we obtain that the operator T has at least
two fixed points u1 and u2 such that r2 < ‖u1‖ < r1 and r1 < ‖u2‖ < R2.

To finish we present a simple example which, as far as we are aware, is not covered by
the previous literature.
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5.4 Positive solutions to a one dimensional beam equation

Example 5.4.18. Consider the problem{
u(4) = up + bucq,
u(0) = u(1) = 0 = u′′(0) = u′′(1),

(5.4.7)

where 0 < p < 1 and q > 1. Here g ≡ 1 and f(u) = up + bucq .
Observe that f is discontinuous at xn = n, n ∈ N, and for each n ∈ N,

0 < inf

{
f(x) : x ∈

[
1

2
,∞
)}
≤ inf

{
f(x) : x ∈

[
n− 1

2
, n+

1

2

]}
,

so the points xn are inviable, see Definition 5.4.2 and Remark 5.4.3.
Since 0 < p < 1 and q > 1, we have that

f0 = lim
u→0+

1

u1−p +
bucq

u
=∞, f∞ = lim

u→∞

1

u1−p +
bucq

u
≥ lim
u→∞

(u− 1)q

u
=∞.

Moreover, γ∗ = 5/384, γ∗1 ≤ 1/6 and γ∗2 = 1/8, so max{γ∗, γ∗1 , γ∗2} ≤ 1/6. By
taking r1 = 1/2 and ε = 1/2, condition (2) in Theorem 5.4.17 holds since sup{f(x) : x ∈
[0, 1]} = 2 and thus

1

6
sup{f(x) : x ∈ [0, 1]} < 1

2
.

Therefore, Theorem 5.4.17 ensures that problem (5.4.7) has at least two positive solutions
u1 and u2 such that ‖u1‖ < 1/2 and ‖u2‖ > 1/2 for any 0 < p < 1 and q > 1.
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Chapter 6
Positive solutions for general

problems

In this chapter, we establish existence and localization of positive solutions for general dis-
continuous problems for which a Harnack type inequality holds. In this way, a wide range
of ordinary differential problems can be treated, as for example higher order boundary value
problems or φ–Laplacian equations.

In the results of Chapter 5 we used intensively the properties of the corresponding Green’s
functions associated to each boundary value problem. These properties played an essential
role in order to achieve the cone invariance and so apply Krasnosel’skiı̆ type results. On the
contrary, in this chapter we consider problems for which the Green’s function may not exist
and then the inequalities of Harnack type become a key ingredient in our reasonings.

More accurately, we study the existence of positive solutions for a general problem of the
form {

Lu = f(t, u) a.e. on I,
u ∈ B, (6.0.1)

where I = [0, 1], B ⊂ C(I), L : D(L) ⊂ C(I)→ L1 (I) is a general operator not necessarily
linear, and f : I × R+ → R+ is a function which may be discontinuous with respect to both
variables.

The approach here is slightly different from that in Chapter 5: here we look for Krasovskij
solutions of the general problem and then we impose conditions on f which ensure that all
the Krasovskij solutions are, in fact, Carathéodory solutions. These ideas come from the
papers [45, 59, 84] (see also the survey paper [14]). Following these previous works, where
some admissible time–dependent discontinuity sets were presented, we study the mentioned
general problem under suitable conditions for the operator L, namely, hypotheses (L1)–(L5)
below and we allow the function f to be discontinuous over the graphs of a countable number
of curves satisfying some ‘transversality’ condition.

The main results provide the existence and localization of positive solutions for problem
(6.0.1), which allow also to derive multiplicity conclusions.

As a particular case of (6.0.1), we study the Dirichlet–Neumann problem involving the
φ-Laplacian {

−(φ(u′))′ = f(t, u) a.e. on [0, 1],
u′(0) = u(1) = 0,

(6.0.2)

where φ : (−a, a) → (−b, b) is an increasing homeomorphism such that φ(0) = 0, 0 <
a, b ≤ ∞, and the function f : I × R+ → R+ may have discontinuities. This approach
allows to study in a unified scope the classical homeomorphism φ : R → R, the singular
homeomorphism φ : (−a, a)→ R and the bounded one φ : R→ (−b, b), see [12].
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In the last decades, φ-Laplacian equations have been extensively studied by different
authors and by means of a variety of tools: fixed point theory [10,81], degree theory [12,127],
lower and upper solutions [34,114,127] and variational methods [88]. Our approach is based
on Bohnenblust–Karlin’s fixed point theorem.

Remarkable particular cases of problem (6.0.2) are the p-Laplacian and the curvature
operators in Euclidean and Minkowski spaces:

(1) φ(u) = |u|p−2
u, with p > 1, where a = b =∞;

(2) φ(u) = u/
√

1 + u2, where a =∞ and b = 1;

(3) φ(u) = u/
√

1− u2, where a = 1 and b =∞.

To the best of our knowledge, the papers where a discontinuous φ-Laplacian equation
was considered are either uniquely based on monotonicity hypotheses for the nonlinearity
[33, 79] or the solutions are given in the sense of set-valued analysis, mainly, as Filippov
or Krasovskij solutions, see [11, 23]. A remarkable exception is the paper [34], where a
particular discontinuous problem can be transformed into a continuous one.

In particular, our general results (Theorems 6.2.8 and 6.2.11) yield the following new and
simple existence theorem.

Theorem 6.0.1. Let f : R+ → R+ be an almost everywhere continuous function such that

(i) f(u(·)) is measurable whenever u ∈ C(I);

(ii) there exist c1, c2 ∈ R+ and p ≥ 1 such that f(x) ≤ c1xp + c2 for all x ∈ R+;

(iii) lim infy→x f(y) = 0 implies f(x) = 0 for every x ∈ R+.

Assume that there exists 0 < r < 2
√

3 such that

r ≤ inf{f(y) : r/16 ≤ y ≤ 1}.

Then problem  −
(

u′√
1− u′2

)′
= f(u) a.e. on [0, 1],

u′(0) = u(1) = 0,

has at least one positive solution such that ‖u‖∞ ≥ 3r/16.

As we said, the previous results were obtained by means of Bohnenblust–Karlin’s fixed
point theorem. Therefore, the readers may ask themselves if it is possible to apply a Kras-
nosel’skiı̆–type fixed point theorem with cone–compression and cone–expansion conditions
in order to improve the results. The answer is affirmative: in the last section, we will employ
a compression-expansion type fixed point theorem established in [48] for the composition of
two multivalued operators (see also the coincidence point theorems in [20]) in order to ob-
tain positive Krasovskij solutions for φ–Laplacian equations with Robin–Neumann boundary
conditions.

The results presented here were published in the papers [121, 122].
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6.1 Positive solutions for differential problems involving nonlinear operators

6.1 Positive solutions for differential problems involving non-
linear operators

In this section we are concerned with the general form of problem (6.0.1).
Let P be the cone of all nonnegative functions of L1 (I). It defines a partial order in

L1 (I) given by v ≤ w if and only if w − v ∈ P . For any 0 < ρ ≤ ∞, denote Pρ =
{u ∈ P : ‖u‖∞ < ρ}, where for a function u ∈ L1 (I) , by ‖u‖∞ we mean the essential
supremum of |u|.

We make the following assumptions concerning the operator L:

(L1) There exists 0 < b ≤ ∞ such that operator L is invertible in Pb, that is, for each v ∈ Pb
there is a unique u =: L−1v ∈ D(L) ∩ B such that Lu = v. Moreover, the operator
L−1 : Pb → D(L) ∩ B can be written as L−1 = A ◦B, where

(a) B : L1(I) → C(I) is a linear continuous operator, B(Pb) ⊂ PCb := Pb ∩ C(I)
and for each ρ ∈ (0, b), B (Pρ) is relatively compact in C (I) and there exists
ρ̃ ∈ (0, b) such that B(Pρ) ⊂ PCρ̃ ,

(b) A : PCb → D(L) ∩ B is continuous and A (Pρ) is bounded in C (I) for every
0 < ρ < b.

(L2) A and B preserve the order in PCb and Pb, respectively, that is, if 0 � v � w then
0 � Av � Aw and 0 � Bv � Bw.

(L3) If v ∈ Pb, v 6= 0, then L−1v 6= 0.

(L4) There exist a constant M > 0 and a closed interval I0 ⊂ I such that for every v ∈ Pb
we have

min
t∈I0

(L−1v)(t) ≥M
∥∥L−1v

∥∥
∞ .

Property (L4) is called a weak Harnack type inequality for the operator L and it is usually
required when looking for positive solutions, see [120].

Remark 6.1.1. It is well–known that a wide class of boundary value problems can be reduced
to integral equations involving operators of the form

L−1h(t) =

∫ 1

0

G(t, s)h(s) ds,

where G is the Green’s function associated to the boundary value problem. In this case, if
G is a nonnegative function and there exist M > 0, a closed interval I0 ⊂ I and a function
Φ ∈ L∞(I) such that Φ > 0 on (0, 1) and

G(t, s) ≤ Φ(s) for all t, s ∈ I,
M Φ(s) ≤ G(t, s) for all t ∈ I0, s ∈ I,

then conditions (L3) and (L4) hold, see e.g. [43, 142] and the problems studied in Chapter
5.
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In other many cases, the operator L−1 can be split under the form L−1 = AB with two
operators A and B as required by condition (L1). In particular, it happens if there exists
the square root of L−1, i.e., an operator A with L−1 = A2. Such operators arise from some
boundary value problems related to higher order differential equations. An example of this is
given in [142].

When the operator L−1 exists, looking for positive solutions to problem (6.0.1) reduces to
find a nonnegative function u ∈ C (I) such that Nf (u) ∈ Pb and u = L−1Nf (u), where Nf
is the Nemytskii operator (Nfu)(t) = f(t, u(t)). Since f is not a continuous function, the
fixed point operator L−1Nf is not continuous in general and then most fixed point theorems
cannot be applied to it. In order to overcome this difficulty it is usual in the literature, see
e.g. [45, 68, 84] , to transform problem (6.0.1) into an inclusion{

Lu ∈ Kf(t, u) a.e. on I,
u ∈ B, (6.1.1)

where Kf : I × R+ → P (R+) is a regularization of the function f , often defined as

Kf(t, x) =
⋂
ε>0

cof
(
t, Bε(x) ∩ R+

)
, (6.1.2)

with Bε(x) := [x− ε, x+ ε]. It is useful to recall that

Kf(t, x) =

[
min

{
f(t, x), lim inf

y→x
f(t, y)

}
, max

{
f(t, x), lim sup

y→x
f(t, y)

}]
, (6.1.3)

so Kf(t, x) = {f(t, x)} provided that the function f(t, ·) is continuous at x, see [8].
Thus, as in case of problem (6.0.1), in order to solve (6.1.1), it suffices to consider the

inclusion operator u ∈ L−1NF (u), where

NF (u) = {v ∈ L1(I) : v(t) ∈ Kf(t, u(t)) for a.a. t ∈ I}. (6.1.4)

Nevertheless, standard fixed point theorems for multivalued maps may not be applied to the
operator L−1NF . This is because L−1 is in general nonlinear, and so the values of L−1NF
can be non–convex, even ifNF assumes convex values. To overcome this difficulty, following
the ideas in [117], we consider the fixed point operator T : PC×PCb → PC×P(PC) defined
as

T(u, v) = (Av, BNF (u)) , (6.1.5)

associated to the noncontinuous operator T : PC × PCb → PC × PC given by

T (u, v) = (Av, BNf (u)) , (6.1.6)

and where A and B are given by condition (L1).

Lemma 6.1.2. Assume that the function f : I×R+ → R+ satisfies the following hypotheses:

(h1) The composed function f(·, u(·)) is measurable for every u ∈ C(I);

154



6.1 Positive solutions for differential problems involving nonlinear operators

(h2) f(t, u) < b on I × R+, and if b = ∞, there exist c1, c2 ∈ R+ and p ≥ 1 such that
f(t, u) ≤ c1up + c2 for a.a. t ∈ I and all u ∈ R+.

Then the Nemytskii operator NF : PC → P(P ) defined as in (6.1.4) is an upper semicon-
tinuous map from the topology of C(I) to that of L1(I).

Proof. The mapping Kf(t, ·) is upper semicontinuous for a.a. t ∈ I , see [8] or [45]. Then,
according to [39, Theorem 1.1], the Nemytskii operator NF is upper semicontinuous from
the topology of C(I) to that of L1(I).

Our aim is to guarantee the existence of fixed points for the operator T and then to show
that they are fixed points for T or, equivalently, solutions to the problem (6.0.1). In order to
do that, we assume that the operator L also satisfies the following condition:

(L5) If u, γ ∈ D(L) and u(t) = γ(t) on J ⊂ I , then Lu(t) = Lγ(t) for a.a. t ∈ J .

Remark 6.1.3. Observe that property (L5) is satisfied by differential operators, since u(t) =
γ(t) on J ⊂ I implies that u′(t) = γ′(t) for a.a. t ∈ J , see Lemma 3.1.5.

Let us introduce some notations. For 0 < r < R < b and ε > 0 small enough in order to
ensure that M

∥∥L−1(rχ
I0

)
∥∥
∞ − ε > 0, we let

fr,ε := inf{f(t, y) : t ∈ I0, M
∥∥L−1(rχ

I0
)
∥∥
∞ − ε ≤ y ≤

∥∥L−1R
∥∥
∞ + ε}, (6.1.7)

fRε := sup{f(t, y) : t ∈ I, 0 ≤ y ≤
∥∥L−1R

∥∥
∞ + ε}, (6.1.8)

where M and I0 are given by condition (L4) and χ denotes the characteristic function.

Theorem 6.1.4. Suppose that the operator L fulfills conditions (L1)–(L5). Assume that the
function f : I × R+ → R+ satisfies the assumptions (h1), (h2) and

(h3) There is a countable number of functions γn ∈ D(L), (n ∈ N), and a countable
number of subintervals In of I such that

{Lγn(t)} ∩ Kf(t, γn(t)) ⊂ {f(t, γn(t))} for a.a. t ∈ In, all n ∈ N (6.1.9)

and
f(t, ·) is continuous on R+ \

⋃
{n: t∈In}

{γn(t)} for a.a. t ∈ I.

Moreover, assume that there exist 0 < r < R < b and ε > 0 such that

fr,ε ≥ r and fRε ≤ R.

Then problem (6.0.1) has at least one positive solution u such that

L−1(rχ
I0

) ≤ u ≤ L−1R.
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Proof. Consider the sets

D0
2 = {Bw : w ∈ P, w(t) ≥ r for a.a. t ∈ I0, ‖w‖∞ ≤ R},

D2 = D0
2,

D1 = co{Av : v ∈ D0
2},

where the closures are taken in C (I). Since R < b, condition (L1) (a) implies D2 ⊂ PCb .
Moreover, both D1 and D2 are convex sets. Now, assumption (L1) guarantees that D2 is
compact in C (I) and, since A is continuous and maps bounded sets into bounded sets, D1 is
also compact.

Consider the operator T : D1 × D2 → PC × P(PC) defined as in (6.1.5). It is upper
semicontinuous with respect to the product topology C (I)×C (I) , sinceA is a single–valued
operator, continuous from C (I) to C (I) , NF is upper semicontinuous from C(I) to L1(I)
and B is continuous from L1(I) to C(I). Therefore, to apply Bohnenblust–Karlin’s fixed
point theorem, see Theorem A.14, it only remains to show that

T(D1 ×D2) ⊂ D1 ×D2.

It is clear that v ∈ D2 implies Av ∈ D1. Let us show that BNF (u) ∈ D2 for every
u ∈ D1. First, suppose that u = Av for some v ∈ D0

2 . Let v = Bw where w ∈ P and
rχ

I0
� w � R. Since A and B preserve the ordering, we first have B(rχ

I0
) � Bw � BR

and then AB(rχ
I0

) � AB(w) � AB(R). Observing that ABw = u and AB = L−1, one
has

L−1(rχ
I0

) � u � L−1R.

Clearly,
u(t) ≤ (L−1R)(t) ≤

∥∥L−1R
∥∥
∞ . (6.1.10)

Moreover, using condition (L4), for t ∈ I0 we obtain

u(t) ≥ L−1(rχ
I0

)(t) ≥M
∥∥L−1(rχ

I0
)
∥∥
∞ . (6.1.11)

Therefore, for τ ∈ [u(t)− ε, u(t) + ε] ∩ R+ we have that

τ ∈ [M
∥∥L−1(rχ

I0
)
∥∥
∞ − ε,

∥∥L−1R
∥∥
∞ + ε] ∩ R+,

and it follows that
f(t, τ) ≤ fRε ≤ R for a.a. t ∈ I,

and
r ≤ fr,ε ≤ f(t, τ) for a.a. t ∈ I0.

Hence, for any y ∈ NF (u) we have ‖y‖∞ ≤ R and y(t) ≥ r for t ∈ I0 and so, By ∈ D2.
Thus, BNF (u) ⊂ D2. Now, suppose that u ∈ co{Av : v ∈ D0

2}, that is, there exist vi ∈ D0
2

and λi ∈ [0, 1] (i = 1, . . . ,m) such that
∑m
i=1 λi = 1 and u =

∑m
i=1 λiAvi. The functions

ui := Avi are as in the previous case, so they satisfy (6.1.10) and (6.1.11). Then

u(t) =
∑

λiui(t) ≤
∥∥L−1R

∥∥
∞ for t ∈ I, (6.1.12)
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and
u(t) =

∑
λiui(t) ≥M

∥∥L−1(rχ
I0

)
∥∥
∞ for t ∈ I0, (6.1.13)

so the conclusion that BNF (u) ⊂ D2 follows in a similar way. Finally, if

u ∈ D1 = co{Av : v ∈ D0
2},

then it is the limit of a sequence of functions satisfying (6.1.12) and (6.1.13) and, as a limit,
it also satisfies the inequalities (6.1.12) and (6.1.13). Hence, for every u ∈ D1 one has
BNF (u) ⊂ D2.

Therefore, the operator T has a fixed point inD1×D2 as a consequence of Bohnenblust–
Karlin’s fixed point theorem. Let us prove now that

Fix(T) ⊂ Fix(T )

where T is the operator given in (6.1.6).
For (u, v) ∈ Fix(T), we define

Jn := {t ∈ In : u(t) = γn(t)}, n ∈ N.

By property (L5), Lu(t) = Lγn(t) for a.a. t ∈ Jn. Hence,

Lγn(t) ∈ Kf(t, u(t)) = Kf(t, γn(t)) for a.a. t ∈ Jn,

which implies that Lγn(t) = f(t, u(t)) for a.a. t ∈ Jn, by condition (6.1.9). Therefore,
Lu(t) = f(t, u(t)) for a.a. t ∈ J =

⋃
n∈N Jn. Since Kf(t, u(t)) = {f(t, u(t))} for

t ∈ I \ J , then Lu(t) = f(t, u(t)) for a.a. t ∈ I and, thus, (u, v) ∈ Fix(T ).
In conclusion, the operator T has a fixed point (u, v) ∈ D1 × D2, that is, Av = u and

BNf (u) = v. Consequently, u = ABNf (u), i.e., u = L−1Nf (u), and so u is a positive
solution for problem (6.0.1).

Remark 6.1.5. For the autonomous case f(t, u) = f(u), if f is a nondecreasing function on
R+, then we have that

fr,ε = f(M
∥∥L−1(rχ

I0
)
∥∥
∞ − ε) and fRε = f(

∥∥L−1R
∥∥
∞ + ε).

Remark 6.1.6. We emphasize that condition (h3) does not mean that the set of all dis-
continuity points of f(t, ·) is equal to

⋃
{n: t∈In}{γn(t)}, but only that it is contained in⋃

{n: t∈In}{γn(t)}. Therefore, the set of discontinuity points of f(t, ·) needs not be the same
for all values of t (the value of the function γn changes with t), but for each t ∈ I , it is at
most countable.

We allow the function f to be discontinuous over the graphs of a countable number of
curves satisfying the “transversality” condition (6.1.9). It is clear that such a condition is
necessary, otherwise the existence result is not guaranteed, see Example 6.2.6.

Remark 6.1.7. Condition (6.1.9) was inspired by the following one:

Kf(t, x) ∩DKn(t, x)(1) ⊂ {f(t, x)} for x ∈ Kn(t), (6.1.14)

157



Positive solutions for general problems

where Kn : I → P(Rn) and DKn(t, x) denotes the contingent derivative of Kn at the
point (t, x), see [8, 45]. Notice that if Kn(t) = {γn(t)} for some γn : I → Rn and γn is
differentiable, then DKn(t, γn(t))(1) = {γ′n(t)} and so condition (6.1.14) can be written as

Kf(t, γn(t)) ∩ {γ′n(t)} ⊂ {f(t, γn(t))}.

Condition (6.1.14) was presented in [45] in the study of first–order initial discontinuous sys-
tems and it was also applied in [59] to first–order scalar functional boundary value problems.
Our condition (6.1.9) is also related to the admissible discontinuity curves defined in the pre-
vious chapters, as shown by Remark 6.2.5.

6.2 Positive solutions for the Dirichlet–Neumann problem
involving the φ–Laplacian

We illustrate the applicability of the general theory from Section 6.1 to the existence of posi-
tive solutions for the differential problem{

[Lu](t) := −(φ(u′))′(t) = f(t, u(t)) a.e. on I := [0, 1],
u′(0) = u(1) = 0,

(6.2.1)

where φ : (−a, a) → (−b, b) is an increasing homeomorphism such that φ(0) = 0, 0 <
a, b ≤ ∞, and the function f : I × R+ → R+ may have discontinuities.

By a positive solution of problem (6.2.1) we mean a function u ∈ C1(I), u ≥ 0, u 6≡ 0,
with u′(0) = u(1) = 0, such that u′(t) ∈ (−a, a) for all t ∈ I , φ ◦ u′ ∈ W 1,1(I) and
−(φ(u′))′(t) = f(t, u(t)) for a.a. t ∈ I .

In this case, D (L) is the set of all functions u ∈ C1(I) such that u′(t) ∈ (−a, a) for all
t ∈ I and φ ◦ u′ ∈ W 1,1(I). On the other hand, B is the set of functions u ∈ C1(I) with
u′(0) = u(1) = 0. It is easy to check that operator L satisfies assumptions (L1)–(L3) and
(L5). In particular, L is invertible in Pb and

L−1v(t) = −
∫ 1

t

φ−1

(
−
∫ s

0

v(τ) dτ

)
ds, t ∈ I, v ∈ Pb. (6.2.2)

Moreover, L−1 = A ◦B with

Bw(t) =

∫ t

0

w(τ) dτ

and

Av(t) = −
∫ 1

t

φ−1 (−v(s)) ds.

Finally, condition (L4) holds according to the following result from [80, 83].

Proposition 6.2.1. For each c ∈ (0, 1) and any u ∈ D (L) ∩ B with u ≥ 0 in I and Lu ≥ 0
a.e. in I , we have that

u(t) ≥M ‖u‖∞ for all t ∈ [0, c],

where M = 1− c.
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As a direct consequence of Theorem 6.1.4, we obtain the following result concerning
problem (6.2.1). From now on, the value c ∈ (0, 1) is fixed.

Theorem 6.2.2. Assume that the function f : I ×R+ → R+ satisfies the following hypothe-
ses:

(H1) The composed function f(·, u(·)) is measurable for every u ∈ C(I);

(H2) f(t, u) < b on I × R+, and if b = ∞, there exist c1, c2 ∈ R+ and p ≥ 1 such that
f(t, u) ≤ c1up + c2 for a.a. t ∈ I and all u ∈ R+.

(H3) There is a countable number of functions γn ∈ C1(I), (n ∈ N), with φ◦γ′n ∈W 1,1(I),
and a countable number of closed subintervals In of I such that

{−(φ(γ′n))′(t)}∩Kf(t, γn(t)) ⊂ {f(t, γn(t))} for a.a. t ∈ In, all n ∈ N (6.2.3)

and
f(t, ·) is continuous on R+ \

⋃
{n: t∈In}

{γn(t)} for a.a. t ∈ I.

Moreover, assume that there exist 0 < r < R < b and ε > 0 such that

fr,ε ≥ r and fRε ≤ R. (6.2.4)

Then problem (6.2.1) has at least one positive solution such that

L−1(rχ[0,c]) ≤ u ≤ L−1R.

Remark 6.2.3. In the conditions of this theorem, the interval [0, c] plays the role of I0 in
(6.1.7)–(6.1.8).

Remark 6.2.4. Analogous results to Theorem 6.2.2 can be derived from Theorem 6.1.4 for
some other boundary value problems with φ–Laplacian for which Harnack–type inequalities
are known and the split of the solution operator L−1 as in (L1) holds, see [80–82].

Remark 6.2.5. Assumption (6.2.3) is satisfied if either of the following conditions holds:

(1) −(φ(γ′n))′(t) = f(t, γn(t)) for a.a. t ∈ In;

(2) {−(φ(γ′n))′(t)} 6∈ Kf(t, γn(t)) for a.a. t ∈ In.

Alternative (1) means that the curve γn solves the differential equation in the interval
In, so it is usually said to be viable. On the other hand, for a curve γn as in case (2),
−(φ(γ′n))′(t) cannot coincide neither with f(t, γn(t)) nor with any limit of f when the vari-
ables tend to (t, γn(t)). In this case, we say that γn is an inviable curve. Let us point out the
following sufficient condition for a curve γ : I → R to be inviable on some closed subinterval
Ĩ ⊂ I: there exist δ, ε > 0 such that

− (φ(γ′))′(t) + δ ≤ f(t, y) for a.a. t ∈ Ĩ and all y ∈ [γ(t)− ε, γ(t) + ε] , (6.2.5)

or

− (φ(γ′))′(t)− δ ≥ f(t, y) for a.a. t ∈ Ĩ and all y ∈ [γ(t)− ε, γ(t) + ε] . (6.2.6)
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The existence of solutions is not guaranteed if the function f is discontinuous over a
single curve γ and condition (6.2.3) fails, as shown by the following example.

Example 6.2.6. Consider the problem −(|u′|p−2
u′)′ = f(t, u), u′(0) = u(1) = 0, where

p > 1 and

f(t, u) =


1, if u ≥

(
p−1
p

)
2

1
p−1

(
1− t

p
p−1

)
,

3, if u <
(
p−1
p

)
2

1
p−1

(
1− t

p
p−1

)
.

Here, the discontinuity curve is

γ(t) =

(
p− 1

p

)
2

1
p−1

(
1− t

p
p−1

)
for all t ∈ I,

and it satisfies that −(|γ′|p−2
γ′)′(t) = 2, but Kf(t, γ(t)) = [1, 3] for all t ∈ I , so

{−(|γ′|p−2
γ′)′(t)} ∩ Kf(t, γ(t)) = {2} 6⊂ {f(t, γ(t))}.

Notice that γ is not a solution to the problem.
In fact it has no solutions on the interval I = [0, 1]. Indeed, suppose that u is a solution

to the problem such that u(0) > (p− 1) 21/(p−1)/p. Then there exists t0 > 0 such that
−(|u′|p−2

u′)′(t) = 1 for a.a. t ∈ [0, t0]. Hence, u′(t) = −t1/(p−1) for all t ∈ [0, t0], which
implies that u′(t) ≥ −(2t)1/(p−1) = γ′(t) and thus u ≥ γ on I . By integration we obtain
that u(t) = −(p − 1)tp/(p−1)/p + k for some k > 1 and so u(1) > 0. Therefore, u is not
a solution to the problem. In a similar way we can prove that there is no solutions such that
u(0) ≤ (p− 1) 21/(p−1)/p.

If no time–dependent discontinuities are considered (which is the case for autonomous
equations) or, equivalently, we assume the discontinuity functions γn in Theorem 6.2.2 are
constants, then we get the following result.

Corollary 6.2.7. Assume that the function f : I × R+ → R+ satisfies hypotheses (H1),
(H2) and

(H∗3 ) There exists a sequence of numbers xn ∈ R+, (n ∈ N), such that

{0} ∩ Kf(t, xn) ⊂ {f(t, xn)} (6.2.7)

and
f(t, ·) is continuous on R+ \

⋃
n∈N
{xn}

for a.a. t ∈ I .

Moreover, assume that there exist 0 < r < R < b and ε > 0 satisfying condition (6.2.4).
Then problem (6.2.1) has at least one positive solution such that

L−1(rχ[0,c]) ≤ u ≤ L−1R.
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In this context, Corollary 6.2.7 can be improved in order to allow an uncountable number
of discontinuities with respect to the spatial variable.

Theorem 6.2.8. Assume that the function f : I×R+ → R+ satisfies hypotheses (H1), (H2)
and

(H∗∗3 ) There is a set A ⊂ R+ of null Lebesgue measure such that

{0} ∩ Kf(t, x) ⊂ {f(t, x)} for all x ∈ A (6.2.8)

and
f(t, ·) is continuous on R+ \A

for a.a. t ∈ I .

Moreover, assume that there exist 0 < r < R < b and ε > 0 satisfying (6.2.4).
Then problem (6.2.1) has at least one positive solution such that

L−1(rχ[0,c]) ≤ u ≤ L−1R.

Proof. It is clear, as a consequence of Theorems 6.1.4 and 6.2.2, that the multivalued operator
T defined in (6.1.5), where L−1 is the integral operator given in (6.2.2), has a fixed point.
Hence, it only remains to verify that Fix(T) ⊂ Fix(T ).

For (u, v) ∈ Fix(T), we define J := {t ∈ I : u(t) ∈ A}. By Lemma 3.1.5, u′(t) = 0
for a.a. t ∈ J and thus −(φ(u′))′(t) = 0 for a.a. t ∈ J . Hence, 0 ∈ Kf(t, u(t)) for a.a.
t ∈ J what implies that 0 = f(t, u(t)) for a.a. t ∈ J , by condition (6.2.8). Therefore,
−(φ(u′))′(t) = f(t, u(t)) for a.a. t ∈ J . Since Kf(t, u(t)) = {f(t, u(t))} for t ∈ I \ J ,
then −(φ(u′))′(t) = f(t, u(t)) for a.a. t ∈ I and, thus, (u, v) ∈ Fix(T ).

Notice that some examples of functions with an uncountable null measure set of discon-
tinuity points are known, see e.g. Proposition 3.2.15 and [21, Example 3.2].

Remark 6.2.9. We note that condition (6.2.8) is simply equivalent, in virtue of (6.1.3), to the
following one:

lim inf
y→x

f(t, y) = 0 implies f(t, x) = 0.

Hence, it is trivially satisfied if inft∈I,x∈R+
{f(t, x)} > 0.

Remark 6.2.10. Condition (H∗∗3 ) is similar to that employed recently by Bonanno and col-
laborators in the study of the existence and multiplicity of solutions for Sturm–Liouville equa-
tions, see [18,19] and the references therein. Their approach is based on critical point theory
for non–differentiable functions. Nevertheless, no time–dependent discontinuity sets are con-
sidered in their results.

The definitions of fr,ε and fRε make condition (6.2.4) difficult to be applied in concrete
problems since they are given in terms of the operator L−1. However, for the cases b =∞ or
a =∞ we are able to give some sufficient conditions which are easier to check.
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Theorem 6.2.11. Assume that φ : (−a, a) → R is an increasing homeomorphism such that
φ(−τ) = −φ(τ) for all τ ∈ (−a, a), φ is a convex function on (0, a), 0 < a ≤ ∞ and there
exists τ0 ∈ (0, a) such that φ(τ) ≤ τ for all τ ∈ [0, τ0].

Then condition (6.2.4) holds if there exist 0 < r < R and ε > 0 such that r ≤ τ0/c and

inf{f(t, y) : t ∈ [0, c], rc̃ ≤ y ≤ φ−1(R) + ε} ≥ r, (6.2.9)

sup{f(t, y) : t ∈ [0, 1], 0 ≤ y ≤ φ−1(R) + ε} ≤ R, (6.2.10)

where c̃ > 0 is a fixed number such that c̃ < c(2− c)(1− c)/2.
In particular, if f(t, u) = f(u) and f is a nondecreasing map, then the following asymp-

totic conditions guarantee that (6.2.4) is satisfied:

lim inf
y→a

f(y)

φ(y)
< 1 and lim sup

y→0

f(y)

y
>

1

c̃
.

Proof. Let us show that if there exist 0 < r < R and ε > 0 small enough such that r ≤ τ0/c
and (6.2.9) and (6.2.10) hold, then

fr,ε := inf{f(t, y) : t ∈ [0, c], (1− c)
∥∥L−1(rχ[0,c])

∥∥
∞ − ε ≤ y ≤

∥∥L−1R
∥∥
∞ + ε} ≥ r,

fRε := sup{f(t, y) : t ∈ [0, 1], 0 ≤ y ≤
∥∥L−1R

∥∥
∞ + ε} ≤ R,

where L−1 is the operator defined in (6.2.2).
Let us compute the values of

∥∥L−1(rχ[0,c])
∥∥
∞ and

∥∥L−1R
∥∥
∞. Since φ is assumed to be

an odd function, we have

(L−1R)(t) =

∫ 1

t

φ−1

(∫ s

0

Rdτ

)
ds =

∫ 1

t

φ−1 (Rs) ds,

so ∥∥L−1R
∥∥
∞ = (L−1R)(0) =

∫ 1

0

φ−1(Rs) ds ≤
∫ 1

0

φ−1(R) ds = φ−1(R).

On the other hand, we have

L−1(rχ[0,c])(t) =

∫ 1

t

φ−1

(
r

∫ s

0

χ[0,c] dτ

)
ds.

Hence, since φ−1 is an increasing function,

∥∥L−1(rχ[0,c])
∥∥
∞ =

∫ 1

0

φ−1

(
r

∫ s

0

χ[0,c] dτ

)
ds =

∫ c

0

φ−1(rs) ds+

∫ 1

c

φ−1(rc) ds,

and thus the facts that φ−1(τ) ≥ τ for all τ ∈ [0, τ0] and rc ≤ τ0 imply that

∥∥L−1(rχ[0,c])
∥∥
∞ ≥

∫ c

0

rs ds+

∫ 1

c

rc ds = r
c2

2
+ (1− c)rc = r

c(2− c)
2

.
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Notice that for a fixed c̃ < c(2 − c)(1 − c)/2 it is possible to choose ε > 0 small enough in
order to guarantee that

c̃r ≤ rc(2− c)(1− c)/2− ε ≤ (1− c)
∥∥L−1(rχ[0,c])

∥∥
∞ − ε

and then

fr,ε ≥ inf{f(t, y) : t ∈ [0, c], rc̃ ≤ y ≤ φ−1(R) + ε},
fRε ≤ sup{f(t, y) : t ∈ [0, 1], 0 ≤ y ≤ φ−1(R) + ε},

so the conclusion is obtained.

Remark 6.2.12. Note that it is not a restriction to assume, in Theorem 6.2.11, that there
exists τ0 ∈ (0, a) such that φ(τ) ≤ τ for all τ ∈ [0, τ0]. Indeed, because of being φ odd and
convex in (0, a), for any τ0 ∈ (0, a) there exists a constant m > 0 such that φ(τ) ≤ mτ for
all τ ∈ [0, τ0]. Then problem (6.2.1) is equivalent to the following one:{

−(φ̃(u′))′(t) = f̃(t, u(t)) a.e. on I,
u′(0) = u(1) = 0,

where φ̃(τ) = m−1φ(τ) for all τ ∈ (−a, a) and f̃(t, u) = m−1f(t, u) for all t ∈ I
and u ∈ R+. It is clear that φ̃(τ) ≤ τ for all τ ∈ [0, τ0]. Of course, in this case, the
estimates from above on f are different, and then in condition (6.2.9) it is necessary to take
c̃ < c(2− c)(1− c)/2m.

Now we are able to give the proof of Theorem 6.0.1, which we recall again now.

Theorem 6.2.13. Let f : R+ → R+ be an almost everywhere continuous function such that

(i) f(u(·)) is measurable whenever u ∈ C(I);

(ii) there exist c1, c2 ∈ R+ and p ≥ 1 such that f(x) ≤ c1xp + c2 for all x ∈ R+;

(iii) lim infy→x f(y) = 0 implies f(x) = 0 for every x ∈ R+.

Assume that there exists 0 < r < 2
√

3 such that

r ≤ inf{f(y) : r/16 ≤ y ≤ 1}.

Then problem  −
(

u′√
1− u′2

)′
= f(u) a.e. on [0, 1],

u′(0) = u(1) = 0,

has at least one positive solution such that ‖u‖∞ ≥ 3r/16.

Proof. It is clear that f : R+ → R+ satisfies conditions (H1) and (H2) in Theorem 6.2.8.
By Remark 6.2.9, it also fulfills condition (H∗∗3 ). Hence it only remains to see that there
exist 0 < r < R and ε > 0 satisfying (6.2.4). In order to do that, we take into account
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Theorem 6.2.11 and Remark 6.2.12. Since φ−1(τ) = τ/
√

1 + τ2 is bounded and f is a
locally bounded function, condition (6.2.10) is satisfied for R > 0 big enough. On the other
hand, the homeomorphism φ(τ) = τ/

√
1− τ2 satisfies φ(τ) ≤ 2τ for all τ ∈ [0,

√
3/2].

Hence, if we choose c = 1/2 and then c̃ = 1/16, the conclusion is obtained since∥∥L−1(rχ[0,c])
∥∥
∞ ≥ r

c(2− c)
2m

=
3

16
r.

Now we present an analogous result to Theorem 6.2.11 concerning the case a =∞.

Theorem 6.2.14. Assume that φ : R → (−b, b) (0 < b ≤ ∞) is an increasing homeomor-
phism such that φ(−τ) = −φ(τ) for all τ ∈ R, φ is a concave function on R+ and φ(τ) ≤ τ
for all τ ∈ R+.

Then condition (6.2.4) holds if there exist 0 < r < R < b and ε > 0 satisfying (6.2.9)
and (6.2.10).

Proof. Reasoning as in Theorem 6.2.11, it is easy to see that∥∥L−1R
∥∥
∞ ≤ φ

−1(R) and
∥∥L−1(rχ[0,c])

∥∥
∞ ≥

rc(2− c)
2

,

since τ ≤ φ−1(τ) for all τ ∈ R+.

Remark 6.2.15. Observe that it is enough to assume in Theorem 6.2.14 that there exists
m > 0 such that φ(τ) ≤ mτ for all τ ∈ R+ and then follow the explanation in Remark
6.2.12.

Remark 6.2.16. Theorems 6.2.11 and 6.2.14 also provide a localization result for the solu-
tion established by Theorem 6.2.2, with bounds which are not given in terms of L−1. Indeed,
the solution u satisfies

rc(2− c)
2

≤
∥∥L−1(rχ[0,c])

∥∥
∞ ≤ ‖u‖∞ ≤

∥∥L−1R
∥∥
∞ ≤ φ

−1(R).

The previous results allow us to obtain multiple solutions whenever there exist several
couples of numbers rn, Rn satisfying

rn < Rn, rn ≤
τ0
c

(τ0 =∞ if b <∞) and φ−1(Rn+1) < rn
c(2− c)

2
.

In particular, we state the following result concerning the existence of infinitely many solu-
tions for problem (6.2.1).

Theorem 6.2.17. Assume that the hypotheses of Theorems 6.2.11 or 6.2.14 are satisfied and
that f = f(u) is a nondecreasing function satisfying (H1), (H2) and (H∗∗3 ). If, in addition,

lim inf
y→0

f(y)

φ(y)
< 1 and lim sup

y→0

f(y)

y
>

1

c̃
,

then problem (6.2.1) has a sequence of positive solutions (un)n≥1 which moreover satisfy
‖un‖∞ → 0 as n→∞.
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Proof. The asymptotic behavior of f near 0 guarantees the existence of two decreasing
sequences of numbers (rn)n≥1 and (Rn)n≥1 such that

0 < rn < Rn and φ−1(Rn+1) < rn
c(2− c)

2
for every n ≥ 1, and Rn → 0 as n→∞,

and they satisfy conditions (6.2.9) and (6.2.10) replacing r and R by rn and Rn, respectively.
Therefore, for each n ≥ 1, there exists a positive solution un such that

rn
c(2− c)

2
≤ ‖un‖∞ ≤ φ

−1(Rn).

Since φ−1(Rn)→ 0 as n→∞, we have ‖un‖∞ → 0 as n→∞.

To finish this section, we illustrate our existence results with two examples.

Example 6.2.18. Consider the problem −
(

u′√
1 + u′2

)′
=
√
ue−u +

1

2
H(u− kt2) a.e on I,

u′(0) = u(1) = 0,

(6.2.11)

where k > 0 and H : R→ R is the Heaviside step function given by

H(x) =

{
0, if x < 0,
1, if x ≥ 0.

Notice that the homeomorphism φ : R → (−1, 1) given by φ(τ) = τ/
√

1 + τ2 satisfies the
hypotheses in Theorem 6.2.14 and that f(t, u) < 1. Moreover, for a.a. t ∈ I , the function
u 7→ f(t, u) =

√
ue−u +H(u− kt2)/2 is continuous on R+ \ {kt2}. The curve γ(t) = kt2,

t ∈ I , satisfies that
−(φ(γ′))′(t) ≤ −2k/(1 + 4k2)3/2,

so condition (6.2.5) in Remark 6.2.5 holds since f(t, u) ≥ 0 for a.a. t ∈ I and all u ∈ R+.
On the other hand, if we take c = 1/2 and then c̃ = 1/8, it is easy to check that the function
f satisfies conditions (6.2.9) and (6.2.10) for r = 1/32, R = 19/20 and ε > 0 small enough.
Therefore, Theorem 6.2.2 and Remark 6.2.16 ensure the existence of a positive solution for
problem (6.2.11) such that

3

256
≤ ‖u‖∞ ≤

19
√

39

39
.

Example 6.2.19. Consider the differential problem{
−(u′ |u′|2)′ = (2− cosb1/(u− t+ 1)c) (u+ 1)2 a.e. on I,
u′(0) = u(1) = 0,

(6.2.12)

where bxc denotes the integer part of x. First, observe that the homeomorphism φ : R → R
defined as φ(τ) = τ |τ |2 satisfies φ(τ) ≤ τ for all τ ∈ [0, 1] and φ−1(τ) = |τ |1/3 sgn(τ).
For this example, the discontinuity curves γn are given by

γn(t) = t− 1 +
1

n
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with domain

In =

[
1− 1

n
, 1

]
, n ∈ N.

Clearly, the function u 7→ f(t, u) = (2− cosb1/(u− t+ 1)c) (u + 1)2 is continuous on
R+ \

⋃
{n: t∈In}{γn(t)} for a.a. t ∈ I . Note that −(φ(γ′n))′(t) = 0 for a.a. t ∈ In and

n ∈ N. In addition, f(t, u) ≥ 1 for a.a. t ∈ I and all u ∈ R+, and thus condition (6.2.5)
in Remark 6.2.5 is satisfied. To finish, it is sufficient to choose c = 1/2, c̃ = 1/8, R = 64,
r = 1 and ε > 0 small enough to guarantee that conditions (6.2.9) and (6.2.10) in Theorem
6.2.11 hold. Therefore, Theorem 6.2.2 gives a positive solution for problem (6.2.12) and by
Remark 6.2.16 one has

3

8
≤ ‖u‖∞ ≤ 4.

We underline that this positive solution must cross infinitely many discontinuity curves γn,
since it satisfies the final condition u(1) = 0 and the graphs of γn restricted to In tend to the
point (1, 0) as n goes to infinity, as shown in Figure 6.2.1.

t

u

1

γ1

γ2

γn

Figure 6.2.1: Discontinuity curves γn.

6.3 Positive solutions for the Neumann–Robin problem in-
volving the φ–Laplacian

In this section we establish new existence, localization and multiplicity results of positive
solutions for the problem{

−(φ(u′))′(t) = f(t, u(t)) a.e. on I := [0, 1],
u(0)− αu′(0) = u′(1) = 0,

(6.3.1)

where α ≥ 0 and, as in the previous section, φ : (−a, a) → (−b, b) is an increasing homeo-
morphism such that φ(0) = 0, 0 < a, b ≤ ∞.
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Unlike the previous section where the results are based on the application of Bohnenblust–
Karlin’s fixed point theorem, here they are obtained via a suitable version of Krasnosel’skiı̆’s
compression–expansion fixed point theorem in cones. This allows us to consider a more
general class of nonlinearities.

We say that u is a positive solution to problem (6.3.1) if it is a function u ∈ C1(I), u ≥ 0,
u 6≡ 0, with u(0)− αu′(0) = u′(1) = 0, such that

φ ◦ u′ ∈W 1,1(I) and − (φ(u′))′(t) = f(t, u(t)) for a.a. t ∈ I.

Positive solutions for this problem coincide with fixed points of the integral operator
T : P → P given by

Tu(t) = αφ−1

(∫ 1

0

f(s, u(s)) ds

)
+

∫ t

0

φ−1

(∫ 1

r

f(s, u(s)) ds

)
dr,

where P is the cone of nonnegative functions in the Banach space of the continuous functions
with the maximum norm (C(I), ‖·‖∞).

Since we want to consider discontinuous nonlinearities, we will first study the regularized
problem in the Filippov sense [68], namely, the boundary value problem for a differential
inclusion: {

−(φ(u′))′(t) ∈ Kf(t, u(t)) a.e. on I,
u(0)− αu′(0) = u′(1) = 0,

(6.3.2)

where the multivalued map Kf : I × R+ → P (R+) is defined as in (6.1.2).
As mentioned above, since f is not necessarily continuous, the operator T may be dis-

continuous and the usual compression–expansion type results are not applicable. This is the
motivation to consider the inclusion (6.3.2) and to look for solutions of this problem by means
of the multivalued operator T : P → P(P ) defined as

Tu(t) = αφ−1

(∫ 1

0

Kf(s, u(s)) ds

)
+

∫ t

0

φ−1

(∫ 1

r

Kf(s, u(s)) ds

)
dr.

Unfortunately, the standard generalization of Krasnosel’skiı̆’s fixed point theorem to up-
per semicontinuous multivalued maps with convex values, due to Fitzpatrick and Petryshyn
[69], is not applicable to T. The reason is that the values of the integral operator are not
convex in general, due to the nonlinearity of φ. To overcome this difficulty, we will apply
a compression-expansion fixed point theorem established in [48] for the composition of two
multivalued operators (see Appendix B).

Notice that the operator T can be decomposed as

T = ΨΦ,

where for every v ∈ P,

Ψv(t) = αφ−1(v(0)) +

∫ t

0

φ−1(v(s)) ds, t ∈ I, (6.3.3)

and
Φv(t) = ΛNF v(t), (6.3.4)
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with

Λw(t) =

∫ 1

t

w(s) ds

and NF the Nemytskii operator defined as in (6.1.4).
In order to apply Theorem B.2 we need the following Harnack–type inequality established

in [81, 83] for the case a = ∞. Notice that, with the same proof, the result remains true for
a <∞.

Lemma 6.3.1. Let u ∈ C1(I), u ≥ 0, be such that u(0)− αu′(0) = u′(1) = 0 and φ ◦ u′ is
nonincreasing in I . Then for each c ∈ (0, 1) we have

u(t) ≥M ‖u‖∞ for all t ∈ [c, 1],

where M = (α+ c) / (α+ 1) .

From now on, the value c ∈ (0, 1) is fixed. The essential properties of the operators Φ and
Ψ introduced in (6.3.3)–(6.3.4) are given by the following theorem involving two subcones
of P, namely

K1 = {u ∈ P : u(t) ≥M ‖u‖∞ for all t ∈ [c, 1]} ,
K2 = {u ∈ P : u is nonincreasing, u(1) = 0} .

Theorem 6.3.2. Assume that f : I × R+ −→ R+ satisfies the following conditions:

(H1) The function f(·, u(·)) is measurable for every u ∈ P ;

(H2) f(t, u) < b on I ×R+, and if b =∞, there exist c1, c2 ∈ R+ and p ≥ 1 such that
f(t, u) ≤ c1up + c2 for a.a. t ∈ I and all u ∈ R+.

Then the operators
Φ : K1 → P(K2) and Ψ : K2 → K1

are well–defined. Moreover, Φ is usc with nonempty, closed and convex values and maps
bounded sets into relatively compact sets; and Ψ is a single–valued continuous operator
which maps bounded sets into relatively compact sets.

Proof. Since Φ = ΛNF , it follows from the definition of the operator Λ that Φ(K1) ⊂ K2.
To show that Ψ(K2) ⊂ K1, take any v ∈ K2 and let u := Ψ(v). Clearly, u ∈ P. Also
φ ◦ u′ = v and so φ ◦ u′ is nonincreasing in I . Moreover, u(0) − αu′(0) = u′(1) = 0.
Consequently, by Lemma 6.3.1, u(t) ≥ M ‖u‖∞ for all t ∈ [c, 1]. Hence u ∈ K1, as
desired.

In addition, Λ, as a linear operator from L1 (I) to C (I) is compact, while in view of
Lemma 6.1.2 ,NF is usc from the topology of C(I) to that of L1(I). Thus Φ is usc and maps
bounded sets into relatively compact sets.

Clearly, Φ has convex values. To show that its values are also closed in C (I) , take any
element u ∈ K1 and any sequence vn ∈ Φu with vn → v in C (I). Then vn = Λwn for some
wn ∈ NF (u). From the definition of Kf , we have that NF (u) (t) is uniformly bounded on
I. As a result, the sequence wn is bounded in Lp (I) for any (fixed) p ∈ (1,∞), and so we
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6.3 Positive solutions for φ–Laplacian equations with Neumann–Robin BCs

can assume without loss of generality that wn is weakly convergent in Lp (I) to some w. It
is easy to see that w ∈ NF (u). Then there is a sequence wn of convex combinations of wn
which strongly converges in Lp (I) , and consequently in L1 (I) , to w. From the fact that
vn = Λwn, we deduce that the corresponding sequence vn of convex combinations of vn
converges in C (I) to Λw. But since vn → v, the limit of vn is v. Then v = Λw, where w ∈
NF (u), which proves that v ∈ Φu, as desired.

Finally, the continuity and the compactness of the operator Ψ are standard consequences
of Lebesgue’s dominated convergence theorem and Áscoli–Arzela’s theorem.

Now we are ready to state and prove the main result about the existence and localization
of positive solutions to the problem (6.3.1).

Theorem 6.3.3. Assume that the function f satisfies conditions (H1), (H2) and

(H3) There exists a countable number of functions γn ∈ C1(I), (n ∈ N), with φ ◦ γ′n ∈
W 1,1(I), and a countable number of closed subintervals In of I such that

{−(φ(γ′n))′(t)}∩Kf(t, γn(t)) ⊂ {f(t, γn(t))} for a.a. t ∈ In, all n ∈ N (6.3.5)

and

f(t, ·) is continuous on R+ \
⋃

{n: t∈In}

{γn(t)} for a.a. t ∈ I. (6.3.6)

In addition assume that there exist 0 < r1, r2, r1 6= r2 and ε > 0 such that

αφ−1

(∫ 1

0

Γεr1(s) ds

)
+

∫ 1

0

φ−1

(∫ 1

r

Γεr1(s) ds

)
dr ≤ r1, (6.3.7)

αφ−1

(∫ 1

c

Γr2,ε(s) ds

)
+

∫ 1

c

φ−1

(∫ 1

r

Γr2,ε(s) ds

)
dr ≥ r2, (6.3.8)

where

Γεr1(s) = max
x∈[0, r1+ε]

f(s, x) and Γr2,ε(s) = min
x∈[(r2−ε)M, r2+ε]

f(s, x).

Then problem (6.3.1) has at least one positive solution u such that

min{r1, r2} ≤ ‖u‖∞ ≤ max{r1, r2}. (6.3.9)

Proof. We apply Theorem B.2. By virtue of Theorem 6.3.2, it only remains to prove that the
operator T = ΨΦ satisfies the compression–expansion conditions given in (B.3).

We first show that

‖v‖∞ ≤ r1 for all v ∈ Tu and all u ∈ K1 with ‖u‖∞ = r1,

which implies that

u 6∈ λTu for all λ ∈ (0, 1) and all u ∈ K1 with ‖u‖∞ = r1.
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Assume on the contrary that there exists v ∈ Tu and u ∈ K1 with ‖u‖∞ = r1 such that
r1 < ‖v‖∞. Notice that for ε > 0, if w ∈ NF (u) and ‖u‖∞ = r1, then we have that
w(s) ≤ maxx∈[0,r1+ε] f(s, x) =: Γεr1(s) for all s ∈ I . Hence, by the fact that v ∈ Tu and
(6.3.7), we obtain that

‖v‖∞ ≤ αφ
−1

(∫ 1

0

Γεr1(s) ds

)
+

∫ 1

0

φ−1

(∫ 1

r

Γεr1(s) ds

)
dr ≤ r1,

which yields the contradiction r1 < r1.
Next we have to show that

r2 ≤ ‖v‖∞ for all v ∈ Tu and all u ∈ K1 with ‖u‖∞ = r2,

which implies that

u 6∈ Tu+ µ for all µ > 0 and all u ∈ K1 with ‖u‖∞ = r2.

Assume on the contrary that there exists v ∈ Tu and u ∈ K1 with ‖u‖∞ = r2 such that
‖v‖∞ < r2. Observe that for ε > 0, if w ∈ NF (u) and‖u‖∞ = r2, then w(s) ≥ Γr2,ε(s)
for all s ∈ [c, 1]. Now, by (6.3.8),

r2 ≤ αφ−1

(∫ 1

c

Γr2,ε(s) ds

)
+

∫ 1

c

φ−1

(∫ 1

r

Γr2,ε(s) ds

)
dr ≤ ‖v‖∞ ,

a contradiction.
Therefore, Theorem B.2 applies and yields the existence of a fixed point u ∈ P for the

operator T satisfying (6.3.9). Then

− (φ(u′))′(t) ∈ Kf(t, u(t)) for a.a. t ∈ I. (6.3.10)

Now we prove that u (in fact, any fixed point of T) solves the former discontinuous
problem (6.3.1). To this aim, define

Jn := {t ∈ In : u(t) = γn(t)} , n ∈ N.

Clearly
−(φ(u′))′(t) = −(φ(γ′n))′(t) for a.a. t ∈ Jn.

Hence, by (6.3.10),

−(φ(γ′n))′(t) ∈ Kf(t, u(t)) = Kf(t, γn(t)) for a.a. t ∈ Jn.

This, based on condition (6.3.5), implies

−(φ(γ′n))′(t) = f(t, γn(t)) for a.a. t ∈ Jn,

equivalently
−(φ(u′))′(t) = f(t, u(t)) for a.a. t ∈ Jn.

Thus u satisfies the discontinuous differential equation a.e. on J =
⋃
n∈N Jn. Finally, from

(6.3.6) one has
Kf(t, u(t)) = {f(t, u(t))} for t ∈ I \ J.

This together with (6.3.10) shows that u also satisfies the discontinuous differential equations
a.e. on I \ J . Therefore u solves (6.3.1) on I .
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6.3 Positive solutions for φ–Laplacian equations with Neumann–Robin BCs

Remark 6.3.4. If the function f is nondecreasing with respect to the second variable, then
conditions (6.3.7) and (6.3.8) can be written as

αφ−1

(∫ 1

0

f(s, r1 + ε) ds

)
+

∫ 1

0

φ−1

(∫ 1

r

f(s, r1 + ε) ds

)
dr ≤ r1,

αφ−1

(∫ 1

c

f(s,M(r2 − ε)) ds
)

+

∫ 1

c

φ−1

(∫ 1

r

f(s,M(r2 − ε)) ds
)
dr ≥ r2,

and they are analogous to those considered in [81] for the case of a continuous nonlinearity.

Remark 6.3.5 (Asymptotic conditions). If the function f is nondecreasing with respect to
the second variable, the existence of two numbers r1 and r2 satisfying (6.3.7) and (6.3.8) is
guaranteed by any one of the following two conditions:

(a)

lim inf
x→0

αφ−1
(∫ 1

0
f(s, x) ds

)
+
∫ 1

0
φ−1

(∫ 1

r
f(s, x) ds

)
dr

x
< 1,

lim sup
x→∞

αφ−1
(∫ 1

c
f(s,Mx) ds

)
+
∫ 1

c
φ−1

(∫ 1

r
f(s,Mx) ds

)
dr

x
> 1;

(b)

lim inf
x→∞

αφ−1
(∫ 1

0
f(s, x) ds

)
+
∫ 1

0
φ−1

(∫ 1

r
f(s, x) ds

)
dr

x
< 1,

lim sup
x→0

αφ−1
(∫ 1

c
f(s,Mx) ds

)
+
∫ 1

c
φ−1

(∫ 1

r
f(s,Mx) ds

)
dr

x
> 1.

Observe that the first case is only possible if a = +∞, otherwise φ−1 is bounded.

We illustrate the applicability of our existence result with an example.

Example 6.3.6. Consider the differential problem involving the curvature operator in Eu-
clidean space −

(
u′√

1 + u′2

)′
= f(t, u) := 3

√
ue−u +

1

2
cos2 (b1/(u+ t)c) a.e. on I,

u(0) = u′(1) = 0,

(6.3.11)

where bxc denotes the integer part of x. Here, φ : R→ (−1, 1) is given by

φ(τ) = τ/
√

1 + τ2 and φ−1(τ) = τ/
√

1− τ2.

First, standard arguments show that condition (H1) holds, and (H2) is trivially satisfied
because f(t, u) < 1 for a.a. t ∈ I and all u ∈ R+.
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On the other hand, condition (H3) holds with

γn = −t+
1

n
and In =

[
0,

1

n

]
, n ∈ N.

Indeed, the function u 7→ f(t, u) is continuous on R+ \
⋃
{n:t∈In}{γn(t)} for a.a. t ∈ I .

Note that
−(φ(γ′n))′(t) = 0 for a.a. t ∈ In and n ∈ N,

so condition (6.2.5) is obviously satisfied for δ, ε > 0 small enough, since cos2 n > 0 for all
n ∈ N.

Finally, if we take c = 1/2, then M = 1/2 and it is easy to verify that conditions (6.3.7)
and (6.3.8) (with α = 0) hold for r1 = 1 and r2 = 1/50, respectively.

Therefore, Theorem 6.3.3 ensures the existence of a positive solution to problem (6.3.11)
such that 1/50 ≤ ‖u‖∞ ≤ 1.

The existence and localization result, Theorem 6.3.3, yields multiplicity results for prob-
lem (6.3.1) when several couples of numbers r1 and r2 satisfying conditions (6.3.7) and
(6.3.8) exist such that the corresponding intervals (r,R) are disjoint.

Taking this into account and using asymptotic conditions, it is possible to derive a mul-
tiplicity result concerning the existence of infinitely many positive solutions for problem
(6.3.1).

Theorem 6.3.7. Assume that the function f satisfies conditions (H1)–(H3) and it is nonde-
creasing with respect to its second variable. If the following asymptotic condition

(c)

lim inf
x→∞

αφ−1
(∫ 1

0
f(s, x) ds

)
+
∫ 1

0
φ−1

(∫ 1

r
f(s, x) ds

)
dr

x
< 1,

lim sup
x→∞

αφ−1
(∫ 1

c
f(s,Mx) ds

)
+
∫ 1

c
φ−1

(∫ 1

r
f(s,Mx) ds

)
dr

x
> 1

holds, then problem (6.3.1) has a sequence of positive solutions (un)n∈N satisfying ‖un‖∞ →
∞ as n→∞.

If the condition

(d)

lim inf
x→0

αφ−1
(∫ 1

0
f(s, x) ds

)
+
∫ 1

0
φ−1

(∫ 1

r
f(s, x) ds

)
dr

x
< 1,

lim sup
x→0

αφ−1
(∫ 1

c
f(s,Mx) ds

)
+
∫ 1

c
φ−1

(∫ 1

r
f(s,Mx) ds

)
dr

x
> 1

holds, then problem (6.3.1) has a sequence of positive solutions (un)n∈N satisfying ‖un‖∞ →
0 as n→∞.
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Proof. Notice that, in view of Remarks 6.3.4 and 6.3.5, condition (c) ensures that there exist
two sequences (r1,n)n∈N and (r2,n)n∈N such that

0 < r1,n < r2,n < r1,n+1 for every n ∈ N, r1,n →∞ as n→∞, (6.3.12)

and for each n ∈ N the numbers r1,n and r2,n satisfy (6.3.7) and (6.3.8). Therefore, for each
n ∈ N Theorem 6.3.3 ensures the existence of a solution un such that

r1,n ≤ ‖un‖∞ ≤ r2,n. (6.3.13)

Now (6.3.12) and (6.3.13) show that the solutions un are distinct being located in disjoint
annular sets and, moreover, ‖un‖∞ →∞ as n→∞.

In a similar way, condition (d) and Theorem 6.3.3 ensure the existence of a sequence of
positive solutions (un)n∈N in the conditions of the statement.

We illustrate Theorem 6.3.7 with two examples where the nonlinearities are discontinuous
perturbations of those in [81, Addendum, Examples 4.2 and 4.3].

Example 6.3.8. Consider the problem{
−u′′ = f(u),
u(0) = u′(1) = 0,

(6.3.14)

with
f(u) := αu+ βbuc+ ρu sin(δ ln(u+ 1)),

and where α, β, ρ and δ are positive constants, and bxc denotes the integer part of x.
Assume that

α ≥ ρ(δ + 1). (6.3.15)

Then, it is easy to verify that f takes nonnegative values and is nondecreasing on R+. On the
other hand, f is continuous in

R+ \
⋃

{n:t∈In}

{γn(t)},

with
γn(t) ≡ n and In = [0, 1] for n ∈ N.

Observe that infu∈[1/2, ∞) f(u) > 0 and thus condition (6.2.5) in Remark 6.2.5 is clearly
satisfied for the functions γn, n ∈ N , and φ(u) = u (a = b = +∞).

Now we compute the limits in condition (c) from Theorem 6.3.7, and we find

lim inf
x→∞

∫ 1

0

∫ 1

r
f(x) dsdr

x
≤ 1

2
(α+ β − ρ),

lim sup
x→∞

∫ 1

c

∫ 1

r
f(cx) dsdr

x
≥ c(1− c)2

2

(
α+

β

2
+ ρ

)
.
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Hence, if we choose c = 1/2, then the following inequalities

α+
β

2
+ ρ > 16 and α+ β − ρ < 2 (6.3.16)

guarantee that condition (c) holds. Therefore, under conditions (6.3.15) and (6.3.16), The-
orem 6.3.7 ensures that problem (6.3.14) has a sequence of positive solutions (un)n∈N with
‖un‖∞ →∞ as n→∞.

For example, conditions (6.3.15) and (6.3.16) hold for the following values of parameters:

α = 8.5, β = 0.5, ρ = 8, δ = 0.05.

In the next example, φ is not the identity function, while the right–hand side is a slight
modification of that from Example 6.3.8.

Example 6.3.9. Consider the problem with p–Laplacian{
−(|u′|p−2

u′)′ = f(u),
u(0) = u′(1) = 0,

(6.3.17)

where p > 1,
f(u) := g(u)p−1,

g(u) = αu+ βbuc+ ρu sin

(
δ ln

1

u

)
for u > 0, g(0) = 0,

and α, β, ρ, δ are positive constants.
Here, φ : R→ R is the homeomorphism given by

φ(x) = |x|p−2
x and φ−1(x) = |x|

1
p−1 sgn(x).

As in the previous example, under assumption (6.3.15), f is nonnegative and nondecreasing
on R+. Moreover, it is discontinuous exactly at the natural numbers, which are admissible
discontinuity points.

If we compute the limits in condition (c) of Theorem 6.3.7, we obtain

lim inf
x→∞

∫ 1

0
φ−1

(∫ 1

r
f(x) ds

)
dr

x
=
p− 1

p
lim inf
x→∞

g(x)

x

≤ p− 1

p
(α+ β − ρ),

lim sup
x→∞

∫ 1

c
φ−1

(∫ 1

r
f(cx) ds

)
dr

x
=
p− 1

p
(1− c)

p
p−1 lim sup

x→∞

g(cx)

x

≥ p− 1

p
(1− c)

p
p−1 c

(
α+

β

2
+ ρ

)
.

Therefore, if we choose c = 1/2, then the following inequalities

α+
β

2
+ ρ >

4p

p− 1
2

1
p−1 and α+ β − ρ < p

p− 1
(6.3.18)
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guarantee that condition (c) holds. Hence, under conditions (6.3.15) and (6.3.18), Theo-
rem 6.3.7 ensures that problem (6.3.17) has a sequence of positive solutions (un)n∈N with
‖un‖∞ →∞ as n→∞.

Moreover, we have

lim inf
x→0

∫ 1

0
φ−1

(∫ 1

r
f(x) ds

)
dr

x
=
p− 1

p
(α− ρ),

lim sup
x→0

∫ 1

c
φ−1

(∫ 1

r
f(cx) ds

)
dr

x
=
p− 1

p
(1− c)

p
p−1 c (α+ ρ) .

If we choose c = 1/2, then the following inequalities

α+ ρ >
4p

p− 1
2

1
p−1 and α− ρ < p

p− 1
(6.3.19)

guarantee that condition (d) holds. Hence, under conditions (6.3.15) and (6.3.19), Theo-
rem 6.3.7 implies that problem (6.3.17) has a sequence of positive solutions (vn)n∈N with
‖vn‖∞ → 0 as n→∞.

Let us remark that both conditions (6.3.18) and (6.3.19) hold if

α+ ρ >
4p

p− 1
2

1
p−1 and α+ β − ρ < p

p− 1
, (6.3.20)

when problem (6.3.17) has two sequences of positive solutions (un)n∈N, (vn)n∈N such that
‖un‖∞ →∞ and ‖vn‖∞ → 0 as n→∞.

Notice that for p ≥ 2 (since 21/(p−1) ≤ 2 and 1 < p/(p − 1) ≤ 2), in order to fulfill
conditions (6.3.20), it suffices that

α+ ρ > 16 and α+ β − ρ ≤ 1.

For example, these inequalities and (6.3.15) are satisfied for the following values of parame-
ters:

α = 8.5, β = 0.25, ρ = 8, δ = 0.05.
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A.
Multivalued mappings

This Appendix is devoted to introduce some definitions and previous results about multi-
valued mappings which are used along the document, see [3, 8, 49, 85]. In particular, we
recall the topological degree for multivalued mappings defined in [40, 69, 109, 139] (see also
[49, 113]), as well as Bohnenblust–Karlin’s fixed point theorem and Fitzpatrick–Petryshyn’s
compression–expansion result, see [69, 144].

Let X and Y be normed spaces and T : X −→ 2Y be a multivalued mapping, that is, Tx
is a subset of Y for every x ∈ X . Let us assume that Tx 6= ∅ for every x ∈ X .

Definition A.1. T is said to be upper semicontinuous at x0 if for any open neighborhood V
of Tx0 there exists an open neighborhood U of x0 such that TU ⊂ V . In addition, T is said
to be upper semicontinuous (usc, for short) if it is upper semicontinuous at every x ∈ X .

The following equivalent statement is useful to check the upper semicontinuity of a mul-
tivalued operator which assumes compact values by means of sequences. Its proof can be
looked up in [3, Theorem 17.20].

Proposition A.2. Let X and Y be normed spaces and T : D ⊂ X −→ 2Y be a multivalued
mapping. The following statements are equivalent:

(i) T is upper semicontinuous at x ∈ D and Tx is compact.

(ii) If xn → x in D, yn ∈ Txn for every n ∈ N with yn → y, then y ∈ Tx.

The graph of T : D −→ 2Y is the subset of pairs (x, y) ∈ D × Y where y ∈ T (x):

Graph(T ) = {(x, y) ∈ D × Y : y ∈ T (x)}.

Proposition A.3. The graph of an usc multivalued map T : D −→ 2Y with compact values
is closed.

A simple consequence of the definition is contained in the following result, see e.g. [3,
Lemma 17.8] or [49, Proposition 24.1].

Proposition A.4. Let K be a compact subset of the normed space X and T : K −→ 2Y be
an usc multivalued mapping such that Tx is compact for every x ∈ K. Then TK is compact.

Moreover, the composition of usc mappings is usc, see [3, Theorem 17.23] or [8, Propo-
sition 1, p. 41].
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Proposition A.5. Given two multivalued maps T : X −→ 2Y and S : Y −→ 2Z , we define
the composition S ◦ T : X −→ 2Z as

(S ◦ T )(x) =
⋃

y∈T (x)

S(y).

If T and S are upper semicontinuous, then S ◦ T is upper semicontinuous.

The topological degree for multivalued mappings is defined for operators of the form
Id − T , where Id denotes the identity function and T is an usc multivalued mapping with
closed convex values. This class of mappings satisfies the following useful property, see [74,
Theorem 28.2].

Theorem A.6. Let U be a subset of a normed space X and T : U −→ 2X be an usc multi-
valued mapping such that T U is relatively compact. Then Id− T is a closed mapping, that
is, for every closed A ⊂ U the set (Id− T )(A) is closed.

The main idea in the definition of the topological degree for multivalued mappings con-
sists in approximating them by single–valued compact mappings for which Leray–Schauder’s
degree is available.

Lemma A.7. LetX and Y be Banach spaces and T : X −→ 2Y an usc multivalued mapping
with closed and convex values. Then for any ε > 0 there exists a continuous mapping fε :
X −→ co(TX) such that for every x ∈ X there exist y ∈ X and z ∈ Ty satisfying

‖x− y‖ < ε, ‖fεx− z‖ < ε.

Lemma A.8. Let X be a real Banach space, Ω ⊂ X a bounded open subset and T :
Ω −→ 2X an usc mapping with closed and convex values. Assume that T Ω is relatively
compact and 0 6∈ (Id− T )(∂ Ω). Then there exists ε0 > 0 such that 0 6∈ (Id− fε)(∂ Ω) for
ε ∈ (0, ε0), where fε is defined as in Lemma A.7.

Based on the previous results, a degree theory is defined for usc multivalued mappings
[40, 139].

Definition A.9. Let X be a real Banach space, Ω ⊂ X a bounded open subset and T :
Ω −→ 2X an usc mapping with closed and convex values. Assume that T Ω is relatively
compact and 0 6∈ (Id− T )(∂ Ω). Then

deg (Id− T,Ω, 0) = lim
ε→0

deg (Id− fε,Ω, 0) ,

where fε is defined as in Lemma A.7.

Observe that deg (Id− fε,Ω, 0) is well–defined as the Leray–Schauder’s degree [49,100]
for any ε ∈ (0, ε0). As usual, we will use the notation

deg (Id− T,Ω) ≡ deg (Id− T,Ω, 0) .

Remark A.10. We have assumed that Ω is bounded, but it is possible to consider unbounded
domains by imposing some compactness condition on T , see [49, 109].
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Now we present the main properties of this topological degree. The interested reader can
find their detailed proofs in [85, p. 459] or [139].

Theorem A.11. Let T be under the hypotheses of Definition A.9. Then the following proper-
ties are satisfied:

1. (Homotopy invariance) Let H : Ω × [0, 1] −→ 2X be an usc mapping with closed
convex values such that H(Ω × [0, 1]) is relatively compact and x 6∈ H(x, t) for all
(x, t) ∈ ∂ Ω× [0, 1]. Let us denote Ht(x) = H(x, t) with x ∈ Ω, t ∈ [0, 1]. Then the
degree deg(Id−Ht,Ω) does not depend on t.

2. (Additivity) Let Ω1 and Ω2 be two disjoint open sets such that Ω1 ∪ Ω2 ⊂ Ω.

If 0 6∈ (Id− T )
(
Ω \ (Ω1 ∪ Ω2)

)
, then

deg (Id− T,Ω) = deg (Id− T,Ω1) + deg (Id− T,Ω2) .

3. (Existence) If deg (Id− T,Ω) 6= 0, then T has a fixed point, i.e., there exists x ∈ Ω
such that x ∈ Tx.

4. (Normalization) deg (Id,Ω) = 1 if, and only if, 0 ∈ Ω.

Remark A.12. The well–known excision property is a particular case of the additivity pro-
perty as stated in Theorem A.11.

The excision property can be stated as follows for an operator T in the conditions of
Definition A.9: if A ⊂ Ω is closed and 0 6∈ (Id− T )(A) ∪ (Id− T )(∂ Ω), then

deg (Id− T,Ω) = deg (Id− T,Ω \A) .

To prove it, take Ω1 = Ω \A, Ω2 = ∅ and then use the additivity property.

The following proposition states the fact that, from degree’s point of view, “only what
happens in the boundary matters”.

Proposition A.13. Let T, S : Ω −→ 2X be under the hypotheses of Definition A.9. If
S(x) = T (x) for all x ∈ ∂ Ω and 0 6∈ (Id− T )(∂ Ω), then

deg (Id− T,Ω) = deg (Id− S,Ω) .

Finally we present two well–known fixed point theorems. The first one is the extension
of Schauder’s fixed point theorem to the class of usc multivalued maps. Its finite dimensional
version is usually called Kakutani’s fixed point theorem [49].

Theorem A.14 (Bohnenblust–Karlin). Let K be a nonempty, compact and convex subset of
a Banach spaceX . Let T : K −→ 2K be an usc multivalued mapping with nonempty, closed
and convex values. Then T has a fixed point.

The second result is the version of Fitzpatrick–Petryshyn’s compression–expansion fixed
point theorem in Banach spaces [69, Theorem 3.2].
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Theorem A.15. LetX be a Banach space with a coneK ⊂ X . Let r1, r2 ∈ (0,∞), r1 6= r2,
r = max{r1, r2} and T : Br(0) ∩ K −→ 2K be an usc mapping with nonempty, closed
and convex values such that T (Br(0) ∩K) is relatively compact. Moreover, assume that T
satisfies:

(a) there is some h ∈ K \ {0} such that x 6∈ Tx + µh for any µ > 0 and x ∈ K with
‖x‖ = r1;

(b) λx 6∈ Tx for any λ > 1 and x ∈ K with ‖x‖ = r2.

Then T has a fixed point x0 with

min{r1, r2} ≤ ‖x0‖ ≤ max{r1, r2}.
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B.
Fixed point theorems for decomposable mappings

In [48, 117], an existence theory for the inclusion operator

x ∈ ΨΦx, (B.1)

where Ψ and Φ are two single or multivalued operators, was developed.
As explained in [117], several difficulties appear when Φ is multivalued and we try to ap-

ply the usual fixed point theorems for multivalued mappings (namely, Bohnenblust–Karlin’s
theorem and Fitzpatrick–Petryshyn’s compression–expansion result) to F = ΨΦ. For ins-
tance, even if the values of Φ are convex and Ψ is nonlinear single–valued, the values of
F = ΨΦ may not be convex. The main idea in [117] to overcome this difficulty consists in
considering the map

Π(x, y) = Ψy × Φx

which assumes convex values in the product space.
Notice that if (x, y) is a fixed point of Π, then x is a fixed point of F = ΨΦ.
Let X be a normed linear space and let us introduce the following notation:

Pfc(X) = {A ⊂ X : A is nonempty, closed and convex},
Pkwc(X) = {A ⊂ X : A is nonempty, weakly compact and convex}.

Also recall that a multivalued operator Φ from a subsetD of a normed linear space to another
normed linear space is said to be

• upper semicontinuous (usc, for short) on D if for every closed subset C of D, the set

Φ− (C) = {x ∈ D : C ∩ Φx 6= ∅}

is closed in D.

• sequentially weakly upper semicontinuous (w-usc, for short) on D if for every weakly
closed subset C of D, the set Φ− (C) is sequentially closed for the weak topology on
D.

Observe that this notion of upper semicontinuity is equivalent to that in Definition A.1 as
shown by [3, Lemma 17.4] or [49, Proposition 24.1].

Now we present an extension of the Bohnenblust–Karlin’s fixed point theorem to decom-
posable maps, see [117, Theorem 2.1].
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Theorem B.1. LetX and Y be normed linear spaces andA andB nonempty weakly compact
convex subsets of X and Y , respectively. Let Φ : A −→ Pfc(B) and Ψ : B −→ Pfc(A)
be two sequentially w-usc multivalued maps. Then there exists at least one x ∈ A such that
x ∈ ΨΦx and, equivalently, there exists at least one y ∈ B with y ∈ ΦΨy.

Next we state the compression–expansion fixed point theorem for the inclusion (B.1).

Theorem B.2 ( [48, Theorem 2.3]). Let (X, ‖·‖) and Y be normed linear spaces and K a
wedge of X . Let Φ : K −→ Pkwc(Y ), Ψ : C −→ Pfc(K) be two bounded multivalued
maps, where C = co({0} ∪ Φ(K)). Assume that

if A ⊂ K, A = co({0} ∪Ψ(co({0} ∪ Φ(A)))), then A is weakly compact
and Φ, Ψ are w-usc on A and co({0} ∪ Φ(A)), respectively. (B.2)

In addition, assume that there exist r1, r2 > 0, r1 6= r2, and h ∈ K \ {0} such that

x 6∈ λΨΦx for λ ∈ (0, 1) and x ∈ K with ‖x‖ = r1; and
x 6∈ ΨΦx+ µh for µ > 0 and x ∈ K with ‖x‖ = r2.

(B.3)

Then there exists at least one x ∈ K with x ∈ ΨΦx such that

min{r1, r2} ≤ ‖x‖ ≤ max{r1, r2}.

Remark B.3. Since any usc map on a compact set is sequentially w-usc, Theorem B.2 re-
mains true if instead of (B.2) we assume the condition

if A ⊂ K, A = co({0} ∪Ψ(co({0} ∪ Φ(A)))), then A is compact
and Φ, Ψ are usc on A and co({0} ∪ Φ(A)), respectively.
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Resumo

Esta Tese, titulada Métodos topolóxicos para operadores descontinuos e aplicacións, contén
a meirande parte do traballo de investigación levado a cabo polo autor nos últimos anos.

Debe resaltarse dende o comezo que a palabra clave no tı́tulo é descontinuo xa que é
esa falta de continuidade dos operadores estudados ao longo do texto o que motiva a nosa
investigación.

Como unha motivación para empezar co estudo dos métodos topolóxicos e as súas apli-
cacións ás ecuacións diferenciais descontinuas, presentamos un resumo dos capı́tulos in-
cluı́dos neste manuscrito. Este poderı́a dividirse en dúas partes: unha primeira, que abarca os
dous primeiros capı́tulos, céntrase no desenvolvemento dunha teorı́a de punto fixo para certa
clase de operadores descontinuos baseada na de aplicacións multivaluadas. A segunda parte,
que vai do Capı́tulo 3 ao Capı́tulo 6, dedı́case ao estudo de problemas diferenciais con parte
non lineal descontinua.

O propósito da primeira parte é construir unha maquinaria aplicable a operadores descon-
tinuos e que deste xeito sexa útil para establecer novos resultados de existencia para proble-
mas diferenciais. A simplicidade da idea detrás dos resultados de punto fixo ben poderı́a
esconder a súa utilidade e esa é a razón pola cal ambas partes deben verse como un todo en
vez de como apartados independentes.

Agora presentamos brevemente as ideas principais de cada capı́tulo. Os nosos resultados
aparece recollidos en varios artigos, ver [61–66, 102–105, 121, 122, 128, 129].

Capı́tulo 1: Teorı́a do grao para unha clase de operadores descontinuos
O estudo de problemas diferenciais lévase a cabo con frecuencia por medio da teorı́a do grao
topolóxico e isto implica tratar cos operadores de punto fixo asociados, que están definidos
entre espazos normados. No caso de problemas diferenciais con parte non lineal descontinua,
que son o tipo de problemas nos que estamos interesados, os operadores non son continuos e
polo tanto a teorı́a clásica do grao de Leray–Schauder non resulta útil. Esa é a nosa principal
motivación para considerar unha teorı́a para operadores descontinuos.

Dado un operador T : D ⊂ X −→ X , non necesariamente continuo, consideremos a súa
envoltura pechada e convexa T : D ⊂ X −→ 2X definida como

Tx =
⋂
ε>0

coT
(
Bε(x) ∩D

)
para cada x ∈ D,

onde D é un subconxunto non baleiro do espazo normado X .
Se o conxunto D é a clausura dun subconxunto non baleiro, aberto e limitado Ω dun

espazo de Banach X , entón o grao topolóxico de T está ben definido como o grao para apli-
cacións multivaluadas superiormente semicontinuas [40,139] baixo hipóteses razoables sobre
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T . Isto proporciona un modo de definir o concepto de grao para un operador descontinuo T
por medio do grao da súa envoltura pechada e convexa, T.

Definición. Sexa Ω un subconxunto aberto e limitado dun espazo de Banach X e sexa T :
Ω −→ X tal que TΩ é relativamente compacto, Tx 6= x para todo x ∈ ∂ Ω, e

x ∈ Tx implica x = Tx para todo x ∈ Ω.

Definimos o grao de Id− T en Ω con respecto a 0 ∈ X como segue:

deg (Id− T,Ω, 0) = deg (Id− T,Ω, 0) .

No caso de que T sexa continuo, entón Tx = {Tx} para todo x ∈ Ω e deste xeito o
grao definido arriba coincide co de Leray–Schauder. Ademais, obsérvese que a hipótese de
continuidade sobre o operador T se trocou pola seguinte condición máis xeral

x ∈ Tx implica x = Tx para todo x ∈ Ω,

que significa que tódolos puntos fixos de T son puntos fixos de T . Esta hipótese permite
probar que o novo grao herda as propiedades básicas do grao para aplicacións multivaluadas,
é dicir, invarianza baixo homotopı́a, aditividade, normalización e existencia.

Como ocorre no caso clásico, o grao tan só pode aplicarse a operadores definidos na
clausura de conxuntos abertos, o que supón unha importante restrición á hora de aplicalo a
problemas diferenciais, xa que con frecuencia é conveniente traballar en conxuntos con inte-
rior baleiro, como por exemplo, algún tipo de cono. Para superar esta dificultade introduciuse
o concepto de ı́ndice de punto fixo baseado na teorı́a do grao definida previamente.

Capı́tulo 2: Teoremas de punto fixo para certos operadores descontinuos
Este capı́tulo está dedicado a xeneralizar algúns teoremas de punto fixo a unha clase de o-
peradores descontinuos usando o mesmo truco que na definición do grao: a hipótese de
continuidade substitúese pola condición que, concretamente, significa que os puntos fixos
do operador descontinuo coinciden cos da súa envoltura pechada e convexa. A maior parte
destes teoremas de punto fixo obtéñense como consecuencia do cálculo do grao en conxuntos
adecuados e é aquı́ onde as propiedades deste son de grande utilidade.

Unha primeira mirada vai dirixida ao coñecido teorema de punto fixo de Schauder, cuxa
extensión enunciamos a continuación.

Teorema. Sexa K un subconxunto non baleiro, convexo e compacto do espazo de Banach
X . Sexa T : K −→ K unha aplicación que satisface a condición: x ∈ Tx implica x = Tx
para todo x ∈ K. Entón T ten un punto fixo en K.

A simplicidade do teorema anterior convérteo nunha ferramenta especialmente útil á hora
de buscar solucións para problemas non lineais. Porén, con frecuencia é conveniente obter
información adicional sobre ditas solucións, como por exemplo, o feito de que sexan posi-
tivas ou a súa localización, e é entón cando os teoremas de punto fixo en conos adquiren
gran importancia. Os teoremas de punto fixo en conos tipo compresión–expansión de Kras-
nosel’skiı̆ úsanse intensivamente con este fin e aquı́ adaptámolos ao marco dos operadores
descontinuos.
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Teorema. Sexa K un cono, 0 < r1, r2 ≤ R, r1 6= r2 e sexa T : BR(0) ∩K −→ K unha
aplicación tal que T (BR(0)∩K) é relativamente compacto e satisface a condición: x ∈ Tx
implica x = Tx para todo x ∈ BR(0) ∩K.

Supoñamos que

(a) λx 6∈ Tx para todo x ∈ K con ‖x‖ = r1 e todo λ ≥ 1,

(b) existe w ∈ K con ‖w‖ 6= 0 tal que x 6∈ Tx+ µw para todo µ ≥ 0 e todo x ∈ K con
‖x‖ = r2.

Entón T ten un punto fixo x ∈ K tal que

min {r1, r2} < ‖x‖ < max {r1, r2} .

Dun xeito similar no Capı́tulo 2 xeneralı́zanse outros teoremas de punto fixo. Algúns
deles permiten deducir a existencia de múltiples puntos fixos, como no caso do teorema
de Leggett–Williams, mentres que outros proporcionan información máis precisa sobre a
súa localización, como ocorre coa versión vectorial do teorema de Krasnosel’skiı̆. Todos
eles foron aplicados nos capı́tulos seguintes para obter novos resultados de existencia para
problemas diferenciais.

A idea principal detrás destes novos resultados vai máis aló dos teoremas concretos que
se xeneralizan no Capı́tulo 2 e proporciona un método para adaptar gran parte dos teoremas
de punto fixo para operadores compactos a esta clase de operadores descontinuos.

Capı́tulo 3: Problemas de primeira orde
Este capı́tulo versa sobre a existencia de solucións para problemas de primeira orde, tanto
escalares como sistemas, suxeitos a condicións iniciais ou funcionais.

Primeiro considérase o problema de valor inicial con condición funcional

x′(t) = f(t, x(t)) para c.t.p. t ∈ I = [0, L], x(0) = F (x),

onde supoñemos que F : C(I) → R é continua e a parte non lineal f cumpre as seguintes
condicións:

(H1) Existen r < R, N ≥ 0 e M ∈ L1 (I) tales que N + ‖M‖L1 < r, |F (x)| ≤ N
se ‖x‖∞ ≤ R, e para case todo punto (c.t.p.) t ∈ I e todo x ∈ [−R,R] tense que
|f(t, x)| ≤M(t).

(H2) Calquera composición t ∈ I 7→ f (t, x(t)) é medible se x ∈ C(I) e ‖x‖∞ ≤ R.

(H3) Existen curvas de descontinuidade admisible γn : In −→ R (n ∈ N) tales que para
c.t.p. t ∈ I a función x 7→ f(t, x) é continua en [−R,R] \

⋃
{n:t∈In} {γn(t)}.

Baixo estas hipóteses, o problema anterior ten polo menos unha solución absolutamente
continua. Obviamente as curvas de descontinuidade deben cumprir algún tipo de condición
de transversalidade para ser curvas admisibles. Este concepto de curvas de descontinuidade
admisible será clave ao longo dos seguintes capı́tulos. Polo tanto, condicións do tipo (H3)
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empregaranse na meirande parte dos resultados de existencia deste manuscrito, o que os
distingue dos resultados clásicos para problemas con parte non lineal de tipo Carathéodory.

A existencia de solución será unha consecuencia da aplicación da teorı́a do grao intro-
ducida no Capı́tulo 1 ao operador integral

Tx(t) = F (x) +

∫ t

0

f(s, x(s)) ds (t ∈ I, x ∈ C(I)).

Logo, investı́gase a existencia de solucións absolutamente continuas para o sistema

x′(t) = f(t, x(t)) para c.t.p. t ∈ I = [0, L], x(0) = x0 ∈ Rn.

De novo a parte non lineal f : I × Rn −→ Rn non necesita ser continua.
A hipótese principal no resultado de existencia consiste en supoñer que a función f pode

expresarse da seguinte forma:

f(t, x) = F (t, g1(τ1(t, x), x), g2(τ2(t, x), x), . . . ),

onde para cada i ∈ N ,

(i) a) Cada función τi : I × Rn −→ R é diferenciable;

b) Cada función gi : R × Rn −→ R é continua en (R \ Ai) × Rn, onde Ai é un
conxunto de medida nula;

c) Para c.t.p. t ∈ I e todo x ∈ Rn, a condición τi(t, x) ∈ R \ Ai para todo i ∈ N
implica que f(t, ·) é continua en x.

(ii) Para cada (t, x) ∈ τ−1
i (Ai) temos

∇τi(t, x) · (1, z) 6= 0 para todo z ∈ Kf(t, x),

onde Kf(t, x) =
⋂
ε>0 cof

(
t, Bε(x)

)
para todo (t, x) ∈ I × Rn.

Baixo hipóteses adicionais sobre o carácter medible e limitado de f , a existencia de solucións
obtense do seguinte modo: primeiro, próbase que a inclusión

x′(t) ∈ Kf(t, x(t)) para c.t.p. t ∈ I, x(0) = x0,

ten polo menos unha solución, e entón a hipótese enunciada arriba permite probar que é, de
feito, unha solución do sistema diferencial descontinuo previo.

Ademais, no caso escalar, tamén se deduce a existencia de solucións extremais. Este feito
xunto cun método iterativo para operadores descontinuos e o de subsolucións e sobresolu-
cións son as ferramentas empregadas na Sección 3.3 para probar a existencia de solucións
extremais absolutamente continuas para o problema funcional

x′(t) = f(t, x(t), x) para c.t.p. t ∈ I, B(x(0), x) = 0,

onde tanto f coma B poden ser descontinuas con respecto a todas as súas variables, pero é
necesario impoñer algunha hipótese de monotonı́a con respecto ás variables funcionais.
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Algúns problemas de segunda orde poden reducirse á clase de problemas de primeira orde
con dependencia funcional considerada arriba e, en consecuencia, dedúcense novos resulta-
dos de existencia para eles.

Capı́tulo 4: Problemas de segunda orde e sub e sobresolucións
Este capı́tulo está dedicado á existencia e multiplicidade de solucións para a seguinte clase
de problemas de fronteira de segunda orde x′′(t) = f(t, x(t), x′(t)) para c.t.p. t ∈ I = [a, b],

0 = L1(x(a), x(b), x′(a), x′(b), x),
0 = L2(x(a), x(b)).

O método de subsolucións e sobresolucións combı́nase aquı́ coa teorı́a do grao do Capı́tulo 1
e os teoremas de punto fixo tipo Schauder probados no Capı́tulo 2 para lograr os resultados
de existencia.

Primeiro, supoñemos que existen unha subsolución e unha sobresolución ben ordenadas,
isto é, a subsolución é máis pequena que a sobresolución, e establécese a existencia dunha
solución entre ambas no espazo W 2,1. Para isto supoñemos que a parte non lineal cumpre
unha condición de Nagumo, o que permite obter unha cota a priori para a derivada de calquera
solución. Para probar o resultado de existencia, buscamos puntos fixos en C1(I) do operador
integral asociado a un problema modificado axeitado.

A principal diferenza con respecto aos outros traballos onde este tipo de problemas foron
estudados mediante técnicas similares é que aquı́ a parte non lineal pode ser descontinua sobre
os grafos de como máximo unha cantidade numerable de curvas de descontinuidade admisi-
ble. Ademais, tamén se establece a existencia de solucións extremais entre unha subsolución
e unha sobresolución.

Por outra parte, se existen unha subsolución e unha sobresolución, que non están ben
ordenadas, entón é posible construir un par de subsolución e sobresolución constantes e ben
ordenadas e, polo tanto, a existencia de solucións obtense como consecuencia dos resultados
anteriores. Para iso, consideramos un problema máis restrictivo con L2(x, y) = x − y e
hipóteses máis fortes sobre a parte non lineal.

Como consecuencia dos resultados previos e supoñendo que existen máis dun par de sub-
solucións e sobresolucións con certas relacións de orde entre elas, obtéñense varios resultados
de multiplicidade.

Finalmente, na Sección 4.4, presentamos un resultado de existencia novo para o seguinte
problema de segunda orde na semirrecta{

x′′(t) = f(t, x(t), x′(t)) para c.t.p. t ∈ R+,
L(x(0), x′(0), x) = 0, lim

t→+∞
x′(t) = B.

A filosofı́a empregada é similar á descrita arriba no caso de dominios limitados, pero agora
buscamos puntos fixos nun espazo de Banach diferente

X =

{
x ∈ C1(R+) : lim

t→∞

x(t)

1 + t
∈ R e lim

t→∞
x′(t) ∈ R

}
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cunha norma tipo Bielecki,
‖x‖ := max {‖x‖0 , ‖x‖1} ,

onde

‖x‖0 = sup
0≤t<∞

|x(t)|
1 + t

e ‖x‖1 = sup
0≤t<∞

|x′(t)|.

Cabe destacar que os nosos resultados melloran os existentes na literatura incluso no caso
de problemas con parte non lineal de Carathéodory xa que relaxamos as nocións usuais de
subsolución e sobresolución e, ademais, probamos a existencia de solucións extremais entre
elas.

Capı́tulo 5: Solucións positivas para problemas de segunda orde e orde
superior
A existencia de solucións positivas para ecuacións diferenciais e integrais adquire gran im-
portancia debido a que na maiorı́a das aplicacións as ecuacións diferenciais modelan procesos
fı́sicos ou biolóxicos onde as magnitudes non poden tomar valores negativos. Neste capı́tulo
buscamos solucións positivas para diferentes problemas de segunda e cuarta orde con partes
non lineais que presentan descontinuidades.

No noso contexto, as solucións dos problemas diferenciais correspóndense cos puntos
fixos dun operador tipo Hammerstein

Tu(t) :=

∫ 1

0

G(t, s)g(s)f(s, u(s)) ds,

onde G é a función de Green asociada ao problema diferencial. Agora a idea é aplicarlle ao
operador T os teoremas de punto fixo en conos obtidos no Capı́tulo 2. Deste xeito deducimos
a existencia de solucións positivas para os problemas diferenciais. De novo a parte non lineal
f pode ser descontinua sobre curvas de descontinuidade admisible.

A técnica dos teoremas de punto fixo en conos require a construcción dun cono de
funcións adecuado (que pode variar dependendo de cal sexa o problema diferencial a con-
siderar). Neste punto as propiedades da función de Green xogan un papel clave. Para os
problemas estudados, existen unha función continua Φ : I → R+ e unha constante c ∈ (0, 1]
tales que

G(t, s) ≤ Φ(s) para calquera t, s ∈ I,
cΦ(s) ≤ G(t, s) para calquera t ∈ [a, b], s ∈ I,

onde [a, b] ⊂ I . Estas cotas para a función de Green permiten probar que o operador T leva
o cono

K =

{
u ∈ C(I) : u ≥ 0, min

t∈[a,b]
u(t) ≥ c ‖u‖∞

}
,

en sı́ mesmo. Este cono K é adecuado para aplicar teoremas de punto fixo do tipo do de
Krasnosel’skiı̆.

Por outro lado, cando buscamos resultados de multiplicidade por medio de teoremas de
punto fixo do tipo do de Leggett–Williams usamos o cono das funcións non negativas P =
{u ∈ C(I) : u ≥ 0}.
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Capı́tulo 6: Solucións positivas para problemas xerais
O obxectivo deste capı́tulo é obter a existencia de solucións positivas para problemas dife-
renciais para os que a función de Green poderı́a non existir, pero no seu lugar temos unha
desigualdade tipo Harnack. Este feito supón a maior diferenza con respecto aos problemas
estudados no capı́tulo previo. Como un exemplo do tipo de problemas susceptibles de ser
considerados mencionamos as ecuacións φ–Laplacianas.

Máis concretamente estudamos a existencia de solucións positivas para un problema xeral
da forma {

Lu(t) = f(t, u(t)) para c.t.p. t ∈ I = [0, 1],
u ∈ B,

onde B ⊂ C(I) e L : D(L) ⊂ C(I) −→ L1 (I) é un operador xeral non necesariamente
lineal.

O método usado tamén difire do empregado no capı́tulo anterior. Aquı́ consideramos
primeiro o problema auxiliar{

Lu(t) ∈ Kf(t, u(t)) para c.t.p. t ∈ I,
u ∈ B.

Unha vez que garantimos a existencia de solucións para a inclusión diferencial, unha condición
de transversalidade axeitada sobre as descontinuidades de f permite probar que estas tamén
son solucións para o problema de partida.

Como consecuencia dos resultados obtidos podemos deducir novos teoremas de existen-
cia para as ecuacións φ–Laplacianas con condicións de fronteira tipo Dirichlet–Neumann{

−(φ(u′))′(t) = f(t, u(t)) para c.t.p. t ∈ I,
u′(0) = u(1) = 0,

onde φ : (−a, a)→ (−b, b) é un homeomorfismo crecente tal que φ(0) = 0 e 0 < a, b ≤ ∞.
Ademais, as conclusións sobre a localización das solucións permiten obter resultados de

multiplicidade. No caso de partes non lineais cun comportamento altamente oscilatorio en
cero ou infinito pódese deducir a existencia de infinitas solucións positivas.

Conclusións e traballo futuro
Ao longo desta tese desenvolvemos un método que permite abordar problemas diferenciais
con partes non lineais que presentan descontinuidades. Dito método está esencialmente
baseado na teorı́a de punto fixo para aplicacións superiormente semicontinuas e en condicións
de transversalidade sobre as partes non lineais dos problemas diferenciais. O concepto de
curva de descontinuidade admisible adaptouse a un gran número de problemas de fronteira,
co cal se obtiveron novos resultados de existencia para eles. Estes ilustráronse con diferentes
exemplos.

A pesar de toda a teorı́a desenvolvida sobre operadores e ecuacións diferenciais descon-
tinuos ao longo destas páxinas, un número enorme de problemas aı́nda permanecen abertos
esperando a ser resoltos. Hai varias direccións de cara a traballo futuro que nos gustarı́a
resaltar aquı́ e que, de algún modo, complementarı́an ou mellorarı́an os nosos resultados
actuais.
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Un problema estimulante é a definición dunha teorı́a do grao para operadores desconti-
nuos sen usar a de aplicacións multivaluadas. Incluso no caso de dimensión finita a extensión
do grao de Brouwer a unha clase de operadores descontinuos parece unha tarea ardua. E-
videntemente a continuidade do operador debe substituirse por outra condición (máis débil)
para obter unha teorı́a sólida.

A nosa teorı́a de punto fixo para operadores descontinuos depende en gran medida da
definición da envoltura pechada e convexa. Esta é a aplicación superiormente semicon-
tinua con valores pechados e convexos máis pequena que contén ao operador descontinuo
coma unha selección. Porén, poderı́a ser interesante analizar outras regularizacións que non
conteñan ao operador estudado, pero que proporcionen a existencia de puntos fixos baixo
condicións máis febles.

Un concepto clave ao longo do texto é o das curvas de descontinuidade admisible. A súa
definición preséntase para ecuacións diferenciais, pero serı́a natural tamén preguntarse se é
posible unha noción similar para ecuacións integrais. Ademais, nos nosos resultados de exis-
tencia supoñemos que pode existir como máximo unha cantidade numerable destas curvas,
ası́ que resulta razoable preguntarse se seguen sendo certos para certa cantidade infinita non
numerable delas.

Outro problema interesante, que non estudamos na tese, é a unicidade de solución para
ecuacións diferenciais con descontinuidades. No caso de sistemas de primeira orde, o artigo
de Bressan e Shen [25], do cal xeneralizamos o seu resultado de existencia na Sección 3.2,
poderı́a ser un bo punto de partida.

No Capı́tulo 4, para lograr a existencia de solucións no caso de subsolucións e sobreso-
lucións que non están ben ordenadas traballamos cunha clase de problemas de fronteira máis
reducida ca no caso ben ordenado, ası́ que queda aberto se o resultado é certo para o resto de
condicións de fronteira. Ademais, unha extensión común dos resultados do Capı́tulo 4 con-
siste en considerar as ecuacións φ–Laplacianas. Porén, no caso das ecuacións φ–Laplacianas
non fomos capaces de probar que os puntos fixos do operador integral asociado ao proble-
ma diferencial coinciden cos da súa envoltura pechada e convexa. Esa é a razón pola que
no Capı́tulo 6 empregamos unha técnica distinta. Esa técnica usa a teorı́a de punto fixo
para a composición de aplicacións multivaluadas, pero parece que non é suficiente para este
propósito, polo que serı́a de axuda desenvolver unha teorı́a do grao para esta clase de apli-
cacións.
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[2] U. Akcan and E. Çetin, The lower and upper solution method for three–point boundary
value problems with integral boundary conditions on a half–line, Filomat, 32 1 (2018),
341–353.

[3] C. D. Aliprantis and K. C. Border, Infinite dimensional analysis. A hitchhiker’s guide,
3rd Ed., Springer–Verlag (2006).

[4] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Ba-
nach spaces, SIAM Rev., 18 4 (1976), 620–709.

[5] H. Amann, On the number of solutions of nonlinear equations in ordered Banach
spaces, J. Funct. Anal., 11 (1972), 346–384.

[6] J. Andres, G. Gabor and L. Górniewicz, Topological structure of solution sets to multi–
valued asymptotic problems, Z. Anal. Anwend., 19 1 (2000), 35–60.
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[78] S. Heikkilä and V. Lakshmikantham, Monotone iterative techniques for discontinuous
nonlinear differential equations, Marcel Dekker, New York (1994).
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[112] M. Nagumo, Über die Differentialgleichung y′′ = f(t, y, y′), Proc. Phys–Math. Soc.
Japan, 19 (1937), 861–866.

[113] D. O’Regan, Y. J. Cho and Y. Q. Chen, Topological degree theory and applications,
CRC Press (2006).

[114] D. O’Regan and J. Perán, One dimensional φ–Laplacian functional equations, J. Math.
Anal. Appl., 371 (2010), 177–183.
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[122] R. Precup and J. Rodrı́guez–López, Positive solutions for φ–Laplace equations with
discontinuous state–dependent forcing terms, Nonlinear Anal. Model. Control, 24 3
(2019), 447–461.

200



BIBLIOGRAPHY
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