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FLEXIBLE MODELS FOR CAUSAL INFERENCE IN MEDICINE AND
ECONOMICS

Carlos Matias HISGEN

Abstract

The aim of the present work is the study of empirical aspects of a flexible regression pro-
cedure designed to perform causal inference, known as the Nonparametric Triangular Simul-
taneous Equations Model. This procedure helps to mitigate a problem that arise when the
model regressors do not fulfill the exogeneity assumption. The main contributions emerge from
two empirical applications, in Medicine and Economics, and a new bayesian estimator which
is evaluated by Monte Carlo simulation. The first application involves an implementation of
the triangular simultaneous equations model to assess the effects of a treatment, defined as
time delay to catheterization, on the outcome, defined in terms of survival and cardiac health,
for patients with non ST-segment elevation Myocardial Infraction. The main methodological
contribution consists on modeling the treatment as a continuous variable, instead of using a
dichotomous variable indicating early versus late intervention, and using a flexible Generalized
Additive Model for estimation and inference. The second application pursue an estimation of
the class size’s effect on schooling achievement (measured by Literature’s test-scores), for stu-
dents from sixth grades of the primary school in Uruguay. Main innovations consist on both,
implementation of a flexible additive model that enables us to take into account nonlinear ef-
fects of control variables, and perform an adequate trimming of outlier observations, which are
usually ignored in similar applications. The bias caused by these outliers is illustrated by a
Monte Carlo simulation exercise. Finally, the simulation study addressees the problem of weak
identification in the nonparametric instrumental variable framework. In particular, it assess
the performance of two alternative non-parametric estimators of the Triangular Simultaneous
Equations Model when weak instruments are present. Two estimators are compared, the Two
Stage Generalized Additive Model (2SGAM) and a new Bayesian Nonparametric Instrumental
Variables (BNIV) estimator. Simulation results support the advantages of BNIV over 2SGAM
when instruments are weak. Specifically, when the concentration parameter ranges between 10
and 16, BNIV outperform 2SGAM in terms of variance. The mentioned efficiency advantage
of BNIV does not imply an increment in bias.

Keywords: nonparametric, endogeneity, triangular simultaneous equations, instrumental
variables.
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MODELOS FLEXIBLES PARA INFERENCIA CAUSAL EN MEDICINA Y
ECONOMIA

Carlos Matias HISGEN

Resumen

El objeto del presente trabajo consiste en el estudio de aspectos empiricos de un proced-
imiento de regresion disefiado para realizar inferencia causal, conocido como Modelo No-
paramétrico de Ecuaciones Simultdneas Triangulares. Este procedimiento ayuda a mitigar un
problema que surge cuando los regresores del modelo no cumplen con el supuesto de exogenei-
dad. Las principales contribuciones provienen de dos aplicaciones empiricas, en Medicina y
Economia, y un nuevo estimador bayesiano el cual es evaluado mediante simulacién Monte
Carlo. La primer aplicacion involucra la implementacion de modelos de ecuaciones triangulares
simultdneas para evaluar los efectos de un tratamiento, definido como tiempo de retraso hasta
la cateterizacion, sobre una medida de resultado, definida en términos de supervivencia y de
salud cardiaca, para pacientes con Infarto Agudo de Miocardio sin elevacion del segmento ST.
La principal contribucién metodoldgica consiste en modelar el tratamiento como una variable
continua, en vez de representarla como una variable dicotémica indicando intervencién tem-
prana versus tardia, y usando un Modelo Aditivo Generalizado. La segunda aplicacion conlleva
la estimacion del efecto del nimero de alumnos en la clase sobre el rendimiento escolar (medido
mediante calificaciones en evaluaciones de literatura), para estudiantes del sexto grado de la es-
cuela primaria en Uruguay. Las principales innovaciones consisten en la implementacion de un
modelo aditivo flexible, que permite considerar efectos no lineales para las variables de control,
y en la adecuada exclusioén de observaciones atipicas, las cuales son ignoradas frecuentemente
en aplicaciones similares. El sesgo causado por estas observaciones atipicas es ilustrado me-
diante un ejercicio de simulacién Monte Carlo. Finalmente, el estudio de simulacién aborda
el problema de identificacion débil en el marco de la regresion no-paramétrica con variables
instrumentales. En particular, se evalda el desempefio de dos estimadores no-paramétricos al-
ternativos, para el Modelo de Ecuaciones Simultdneas Triangulares, cuando los instrumentos
son débiles. Dos estimadores son comparados, el Modelo Aditivo Generalizado en Dos Eta-
pas (2SGAM) y un nuevo estimador Bayesiano No-paramétrico con Variables Instrumentales
(BNIV). Los resultados avalan las ventajas del estimador BNIV por sobre el 2SAM cuando los
instrumentos son débiles. Especificamente, cuando el pardmetro de concentracion se encuentra
entre 10y 16, el BNIV aventaja al 2SGAM en términos de varianza. La mencionada ventaja en
eficiencia del BNIV no implica un incremento relativo en términos de sesgo.

Palabras clave: no-paramétrico, endogeneidad, ecuaciones simultaneas triangulares, vari-
ables instrumentales.






Contents

Acknowledgements i
Abstract iii
Resumen v
1 Introduction 1
1.1 Causal inference in regression analysis with observational data . . . . . . . . . 2
1.2 Endogeneity, instrumental variables and the control function approach . . . . . 6
1.2.1 Instrumental variables in the Simple Linear Model . . . . . . ... .. 8
1.2.2 Instrumental variables in the Nonparametric Model . . . . . . . .. .. 9
1.2.3  The Control Function Approach in the Additive and Generalized Addi-

tive Models . . . . . . .. .. L 11
1.3 Thesis Structure . . . . . . . . . . Lo e e e e e 13

2 Flexible Models for Assessing Optimal Intervention Timing in patients with NSTE-
ACSs 15
2.1 Introduction . . . . . . . ... e e 15
2.2 Problem definition and identification strategy . . . . . . . . .. ... ... .. 17
2.3 General specification and alternative models . . . . . . . ... ... ... ... 18
2.3.1 Linear and Additive Models . . . . . . .. ... ... ... ... 20
2.3.2 Generalized Linear Model and Generalized Additive Model . . . . . . 21
2.4 Data description and assessment of identification assumptions . . . . . . . . . 23
2.4.1 Sample and data description . . . . . ... ... ... 23
2.4.2 Assessing identification assumptions . . . . . . . ... ... L. 24
2.5 Empiricalresults . . . . . . . ... 28
2.5.1 Estimation with Linear and Additive Models . . . . . ... .. .. .. 28
2.5.2 Estimation withGLMandGAM . . . . . . ... ... ... ...... 34
2,6 Discussion. . . . ... e 38

3 Identifying Class Size Effect on Schooling Achievement trough Flexible Triangular
Equations Models 41
3.1 Introduction . . . . . . . . . .. 41
3.2 Class size endogeneity and the identification strategy . . . . . . . . .. .. .. 43
3.3 Estimation and inference methodologies . . . . . . . .. ... .. ... .... 46

Vil



3.3.1 Classical linear model approach . . . . .. ... ... ... ...... 46

3.3.2 Flexible additive model approach . . . . . ... ... ... ...... 48

3.4 Data and descriptive statistics . . . . . . . . . .. ... o 51
3.5 Empiricalresults . . . . ... Lo 54
3.5.1 Resultsignoring endogeneity . . . . . . . ... ... ... ... 54

3.5.2 Results correcting for endogeneity in the presence of outliers . . . . . . 58

First stage [V estimation . . . . . . ... ... ... .. ........ 58

Second stage IV estimation . . . . . . ... ... ... ......... 61
Outliershandling . . . . . . . . .. .. . ..o . 63

3.6 Monte Carlo simulation illustrating outliers impact . . . . . . . ... ... .. 65
377 Mainconclusions . . . . . . ... 68

Flexible estimation of Triangular Simultaneous Equations Models with Weak In-

struments 71
4.1 Introduction . . . . . . . . . e e e e e e 71
4.2 Weak identification in nonparametric IV estimation . . . . . . .. .. ... .. 73
4.3 Description of the methods tobe assessed . . . . . . .. ... ... ...... 76
4.3.1 Frequentist Additive Model approach . . . . . . ... ... ... ... 76
4.3.2 Bayesian Additive Model approach . . . . .. ... ... ... .... 78
Flexible effects specification . . . . . ... .. ... ... ....... 80
The control function and smoothing parameters estimation . . . . . . . 81
Full conditionals . . . . . . . ... ... ... ... 82
4.4 Performance comparison through simulation . . . . . .. ... ... ... ... 85
4.5 Resultsdiscussion . . . . . . . . . .. e 91
Chapters appendices 93
A.1 Appendixof Chapter2 . . . . . . .. .. .. .. ... ... 93
A.1.1 Estimationdetails . . . . . .. .. .. ... ... ... ... 93
A.1.2 The R environmentroutines . . . . . . . . .. .. .. .. .. .. ... 94
A2 Appendixof Chapter3 . . . . . ... .. ... ... ... 101
A.2.1 Estimation methodology for flexible models . . . . . . .. ... .. .. 101
A.2.2 The R routine for analysis reproducibility . . . . ... ... ... ... 101
A.3 Appendix of Chapter4 . . . . . . . . . . .. ... 110
A.3.1 The R code to simulation reproducibility . . . . ... ... ... ... 110
Resumen en Espafiol 117
B.1 Introduccién: Inferencia Causal y el Problema de Endogeneidad . . . . . . . . 117
B.2 Modelos Flexibles para la Evaluacién del Tiempo Optimo a Intervencién en
Pacientes con Sindrome Coronario Agudo . . . . . .. ... ... .. ..... 120
B.3 Identificacion del Efecto del Tamaiio de la Clase sobre el Rendimiento Escolar
mediante Modelos de Ecuaciones Triangulates Simultdneas . . . . . . . .. .. 122

viil



B.4 Estimacién flexible de Modelos de Ecuaciones Simultdneas Triangulares en
contextos de instrumentos débiles . . . . . ... ... Lo

1X






List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2

43
4.4

Relevant variables included in the analysis . . . . . . . .. ... ... ..... 18
Relevant variables included in the analysis . . . . . . . .. ... .. ...... 23
Linear regression of TDC on controls and instruments . . . . . . . . . .. ... 25
Covariates means: weekend vs. weekday patients . . . . . . .. .. ... ... 26
Regressing TDC on IVs when TDC’s range is [100,360] . . . . .. ... ... 27
Probit-type structural equation (2.12) including 1Vs as covariates . . . . . . . 28
Linear structural equation adjusted by 2SLS . . . . . . . . .. ... ... ... 29
Linear structural equation adjusted by OLS . . . . . . . . ... ... .. ... 30
Estimation results for Aditive Model-based first stage (2.19) . . . . . ... .. 31
Structural equation (2.20) adjusted by 2SAM . . . . . . . . . ... ... ... 32
Structural equation adjusted by 2SGLM . . . . . . . . . .. ... ... .. .. 35
Structural equation (2.24) adjusted by 2SGAM . . . . . . . . . . .. ... .. 36
Descriptive Statistics (using sample with outliers). . . . . . . . . . . ... ... 53
Descriptive statistics (in sample without outliers). . . . . . . . . .. ... ... 53
OLS estimates of structural equation (including outliers) . . . . . . . . . . .. 55
REML estimates of structural equation (including outliers) . . . . . . . . . .. 55
OLS estimates of structural equation (excluding outliers) . . . . . . . .. ... 57
REML estimates of structural equation (excluding outliers) . . . . . . . . . .. 57
OLS estimates of reduced form equation (including outliers) . . . . . . .. .. 59
REML estimates of reduced form equation (including outliers) . . . . . . . .. 59
OLS estimates of reduced form equation (excluding outliers) . . . . . . . . .. 60
REML estimates of reduced form equation (excluding outliers) . . . . . . . .. 61
2S8LS estimates of structural equation (including outliers) . . . . . . . . . . .. 62
28AM estimates of structural equation (including outliers) . . . . . . ... .. 62
2S8LS estimates of structural equation (excluding outliers) . . . . . . . . . . .. 63
2SAM estimates of structural equation (excluding outliers) . . . . . . . .. .. 63
Bias, standard error and mean squared error of OLS and 2SLS estimators . . . 67
Integrated squared bias, integrated variance and integrated mean squared error

of the naive and 2SGAM estimators for the term ®(-). . . . . . ... ... ... 87
Integrated squared bias, integrated variance and integrated mean squared error

of the BNIV estimator of the term ®(-). . . . . . . . . . . ... ... ...... 88

Performance comparison between BNIV and 2SGAM estimators of the term ®(-). 88

Integrated squared bias, integrated variance and integrated mean squared error
of 2SGAM and BNIV estimators for the term ®(-) in DGP (4.18). . . . . . . .. 91

X1






List of Figures

2.1
2.2

2.3
24
2.5

3.1
32
33

3.4
3.5

4.1

AM and 2SAM estimations of structural equation . . . . . ... ... ... .. 33
Smooth effects estimations for Age, Gr and Residuals at structural equation

with additive modeling . . . . . . . ... .. L L Lo 33
GAM and 2SGAM estimations of structural equation . . . . . . . ... .. .. 37
Estimated MgEf and probability from 2SGAM and 2SGLM . . . . . . . . .. 38
Estimated MgEf from 2SAM and 2SGAM . . . . . . . . . . ... ... ... 39
Predicted class size and actual average classsize. . . . . . . ... . ... ... 45
Predicted class size and actual average class size as functions of enrollment . . 54
Estimated flexible terms for Enrollment, Socioeconomic Index, High Education

and Housingissues. . . . . . . . . . . . L L Lo 56
OLS regression of CS on PCS using sample with and without outlier schools . 60

OLS regression of CS on PCS using different detection methods of outlier schools 65

Performance comparison between BNIV and 2SGAM . . . . . . . ... .. .. 89

Xiil






Chapter 1

Introduction

A main concern in empirical research is to uncover causal relationships. More precisely,
whether a particular intervention or treatment causes, explains or motivates a particular effect
or outcome. For example, does a reduction in the size of a school class increase test scores?
Or, does unemployment training programs affect the length of unemployment spells or ex-post
program income?

In the presence of randomized experiments, with random assignment of the treatment among
individuals or study units, it is relatively simple to derive causal conclusions. Basically, in this
case we compare the average outcome for individuals in the treated group against the average
outcome in the non-treated group. The randomization mechanism tends to balance observable
and unobservable characteristics making groups comparable.

In contrast, identifying causal relationships in observational studies, where the mechanism
that assigns individuals to different treatment states is unknown or not random (i.e. the analysis
is performed using non-experimental or observational data) is not so simple. In this case, indi-
viduals in both groups can be systematically different in terms of unobservable characteristics,
confounding the causal effects of the treatment. For example, an individual’s decision to partici-
pate in an unemployment training program may depend on the outcome of the training program.
Therefore, in this case the statistical model should incorporate explicitly how individuals decide
to participate or not in the program.

This work is intended to extend the empirical knowledge and possibilities of a flexible re-
gression model designed to perform causal inference in empirical sciences when the data comes
from an observational process. This model, technically known as the Nonparametric Triangular
Simultaneous Equations Model, helps mitigate a problem that arises when the model regressors
or covariates do not satisfy the condition known as exogeneity assumption, which establishes
that the model’s random component must be mean independent from all the model regressors.

This chapter introduces core concepts and methods which are extensively used in subsequent
chapters and, in its final section, presents the structural ordering of the work.

It is remarked that definitions presented here are general, leaving the details to be specified
in each chapter. Moreover, all chapters were written to be self-contained.



Chapter 1. Introduction

The following two sections define some general notions about causal inference in regres-
sion analysis with non-experimental data, the concept of endogeneity and the Control Function
Approach to instrumental variables regression.

1.1 Causal inference in regression analysis with observational
data

Regression analysis with non-experimental (or observational) data is often used in social or life
sciences to infer the existence of a causal relation between a treatment variable x and a response
variable y (measuring the outcome affected by the treatment x). The presence (or absence)
of a simple statistical relationship among those variables is not a sufficient nor a necessary
condition to claim the presence (or absence) of a causal relationship. This is so because the
measured values of both treatment and response variables are generated by an uncontrolled
experiment (e.g. a natural or social process) which is in principle unknown by the researcher
(for discussions of these ideas in sociology, natural sciences and economics see Winship and
Morgan, 1999, Rosenbaum, 1984, Rosenbaum, 2002 and Heckman, 2008).

Therefore, prior specification of a theoretical or structural model, establishing a causal link
and a causal direction between the treatment and the response, is required. Moreover, such a
model must take into account that treatment x is not usually randomly assigned to the population
units and, as result, it may be related to other factors, say z, which systematically affect the
response y in addition to x.

In accordance to the previous discussion and the family of models employed in this thesis,
consider the following mean regression model with additive error (1.1), assumed to represent
the true population model or Data Generating Process (DGP).

y=f(x,z) +e, (1.1)

where x and y are continuous variables, z is a vector containing other observable or measur-
able factors (which can be continuous and/or discrete variables related to x) that systematically
affect outcome y, and € is an additive error component representing the effects of unobserved or
unmeasured factors which affect response y. Note that x, z and € represent all possible factors
determining y (i.e. once the values of those factors are established then the level of the outcome
y is completely determined).

Assuming that € is mean independent of x and z is central for identification of a causal
relationship between x and y. This condition can be statistically expressed by moment restriction



Chapter 1. Introduction

(1.2).
E(elx,z) = 0 (1.2)

Restriction (1.2) is usually known as the exogeneity assumption, and it implies that the error
component of the response y is mean independent from the treatment x once conditioning on
factors z. Note that condition (1.2) is accomplished if treatment x is randomly assigned to
population units implying that E(€|x) = 0, but as mentioned above this random assignment is
not possible when observational data is used.

Taking conditional expectation over (1.1), and given (1.2), it is possible to identify the mean
regression function (1.3),

E(ylx,z) = f(x,2) + E(e|x,2) = f(x,2), (1.3)

which is the expected value of y conditional on x and z.

Identification of the regression function (1.3), causally linking y to x, enables the researcher
to identify the marginal effect of treatment x, defined as the partial derivative (1.4)

oE(y|x,z)  df(x,z)
ox A AR

(1.4)

Estimating the marginal treatment effect (1.4) is usually the main goal of causal inference
analysis based on regression methods. It can be interpreted as: the marginal change in the
expected value of response y caused by a marginal change in treatment x, when the additional
factors in z remain constant. As we noted earlier, this causal interpretation is derived from
hypothetical causality channels, based on prior theoretical models, which must be incorporated
in DGP (1.1).

Therefore, from a theoretical point of view, the non-experimental nature of the data requires
obtaining the DGP (1.1) from a theoretical model establishing the causal structure that connects
the involved variables. In concrete, satisfying the exogeneity assumption (1.2) requires the DGP
design avoids the effects of the following scenarios (usually present in observational studies):

e S.1. The existence of a mechanism that simultaneously determines the values of both,
the response y and the treatment x. This possibility, called the simultaneity problem, is
a common issue in econometric applications such as estimation of demand and supply
functions (see Haavelmo, 1943 for an early analysis).

e S.2. The presence of a self-selection problem, which arises when the individuals under
analysis can choose the level of treatment x taking into account its expected effect over
outcome y (seminal works identifying this issue are Gronau, 1973 and Heckman, 1974;

3
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see Heckman, 1990 and Heckman and Vytlacil, 2007 for more recent presentations).
For example, a person deciding whether or not to enroll in a graduate study program by
assessing the impact of such decision on her expected future income. !

e S.3. Presence of the reverse causality problem. Such a problem arises when not only the
treatment x has an effect on response y but also y has an impact over x. Situations like
that can be generated by the simultaneity problem previously mentioned or by dynamic
interrelationships between x and y due to future expectations. For example, the actual
provision of urban police in time 7 (i.e. the treatment x;) affects the level of actual urban
crime (i.e the response y;), but it is possible that the expected future value of the level of
urban crime (y;1) affects the actual provision of urban police (x;).

Accounting for these potential scenarios (S.1 to S.3), often requires constructing formal
models that explicitly define the assignment mechanism of treatment x, specially in behavioral
science as Economics and Sociology (see for example Heckman, 2008 and Heckman, 2005).

On the other hand, from an empirical point of view involving an application to real data,
achievement of exogeneity assumption (1.2), in the context of DGP (1.1), requires the simulta-
neously accomplishment of the following conditions:

e C.1. All relevant factors in z must be measured and included in the model as regressors.
These factors are usually known as control variables or co-variables. This condition is
violated when some elements of z are ignored and excluded from the analysis. For ex-
ample, some factors in z can be unobservable for the researcher, therefore they cannot
be measured and included in the empirical model. This situation is known as the omitted
variables or unobserved confounding problem.

e C.2. Specification of the regression model must be close enough to the true DGP (1.1).
This mainly involves specifying the functional form linking regressors x and z with the
outcome y (i.e. defining the functional form of f(-) in (1.1)) and, if necessary for special
kind of DGP, specifying the probability distribution of the random component €. Satis-
faction of this condition fails when functional forms involved in the DGP are incorrectly
specified, for example if the effect of a regressor is defined as a linear function when the
true effect is nonlinear. This situation is known as the model misspecification problem.?

e C.3. All relevant variables, y, x and those in z, must be measured without error. Failure
of this requirement originates a measurement error problem (see Wooldridge, 2010 for an
exposition of the more frequent cases in econometrics).

'The self-selection problem can be cast into a more general category called sample selection problem, under
which the observable samples are not representative of the population under study. Therefore, the sample selection
problem can be generated by different sources, as is the censoring or truncation of the dependent variable (see
Maddala, 1986 for a survey in the linear model context.)

2A third aspect to be defined relates the functional form through which the random term € affects the response
y, that we established as an additive function in DGP (1.1).

4
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If one or more empirical conditions, C.1 to C.3, are not satisfied and/or theoretical scenarios,
S.1 to S.3, are not correctly handled, then the exogeneity assumption (1.2) is violated. Under
such a situation, known as the endogeneity problem in the econometric literature, regression
function (1.3) is replaced by (1.5).

E(ylx,z) = f(x,z) + E(g|x,z). (1.5)

From (1.5) it can be seen that the regression function of interest, f(x,z), cannot be identified
because expected value E(€|x,z) is a non-constant function of x and/or z. It is important to note
that such an expected value cannot be estimated because error term € is unobserved. In other
words, under these circumstances, the usual parametric and non-parametric estimators for the
regression of y over x and z will be inconsistent.

For example, assuming € = { + €, model (1.1) can be rewritten as (1.6)
y=f(x,z) +&= f(x,2) +C+e, (1.6)

where E (€|x,z) = 0 and each individual in the population may choose an optimal level of
treatment x according to the level of unobserved factor C, so that expectation E(C|x,z) = E(L|x)
systematically varies with x. In this case, the conditional expectation of y is given by (1.7)

E(ylx,z) = f(x,2) + E(elx,2) = f(x,2) + E(Clx). (1.7)

Since factor { is known by the individual but is not observable for the researcher, the func-
tion f(x,z) is not straightforwardly identified. Therefore, in this kind of self-selection problem,
an explicit behavioral model of treatment selection must be considered.

A typical applied example of model (1.6) under condition (1.7) consist on explaining indi-
vidual earnings of workers in terms of the treatment years of formal education and other control
variables. A potential self-selection problem will be present in this example if there exist an un-
observed factor as the innate ability of workers which determines both the individual earnings
and the years of formal education.

Some intuitive illustration of above mentioned self-selection problem is given by the fol-
lowing path diagram

x = yearsof education —y = individual earnings

o

C = innate ability
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where years of education and innate ability have a direct effect on earnings, but additionally
innate ability possess a direct effect on education. This additional effect imply that innate ability
has an indirect effect on earnings through its association with years of education, producing the
endogeneity problem.

1.2 Endogeneity, instrumental variables and the control func-
tion approach

To overcome the endogeneity problem described in the previous section several methodologies
have been developed. One of the pioneer methods in the field is the Instrumental Variables
Regression (IVR), first developed in the context of the Linear Regression Model.

The IVR was originaly applied with the parametric Linear Regression Model to deal with
the simultaneity problem in the context of demand and supply functions estimation (see for
example the seminal application of IV regression in Wright, 1928). Nowadays, applying IVR
with the linear model represents a standard resource in the econometric toolkit, which can be
estimated by several methods as Two-Stage Least Squares, Restricted Maximum Likelihood
and Generalized Methods of Moments (excellent technical and applied presentations can be
found in Bowden and Turkington, 1990, Angrist and Pischke, 2009 and Wooldridge, 201 O).3

In general, the instrumental variables (IV) method relies on the existence of at least one
additional variable (i.e. the instrument) for each endogenous regressor in the model. Intuitively,
this instrument must be correlated to its corresponding endogenous regressor and uncorrelatd to
any other variable factor in the model. For DGP (1.1), and assuming that the only endogenous
variable is the treatment x (i.e. E(glx,z) = E(g|x) = y(x), where y(.) is a general function
of x), it is enough to have one instrument that we set as w. Then, w is the instrument for the
endogenous treatment x and may consist of a continuous or a discrete variable (note that it is
possible to have more than one instrument, but for simplicity of exposition we use only one).

To accomplish identification of the regression function of interest, the instrument w must
satisfy some specific conditions:

e ID.1 The instrument w must have explanatory power over the treatment x. This alludes to
the degree of conditional or partial association between the treatment x and the instrument
w (given the additional controls z), which is linked to the notion of strong instruments as
opposed to weak instruments. *

3There have been additional developments of IV estimators in a Bayesian framework (see for example Dreze
and Richard, 1983 and Kleibergen and Van Dijk, 1998). We limit our attention to the frequentist view, at least
in this introduction, since the basic concepts we want to review are the same for both, frequentist and bayesian
approaches.

A formal definition of weak instruments and discussion of their effects are provided in Chapter 4.
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For example, assuming that the true regression model explaining x is linear and that there
is a unique control variable z, as in (1.8),
x=E(x|w,2) +u=09p+ 0w+ 0z+u, (1.8)

then, condition ID.1 is satisfied if oi; # 0. This condition can be tested applying a standard
test of hypothesis with the null Hy : ot = 0.

This example can be straightforwardly extended when w (or z) has a nonlinear effect.

e ID.2 The instrument must be unrelated to the unobserved factors € which determine the
outcome variable y in (1.1), in the way established by moment restriction (1.9).

E(g|w,z) = 0. (1.9)

This condition ensures that w is not a relevant explanatory variable for y in DGP (1.1).
This means, jointly with condition ID.1, that instrument w only affects the outcome y
through its effect over the endogenous treatment x.

The following path diagram presents a visual illustration of the IV assumptions,

W—sXx—>Y

%S

€

where instrument w has a direct effect on x, an indirect effect on y and is not associated with
unobserved component €.

The goal of identification assumptions ID.1 and ID.2 is to establish an exogenous source
of variation in treatment x, via the instrument w. Using the variability of w in this manner is
equivalent to obtain an assignment of the treatment x (over the population) that is not influenced
by €.

It is important to note that assumptions ID.1 and ID.2 must be justified or derived from a
prior theoretical model, specially assumption ID.2 which cannot be tested from available data
(¢ is unobservable for the researcher).
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1.2.1 Instrumental variables in the Simple Linear Model

To better understand how an IV estimator works, it’s useful to analyze the following two equa-
tions system (1.10), based on simple linear regression models and assuming a random sample
of observations of size n.

yi = Bo+Bixi+¢&;, X; = O+ oyw; + u;, (1.10)

where {y;,x;,w;}!"_, are n realizations of the outcome variable, the treatment, and the instru-
ment, respectively, and B; is the coefficient we want to estimate consistently.

If treatment x were an exogenous variable in model (1.10) then the Ordinary Least Squares
(OLS) estimator for parameter $; would be consistent. This OLS estimator, obtained from
adjusting the first equation in (1.10), can be expressed as in (1.11),

A Cov(yi,x;)
BOI,S 1y

where Cov(yj,x;) and Var(x;) are the sample covariance between y and x and the sample
variance of x, respectively.

On the other hand, if x were an endogenous regressor, then the OLS estimator for 3; would
be inconsistent. However, under assumptions ID.1 and ID.2, the instrumental variable estimator
(1.12) would be consistent.

Cov(yi,w;)

ATV
=<' 7 1.12
b1 Cov(xj,w;) ( )

From the definition (1.12) it can be seen that the IV estimator uses only the part of the
variation in x that is correlated with w, leaving aside the part of x which may be correlated to
unobserved factors in € (remember from ID.2 that w is unrelated with €).

An usual simple procedure to get BIIV is the so called Two-Stage Least Squares (2SLS) which
can be defined in two steps:

e First Stage: use OLS to estimate parameters 0 and o of the second equation in (1.10),
and obtain the fitted values X; = oy + Ol w;.

e Second Stage: regress outcome y over the fitted values £ (including an intercept). In other
words, adjust by OLS the first equation in (1.10) but replacing x; by its fitted values £;.
The coefficient of £; in this regression is equivalent to the IV estimator (1.12).
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There is an alternative two-stage procedure that yields the same IV estimator (1.12), pro-
posed by Hausman, 1978 and Hausman, 1983 in order to test the exogeneity status of a potential
endogenous regressor. The procedure is the following:

e First Stage: use OLS to estimates parameters 0,y and o] of the second equation in (1.10),
and obtain the residuals i#; = x; — £; = x; — (¢l + dlyw;).

e Second Stage: regress outcome y over treatment x and residuals # (including an intercept).
In other words, adjust by OLS the first equation in (1.10) but including the first-stage
residuals as an additional control variable.

As in the 2SLS case, this second procedure uses the first stage to split the variability of the
endogenous regressor x in two parts. The first part (X) which is generated by instrument w, is
considered as the strictly exogenous portion. And the second part #, that is orthogonal to z, is
qualified as the potentially endogenous portion. Then, in the second stage estimation, this IV
method explicitly controls for the endogenous part of x.

The later two-stage procedure, sometimes called Two-Stage Residual Inclusion, is the an-
tecedent of the so called Control Function Approach to instrumental variables, which we de-
scribe in the next subsection.

1.2.2 Instrumental variables in the Nonparametric Model

When the DGP of interest involves a general (i.e. nonparametric) regression function such as
(1.1) and the regressor of interest is endogenous, it 1s necessary to rely on a nonparametric IV
estimator.

Earlier works attempting to realize such an extension (i.e. relying on moment restriction
(1.9)) are Ai and Chen, 2003, Newey and Powell, 2003 and Hall and Horowitz, 2005. These
and subsequent works derived usual statistical properties for the new estimators but all of them
share the problem related to the lack of an optimal rule for choosing the smoothing parameter
(or regularization parameter), which is crucial in any nonparametric curve estimation. Recently,
Horowitz, 2014 proposes for the first time a nonparametric IV series estimator accompanied
with a theoretically justified method for choosing the smoothing parameter. Mentioned devel-
opments, based on identification condition (1.9), are framed into the so called Regularization
Approach to nonparametric IV estimation.

Parallel to the developments within the Regularization Approach, another formulation of the
nonparametric IV regression, called the Control Function Approach (CFA), was first proposed
by Newey, Powell, and Vella, 1999 and extended by Pinkse, 2000, Su and Ullah, 2008 and
Marra and Radice, 2011. This alternative approximation is neither more nor less general than
the Regularization Approach, because it relies on a different set of identification assumptions.

9
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The CFA approach is based in a Triangular Nonparametric Simultaneous Equations Model
(Newey, Powell, and Vella, 1999) defined by (1.13), (1.14) and (1.15):

y= f(x,z) +e, (1.13)
x=g(wz)+u, (1.14)
E(ulw,z) =0,  E(elu,w,z) = E(elu), (1.15)

where (1.13) is the same equation than DGP (1.1), g(-) is an unknown function with g(w,z) =
E(x|w,z), and u is an usual error component. Again, we assume the availability of only one in-
strument w for endogenous treatment x.

To obtain identification, the CFA maintains assumption ID.1 and replaces moment restric-
tion (1.9), defined by assumption ID.2, with the conditions in (1.15). The first moment re-
striction in (1.15) establishes that the error u is mean independent of instrument w and control
variables z. The second restriction in (1.15) ensures that, after conditioning on u, the error term
€ is mean independent of instrument w and controls z.

Following Newey, Powell, and Vella, 1999, we combine equations (1.13), (1.14) with con-
ditions in (1.15), to obtain the following expected value for y:

E(ylx,w,z) = f(x,z) + E(e|x,w,z) = f(x,z) + E(€|u,w,z)
— F0,2)+ E(elu) = f(0,2) + fulw). (116)

Therefore, identification of the regression function of interest, f(x,z), requires taking into
consideration an additional term, i.e. the control function E(g|lu) = f,(u).

Conditional expectation (1.16) explicitly controls for the variability in the endogenous re-
gressor x which is related to the error term € (i.e. it controls for the variability of error term u).
This enables to identify function f(-) and marginal effect (1.4) using only the variability of x
that is unrelated with error term €.

To perform estimation in the CFA’s framework, it is possible to decompose the estimation
problem into two sequential stages, using a procedure similar to that used by the Two-Stage
Residual Inclusion method. Given a random sample of observations of the relevant variables,
{yixi, zi, wi}?zl, the two stages can be described as follows:

10
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e First Stage: function g(w,z) in (1.14) can be estimated by a standard nonparametric re-
gression estimator, obtaining

Xi :§(thi) +ﬁi7

then the corresponding residuals ; = x — g(w;,z;) can be computed. These residuals
estimate the true errors u consistently.

e Second Stage: a non-parametric estimator can be used again to estimate functions f(-)
and f,() in equation (1.16), using first-stage’s residuals #; as a regressor instead of unob-
served errors u;:

~

i = fxizi) + fulily).

Because # is the estimated component of treatment x that co-varies with unobserved error
€ (generating the endogeneity problem), estimating control function f,(i7) makes it possible to
isolate the treatment effect generated by the exogenous portion of variability in x.

1.2.3 The Control Function Approach in the Additive and Generalized
Additive Models

Through the rest of the thesis we use the CFA methodology to estimate several regression func-
tions similar to the one described in DGP (1.1), but with an additive structure including both
nonparametric and parametric terms. As is known in nonparametric regression theory and ob-
served in Newey, Powell, and Vella, 1999, such additive or semiparametric model helps to avoid
the curse of dimensionality which emerges in nonparametric estimation when there is a large
number of regressors.

For example, given a DGP similar to the system (1.13)-(1.14) but setting w as a continuous
variable and assuming z = (z,z2) (where 7 is a binary variable and z; is a continuous variable),
the additive regression system is specified as

y=Bo+Biz1 + f1(x) + fo(z2) +&, (L.17)

x=o0p+az1+g1(w)+g(z2)+u, (1.18)

where each regression equation belongs to the semiparametric Additive Model framework
(Hastie and Tibshirani, 1986).

11
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Moreover, system (1.17)-(1.18) can be extended to the case in which one or both equa-
tions are specified as Generalized Additive Models (GAM) (Hastie and Tibshirani, 1986). This
extension, proposed by Marra and Radice, 2011, is illustrated by system (1.19)-(1.20)

y=h(Bo+PBiz1 + f1(x) + f2(z2)) + &, (1.19)

x=1(0p+ozi +g1(w) +g2(22)) +u, (1.20)

where [,(-), r = 1,2, is defined as I, = 1!, and 1! is known as the link function.

The link function is smooth and monotonic and it’s useful because it imposes boundaries
to the response variables values (see McCullagh and Nelder, 1989 for a definition of the link
function in the context of Generalized Linear Models). Typical examples are the Probit and
Logit link functions, which are used when the response is a binary or Bernoulli random variable.
The Probit link consist in the Accumulated Density Function (ADF) of the Standard Normal
Distribution, and the Logit link is the ADF of a Standard Logistic Distribution. One of the
empirical applications presented in Chapter 2 involves estimation of a GAM with a Probit link
function in the main regression equation.

As in the previous cases, and as established in Marra and Radice, 2011, this simultaneous

equations system can be estimated by a two steps procedure as follows:

e First Stage: the Generalized Additive Model (1.20) can be estimated by a consistent
estimator,
x; = 11 (G + Gy z1; + &1 (wi) + 82(221)) + i,
and the residuals i; = x — [; (G + & 1z1; + &1 (w;) + £2(22i)) can be obtained.

e Second Stage: a consistent estimator can be applied to estimate the regression function in
(1.19), including first-stage’s residuals i; as an additional regressor instead of unobserved
eITors u;:

i =b(Bo+Bizii+ fi(x) + fa(z2i) + faldis)).

The estimator of the function of interest, f] (x;), that emerges from this two-stages procedure
is consistent under the assumption that instrument w is independent of error component € (Marra
and Radice, 2011), which is a more restrictive assumption than the one implied by (1.15).

The flexible models involved in the two-stages procedures described above can be estimated
by alternative methods. Local Polynomial (kernel) regression methods can be used as in Su and

12
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Ullah, 2008. On the other hand, Newey, Powell, and Vella, 1999, Pinkse, 2000 and Marra and
Radice, 2011 employ series expansion estimators.

A series estimator represents the (unknown) functional form of the principal effect, for
each continuous regressor, as an infinite series of approximating functions, also known as basis
functions.

Following Marra and Radice, 2011, we use series estimators based on spline basis functions.
There are alternative types of spline basis (e.g. B-splines, Thin Plate splines and cubic splines).
Estimation under this spline representation can be implemented by Penalized Regression Spline
Approach, introduced by Eilers and Marx, 1996 (see Wood, 2006a for an extended exposition).
This approach uses a roughness penalty during the model-fitting process to avoids the problem
of overfitting. More details of the estimation procedure with Penalized Splines are presented in
Chapter 4.

In the following chapters we use different types of spline basis functions and estimation
algorithms which we select for each case based on practical considerations.

1.3 Thesis Structure

In this chapter we have introduced core concepts regarding causal inference in regression mod-
els, the endogeneity problem and the instrumental variables estimation methodology. The next
four chapters present advances in the empirical application of flexible additive models when
the treatment variable is endogenous and introduces new insights on the weak identification
problem in nonparametric regression.

Chapter 2 consists in an empirical application of the CFA methodology to assess the ef-
fects of a treatment, defined as time delay to catheterization, on the outcome, defined in terms
of survival and cardiac health, for patients with non ST-segment elevation Myocardial Infrac-
tion. The main medical interest consists in identifying the optimal timing to intervention (i.e.
catheterization) in patients with high risk. In such setting the treatment variable is expected to
be endogenous; accordingly, standard regression methods are inadequate and an instrumental
variable estimator is applied. As in previous studies in the literature, we exploit the exoge-
nous variability in the treatment induced by the fact that patients who arrive at the hospital over
the weekends are more prone to experience catheterization delays. The main methodological
contribution consists in modeling the treatment as a continuous variable (i.e. continuous time),
instead of using a dichotomous variable indicating early versus late intervention, and using a
flexible Generalized Additive Model for estimation and inference. This innovation enables us
to estimate a nonlinear treatment effect and to evaluate its magnitude over the entire range of
the treatment regressor. The estimation results, which support the existence of a significant
treatment effect, suggest that usual parametric models can produce a downward estimation bias
in the average effect.

13
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In Chapter 3, we pursue an estimation of the effect of class size on schooling achieve-
ment (measured by Literature’s test-scores), for sixth grade students of the primary school in
Uruguay. The main obstacles to overcome in this type of application are the endogenous status
of the treatment variable (i.e. the class size) and the clustered structure of the data at the school
level. To construct an instrumental variable for class size, we take advantage of regulation laws
in Uruguay, that establish in 40 students the upper limit for the class size. The main innovations
are the application of a flexible additive model, that enables us to take into account nonlinear
effects of control variables, and the implementation of a flexible bootstrap methodology for
confidence interval construction, in the presence of clustered observations. Additionally, an
adequate trimming of outlier observations is performed, which avoids bias in the first stage of
the estimation procedure. In this line, a simulation exercise is presented illustrating the bias in-
duced by outlier observations. Overall results provide support for the usefulness of the proposed
innovations for the identification of the class size effect.

Chapter 4 addresses the problem of weak identification or weak instruments in the nonpara-
metric instrumental variable framework. In concrete, it presents an evaluation and comparison
of two alternative methods, the frequentist Two-Stage Generalized Additive Model and a new
Bayesian Nonparametric Instrumental Variables model. The bayesian method, proposed by
Wiesenfarth et al., 2014 and derived from part of the work in this thesis, seems to present ad-
vantages in weak instruments scenarios. The weak instruments problem, which represents an
important issue for the applied researcher, was largely neglected in the nonparametric literature.
One important reason for this neglect has been the difficulty in the development of a flexible
instrumental variable estimator, with a suitable method for smoothing parameter selection and
a valid inference procedure. This difficulty was solved by the two alternative models that we
compare. In particular, the bayesian model allows us to estimate the smoothing parameter from
data taking into account the simultaneity nature of the triangular equations system involved. The
simulation results imply an advantage of the bayesian method over the frequentist approach, in
terms of variance reduction, when instruments are close to being weak (in terms of the paramet-
ric literature on weak identification).

Finally, for each of the described chapters, some complementary information (including
estimation and inference details) and selected R code, are presented in Chapter 5.

14



Chapter 2

Flexible Models for Assessing Optimal
Intervention Timing in patients with
NSTE-ACSs

2.1 Introduction

Invasive intervention in patients with non—-ST-segment elevation acute coronary syndromes
(NSTE-ACSs) includes both, assessment procedures such as cardiac catheterization and ther-
apies like revascularization. Assessment procedures are implemented first and are useful to
decide which therapy to follow subsequently. Early execution of these type of interventions,
usually before 72 hours since patient attendance, is established as the recommended treatment
strategy, instead of following a conservative plan of drugs administration.

Nevertheless, as noted by Navarese et al., 2013, the optimal timing of intervention in NSTE-
ACSs patients remains a matter open to debate. Some of the causes of the conflicting results
are the use of different data sources (randomized-controlled trials versus observational data
registry) and alternative risk profiles of populations under study. But additional sources of
inconclusive results may be related to methodological issues, especially when observational
registry data is exploited.

In observational studies, classic estimation procedures of treatment effects are exposed to
bias and inconsistency problems due to residual confounding (also known as treatment endo-
geneity in the econometric literature). Therefore, regression methods based on instrumental
variables are natural alternatives to handle the endogeneity bias problem.

Over last decade, several observational studies addressed this issue, such as Montalescot
et al., 2005, Tricocti et al., 2007 and Sorajja et al., 2010, but all of them neglected the residual
confounding problem. A notable exception is Ryan et al., 2005, which uses day of hospital
presentation (weekend vs. weekday) as an instrumental variable (IV) to study the impact of the
timing of cardiac catheterization and revascularization therapy over in-hospital mortality and
other outcomes. They find non significant benefits for the early catheterization, although an
important risk reduction cannot be excluded.
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Following an identification strategy similar to that in Ryan et al., 2005, we study the impact
of time delay to catheterization on outcomes for non ST-segment elevation Myocardial Infrac-
tion (NSTEMI) patients, exploiting the fact that patients admitted on weekends are less likely
to undergo earlier catheterization than patients admitted during workweek days. Therefore,
we employ this exogenous source of variation in the treatment time delay to catheterization to
identify its causal effect on outcomes via regression models based on instrumental variables.

In contrast with the traditional approach (i.e. the one usually followed by researchers in
this specific applied literature), employed by Ryan et al., 2005, we introduce innovations in two
directions. On the one hand, we maintain the original continuous variable time delay to catheter-
ization (TDC) as the relevant treatment, instead of specifying it as a binary (dummy) variable
indicating early catheterization. On the other hand, our causal inference procedure relies on
a flexible specification of the Triangular Simultaneous Equations Model, recently proposed by
Marra and Radice, 2011.

The first innovation allows us to estimate a nonlinear effect of the continuous treatment vari-
able TDC using a single two-dimensional system of triangular equations. To identify nonlinear
effects, the traditional approach dichotomizes the continuous treatment 7DC, specifying a set
of binary treatment variables to indicate different levels of early catheterization (less than 12
hours, less than 24 hours, and so on) versus late catheterization (more/equal than 12 hours,
more/equal than 24 hours, etc.), as is the case in Ryan et al., 2005. Such a representation of
the treatment variable requires the estimation of a set of two-dimensional simultaneous equa-
tions systems (one for each binary treatment) when inference is based on instrumental variables.
Furthermore, and more importantly, that kind of dichotomization over a continuous treatment
variable can lead to an overestimation of the treatment effect, as is pointed at Baiocchi, Cheng,
and Small, 2014 and showed by Angrist and Imbens, 1995.

The second innovation enables the estimation of smooth non-linear functions for both the
treatment effect of TDC and the effects of continuous control variables. Additionally, it allows
us to construct valid point-wise confidence intervals for the estimated smooth functions.

The remainder of the chapter is organized as follows. Section 2.2 describes the relevant
sample of patients, defines the variables used and presents the general identification strategy.
Section 2.3 specifies the alternative models to be estimated, which are classified into two main
groups, those with an identity link function and those possessing a Probit link function. In
Section 2.4 data description is presented and identification assumptions are assessed. Empirical
results emerging from the estimation of all the considered models are exhibited at Section 2.5.
Finally, Section 2.6 concludes.
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2.2 Problem definition and identification strategy

The main objective of the following analysis consists of estimating the effect of time delay to
catheterization (TDC hereafter) on outcomes, related to mortality and myocardial infraction,
for NSTE-ACSs patients. Therefore, the outcome variable is defined by a binary variable called
Event, indicating the presence of any of both situations: a) all-cause mortality from intervention
to 12 months and b) acute myocardial infraction from intervention to 12 months.

The available sample includes NSTE-ACSs patients having undergone cardiac catheteriza-
tion with a delay between 0 and nearly 1000 hours. This allowed us to measure the treatment
delay in continuous time and to define the treatment variable TDC, measured in hours.

One of the primary obstacles to overcome involves the endogenous nature of TDC. This
is so because the decision to catheterize is made based on patients characteristics which can
be fully perceived by medical staff but are only partially observed by the researcher (due to
its partial registration on data sources). Therefore, risk factors unobserved by the researcher
determine both time to catheterization and the probability of outcome occurrence, causing the
residual confounding problem.

If patient baseline characteristics and usual in-hospital treatments did not differ on the basis
of weekday versus weekend presentation at hospital, weekend status could be used as a valid
IV for assessing the effect of timing of cardiac catheterization on outcomes.

Weekend patients include those who presented to the admitting hospital between 5 pm Fri-
day and 3 pm Sunday. All other patients were considered weekday patients. Then, the instru-
mental variables were defined as a set of three mutually exclusive dummy variables, indicating
admissions on Friday, Saturday and Sunday. These definitions were chosen so as to maximize
the number of weekend patients presenting more than 18 hours from presentation to Monday
at 9 pm, at which time we expected catheterization laboratory facilities would be fully opera-
tional. This instruments definition differs from the one used by Ryan et al., 2005 and others
applications, which only specify a unique binary variable indicating weekday patients, without
distinction of specific weekend day. Nevertheless, using only one instrument does not signifi-
cantly changes the main conclusions of the present analysis.

To focus on the effects of an early catheterization, we restrict the full sample to include
patients who underwent catheterization within 60 hours from admission. Results remain the
same if we restrict the maximum delay to 48 hours, as is the case in Tricoci et al., 2007, and
times between 48 and 60 hours. One technical reason justifying the use of a bounded sample
relates to the I'Vs requirements. Specifically, to better fulfill the instrumental variables condition
related to having enough partial correlation with the endogenous variable TDC. In that sense, it
is a logical and testable fact that partial correlation between I'Vs defined earlier and the treatment
TDC decreases when the maximum time bound is increased.
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Finally, we include two continuous control variables, Age (containing the patient age in
years) and Gr (GRACE, Global Registry of Acute Coronary Events risk score) measured at
hospital admission and the binary control Fem indicating female patients. Table 2.1 summarizes
the relevant variables to be used.

TABLE 2.1: Relevant variables included in the analysis

Variable | Description

Event | The outcome binary variable. Event=1 indicates:

a) all-cause mortality from intervention to 12 months or

b) acute miocardial infraction from intervention to 12 months.
TDC The continuous treatment variable 7ime Delay to Catheterism,
measured in hours.

Age Continuous control variable measuring
Patient age in years.
Gr Continuous control containing the

Global Registry of Acute Coronary Events risk score
(GRACE) measured at hospital admission.

Fem Binary variable indicating
female patients.
Fr Binary instrumental variable indicating
hospital admission at Friday.
Sa Binary instrumental variable indicating
hospital admission at Saturday.
Su Binary instrumental variable indicating

hospital admission at Sunday.

2.3 General specification and alternative models

According to the triangular simultaneous equations framework (Newey, Powell, and Vella,
1999), the general model of study can by represented by the following system,

Event = Hy(TDC,Age,Gr,Fem) + ¢ 2.1
TDC = H,(Age,Gr,Fem,Fr,Sa,Su) +u (2.2)

where (2.1) is the structural equation of main interest, linking the outcome Event with the
treatment 7DC through a nonparametric function H(.), and adding Age, Gr and Fem as control
variables. The reduced form equation (2.2) explains the endogenous treatment 7DC, being
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exogenously affected by the binary instruments Fr, Sa and Su (indicating the three possible
days for patients arriving on weekends) and depending potentially on Age, Gr and Fem. All
regressors affect TDC through general functional form Hj (.).

The foregoing is the full nonparametric version of the system, with additive separability of
random errors (1 and €, which are intended as deviations from the mean functions H, and H;)
and identification assumptions given by

E(€|u,Age,Gr,Fem,Fr,Sa,Su) = E(€|u) (2.3)
E(u|Age,Gr,Fem,Fr,Sa,Su) = 0. (2.4)

Restriction (2.3) implies that unobserved risk factors € are mean dependent of unobserved
factors u affecting TDC and that such a relationship is unaffected by control variables and
instruments (i.e. the whole set of exogenous independent variables in the system). On the other
hand, condition (2.4) states that unobserved factors affecting TDC are mean independent of
instruments and control variables.

Based on (2.1)-(2.4) and taking conditional expectation E(Event|TDC,Age,Gr, Fem,Fr,Sa,Su)
over (2.1), it is possible to specify the structural mean regression function as

Event = E(Event|TDC,Age,Gr,Fem,Fr,Sa,Su) +¢€
= E(Event|TDC,Age,Gr,Fem,u) + €
= H,)(TDC,Age,Gr,Fem) + f,(u) +¢€ (2.5)

where f,(u) = E(€|u) represents the so called control function or control variable and € =
€ — E(g|u). Further, the reduced form regression function for equation (2.2) is

TDC = E(TDC|Age,Gr,Fem,Fr,Sa,Su) + u
= H,(Age,Gr,Fem,Fr,Sa,Su) + u. (2.6)

Because Event is a dummy variable and its expected value represents the probability of
occurrence of the event, we can redefine (2.6) to make explicit that we are estimating the prob-
ability model (2.7),
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Event = P(Event = 1|TDC,Age,Gr,Fem,u) + €
= Hy(TDC,Age,Gr,Fem) + f,(u) +€. 2.7)

Depending on how functional forms for Hy, H, and f, are specified in (2.6) and (2.7), a
range of alternative models arise. Here we focus on four models which can be classified in two
groups. The first group ignores the binary condition of the outcome variable Event, and the
second one takes it into account.

2.3.1 Linear and Additive Models

The most basic and frequently used specification is the parametric linear regression model,
which raises the following two linear regression equations (2.8-2.9)

Event = P(Event = 1|{TDC,Age,Gr,Fem,u) + € (2.8)
=Bo+P1TDC + PBrAge + B3Gr + PaFem + Psu+€

TDC = E(TDC|Age,Gr,Fem,Fr,Sa,Su) +u 2.9)
=0+ ajAge+ 0 Gr+ ozFem + o Fr+ osSa + o Su +u

This model is mostly used in applications, despite it ignores the limited or bounded nature
of the probability operator P(Event = 1|...), for at least two reasons pointed out in Baiocchi,
Cheng, and Small, 2014. First, because it often provides a good approximation to the aver-
age treatment effect through parameter B;. Second, its specification does not require making
parametric assumptions about the link function necessary to bound the behavior of operator
P(Event = 1|...), as is the case when popular non-linear probability models like Logit and Pro-
bit are used.

Its main practical disadvantage lies in the linear functional form imposed to the effect of the
continuous treatment 7DC. In this setting, one hour of increase in TDC affects the probability
(or risk) of Event occurrence by the same amount (31) irrespective of the initial level of TDC. In
fact, it can be argued that 7DC could have a (positive) decreasing effect. In that case using the
linear model would potentially lead to misguided generalizations about the size and significance
of the treatment effect.

A straightforward way to relax the linearity assumption consists in specifying an additive re-
gression model (Hastie and Tibshirani, 1986). In the present context, the additive representation
can be stated as
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Event = P(Event = 1|TDC,Age,Gr,Fem,u) + € (2.10)
= B() +prc(TDC) +nge(Ag€) —f—fGr(Gl’) + BlFem—i—fu(u) +€

TDC = E(TDC|Age,Gr,Fem,Fr,Sa,Su) + u (2.11)
= 0o + 8age(Age) + 86r(Gr) + i Fem+ 0 Fr 4+ 03Sa + 04 Su+ u

where fy(x) and g,(x) are flexible smooth functions of regressor x. Expressions (2.10) and
(2.11) constitutes a Nonparametric Triangular Simultaneous Equations Model with an additive
structure (Newey, Powell, and Vella, 1999).

A common estimation issue in regression equations like (2.8) and (2.10) is the existence of
heteroscedastic errors, caused by the variance structure of the binary dependent variable Event.
Such a problem requires using some variance-covariance correction method, which is easily
available for the linear case but puts a more challenging obstacle for inference in the additive
model based triangular equations context.

The later type of heteroscedasticity can be avoided using a model which recognizes the
binary nature of the dependent variable Event. Models of that kind are introduced in next
subsection.

2.3.2 Generalized Linear Model and Generalized Additive Model

Another modeling alternatives arise when the bounded nature of P(Event = 1|...) operator is
taken into account. In that situation the concept of link function plays a relevant role, giving
rise to the so called Generalized Linear Model (GLM), (Nelder and Wedderburn, 1972), and
Generalized Additive Model (GAM), (Hastie and Tibshirani, 1986).

The features that distinguish GLM from GAM are the same which separates the Linear
Model from the Additive Model (i.e. they point to distinction between linear versus flexible
functional forms of the regressors effects).

Establishing the link function as 1(-) and the response function as [y =1~! the GLM speci-
fication for the present application is given by (2.12) and (2.13),
Event = P(Event = 1|TDC,Age,Gr,Fem,u) +¢€ (2.12)

= lo(Bo + BlTDC+ BzAge+ B3Gr+ B4F€m+ B5u) +¢€
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TDC = E(TDC|Age,Gr,Fem,Fr,Sa,Su) + u (2.13)
=0+ ajAge+ 0 Gr+ ozFem+ 0 Fr+ osSa+ 0 Su + u

where € represents the response error, i.e the difference between the dependent variable
Event and its conditional expectation. When the response function /y(.) is specified as the Cu-
mulative Density Function (c.d.f.) from a Standard Normal distribution, the regression probabil-
ity model called Probit emerges. Alternatively, if a c.d.f. from a Standard Logistic distribution
is used, the so called Logit Model is defined.

Logit is the most widely applied model in medicine and bio-statistics, partly because of its
simple computation and its relation with the Odds Ratio measure of relative risk, very popular
in discrete-treatment evaluation analyses.

We opted to apply the Probit link function because both, it is the most studied and applied
model in the econometric literature (in the case of parametric probability models with endoge-
nous regressors) and because computing odds ratios is not our goal due to the continuous nature
of our treatment variable. Although this nonlinear parametric probability model does not con-
stitutes the main interest for our analysis, it is an adequate benchmark to make comparisons. In
any case, using Probit or Logit makes no difference on final conclusions.

On the other hand, the GAM specification including flexible smooth functions for each
covariate is given by system (2.14)-(2.15),

Event = P(Event = 1|TDC,Age,Gr,Fem,u) +€ (2.14)
= lo(Bo+ froc(TDC) + fage(Age) + f6r(Gr) + PiFem+ fu(u)) +€

TDC = E(TDC|Age,Gr,Fem,Fr,Sa,Su) + u (2.15)
= 0y + 8age(Age) + 86r(Gr) + oy Fem + 0 Fr + 0i3Sa + 04 Su + u,

where, as before, [y(.) represents the Probit response function of the binomial family.

Finally, it can be noted that reduced form equations 2.9 and 2.13 are identical, as are the
equations 2.11 and 2.15.
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2.4 Data description and assessment of identification assump-
tions

2.4.1 Sample and data description

Our data base includes patients admitted consecutively between November 2003 and January
2011 to the Cardiology Department from Clinic Hospital of Santiago, with an Acute Coronary
Syndrome (ACS) diagnosis. The demographic and clinical data were collected prospectively
and digitally recorded.

Patients were diagnosed with ACS if they showed new onset symptoms consistent with
cardiac ischemia, cardiac biomarkers with values above the higher normal threshold and in any
of the following events: electrocardiogram variation consistent with ACS, in-hospital stress
testing suggesting ischemia, or registered history of coronary vessel disease.

Patients were classified as having STEMI (ST-segment elevation Myocardial Infraction) or
NSTEMI (non ST-segment elevation Myocardial Infraction) or Unstable Angina. As was men-
tioned in the introduction only NSTEMI patients, catheterized before 60 hours since hospital
admission, were selected for the present study. Patients whose ACS was precipitated in the
context of surgery, sepsis, trauma, or cocaine consumption were excluded as well as patients
presenting missing data for some control variable. As a result, 1101 patients constituted the
final data base.

Table 2.2 summarizes baseline characteristics and instruments, presenting descriptive statis-
tics for variables defined in Table 2.1, for patients in the final data set.

TABLE 2.2: Relevant variables included in the analysis

Variable | Mean | Std. Dev. | 1st quar. | 3rd quar. | Min | Max

Event | 0.1453 | 0.3526 0 0 0 1
IDC 28.74 14.51 18 41 0 60
Age 64.65 12.11 55.75 74 33.7| 92

Gr 124.6 39.15 98 148 33 | 290
Fem 0.2470 | 0.4315 0 0 0 1
Fr 0.0073 | 0.0850 0 0 0 1
Sa 0.0972 | 0.2963 0 0 0 1
Su 0.0872 | 0.2822 0 0 0 1

The event mortality/myocardial infraction affects 14.53% of patients in the sample, repre-
senting 160 cases. This is an usual rate for that kind of event. The mean value for treatment
variable TDC rounds about 29 hours.
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The control variables Age and Gr show mean values of around 65 years and 125, respec-
tively. Female patients represent approximately 25% of sample patients, which is an usual rate.

Patients admissions rates are similar on Saturdays (8.7%) and Sundays (9.7%), and are
relatively low on Fridays (0.7%) because only last 7 hours of that day are considered as weekend
time. Final results and conclusions remains approximately the same when the dummy for Friday
admission is excluded from the set of instruments or if a unique instrument (indicating weekend
arriving at any day) is used.

2.4.2 Assessing identification assumptions

The asymptotic Consistency property for IV-based estimators depends on the satisfaction of key
identifications assumptions, provided by equations (2.1)-(2.4), which are linked to instruments’
validity. They can be summarized in the present application as follows:

Al) The set of instruments, Fr, Sa and Su, present partial (positive) correlation with en-
dogenous treatment 7DC, feature which is reflected in the reduced form equation 2.2, where
the instruments are included as covariates.

A2) The instruments, Fr, Sa and Su, are partially uncorrelated with u (the unobserved factors
affecting TDC) and partially uncorrelated with € (the unobserved factors affecting Event), once
conditioning on u. Both conditions are formally stated by equations (2.4) and (2.3), respectively.

A3) The instruments, Fr, Sa and Su, are not relevant explanatory variables in the structural
equation (2.1), or in its alternative version (2.5). Then, the unique channel through which
instruments can affect outcome is the treatment 7DC.

It is important to remember that 7DC was bounded to a maximum of 60 hours and the
final sample includes only catheterized patients, which is a strategy designed to focus on early
catheterization effect over outcomes, similar to that followed in Tricoci et al., 2007.

It must be noted that changing the 60 hours limit for TDC, affects its partial correlation with
the instruments (Fr, Sa and Su dummy variables). In fact, a higher bound for TDC implies a
lower correlation, because the instruments become less relevant to affect (i.e. to increase) the
new values (i.e. values larger than 60) of TDC.

Therefore, defining the maximum threshold for 7DC affects assumption Al. Such assump-
tion requires significant partial correlation between the endogenous treatment and the instru-
ments.

To assess the fulfillment of condition A1, Table 2.3 reports estimation results obtained by re-
gressing TDC over the three binary instruments for weekend patients and the remaining control
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variables, using a linear model specification (i.e. fitting the reduced form equation 2.9, which is
the same that 2.13).

TABLE 2.3: Linear regression of TDC on controls and instruments

Covariate | Coef. | Std. err. | t-statistic |  P-value
Age 0.3097 | 0.0447 6.92 0.0000
Gr -0.0987 | 0.0137 7.22 0.0000
Fem 0.6957 0.9464 0.735 0.4624
Fr 18.47 47272 3.907 0.0000
Sa 17.54 1.3649 12.85 0.0000
Su 4.35 1.4258 3.051 0.0023
Interc. 18.64 2.1998 8.472 0.0000

Adjusted R” = 0.164; Sample Size: 1101
Instruments exclusion restrictions test: F=59.9; p-value=0.000

As can be seen in second and third columns of Table 2.3, the instruments Fr, Sa and Su are
both quantitatively relevant and statistically significant. Moreover, F statistic for testing instru-
ments exclusion restrictions is several times larger than 12 and 16, which are the recommended
minimum F values to exclude a weak instruments scenario when using 2 and 5 instruments,
respectively (see Stock, Wright, and Yogo, 2002 for a survey on weak instruments). In fact, the
set of instruments explains most of the TDC’s variability given that adjusting the model without
them produces an adjusted R? of about 0.03 (notably smaller than 0.164, the value reported in
Table 2.3).

As was mentioned earlier, using of only one instrument indicating weekend arrival does not
produces substantial changes in results. We opted to use three disjoint IVs because it allows
us to induce more exogenous variation in the treatment TDC.! In fact, regressing TDC on a
single aggregated instrument, and other controls, produces a R? equal to 0.129 which is smaller
than reported at Table 2.3 (0.164). This larger exogenous variation may be important to assess
a possible nonlinear effect of TDC. In fact, in our estimations we find a slightly greater non-
linearity when the three I'Vs are used.

Replication of the analysis reported in Table 2.3 but using an additive model framework
(1.e adjusting regression function 2.11 or 2.15), that incorporates smooth effects for continuous
controls Age and Gr, does not provide additional insights (adjusted R? and F statistic slightly
increase to 0.165 and 59.2, respectively).

'Tt can be noted that the estimated coefficient of instrument Su (of about 4.3) is clearly smaller than correspond-
ing coefficients for Sa and Fr (17.5 and 18.5, respectively).
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Assumption A2 basically says that instruments are not related to unmeasured factors which
simultaneously affect TDC (through u) and Event (by means of €). Such an assumption is not
directly testable.

An indirect way of assessing A2 consists in testing the existence of a relationship between
instruments and measured risk factors (i.e. covariates Age, Gr and Female). If there is no
relation between instruments and measured factors, then it can be argued that instruments are
randomly assigned or generated.

Table 2.4 reports difference of means tests, performed over each measured factor, comparing
weekend patients versus weekday patients.

TABLE 2.4: Covariates means: weekend vs. weekday patients

Covariate | Weekend patients | Weekday patients | P-value

Age* 64.5 64.7 0.8386
Gr** 130.4 123.3 0.0266
Fem*** 0.2275 0.2517 0.4637

* Two Sample t-test (equal variances)
*# Welch-Aspin Two Sample t-test (unequal variances)
*#* Two Sample test of proportions

The GRACE score is the only measured factor which presents a statistical significant (pos-
itive) association with arrival on weekend status. But it can be argued that the GRACE level
difference (130.4 — 123.3 =7.1) does not represent a significant difference from a medical point
of view. If the same t-test of Table 2.4 is performed for Gr but using the whole sample of 2635
catheterized patients (i.e. without imposing a maximum bound for TDC), a smaller means dif-
ference is obtained (129.3 — 124.6 = 4.7) with a p-value of about 0.0738, suggesting a weaker
association.

It should be noted that all previous difference of means tests were performed employing
a unique instrumental variable indicating weekend patients versus weekday patients, instead
of using the original set of instruments (binary variables Fr, Sa and Su). In other words, the
instruments were aggregated into a single one. This is not a limitation because all IVs arise
from a common type of data generating process (i.e hospital admission in some specific day of
the week). Moreover, conclusions in Table 2.4 remain the same when original instruments Fr,
Sa and Su are used.

An additional test is possible if we recognize that the partial correlation between instruments
and treatment 7DC can be broken, in a sub-sample of patients, when TDC values are above a
large enough minimum bound. In such case, exclusion restriction assumption (A3) can be tested
jointly with the assumption that instruments are not related with unmeasured factors in €, by
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testing whether instruments are associated with outcome Event in the structural equation (see
Baiocchi, Cheng, and Small, 2014 subsection 6.1).

In concrete, setting 7DC’s minimum at 100 hours and its maximum at some large enough
value, the relationship between IVs and TDC become statistically not significant. For example,
Table 2.5 reports results for the same analysis presented in Table 2.3 but using a sample of 981
patients with TDC ranging between 100 and 360 hours.

TABLE 2.5: Regressing TDC on IVs when TDC'’s range is [100,360]

Covariate | Coef. | Std. err. | t-statistic | P-value
Age -0.2253 0.218 -1.033 0.3018
Gr 0.2076 0.060 3.429 0.0006
Fem -2.422 4.00 0.605 0.5455
Fr -8.6333 8.609 -1.003 0.3162
Sa -7.926 6.679 -1.187 0.2356
Su -0.9671 9.095 -0.106 0.9153
Interc. 161.40 11.58 13.938 0.0000

Adjusted R? = 0.0108; Sample Size: 981
Instruments exclusion restrictions test: F=0.753; p-value=0.5207

As indicated by the F-statistic value reported in the last row of Table 2.5 (F=0.75 and p-
value=0.52), the partial correlation between the IVs and the treatment in this new sample has
disappeared.

Then we need to test whether the instruments are significant regressors in the structural
equation, using the new sample of patients (Table 2.6). Results in Table 2.6 represent evidence
against the hypothesis that IVs are relevant regressors in addition to the regressors in the struc-
tural equation (2.12), showing a Chi>-statistic p-value of 0.5362 for instruments joint exclusion
restriction test.

The same conclusion is obtained if we specify the structural equation as (2.8) and (2.14),
and/or select different samples of patients (i.e. setting alternative minimum and maximum
values for TDC so that it is not related with I'Vs). This represents additional empirical evidence
supporting assumptions A2 and A3. However, this evidence and the procedures applied to
obtain it can be criticized because it is usual that patients included in the new sample (who
present a larger delay to catheterization) possess a lower risk of event occurrence than original
patients. In such a case, can be argued that the new sample does not represents to the same
population in terms of risk factors, creating a potential selection bias problem.

Finally, note that it is not theoretically justified to perform tests for over-identifying restric-
tions, as the Sargan Test. This is because instruments share the same type of data generating
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TABLE 2.6: Probit-type structural equation (2.12) including IVs as covariates

Covariate | Coef. | Std. err. | z-statistic | P-value

DC -0.00102 | 0.00091 -1.112 0.2662
Age 0.00615 | 0.00631 0.975 0.3295
Gr 0.00883 | 0.00160 5.518 0.0000
Fem -0.30527 | 0.11943 -2.556 0.0106
Fr 0.05722 | 0.24133 0.237 0.8126
Sa 0.15114 | 0.17816 0.848 0.3962
Su -0.30714 | 0.27784 -1.105 0.2690
Interc. -2.38921 | 0.38984 -6.129 0.0000

Adjusted R? = 0.0774; Sample Size: 981
Instruments exclusion restrictions test:
Deviance=2.1786; Pr(> Chi2)=0.5362

process, i.e arriving to hospital on a particular day of the week. Therefore, testing the validity
of one instrument, supposing at the same time that the remaining IVs are valid, represents a
logical contradiction.

2.5 Empirical results

To estimate the TDC effect on outcome Event, taking account of a potential endogeneity bias
problem, can be approached using one of the triangular simultaneous equation models defined
in Section 2.3. Those models differ in both, functional form of continuous covariates effects
and the link function connecting binary outcome variable Event with regressors. Both features
are associated with potential existence of non-linear covariates effects, so identification of a
nonlinear TDC effect is of particular interest.

2.5.1 Estimation with Linear and Additive Models

The standard regression approach applied in practice is the Linear Model based system (2.8)-
(2.9), which is usually estimated by Two-Stage Least Squares (2SLS) method. In this case, first
stage involves estimation of reduced form function (2.9) leading to its adjusted version (2.16),

TDC; =0+ QjAge; + 0 Gri + Q3 Fem; + Q4 Fr; (2.16)
+ 0sSa; + GeSu; +d;, i =1,...,n;

were subscript i indicates ith patient in sample of size n. The estimated coefficients in (2.16)
was already reported in Table 2.3.
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In common practice, the second step consists in estimating the structural equation that fol-
lows

Event; = [30 + [ngbCi + BzAgei + [33Gr,' + fi4Femi +&; 2.17)

were TDC is the vector of fitted values from the first stage estimated function (2.16), which
is included as a regressor instead of the original treatment regressor 7DC.

When this linear model setting is used, the same estimated coefficients produced in (2.17)
can be obtained by fitting the structural equation as was defined in (2.8), leading to its adjusted
version (2.18),

Event; = Bo+ B1 TDC; + BaAge; + B3Gri + BaFem; + Bsi; + &, (2.18)

were #; is the first stage residual of ith patient. These two equations, (2.18) and (2.16),
constitutes the Control Function Approach (CFA) which was described in Section 2.3. When we
moved from the parametric linear setting to the flexible semiparametric models such as GAMs,
the CFA becomes the workhorse estimation procedure to deal with triangular simultaneous
equations models in the frequentist framework, as we will see later.

Table (2.7) presents the estimated values of second stage coefficients in (2.17) or (2.18), with
corresponding standard errors (non-robust and robust to heteroscedasticity) and 95% confidence
intervals based on asymptotic normality.

TABLE 2.7: Linear structural equation adjusted by 2SLS

Robust | P-value 95%
Covariate | Coef. | Std. err. | Std. err.* | P> [¢] Conf. Int.
7DC 0.0048 | 0.0019 | 0.0022 | 0.0329 | [0.0004, 0.0092]
Age 0.0009 | 0.0013 0.0013 0.4711 | [-0.0033, 0.0015]
Gr 0.0029 | 0.0004 0.0004 0.0000 | [0.0021, 0.0038]
Fem -0.0879 | 0.0246 0.0223 0.0000 | [-0.1315,-0.0442]
Interc. -0.2799 | 0.0706 0.0745 0.0002 | [-0.4719, -0.0880]

Adjusted R* = 0.0453; Sample Size: 1101
Breusch-Pagan/Cook-Weisberg heteroscedasticity test: Pr(> Chi2)=0.0000
*Hubert-White sandwich type, heteroscedasticicty robust, standard errors
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First, results show a point estimation for TDC effect (B;) equal to 0.0048, implying that
one hour increment in time delay to catheterization increases 0.48% the probability of event
occurrence (i.e. death or myocardial infraction). This is a medically significant effect which
means, for example, that one day of delay to catheterization represents an 11,5% increase in
event risk.

Even though inference must be based on heteroscedasticity-robust standard errors, because
homoscedasticity hypothesis was rejected (see reported Breusch-Pagan test), we additionally
reported the non-robust versions to show that conclusions remain roughly the same without
standard errors correction. Coefficients of control variables GRACE (Gr) and female (Fem) are
highly statistically significant and present the expected signs.

To observe the impact of the endogeneity correction performed by previous 2SLS procedure,
Table (2.8) reports estimation results for the structural equation using Ordinary Least Squares
(OLS) assuming the treatment TDC is exogenous.

TABLE 2.8: Linear structural equation adjusted by OLS

Robust | P-value 95 %
Covariate | Coef. | Std. err. | Std. err.* | P> [7] Conf. Int.
TDC -0.0004 | 0.0007 0.0007 0.552 | [-0.0017, 0.0009]
Age 0.0004 | 0.0011 0.0011 0.696 | [-0.0018, 0.0027]
Gr 0.0025 | 0.0003 0.0004 0.0000 | [0.0017, 0.0033]
Fem -0.0851 | 0.0239 0.0218 0.0000 | [-0.1278, -0.0424]
Interc. -0.1672 | 0.05750 | 0.0564 0.003 | [-0.2778, -0.0566]

Adjusted R* = 0.09; Sample Size: 1101
Breusch-Pagan/Cook-Weisberg heteroscedasticity test: Pr(> Chi2)=0.0000
*Hubert-White sandwich type, heteroscedasticicty robust, standard errors

As can be seen, the OLS estimation of the TDC: effect B; is about -0.0004 and statistically
insignificant. Comparing with 2SLS estimation (3; = 0.0048) it is clear that the estimated
difference between methods is medically relevant.

A formal assessment of the TDC exogeneity assumption is given by the Haussman test
(Wald type test) which tests the significance of the coefficient of #;, Bs, in the structural equation
(2.18). This test reveals evidence against the exogeneity assumption, producing a t-statistic
equal to -2,615 (p-value = 0.009) for B5 and suggesting 2SLS as the preferred method.

As explained earlier in subsection 2.3.1, a limitation of the previously estimated triangular
system is related to the linear specification of the regressors’ effects. For example, this assump-
tion implies that a marginal increase of one hour in TDC produces the same marginal effect (1)
across the whole range of time delay values (i.e. imply a constant marginal effect irrespective of

30



Chapter 2. Flexible Models for Assessing Optimal Intervention Timing in patients with
NSTE-ACSs

the starting value for TDC). Imposing effect constancy may hide a nonlinear behavior relevant
for medical practice.

One alternative that allows the existence of general non-linearities in regressors effects,
consists in estimating an additive model-based triangular system given by equations (2.10) and
(2.11). One recent estimation method for such flexible system, proposed by Marra and Radice,
2011 and called Two Stage Generalized Additive Model (2SGAM), employs a two steps proce-
dure similar to the CFA, used earlier.

Now, in the first stage we need the estimated version of the reduced form regression (2.11),
defined as

TDC; =00 + Zage(Agei) + 86r(Gri) + 0 Fem; (2.19)
+ 0 Fri + 038a; + 0uSu; +i;, i=1,...,n.

The second stage involves estimating structural equation (2.10), using first stage residuals 7
as a regressor instead of unobserved errors u, this can be expressed as

Event; =Bo+ frpc(TDC:) + fage(Agei) + for(Gry) (2.20)
+ B Fem;+ falii) + €.

The naive AM (Additive Model) estimation, without correcting for endogeneity, would con-
sist in estimating (2.20) excluding # as regressor.

TABLE 2.9: Estimation results for Aditive Model-based first stage (2.19)

Covariate | (e.d.f.)/coef. | Std. err. | (F)/t- statistic | P-value

8age(Age) (1.001) - (29.7) 0.0000
8cr(Gr) (1.402) - (47.9) 0.0000
Fem 0.7009 0.9463 0.741 0.4591
Fr 18.50 4.7267 3914 0.0000
Sa 17.54 1.3647 12.86 0.0000
Su 4.34 1.4257 3.045 0.0024
Intercept 26.35 0.5038 52.31 0.0000

Adjusted R” = 0.165; Sample Size: 1101
Instruments exclusion restrictions test: F=53.2; p-value=0.000
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Tables 2.9 and 2.10 report estimation results for first (2.19) and second (2.20) stages respec-
tively, showing estimated coefficients for binary regressors and empirical degrees of freedom
(e.d.f) of estimated smooth effects for continuous covariates.

As mentioned in subsection 2.4.2, adding flexible smooth effects in the first stage does
not provide additional explanatory power when compared to the linear model case. In fact,
estimated smooth effects of Age and Gr are practically linear, as indicated by respective e.d.f.
in Table 2.9.

On the other hand, estimation in second stage shows a clear nonlinear effect for treatment
TDC and GRACE score Gr, presenting e.d.f. about 2.5 and 4.1 respectively (Table 2.10). We
will henceforth call this two-step estimation 2SAM (Two Stage Additive Model), because both
dependent variables are treated as continuous.

TABLE 2.10: Structural equation (2.20) adjusted by 2SAM

Robust 95% Bayesian
Covariate (e.d.f.)/coef. | Std. err.* Conf. Int.*

frpc(TDC) (2.457) - _

fage(Age) (1.370) — —
for(Gr) (4.132) 2 2

2u(a) (1.000) - S

Fem -0.0862 0.021 [-0.1258, -0.0442]
Intercept 0.1666 0.011 [0.1438, 0.1887]

Smoothing parameter estimation by REML

Sample Size: 1101; REML score = 353.13

*Std. errors and Bayesian C.I. derived from simulation
and corrected for heteroscedasticity trough weighting.

Figure 2.1 presents estimations for TDC smooth effect (left), for both 2SAM and AM
(i.e. without endogeneity correction), and its first derivative or marginal effect (right) for the
2SAM case. Based on 95% bayesian confidence intervals, naive AM estimates seems to be
non-significant while 2SAM case shows a (positive) marginal effect (MgEf) that is significant
between O and 34 hours only. Thus, the significant MgEf’s values range approximately from
0.011 to 0.005, showing a relevant heterogeneity from a medical perspective.

Previous 2SAM results expose how misleading a careless usage of 2SLS could be, as it
implies a significant MgEf of 0.0048 for the whole TDC range (i.e from O to 60 hours). Based on
2SAM we can compute a global MgEf (i.e. average first derivative) of about 0.0059 averaging
over the whole 7DC range. Moreover, averaging over the statistically significant TDC’s values

32



Chapter 2. Flexible Models for Assessing Optimal Intervention Timing in patients with
NSTE-ACSs

[82]
< N
N
S =
2
— o
2
~ O < Y b
o=k 3
= o ':’ 8
T o - 91
| o
[32]
% S
i sl
?
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
TDC (hours) TDC (hours)

FIGURE 2.1: Left: smooth TDC effects estimated by 2SAM (grey line) and AM (black

line), with respective 95% bayesian C.I. (dashed line for 2SAM and shaded area for AM).

Right: estimated marginal effect (first derivative) for TDC and corresponding 95% C.1.
using 2SAM.

(i.e averaging from O to 34 hours), we get a larger MgEf of about 0.0076. Both instances
demonstrate a medically relevant MgEf sub-estimation from 2SLS approach.

Estimated smooth effects for Age, Gr and first stage residuals (i) are plotted in Figure 2.2.
The Age effect becomes completely non-significant when estimated by 2SAM and Gr possesses
nearly the same nonlinear effect at 2SAM than at naive AM.
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FIGURE 2.2: Smooth effects estimations, using AM (black line) and 2SAM (grey line)
for Age, Gr and Residuals at structural equation with additive modeling, with respective
95% bayesian C.1. (shaded area for AM and dashed lines for 2SAM).

It is important to note that the first stage residuals seem to have a non-zero negative linear
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effect in the structural equation. In fact, using a Wald test statistic proposed by Wood, 2013
and used in Zanin, Radice, and Marra, 2014 it is possible to reject the null hypothesis of zero
effect associated with first stage residuals (which is equivalent to rejecting the hypothesis of
TDC exogeneity) with an F-statistic of 9.46 and corresponding p-value equal to 0.0022. Such
a test is an extension of the procedure for testing the hypothesis of TDC exogeneity, usually
called Hausman test of endogeneity (due to Hausman, 1978), used in the parametric linear case
(Wooldridge, 2010).

More details about estimation and inference, such as smoothing parameter selection and
heteroscedasticity corrections, and code for results replication are presented in the appendix
chapter.

2.5.2 Estimation with GLM and GAM

The empirical analysis presented in the previous subsection does not recognize the binary nature
of the dependent variable Event in the structural equation. A first step to introduce this binary
condition consists in estimating a triangular system with the form in (2.13) - (2.12), i.e using a
Generalized Linear Model to fit the structural equation (2.12).

In this context, estimation can be performed with the same two stage procedure, based on
the Control Function Approach, described in previous subsection (2SGLM hereafter). Earlier
works handling related issues, based on a Probit-type link function for the GLM model, are
Heckman, 1978 and Amemiya, 1978. We applied the two stage estimation procedure proposed
by Newey, 1987, which constitutes the standard parametric procedure when the structural equa-
tion is specified as a Probit model and the reduced form equation has a continuous dependent
variable.

The reduced form equation is the same as in the linear model case; then, its estimated
version, obtained in the first stage, is represented by (2.16). On the other hand, the second stage
estimated structural equation is given by

Event; = lo(Bo + B1TDC; + BoAge; + B3Gri + PaFem; + Psii;) + &; (2.21)

where [ is the Probit response function and £; is the response residual for ith patient.

Coefficients in equation (2.21), estimated by 2SGLM as in Newey, 1987, are reported in
Table 2.11. TDC has a 95% significant effect, showing an estimated coefficient equal to 0.0207
which cannot be interpreted beyond its sign. Again, Gr and Fem are significant controls while
Age is not.
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TABLE 2.11: Structural equation adjusted by 2SGLM

P-value 95 %
Covariate | Coef. | Std. err. | P> || Conf. Int.
DC 0.0207 | 0.0086 | 0.0160 | [0.0039, 0.0376]
Age -0.0009 | 0.0061 | 0.8860 | [-0.0127, 0.0110]
Gr 0.0115 | 0.0018 | 0.0000 | [0.0080,0.0150]
Fem -0.4436 | 0.1293 | 0.0000 | [-0.6972,-0.1901]
Interc. -3.0279 | 0.3521 | 0.0000 | [-3.7181, -2.3378]

Sample Size: 1101
Wald test of exogeneity: Chi2(1) = 8.67 Pr(> Chi2)=0.0032

In this GLM setting, the marginal effect (MgEf) of the continuous treatment 7DC depends
on the others independent variables. Defining the estimated probability as follows

P(Event; = 1|TDC,Age, Gr,Fem, i) =lo(Bo + P1 TDC; + PrAge; (2.22)
= B3Gri S B4Feml~ + Bsii;),

and taking first derivative of TDC at (2.22) we obtain the TDS’s MgEf (2.23),

0P(Event; = 1|TDC, ..., 1)

=1 (Bo+ B, TDC; + BrAge; 2.2
aTDC,' lO(BO+B1 CZ+B2 8¢€i (2.23)

+ B3Gri+ BaFem; + BSﬁi)Gla

where [ is the first derivative of the Probit response function (i.e the standard normal density
function), which is a non-negative nonlinear function of 7DC and the others regressors

Averaging (2.23) through i gives an estimated average MgEf of about 0.045, a value similar
to the constant effect given by 2SLS (0.048).

The Wald test of exogeneity, testing the significance of first stage residuals at the second
stage, rejects the null hypothesis of exogeneity (Table 2.11 last row). In fact running naive
Probit regression on structural equation, assuming 7DC exogeneity, gives a non-significant (p-
value of 0.614) estimated coefficient ; of 0.0018 (not reported).

Finally, the more flexible triangular system specification, given by (2.14)-(2.15), can be es-
timated by 2SGAM (Marra and Radice, 2011). This is the same procedure used in the previous
subsection to estimate the system based on additive models, in fact the first stage is exactly
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the same (see equation 2.19 and Table 2.9). The novelty in this case is the estimated structural
equation given by (2.24).

Event; :lo(B() +prc(TDCi) +nge (Age,-) +fGr(Gri) (2.24)
+ ﬁlFemi —|—fﬁ(ﬁ,)) +€;,

where [y is again the Probit response function.

Table 2.12 and Figures 2.3 present estimation results for (2.24). Estimated smooth functions
and coefficients show a behavior parallel to those estimated with the additive model (2.20), but
now they are not directly interpretable in terms of outcome probability.

TABLE 2.12: Structural equation (2.24) adjusted by 2SGAM

95% Bayesian
Covariate (e.d.f.)/coef. | Std. err. Conf. Int.*

froc(TDC) (2.690) _ —

fage(Age) (1.320) — -
Jor(Gr) (3:479) 2 )
4u(d) (1.000) - .
Fem -0.4636 0.1343 | [-0.7269, -0.2001]
Intercept -1.0595 0.057 [-1.1712, -0.9464]

Smoothing parameter estimation by REML
Sample Size: 1101; REML score =353.13
*Std. errors and Bayesian C.I. derived from simulation

A small discrepancy with respect to the 2SAM case can be seen for the TDC smooth effect
(Figure 2.3), which presents a slightly negative first derivative for the 52-60 hours range (but
statistically non significant). Again, the naive GAM estimation produces a non-significant effect
(black line with shaded area for 95% C. 1.), and the Wald test rejects the exogeneity hypothesis
with F-statistic equal to 11.52 and p-value of 0.0007.

As in the case of 2SGLM, the estimated probability now is given by

P(Event; = 1|TDC, .., 1) =lo(Bo + froc(TDCi) + fage(Age:) (2.25)
+ for(Gry) + BrFem; + fa(d)),
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FIGURE 2.3: Left: smooth TDC effects estimated by 2SGAM (grey line) and GAM

(black line), with respective 95% bayesian C.1. (dashed line for 2SGAM and shaded area

for GAM). Right: estimated first derivative of fTDC(TDC ) and corresponding 95% C.I.
using 2SGAM.

where the Probit type response function /y impose a kind of interaction between regressors,
implying a nonlinear structure on 7DC’s marginal effect, which can be expressed as

0P(Event; = 1|TDC, ..., 1)

3TDC, (2.26)

:l(/)(ﬁo + froc(TDC) + fage(Age;)

+ for(Gri) + BiFem; + fa(t:)) f7pe(TDC;)

where [ is the standard normal density function and F'7pc(TDC;) is the first derivative of
TDC estimated smooth term (right graph in Figure 2.3).

Expression (2.26) can be used to evaluate TDC’s MgEf at different risk levels. For example,
fixing all smooth effects fy(x), except frpc(TDC), and linear term f;Fem; at their median
values we get TDC’s MgEf function evaluated at a kind of ‘median risk’ patient. Such a case is
represented in Figure 2.4 (left) jointly with corresponding ‘median risk” MgEf function for the
2SGLM case. Additionally, right graph in Figure 2.4 represents estimated probability (2.25) as
a function of TDC, evaluated at the ‘median risk’ patient, for both 2SGAM and 2SGLM.

The main difference between 2SGAM and 2SGLM is that the later implies a 95% significant
MgEf over the whole TDC range, as we concluded from Table 2.11, while 2SGAM produces a
non-zero MgEf (based on a 95% confidence interval) over the smaller range located between 0
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FIGURE 2.4: Left: TDC’s MgEf estimated by 2SGAM (grey line) with respective 95%

bayesian C.I. (grey dashed line) and by 2SGLM (black dotted line). Right: predicted

probability as a function of TDC estimated by 2SGAM (grey line) with corresponding
95% C.I. (dashed grey line) and by 2SGLM (dotted black line).

and 32 hours. Over this smaller range, the MgEf takes values between 0.0067 and 0.0015. This
is the same feature that explains the difference between the linear based 2SLS and the additive
based 2SAM, as commented in previous subsection. Therefore, this feature can be attributed
to the flexible structure of regressors effects in both AM and GAM cases, independently of the
link function used at second stages (i.e. identity function or Probit).

The sample average of expression (2.26) gives a global MgEf of about 0.0055, which is
larger than its analog from 2SGLM (0.0045) and similar to the one obtained using 2SAM
(0.0059). Moreover, averaging (2.26) over TDC values from O to 32 (i.e. the grid were the
effects are different from zero based on 95% C.1.) gives an average MgEf equal to 0.0076 (the
same value obtained in the 2SAM case).

2.6 Discussion

In this chapter we have compared different modeling strategies, from parametric to semi-parametric
regression models, applied to assessing optimal time of catheterization in NSTE-ACSs patients.

From a methodological point of view two main contributions to the existing literature were
considered. In the first place, we used the treatment 7DC (‘Time Delay to Catheterism’) as
a continuous variable, instead of transforming it into dichotomous indicators of ‘early inter-
vention’. In the second place, we employed a recent flexible estimation procedure (Two Stage
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Generalized Additive Model), based on the Triangular Simultaneous Equations Model, to ac-
count for both the presence of endogeneity bias (confounding) and the existence of nonlinear
regressors effects.

Both combined innovations allowed us to estimate a flexible function for the treatment’s
marginal effect 7DC. This function enables us to assess the relevance of the effect across the
entire range of treatment values.

Another innovation was the construction of three binary instrumental variables, indicating
the specific day of the weekend that patients arrived to the hospital, while the usual approach in
the literature consists in using a single instrument indicating arrival on weekend. That allowed
us to induce a larger exogenous variation to the endogenous treatment 7DC, improving the
fulfillment of identification assumptions by enhancing the instruments’ strength.

Endogeneity bias was found to be a major concern, causing that the naive regression models
completely fail to identify any significant treatment effect.

From a medical perspective, results support the existence of a nonlinear positive effect of
TDC on patients survival and health status. Moreover, flexible modeling permits identification
of a specific range for TDC values, from O to 30 hours approximately, in which treatment effect
shows a nonzero (i.e. statistically significant) marginal effect which varies between 0.011 and
a value slightly above 0. But the form in which this MgEf is related to TDC differs between
2SAM and 2SGAM estimation alternatives, as can be seen in Figure 2.5.
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FIGURE 2.5: Left: TDC’s MgESf estimated by 2SAM (grey line) with respective 95%

bayesian C.I. (grey dashed line) and by 2SGAM (black line). Right: TDC’s MgEf esti-

mated by 2SGAM (black line) with respective 95% bayesian C.1. (black dashed line) and
by 2SAM (grey line).
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In the range from 0 to 28 hours, 2SAM estimation presents a positive decreasing MgEf
while 2SGAM produces a positive increasing one. Such difference between marginal effects
is due to the presence (absence) of a Probit link function, which imposes a specific functional
form to predicted probabilities and their first derivative. When we consider the 95% confidence
intervals in Figure 2.5, they are too wide to conclude that MgEf functions can be different in
general, except inside the range from O to 15 hours.

Probit and Logit link functions (i.e cumulative density functions of Standard Normal and
Logistic distributions), have first derivatives that vanish when extreme values of the link are
reached. This feature supposes, in such extremes, that marginal changes in treatment (or another
regressor) do not involve medically significant variations in cardiac complications. Such an
assumption is not necessarily appropriate from a medical point of view.

Beyond the differences detected, both models bring empirical evidence supporting that early
catheteriztion is a good decision within the first 30 hours since hospital admission, and the
earlier, the better.

A possible extension for future research would consist in specifying the structural equation
using a GAM with an unknown link function. This extension avoids the requirement of using
a fixed parametric link function, which can be the source of biased results if it strongly differs
from the true link. Estimation methods of such model, in the context of a single regression
equation, was addressed by Roca-Pardifias et al., 2004, Cadarso-Sudrez et al., 2005, Horowitz
and Mammen, 2011 and Tutz and Petry, 2013. No work was found studying this extension in
the simultaneous equations framework.
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Chapter 3

Identifying Class Size Effect on Schooling
Achievement trough Flexible Triangular
Equations Models

3.1 Introduction

Improving the quality of education at primary schools is an essential public policy goal in
most developing countries. In these countries, especially in Latin American ones, a large and
increasing amount of financial resources are destined to public schools maintenance. Such a
large financial support represents an issue to policy debate and it is usually justified because
strategic status of basic education. These issues led social researchers to study the impact of
several factors on student achievement, mainly comparing effects due to school characteristics
and family characteristics. The main goals of those works was to determine whether improving
schools resources, quantitatively and/or qualitatively, can produce a relevant improvement on
students’ performance.

One of the most prominent resources that policymakers can alter is the number of teachers
which generates a corresponding variation in class size (henceforth CS). The effect of class size
reduction on student achievement was a highly studied and debated issue in the United States
during the’80 and "90 decades, see for example Mishel et al., 2002 for a review of main find-
ings. These studies found mixed results which imply a lack of unanimous evidence against or
in favor of CS reduction; instead, CS affects achievement only within specific sub-populations
of schools. More recently, the effects of class size reduction was assessed for European and
others countries, many of them exploiting international surveys as the Programme for Interna-
tional Student Assessment (PISA), the Trends in International Mathematics and Science Study
(TIMSS) and the Progress in International Reading Literacy Study (PIRLS); see Woessmann,
2006, Hanushek and Woessmann, 2017 and Cordero, Cristobal, and Santin, 2017 for recent
reviews.

Class size reduction are usually supported by many social actors. Students’ parents like
small classes because they enable teachers to pay more attention to each student. Also, teachers
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can better handle group behavior, which is crucial for implementing learning methods and min-
imizing class disruptions. Teachers may prefer small classes because they imply fewer efforts
in executing instruction process. And teacher unions presumably like class reduction since it
requires additional teachers.

From a behavioral approach, there are recent theoretical efforts that try to explain the pos-
sible effects of class size. One instance is the disruption model of educational production de-
veloped in Lazear, 2001. This model implies both that optimal CS is larger for better-behaved
pupils and that CS effect is bigger in groups of worst-behaved students. Such conclusion helps
to explain actual difficulties to find conclusive empirical evidence through usual statistical tech-
niques. For example, if students are allocated into classes of different size by schools adminis-
trators, in an attempt to reach optimal scholastic results, then random assignment of pupils into
classes is broken. Therefore, a mayor problem to deal with when trying to measure CS effect
on scholastic achievement is the endogenous status of CS.

One of the earlier empirical studies confronting class size endogeneity using instrumental
variables methods, and linking this method with Fuzzy Regression Discontinuity Design, is
Angrist and Lavy, 1999. Angrist and Lavy’s pioneering work exploits Israeli’s regulations,
which impose a ceiling of 40 pupils per class, to obtain exogenous variation in CS.

Several subsequent works, dealing whit the class size effect on pupil performance, employed
the identification strategy proposed by Angrist and Lavy, 1999 and reported mixed findings.
For example, Bonesrgnning, 2003 finds a significant CS effect in Norway secondary schools.
Woessmann, 2005 finds zero effect in European countries using TIMMS survey. Urquiola, 2006
addresses the case of rural schools in Bolivia finding significant positive effects of CS reduction.
In other study for Norway, Leuven, Oosterbeek, and Rgnning, 2008 finds no evidence of a CS
effect. Analyzing data from French junior high schools, Gary-Bobo and Mahjoub, 2013 found
a significant but rather small effect of class size. Using TIMMS data for primary schools in
Cyprus, Konstantopoulos and Shen, 2016 found both significant and non-significant CS effects,
depending on the grade evaluated. Finally, analyzing data from TIMMS 2011 for 14 European
countries, Li and Konstantopoulos, 2016 does not find systematic patterns of class size effects
across countries, with the exception of Romania and the Slovak Republic.

Practical implementation of this specific identification strategy presents several complexi-
ties in terms of estimation and inference procedures. First, correct estimation of the relationship
between the endogenous variable (CS) and the instrumental variable is often affected by the
presence of outlier observations. Second, the presence of hierarchical data structures represents
a challenge to the validity of standard inferential methods based on both parametric structures
and asymptotic normality assumptions. In third place, relevant control variables affecting stu-
dent achievement usually posses a non-linear effect.

To tackle such complexities, this chapter presents three procedural deviations to the standard
instrumental variables method described in Angrist and Lavy, 1999 and used in the articles
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previously cited. As a first innovation we propose a flexible triangular equations model, recently
proposed by Marra and Radice, 2011, to properly account for endogeneity bias and nonlinear
covariables effects. Secondly, we use a Weighted Bootstrap resampling procedure (Chatterjee
and Bose, 2005, Chatterjee and Bose, 2000 and Bose and Chatterjee, 2002) to flexibly construct
valid confidence intervals for the CS effect, in the presence of clustered observations at school
level. Finally, the third innovation consists on applying an outlier identification method to avoid
the bias generated by schools showing outlier values in class size. Such outlier detection method
is similar to the procedure described in Dehon, Desbordes, and Verardi, 2015 for the standard
instrumental variable estimator. The benefits of correctly handling such outliers is illustrated by
means of a Monte Carlo simulation exercise.

We illustrate the proposed procedure by estimating the CS effect on Literature test-scores,
using data from sixth grades at primary school in Uruguay. As in Angrist and Lavy, 1999, we
exploit educational regulations in Uruguay that impose a ceiling of 40 students per class but
our analysis is performed employing student-level micro data, instead of class-level aggregated
data.

The Chapter is organized as follows. Section 3.2 describes the sources of class size endo-
geneity and the identification strategy for CS effect. Section 3.3 defines alternative estimation
and inference methodologies. The data set to be used and descriptive statistics of relevant vari-
ables are presented in Section 3.4. Empirical results are reported in Section 3.5. Section 3.6
presents the simulation results illustrating the bias induced by outlier class size values and the
performance of the proposed trimming strategy. Finally, the main conclusions are discussed in
Section 3.7.

3.2 Class size endogeneity and the identification strategy

Estimating class size effect is a difficult task because of the endogenous nature of CS. Sev-
eral sources of such endogeneity can be present simultaneously, even when analyzing a unique
population of schools. Plausible sources are the following:

e One source derives from the potentially non-random assignment of students to classes,
performed by school administrators. For example, if well-behaved students are allocated
in bigger groups and the others in smaller ones, and student behavior is correlated with
quality of learning process, then the CS effect (estimated without accounting for the en-
dogeneity problem) will be upward biased. This mechanism can be derived from Lazaer’s
disruption model mentioned at the introduction (Lazear, 2001).

e A second source of endogeneity arises because CS is determined by enrollment (i.e. the
quantity of students enrolled at a specific school). High enrollment schools tend to present
larger CS and are commonly located in high populated cities and towns. These kind
of high populated locations tend to have families with better socioeconomic status than
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low populated ones. Such socioeconomic family status affects both student ability and
stimulus to reach educational goals and is partially unobserved by the researcher, thus
generating a source of unobserved confounders. Therefore, in this situation it is likely
that estimators will have an upward bias. This potential endogeneity factor can be limited
by using sub-samples of schools located in regions with similar socioeconomic indicators.

e A third source of endogeneity is that student’s parents have the possibility to choose the
school they prefer, between schools located near to the area they live. Typically, parents
that are worried about making a good choice of school, are generally more educated, more
informed and take more care about their children’s education (some of these parents’
characteristics are unobserved to the researcher). These unobserved characteristics are
positively related to student achievement. Usually, this kind of parents (concerned with
their children’s education) selects a school based on knowledge about the school’s quality
(another unobserved factor for the researcher). Then, it is relatively more likely that there
will be: (i) low-enrollment (low-quality) schools with relatively small CS; and (ii) high-
enrollment (high-quality) schools with relatively large CS. This will produce an upward
bias on estimations of CS effect. Alternatively, parents can simply choose schools with
smaller classes, hoping that they are better than larger ones, and this will generate a
downward bias on the estimator.

To deal whit the endogeneity in CS we rely on instrumental variables analysis, exploiting a
national regulation rule that imposes a ceiling of 40 pupils per class. Our instrument is the same
as the one proposed by Angrist and Lavy, 1999 and can be defined as follows.

Let e; be enrollment in school s and PCS;. the predicted class size of school s and class
¢ (i.e. our instrumental variable). Assuming that enrolled sixth grade pupils are divided into
classes of equal size, we have

€s

P =
s int[(es—1)/40] +1’

where int(n) is the largest integer lower or equal to n.

Predicted class size (PCS) represents the rule that schools facing an enrollment size less or
equal to 40 must have only one class. Similarly, schools whit enrollment between 41 and 80
must accommodate students in two classes, and so on.

Figure 3.1 shows the relationship of enrollment with both PCS (dashed line) and the average
class size in the actual dataset (continuous line).! Dotted horizontal lines at 20, 27 and 40 pupils

ISuch actual average CS was computed running a nonparametric regression of observed CS on observed en-
rollment counts. Nonparametric regression was based on penalized spline estimation and was performed with the
R (R Core Team, 2014) package “mgcv”’ (Wood, 2011). Regression had been intentionally infra-smoothed, aiming
to capture deep local behavior of mean class size.
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indicate the levels where PSC function has corners and sharp discontinuities. It can be seen in
the figure that average CS tends to follow a similar pattern than PCS rule, showing an abrupt
decreasing around discontinuities, but showing a smoother behavior. Detected discrepancies
between the two lines are due to violations in the PCS rule which will be penalized by using the
instrumental variable methodology.

30
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PCS / Actual average CS
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I I I
20 40 60 80 100
Enrollment count

FIGURE 3.1: Predicted class size and actual average class size as functions of
enrollment count.

In principle, the assignment rule given by PCS function (defined as a deterministic function
of enrollment) can be seen as inducing an exogenous variation in CS. Using PCS as an IV im-
plies leaving aside (i.e. penalizing) a portion of CS variability that is determined discretionally
(i.e. endogenously) by schools administrators. In particular, for situations in which enrolled
pupils are distributed into different sized classes based on their behavior or performance. Is
important to realize here that PCS always predicts equal class sizes, within schools that need
two or more classes, then it penalizes schools with asymmetric class sizes.

Additionally, this procedure helps correcting the bias caused by the parents’ choice of
school, whether the choice is made based on school quality or class size. If that choice is made
considering school quality, then high-enrollment (high-quality) schools with large CS will tend
to exceed PCS. On the contrary, low-enrollment (low-quality) schools with small CS will tend
to be lower than PCS. Such deviations may arise, respectively, due to the lack or excess of
schools’s infrastructure (i.e. number of available classrooms). On the other hand, if parents act
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trying to get their children into a small class size, they would prefer schools with enrollment
slightly larger than 40 or 80 pupils (i.e. hoping to fall on near the right side of a discontinu-
ity). Because final enrollment is a random variable, parents are unable to predict class size with
precision. Consequently, they can fall on with similar probability (i.e. randomly) at any side of
discontinuities, avoiding the bias problem.?

Finally, enrollment itself is a possible source causing CS endogeneity, because it can be
related with unobserved confounders affecting test score. Then PCS would partially include
those confounders, affecting test scores by channels other than change in class size.

Assuming that such a confounders (and enrollment) have a smooth effect over test scores
the problem can be mitigated because PCS breaks two times the enrollment path, allowing sharp
discontinuities at 40 and 80 pupils. Therefore, the PCS function generates a large variability
over CS at the discontinuities that mainly affect schools with similar enrollment (i.e. schools
that stay near the discontinuities). But there are still schools that stay far from discontinuities. In
principle, those schools have a reduced range of enrollment values comparing to the full range
of enrollment, which reduces the potential bias effect caused by such variable. Therefore, to
ensure unbiasedness it is necessary to introduce enrollment as a control variable in the model, in
an attempt to capture all the remaining smooth effects from unobserved confounders. Following
Angrist and Lavy, 1999 we use enrollment as an additional regressor with the purpose to get
identification of class size effects.

3.3 Estimation and inference methodologies

3.3.1 Classical linear model approach

As described in Section 3.2 identification of CS effect has to be conducted using instrumental
variables (IV) estimators. In the linear model framework, IV estimation may be performed via
Two-Step Least Squares (2SLS), Generalized Methods of Moments for IV (GMM-IV) or Lim-
ited Information Maximum Likelihood (LIML), see for example Baum, Schaffer, and Stillman,
2007 and Angrist and Pischke, 2009 for a practical exposition. The three alternatives are equiv-
alent in our case study, with one endogenous regressor and only one instrumental variable (i.e.
the ‘just identified" case).

Regarding inference procedure, it is crucial to consider a possible cluster dependence struc-
ture in the data. Test scores of students included in the same class or school may tend to be
similar. This situation leads to a cluster dependence on the error components of the regression
model. One possible solution consists in the explicit modeling of such a cluster correlation
through inclusion of “random effects” (Moulton, 1986 analyzed that situation for the Ordinary

?Last discussion relates with Fuzzy Regression Discontinuity Design methodology (FRDD), formalized by
Hahn, Todd, and Klaauw, 2001 and discussed by Angrist and Lavy, 1999 for the CS effect case.
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Least Squares estimator and Shore-Sheppard, 1996 extended it to the instrumental variable set-
ting). In that case, the test score regression model can be defined as

Yisc = Xg/Bs +XL/-BC +XiIBi+aCSsc+8s +nc+£isw = 17 .o n, (31)

where y;,. represents the i, student’s score, X/, X! and Xl-’ are, respectively, vectors of school,
class and pupil characteristics, and CS;, is class size of class ¢ in school s. The terms &, and 1.
are i.i.d. random components representing school s and class ¢ effects.’

Possible limitations of model (3.1), with respects to cluster-robust inference, relate to the
imposition of substantive structure on the error components’ data generating process (DGP).
Primary it assumes that random terms are identically distributed (i.e. have the same distribution
across clusters). Also it imposes additive separability of random components which, given the
assumption of independence across clusters, implies the additivity of variance components (i.e.
terms like 0% + GTZ] + 02 as diagonal elements of the error’s variance-covariance matrix).

Another implication of model (3.1) is that individual observations within a cluster have an
error constant correlation (for example, corr(;s,d js) = p for i # j), and it is the same in all
clusters.

The parametric assumptions in (3.1) mentioned before make this approach sensitive to mis-
specifications. On the other hand, if those assumptions about the DGP are true, this strategy
will produce the most efficient estimates.

An alternative and more flexible approach is the use of a cluster-robust estimator for the
errors’ variance-covariance matrix (White, 2014, 135-136). In this case the model specification
is given by

Yise = XSIBS +X¢/-Bc "‘Xi/Bi + O('CSsc + €isc, = 1; <. N, (32)

where €;5c = g(85,M¢, €isc) is a general function of all random components. Then, the errors’
variance-covariance matrix has the following block-diagonal form

Y 0
Q= - : (3.3)

0 Xm

3This modeling strategy was used in Angrist and Lavy, 1999 but aggregating data at the class level and using
school level clustering.
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where ¥,, = €,¢), is the intra-cluster error covariance matrix for cluster m, denoting by €,
the vector of errors for that cluster.

The matrix given by (3.3) is used in a weighting scheme either by 2SLS, GMM-IV or LIML
estimation methods. Such methods produce the same results in our case of a unique endogenous
variable and a unique instrumental variable. Actually, this is the most commonly used strategy
when dealing with clustered data in applied research (see Baum, Schaffer, and Stillman, 2003
for a brief exposition).

The previous variance correction method is asymptotically valid in terms of the number of
clusters. In fact, it works very poorly when the number of clusters is small.

A third alternative inference procedure, which combines flexibility and good performance
with few clusters, consists in using some re-sampling scheme. Recently, some variations of
the Bootstrap was proposed for inference in the context of IV parametric estimators with both
independent observations (see for example [Davidson and MacKinnon, 2008, 2010, 2014]) and
clustered data (Finlay and Magnusson, 2014). Usual bootstrapping types are pair bootstrap (i.e.
nonparametric bootstrap) and the wild bootstrap.

Here we use a specific smooth kind of weighted bootstrap that belongs to the generalized
bootstrap benchmark (Chatterjee and Bose, 2005). Additional discussion of the used weighted
bootstrap is left to next subsection, where flexible additive models are presented.

Finally, since class-level clusters are embedded into school-level clusters (i.e. they are
nested clusters) is enough to perform estimation assuming schools as the unique relevant clus-
ters. That strategy is justified because both our regressors, on the one hand, and the unobserved
errors, on the other hand, are correlated for each school.

3.3.2 Flexible additive model approach

In this subsection we present a flexible additive model approach to I'V-based estimation along
with a flexible resampling-based inference strategy. The additive model structure enables us to
estimate smooth nonlinear effects of continuous control variables.

The specific model consists in a triangular simultaneous equations system, recently devel-
oped by Marra and Radice, 2011 for the semiparametric additive case and first proposed by
Newey, Powell, and Vella, 1999 for the full nonparametric case.

The model structure is given by the structural equation (3.4) and the reduced form equation
(3.5),

K
FXD+ Y X +aCSe+eie, i=1,...,n, (3.4)
j=1 k=J+1

J
Yisc =
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K
CSee=Y g/ (X)+ Y (X5 +nPCSye+uise, i=1,....n, (3.5)
j=1 k=J+1

where f(x) and g(x) are flexible smooth functions of regressor x, J is the number of covari-
ates at school level and K —J is the number of covariates at the class level. We omit notation on
both, regressors at the student level and controls with parametric effects, because they are not
significant and unnecessary, respectively, in our empirical application.

A point to be noted is that CS presents a constant marginal effect (o) instead of a smooth
nonlinear effect. This is so because CS’ effect is estimated relaying on the two jumps or dis-
continuities in PCS, described in Figure 3.1. In fact, the estimated CS effect emerges partially
by comparing large classes (near to 40 pupils, on the left side of both jumps) against small ones
(near to 20 pupils, on the right side of the first jump, and 27 students, on the right side of the
second discontinuity). Then, this estimated effect incorporates the change of test-scores due
to large changes in CS (contrary to small marginal changes). The natural way to marginalize
the effect of such large change in CS is using a linear effect (o), which implies obtaining an
average/global marginal effect (i.e. assigning the same effect for each additional pupil in the
class). Therefore, specifying a nonlinear effect for CS could be questionable in this case.

Estimation is performed as a two stage procedure named Two Stages Generalized Additive
Model (2SGAM, Marra and Radice, 2011), which we will call simply Two Stages Additive
Model 2SAM).

The regression function (3.5) is adjusted in the first stage, obtaining the estimated reduced
form equation (3.6),

J K
CSee =Y &/(X)+ Y 8" (X5 +RPCSye+iiise, i=1,....,n, (3.6)
j=1 k=J+1

from which the I'V’s strength can be evaluated and the residuals # are obtained.

In the second stage, the structural equation (3.4) is adjusted including the vector of first
stage residuals # as a regressor to obtain (3.7) and the estimated CS effect &.

J K
Sise= Y. XD+ Y X+ 6CSse+ faliise), i=1,...,n, (3.7)
j=1 k=J+1

In principle, any method for adjusting additive models can be used, but following Marra and
Radice, 2011 we use penalized splines (p-splines), which is described in more detail in Section
5.2 (Appendix of Chapter 3).
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Inference in the 2SAM context relies on Bayesian confidence bands and hypothesis tests
(Wood, 2006b; Marra and Wood, 2012; Wood, 2013), originally proposed for the Generalized
Additive Model (GAM) setting (i.e. with only one regression equation). This approach consists
in simulation from the estimated posterior distribution of model coefficients. That procedure
was extended by Marra and Radice, 2011 to be applied in the 2SGAM benchmark (i.e. with
two or more triangular simultaneous equations).

Such Bayesian methodology is valid for random sampling scenarios (i.e. independent sam-
ple observations) and it has not yet been developed to deal with clustered observations. Then,
Bayesian inference procedure is not straightforwardly applicable in the current empirical case
study.

To perform valid inference in the presence of clustered data we propose the use of a spe-
cific type of smooth weighted bootstrap (Chatterjee and Bose, 2005, Chatterjee and Bose, 2000
and Bose and Chatterjee, 2002). This type of resampling includes other variations previously
studied (see for example Newton and Raftery, 1994, Barbe and Bertail, 1995 and Rubin, 1981).
This kind of bootstrap was recently studied for models with features similar to those we are
facing (i.e. semiparametric equations forming a triangular system, estimated by penalized M-
estimators using cluster-dependent data). For example, Ma and Kosorok, 2005 established its
validity for semiparametric M-estimators and some kind of Penalized M-estimators, Chen and
Pouzo, 2009 shows its validity for penalized semiparametric estimation of a conditional moment
with nonparametric endogeneity, Cheng, Yu, and Huang, 2013 applied it to Generalized Esti-
mating Equations for cluster-dependent data and Chernozhukov, Fernandez-Val, and Kowalski,
2014 demonstrates its pertinence for triangular simultaneous equations estimated by quantile
regression.

The proposed weighted bootstrap (WB hereafter) algorithm consists on drawing i.i.d. ran-
dom positive weights {ws}f: 1» €ach of them being assigned to students within the same clus-
ter/school s (note that S is the total number of clusters). Therefore, every school of the working
sample receives one specific random weight, generating one bootstrap sample. Then, 2SAM is
performed for each bootstrap sample which consists in the weighted original data using /w;
as weights. The key feature of WB is that it does not really perform resampling of observa-
tions or clusters. Instead it generates estimators’ variability through perturbation of estimating

equations by means of simulated random weights (Chatterjee and Bose, 2005).

The WB helps overcome a known drawback of classical nonparametric bootstrap (or pair
bootstrap), related to an over-smoothing tendency when nonparametric curve estimators are
applied to the bootstrap samples. That problem emerges because repeated observations may
appear in the generated samples. This situation is probably exacerbated in our study case, where
entire clusters need to be re-sampled, leaving to repeated clusters at the generated samples.
Instead, using WB ensures that bootstrap clusters are always different from each other.

The algorithm of the bootstrap methodology mentioned above can be sketched as follows.
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Repeat B times steps 1 to 4 to get a number of B bootstrap estimations of the CS effect
{6 }p_;:

1. Draws S random weights from a distribution with E(w;) = 1 and Var(w;) = 1). Following
the recommendations in Chatterjee and Bose, 2005 and Chernozhukov, Ferndndez-Val,
and Kowalski, 2014, we use weights obtained from a standard exponential distribution,
wy ~ Exponential(1).

2. Assign each weight wy to each school s, withs =1,...,S.

3. Weight each student data point at school s using the square root of its corresponding
school weight (,/wy, with s =1,...,5).

4. Perform 2SAM over the weighted dataset and save estimated coefficient (.

Once bootstrap values {&, }le have been obtained, estimating the variance and constructing
the percentile confidence intervals is straightforward.

This WB algorithm was applied to make inferences about all parametric components (as
our parameter of interest &) of the estimated models in Section 3.5., as justified by bootstrap
validity results in Ma and Kosorok, 2005.

3.4 Data and descriptive statistics

The available data set comes from a national testing program for elementary schools in Uruguay.
The program covers complete school population and was implemented during 1996. Data in-
cludes a standardized evaluation test, for literature and mathematics, conducted with sixth grade
students. Students’ scores in literature are used to approximate educational achievement. The
score originally ranges between 0 and 20 but was re-scaled to take values between 0 and 100.

To obtain a relevant measure of class size we count the number of students who took at least
one of the two tests. This CS measure was preferred over an alternative measure indicating
maximum CS, because better approximates the size of the class through the complete scholar
year. For 96% of the working sample, differences between the two class size measures are less
or equal to 3 students. In any case, results remain fairly the same if the alternative measure is
employed.

Data set also contains additional information about students, teachers and schools charac-
teristics, enabling us to incorporate several control variables at the student and school level.

Because our main purpose is to illustrate the relevance of the methodological innovations
mentioned in the introduction, we have restricted our analysis to a specific sub-sample of the

51



Chapter 3. Identifying Class Size Effect on Schooling Achievement trough Flexible Triangular
Equations Models

dataset. The guiding idea was to apply our inference procedure to a specific sub-population of
classes which presents a statistically and educationally significant CS effect. That idea leaded
us to consider the afternoon shift classes in Uruguay’s main department (i.e. Montevideo),
excluding rural schools, full time schools, and schools classified as social disadvantaged. Using
this restricted sample of classes is aligned to usual research practice which tend to study the
class size effect at specific sub-populations, due to the substantive heterogeneity of such effect.
In any case, the qualitative conclusions about the relevance of innovations suggested in the
present work remain the same if bigger sub-samples are used.

The first working sample we analyzed is composed by 112 schools which include 187
classes and 4744 students. A second working sample that we considered includes 97 schools
with 159 classes and 4111 pupils. This second sample excludes 28 outlier classes that severely
violate the students allocation rule implied by PCS,., which was detected applying a similar
strategy than proposed by Dehon, Desbordes, and Verardi, 2015. Additional details on the
outliers detection method are presented in sub-section 3.5.2.

Variables included in the analysis are listed below:

e Score Literature: the student score in a literature test, including 20 questions, normalized
between 0 and 100. This is the dependent variable in structural equations 3.2 and 3.4.

e (lass Size (CS): the number of pupils per class (aproximated by the number of students
who took at least one of the two evaluation tests).

e Predicted class size (PCS): it is the instrumental variable defined by (3.1).

e Enrollment: total number of students enrolled at school. It counts the students that effec-
tively appear on classes lists.

e Socioeconomic index: a school level index characterizing economic context of the area
where school is located, which takes a smaller value when the location is more disadvan-
taged.

e High Education (%): class level percentage of students having at least one parent with
university studies.

e Housing issues (%): class level percentage of students with housing problems, defined as
having more than two people per room, on average.

e Repeaters (%): Class level percentage of repeating pupils.

Additional student level variables were available but their inclusion as controls did not affect
the CS effect’s estimated magnitude nor its precision.
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Table 3.1 presents descriptive statistics for variables of interest from the dataset that includes
outliers. The literature scores distribution is centered around 64.18 and shows a moderate dis-
persion. Average class size is about 28 pupils, ten percent of classes have fewer than 22 students
and ten percent have more than 34 pupils. Predicted class size presents a distribution similar to
CS, with slightly bigger values at each quantile, as expected. Average enrollment is about 59
students. On average, classes have 33%, 20% and 28% of students with at least one parent with
university education, having housing problems and being repeaters, respectively.

TABLE 3.1: Descriptive Statistics (using sample with outliers).

Quantiles
Variable Mean sd. min. 0.10 025 050 0.75 090 max.
Score Literature 642 1877 4.2 37.5 50 66.7 79.2 875 100
Class Size (CS) 27.8 4.8 14 22 24 28 31 34 41
Predicted class size 29.9 5.3 20.5 225 26 29 333 38 40
Enrollment 586 16.6 21 36 48 58 71 79 103

Socioeconomic index 9.3 29.6 -58.3 -30.7 -11.1 11.1 309 50 70.1
High Education (%) 329 207 3.7 8 16.7 276 483 629 92
Housing issues (%) 203 13.7 0 4.7 103 182 273 406 64.7
Repeaters (%) 283 156 34 94 172  26.1 385 50 85.7

Table 3.2 shows descriptive statistics from the second working sample (which excludes out-
lier schools). In this case we can appreciate that CS and PCS present more similar distributions
(more alike in both central tendency and dispersion) than in the previous working sample. The
remaining variables show similar distributions in both samples.

TABLE 3.2: Descriptive statistics (in sample without outliers).

Quantiles
Variable Mean s.d. min. 0.10 025 050 0.75 090 max.
Score literature 64.8 187 4.2 37.5 50 66.7 79.2 875 100
Class Size (CS) 282 4.6 17 22 24 29 32 34 38
Predicted class size 28.8 4.5 20.5 225 255 287 32 35 38.5
Enrollment 569 162 21 32 47 57 67 83 103

Socioeconomic index 9.2 28.8 -583 -28.6 -12 9.67 31.8 483 68.6
High education (%) 328 199 37 9.7 17.2 28.1 481 625 80

Housing issues (%) 20.2  13.7 0 5.7 10.3 179 273 40.6 64.7
Repeaters (%) 28.1 153 34 10 172 258 382 50 85.7

Before moving to the next section, it is useful to illustrate here the effect of the outliers
trimming strategy on the identification possibilities using instrumental variable PCS. Figure
3.2 replicates Figure 3.1 (i.e. predicted class size and actual average class size as functions of
enrollment count) but adding an alternative estimation for actual average class size, obtained
using the sample without outliers.

33



Chapter 3. Identifying Class Size Effect on Schooling Achievement trough Flexible Triangular
Equations Models

A great improvement in co-variation between PCS and actual average class size can be
appreciated when outliers are excluded, implying that schools in the trimmed sample tend to
follow more closely the enrollment rule PCS path. This fact increases the reliability of the
identification strategy based on instrument PSC presented in Section 3.2.
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FIGURE 3.2: Predicted class size and actual average class size as functions of
enrollment count using both, full sample (continuous line) and sample excluding
outlier schools (discontinuous line).

3.5 Empirical results

3.5.1 Results ignoring endogeneity

If class size is considered an exogenous regressor (i.e. its potential endogeneity nature is ne-
glected) then simple Ordinary Least Squares (OLS) estimates of parametric structural equation
(3.2) would be enough to consistently estimate the CS effect a.. Similarly, estimating the single
flexible structural equation (3.4) would produce an estimation of the desired effect.

Tables 3.3 and 3.4 present OLS and REML (Restricted Maximum Likelihood) estimates
of the test score regression equations (3.2) and (3.4), respectively, assuming CS exogeneity
(i.e. without any endogeneity correction). The estimation was carried out using the larger
sample consisting of 112 schools (that includes outlier schools). For the parametric model,
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we report usual (naive) standard errors, cluster-robust corrected standard errors (acording to
variance-covariance matrix (3.3)), and clustered weighted bootstrap versions. As mentioned
previously, correction was made assuming intra-school correlation. Additionally, the 95% and
99% weighted bootstrap confidence intervals (C.I.), based on bootstrap percentile method, are
reported for each estimated parameter.

From both tables it can be concluded that neither OLS nor REML estimates provide evi-
dence of a statistically significant CS effect on literature scores. In the OLS case, it can be seen
that Enrollment, High education, Housing issues and Repeaters are statistically insignificant.
Only Socioeconomic index at class level appear to have an appreciable effect on test scores.

TABLE 3.3: OLS estimates of structural equation (including outliers)

Robust  Robust Bootstrap percentile C.I.
Regresor coef. s.e. Asy. s.e. WBs.e. 95% C.1. 99% C.I.
Class Size 0.0321  0.056 0.138 0.074 [-0.112,0.177] [-0.138, 0.229]
Enrollment 0.2619 0.0861  0.2164 0.113 [0.057, 0.489] [-0.034, 0.548]

Enroll. squared -0.0024 0.0007  0.0018 0.001 [-0.004, -0.001]  [-0.005, 400000]
Socioec. index  0.1610  0.0195  0.0539 0.028 [0.107, 0.216] [0.089, 0.224]
High education  0.0588 0.0232  0.0602 0.031 [0.00022, 0.123]  [-0.023, 0.140]
Housing issues  -0.0389 0.0313  0.0644 0.033 [-0.102, 0.023] [-0.120, 0.043]
Repeaters -0.0857 0.0278  0.0599 0.031 [-0.146, -0.028]  [-0.169, -0.008]
Constant 56.42 2.994 7.259 3.827 [48.65, 63.58 ] [46.42, 66.37]

TABLE 3.4: REML estimates of structural equation (including outliers)

Robust Bootstrap percentile C.I.

Regresor coef./(e.d.f) s.e. WB s.e. 95% C.I. 99% C.I.
Class Size -0.0166 0.0589  0.066  [-0.138,0.113] [-0.173,0.158]
Enrollment (1.944) - - - -
Socioecon. index (4.605) - - - -

High education (4.590) - - - -
Housing issues 4.118) - - - -
Repeaters (1.001) - - - -
Constant 64.64 1.655 1.813 [60.92, 68.02] [59.74, 68.81]

REML based estimation reveals the existence of smooth non-linear effects for Socioeco-
nomic context, High education and Housing issues, which show empirical degrees of freedom
(e.d.f) above 4. To illustrates that such non-linearities are complex enough to justify the flexi-
ble models used in this work, instead standard parametric alternatives (for example polynomial
forms), Figure 3.3 shows graphically the flexibly estimated effects of covariates included in
Table 3.4. In particular, effects of Socioeconomic Index and High Education present complex
significant non-linearities that persist nearly with the same structure for the models that are
estimated next in this chapter.
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FIGURE 3.3: Estimated flexible terms for Enrollment, Socioeconomic Index, High
Education and Housing issues.
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Corrected standard errors are larger than naive ones. It must be noted that asymptotic robust
standard errors are larger than their bootstrap versions. To judge which procedure is preferable
in the current application we need to evaluate the characteristics of errors components’ DGP
imposed by asymptotic correction. Such DGP assumes constant correlation of errors compo-
nents for all pairs of students within the same school. This assumption can be inadequate for
schools with more than one class. Another feature to take into account relates to the number of
clusters that the asymptotic correction requires to be valid. We have a moderate number of 112
clusters in our first working sample, which is not too small nor too large.

On the other hand, weighted bootstrap resampling appear to be more general or flexible
than the asymptotic approach. First, it is valid even when the number of clusters is small
(for example, empirical simulation results in Cheng, Yu, and Huang, 2013 used 25, 30 and 35
clusters). And second, it preserves the sample correlation of each pair of errors components in
the same cluster, allowing non-constant correlation within clusters.

In addition to the arguments given above, our analysis relies on cluster bootstrap standard
errors and confidence intervals, because of its validity in both parametric linear model and
semiparametric additive model specifications. However we keep reporting statistics based on
asymptotic correction for parametric models.

TABLE 3.5: OLS estimates of structural equation (excluding outliers)

Robust  Robust Bootstrap percentile C.1I.
Regresor coef. s.e. Asy. se. WBs.e. 95% C.I. 99% C.1.
Class Size -0.1629  0.067 0.1758 0.092  [-0.337,0.032] [-0.393, 0.103]
Enrollment 0.2294  0.0869  0.2160 0.115  [-0.011,0.458] [-0.069, 0.539]

Enrollm. square -0.0016  0.0007  0.0018 0.001 [-0.004, 0.001] [-0.004, 0.001 ]
Socioecon. index 0.1977 0.0214  0.0597 0.031 [0.134,0.257] [0.119,0.277]
High education 0.0564  0.026 0.0670 0.036 [-0.012,0.127] [-0.046, 0.152]
Housing issues -0.0052 0.0331 0.0684 0.036 [-0.074, 0.068] [-102, 0.085]
Repeaters -0.0529 0.0295  0.0656 0.033 [-0.120, 0.009] [-0.139, 0.032]
Constant 59.79 3.157 7.873 4.145 [51.5, 67.6] [48.9, 71.1]

TABLE 3.6: REML estimates of structural equation (excluding outliers)

Robust Bootstrap percentile C.I.

Regresor coef./(e.d.f) s.e. WB s.e. 95% C.I. 99% C.1.
Class Size -0.2163 0.0589  0.087 [-0.380, -0.029] [-0.454, 0.014]
Enrollment (1.897) - - - -
Socioecon. index (4.683) - - - -

High education (4.530) - - - -
Housing issues (4.233) - - - -
Repeaters (1.006) - - - -
Constant 70.87 2.077 2.432 [65.58, 75.45] [64.20, 77.14]
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We repeated previous uncorrected OLS and REML estimation procedures but using the
second working sample with 97 schools which excludes outliers. Tables 3.5 and 3.6 presents
the corresponding results.

Exclusion of outlier schools increases the CS’s negative estimated effect in both OLS (-
0.163) and REML (-0.216) cases, but it still remains non significant with the exception of
REML estimation using a bootstrap type 95% confidence interval. In the later case, CS ef-
fect ranges between -0.38 and -0.029, showing a lower limit staying very close to O from a
practical perspective.

It is remarkable that REML based estimations show a larger negative CS effect relative to
OLS counterpart. This is due to the existence of nonlinear effects for key control variables (i.e.
Socioeconomic context, High education and Housing issues), which present empirical degrees
of freedom (e.d.f.) with values above four.

3.5.2 Results correcting for endogeneity in the presence of outliers

This subsection presents IV based estimates of test score regression models (3.2) and (3.4) for
both working samples (i.e. including and excluding outliers).

The following presentation is divided into three parts. In the first part attention is focused
on the estimation of first stage equations and the influence of outlier schools. The second part
presents IV based estimates of test score regression models (3.2) and (3.4) for both working
samples. Finally, the third part describes the proposed procedure to detect outliers observations
to be excluded.

We report cluster-robust standard errors based on weighted bootstrap (for all models) and
asymptotic correction (for parametric models), both calculated taken schools as the relevant
clusters.

First stage IV estimation

First stage reduced form equation, relating CS with the instrumental variable PCS, permits
decomposing class size into an exogenous part (the systematic component of the equation) and
an endogenous portion (the equation’s random component). The endogenous part represents
the deviations of CS from PCS rule, which can be seen as penalizing (at second stage) those
schools that violate the rule.

From a theoretical perspective, if we assume a scenario without endogeneity then schools
will tend to comply the assignment rule PCS. Therefore, in that scenario, it is expected to see
PCS determining CS through a linear (constant) effect approximately equal to 1. Given this
insight we expect to get an estimated PCS effect fairly close to 1, at the first stage regression, to
be able to correctly decompose class size into its exogenous and endogenous parts.
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It can be seen in Tables 3.7 and 3.8 that PCS presents an effect of about 0.35 on class
size, which is a small value relative to the theoretical expected effect. This discrepancy is not
produced by the additional regressors, in fact, a simple linear regression model relating CS
exclusively to PCS produces an estimated effect of about 0.42. The left graph in Figure 3.4
shows the simple linear adjustment over scatter-plot of CS vs. PCS.

TABLE 3.7: OLS estimates of reduced form equation (including outliers)

Robust  Robust Bootstrap percentile C.I.
Regresor coef. s.e. Asy.s.e. WBsee. 95% C.I. 99% C.1.
Predicted CS 0.3554 0.0135 0.1184 0.061 [0.238, 0.477] [0.188, 0.499]
Enrollment 0.1463  0.0208  0.0949 0.050 [0.053, 0.250] [0.023, 0.296]

Enroll. squared -0.0010 0.0002  0.0007 0.0004  [-0.002, -0.0003] [-0.002, 0.0002]
Socioec. index  -0.0490 0.0046  0.0257 0.014 [-0.074,-0.021]  [-0.082, -0.014]
High education  0.0234 0.0056  0.0292 0.015 [-0.006, 0.052] [-0.015, 0.060]
Housing issues  -0.0953 0.0074  0.0351 0.019 [-0.129,-0.058]  [-0.141, -0.044]
Repeaters 0.0041  0.0068  0.0342 0.018 [-0.031, 0.040] [-0.046, 0.048]
Constant 13.94  0.7279 3.80 1.966 [10.16, 17.74 ] [8.63, 18.62 ]

Bootstrap based F statistic for instrument PCS: 33.9
Asymptotic based F statistic for instrument PCS: 9.01

TABLE 3.8: REML estimates of reduced form equation (including outliers)

Robust Bootstrap percentile C.I.

Regresor coef./(e.d.f) s.e. WB s.e. 95% C.I. 99% C.I.
Predicted CS 0.3527 0.0133  0.059 [0.241,0.472] [0.193, 0.493]
Enrollment (1.929) - - - -
Socioecon. index (4.958) - - - -

High education (4.954) - - - -
Housing issues (4.338) - - - -
Repeaters (4.928) - - - -
Constant 17.23 0.404 1.692  [13.83,20.37] [13.23,21.80]

Bootstrap based F statistic for instrument PCS: 35.7

The real cause of the large observed discrepancy is the presence of a group of outlier schools
(represented by hollow grey circles in Figure 3.4 scatter-plots) that largely violates the PCS rule,
generating an evident downward bias in PCS effect. Correcting such bias is crucial to get a first
stage adjustment which effectively decompose CS into its exogenous and endogenous parts.
This correction can be obtained using the second working sample that excludes the referred
outlier schools, as appreciated in right panel of Figure 3.4 were the estimated linear effect
rounds 0.96 (a value very close to 1, as expected).
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FIGURE 3.4: OLS regression of CS on PCS using sample with outlier schools (left
graph) and using sample excluding outliers (right graph).

Tables 3.9 and 3.10 presents first stage regressions results, for Ordinary Least Squares
(OLS) and Restricted Maximum Likelihood (REML) respectively, using the sample purged
from schools.

TABLE 3.9: OLS estimates of reduced form equation (excluding outliers)

Robust  Robust Bootstrap percentile C.1I.

Regresor coef. s.e. Asy.s.e. WBsee. 95% C.1. 99% C.1.

Predicted CS 0.9481 0.0059  0.0262 0.014 [0.920, 0.974] [0.912, 0.982]
Enrollment -0.0197 0.0075  0.0263 0.014 [-0.046, 0.009] [-0.053, 0.020]
Enroll. squared  0.0002 .00006  0.0002  0.0001 [-6.3¢=%%,.0004] [-.0001,.0004]
Socioec. index  -0.0008 0.0018  0.0093 0.005 [-0.010, 0.009] [-0.014, 0.013]
High education  0.0128 0.0022  0.0093 0.005 [0.003, 0.022] [-.0002, 0.025]
Housing issues  -0.0263 0.0028  0.0144 0.007 [-0.040, -0.012]  [-0.045, -0.007]
Repeaters 0.0198 0.0025 0.0178 0.009 [0.003, 0.038] [-0.002, 0.046]
Constant 0.934 0.274 1.124 0.577 [-0.241,1.961] [-0.753,2.324 ]

Bootstrap based F statistic for instrument PCS: 4586

Asymptotic based F statistic for instrument PCS: 1309

Both, OLS and REML give estimated values for the PCS effect very close to unity (0.948
and 0.919, respectively), as expected from theoretical considerations. These values are almost
three times greater than their counterparts obtained using the full sample of schools, increasing
the instrument PCS strength. For example, for REML estimation we get an F statistic (i.e. the
concentration parameter) for PCS of about 35.7 using the full sample, but using the restricted
sample we get an F statistic equal to 3754. Even though a concentration parameter value of 35.7
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TABLE 3.10: REML estimates of reduced form equation (excluding outliers)

Robust Bootstrap percentile C.I.

Regresor coef./(e.d.f) s.e. WB s.e. 95% C.I. 99% C.I.
Predicted CS 0.9191 0.006 0.015 [0.888, 0.948] [0.879, 0.955]
Enrollment (1.961) - - - -
Socioecon. index (4.679) - - - -

High education (4.848) - - - -
Housing issues 4.701) - - - -
Repeaters (4.881) - - - -
Constant 1.735 0.1750  0.424  [0.929,2.579] [0.719,2.82]

Bootstrap based F statistic for instrument PCS: 3754

excludes in principle a weak instrument scenario, increasing that value by more than 100 times
constitutes a guaranty of a strong instrument.

A similar situation can be described in the OLS case. Using WB robust standard errors, F
statistics including and excluding outliers are equal to 33.9 and 4586, respectively. And using
asymptotic robust std. errors we get F' = 9.01 with oultiers and F' = 1309 without outliers.
In the later situation, taking into account outlier schools makes a difference between a weak
instrument and a strong instrument scenario.

Second stage IV estimation

Having described first stage estimation performance and confirmed the condition of PCS as
a strong instrumental variable (except in the OLS case including outliers), now we focus our
attention to the second stage estimation of the test scores structural equation.

Tables 3.11 and 3.12 report estimation results, based on the full sample (including outlier
schools), of structural equations (3.2) and (3.4) respectively.

Both methods, Two Stage Least Squares (2SLS) and REML-based Two Stage Additive
Model (2SAM), produce significant and similar point and interval estimations of the CS effect.
The point estimations are very close to -1 and the interval estimations range between a minimum
of -0.38 (2SAM’s 99% C.1I. lower limit) and -2 (2SLS’s 99% C.I. upper limit).

These values suggest a large CS marginal effect on students test scores, relative to the values
commonly founded in the literature.

The introduction of smooth effects for control variables, in the 2SAM procedure, did not
produce a great impact on the CS effect magnitude nor in its estimation precision (relative to
2SLS), at least in this particular case.
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TABLE 3.11: 2SLS estimates of structural equation (including outliers)

Robust  Robust Bootstrap percentile C.1I.

Regresor coef. s.e. Asy. s.e. WBsee. 95% C.1. 99% C.1.

Class Size -0.952  0.1618  0.5090 0285  [-1.636,-0.515] [-2.029,-0.412]
Enrollment 0.4375 0.0927  0.2679 0.144 [0.178, 0.748] [0.085, 0.891]
Enroll. squared -0.0032 0.0007  0.0022 0.001  [-0.005,-0.001] [-0.006, -.0004]
Socioec. index ~ 0.1093  0.0215  0.0645 0.033 [0.042, 0.171] [0.026, 0.188]
High education  0.0836 0.0243  0.0701 0.036 [0.014,0.156]  [-0.004., 0.175]
Housing issues  -0.1395 0.0358  0.0927 0.049  [-0.238,-0.052] [-0.279,-0.023]
Repeaters -0.0804 0.0287  0.0670 0.035  [-0.152,-0.012] [-0.176.,0.008]
Constant 77.92 4.52 12.99 6.987 [65.19,93.50 ] [62.07, 100.3]

Hausman test of endogeneity, i.e significance test for first stage residuals inclusion at second
stage (based on asymptotic cluster-robust std. errors):

z = 3.32; p-value = 0.0009 (p-value assuming normality)

Bootstrap-based Hausman test of endogeneity, i.e significance test for first stage residuals
inclusion at second stage (based on WB cluster-robust std. errors):

z = 3.99; p-value = 0.00006 (p-value assuming normality)

TABLE 3.12: 2SAM estimates of structural equation (including outliers)

Robust Bootstrap percentile C.I.

Regresor coef./(e.d.f) WB s.e. 95% C.I. 99% C.1.
Class Size -0.935 0.272  [-1.611,-0.502] [-1.902, -0.382]
Enrollment (1.953) - - -
Socioecon. index 4.714) - - -

High education (4.697) - - -
Housing issues (4.672) - - -
Repeaters (1.002) - - -
Constant 90.16 7.60 [78.1, 109.2] [74.48, 116.7]

There are two additional features to be noted in the parametric 2SLS case. First, bootstrap
standard errors are smaller than their asymptotic counterparts. In fact, based on asymptotic
standard errors, the CS effect seems to be statistically non-significant at 95% of confidence.
Second, Hausman test of endogeneity rejects the exogeneity hypothesis both, when based on
asymptotics and with the bootstrap versions of standard errors.

Finally, Tables 3.13 and 3.14 present the corresponding estimation results when the outlier
schools are excluded from the sample. The main novel result is a substantial reduction of
estimated CS marginal effect. 2SLS produces an estimation of -0.215 and 2SAM results in an
effect equal to -0.314.

In this case there are some noticeable differences between the parametric and flexible meth-
ods. First, the point estimation of the CS effect using 2SAM is about 46% larger than its 2SLS
counterpart. Second, the statistical significance of the CS effect is weaker in the parametric case
(only slightly significant relying on 95% C.1.) than in the additive case (significant with both
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TABLE 3.13: 2SLS estimates of structural equation (excluding outliers)

Robust ~ Robust Bootstrap percentile C.I.
Regresor coef. s.e. Asy. se. WBs.e. 95% C.1. 99% C.1.
Class Size -0.2152  0.0726  0.1780 0.094  [-0.389,-0.013] [-0.453,0.042]
Enrollment 0.2364 0.0870 0.2164 0.116 [-0.009, 0.464] [-0.070, 0.547]

Enroll. squared -0.0016 0.0007  0.0018 0.001 [-0.004, .0004] [-0.004, .001]
Socioec. index ~ 0.1959  0.0214  0.0592 0.031 [0.133, 0.256] [0.117, 0.273]
High education  0.0578 0.0260  0.0667 0.036 [-0.011,0.127]  [-0.045., 0.155]
Housing issues  -0.0091 0.0332  0.0681 0.036 [-0.073,0.066] [-0.102, 0.083]
Repeaters -0.0522  0.0295  0.0653 0.033 [-0.118,0.011] [-0.134.,0.033]
Constant 60.92 321 7.72 4.070 [52.85, 68.68] [50.89,72.21]

Hausman test of endogeneity, i.e significance test for first stage residuals inclusion at second
stage (based on asymptotic cluster-robust std. errors):

z = 0.97; p-value = 0.332 (p-value assuming normality)

Bootstrap-based Hausman test of endogeneity, i.e significance test for first stage residuals
inclusion at second stage (based on WB cluster-robust std. errors):

z = 1.88; p-value = 0.06 (p-value assuming normality)

TABLE 3.14: 2SAM estimates of structural equation (excluding outliers)

Robust Bootstrap percentile C.I.

Regresor coef./(e.d.f) WB s.e. 95% C.I. 99% C.1.
Class Size -0.314 0.101 [-0.509, -0.113] [-0.573, -0.067]
Enrollment (1.783) - - -
Socioecon. index (4.691) - - -

High education (4.537) - - -
Housing issues (3.737) - - -
Repeaters (1.005) - - -
Constant 73.63 2.87 [67.98, 79.22] [66.71, 81.08]

95% and 99% C. 1.’s).

Focusing on parametric estimation, the asymptotic approximation concludes that there is no
evidence of an endogeneity problem, in light of the first Hausman test in Table 3.13. But the
second Hausman test, based on weighted bootstrap, brings doubts about CS exogeneity showing
a p-value of 0.06.

Outliers handling

Given the highlighted impact of outliers schools in the first and second stages, identification for
this kind of observations become crucial to avoid a bias problem in the CS effect estimation.

To appropriately detect the relevant outliers affecting first-stage estimation, we propose ap-
plication of a modified version of the strategy described in Dehon, Desbordes, and Verardi,
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2015.

The standard detection method in Dehon, Desbordes, and Verardi, 2015 consist on two
stages. In first stage, it identify outlying observations simultaneously in the response variable,
the endogenous regressor, the instruments and the control variables, using the Stahel, 1981 and
Donoho, 1982 (Stahel-Donoho hereafter) univariate projections estimator. In second stage, it
apply the standard instrumental variable estimator to the outlier-free sub-sample.

Intuitivelly, the main idea of Stahel-Donoho method consist on transforming a multivariate
outlier into a univariate one, projecting the data cloud in all possible directions to get a one-
dimensional projection. Then, the degree of outlyingness of each data point is measured as the
maximal univariate robust standardised distance from the centre of a given projection to that
point.

In other terms, given a (n X k) dataset x (i.e with n observations and k variables), the outly-
ingness for each multivariate point x;, relative to X, is defined as its maximal univariate Stahel-
Donoho outlyingness measured over all directions. To obtain the univariate Stahel-Donoho
outlyingness in the direction d, the dataset x is projected on d, and the robustly standardized
distance of d'x; to the robust center of the projected data points xd is computed.

There are several options to compute the mentioned robust standardised distance and to de-
fine the directions d. For example, the data for each projection can be centred around the median
and standardised by the median absolute deviation, which is the alternative we employed.

The drawback of Dehon, Desbordes, and Verardi, 2015 methodology (DDV hereafter) is
that, eventually, relevant bivariate outliers are masked as non-outliers, because they are not
considered as outliers in a multivariate sense. This is the case for the bivariate distribution of
CS and PCS in the first-stage regression.

It is important to note that the bivariate correlation between CS and PCS is very strong,
therefore PCS explains a large part of the variability in CS at first-stage estimation. For this
reason, all bivariate outliers which heavily affects the correlation between CS and PCS must be
detected.

For the aforementioned arguments, we propose the application of DDV detection method
but restricted on the bivariate distribution of CS and PCS (BDDV hereafter). The isolated focus
on this two variable avoid the masking problem that occurs when all variables participating in
first and second stages regressions are included in the outlyingness computation procedure.

Therefore, our proposed BDDV method consist on two stages. In first stage, we identify
outliers in the bivariate distribution of CS and PCS, using the Stahel-Donoho univariate projec-
tions estimator. In second stage, we apply the standard instrumental variable estimator to the
outlier-free sub-sample.
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Figure 3.5 illustrates the mentioned masking problem, that arises when standard DDV detec-
tion method is applied, using the simple linear regression of CS on PCS at first stage. Comparing
both scatter-plots in Figure 3.5 becomes evident that standard DDV procedure (left graph) fails
to detect a group of bivariate outliers which are successfully detected by the proposed BDDV
method. Such incomplete detection of standard DDV produces a downward-bias on the effect
of PCS, which decreases from 0,96 to 0,63 when not detected outliers are present.
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FIGURE 3.5: OLS regression of CS on PCS using outlier-free sample based on pro-
posed BDDV method (left graph) and using outlier-free sample based on standard DDV
procedure (right graph).

In a similar way, in the context of our flexible reduced form model (3.5), the estimated effect
of PCS on CS decreases from 0,92 to 0,64 when standard DDV is applied instead of the BDDV
version.

3.6 Monte Carlo simulation illustrating outliers impact

The problems generated by the existence of outliers observations in the context of IV estimation
are well known in the specialized literature, see for example Dehon, Desbordes, and Verardi,
2015 and Zhelonkin, Genton, and Ronchetti, 2012 for recent treatments. Also known is that
such a problems are often neglected or poorly handled in empirical research.

Through a simple simulation exercise we illustrates the estimation bias that can be gener-
ated by a portion of outliers observations in the 2SLS benchmark. Additionally, we show the
effectiveness of the BDDV trimming strategy, that we proposed in previous section, to avoid the
aforementioned bias.
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The Data Generating Processes (DGP) designed, which is consistent with the endogeneity
sources discussed previously and omit unnecessary complexities as control variables and clus-
tered data structure, assumes the existence of two types or groups of classes. The first group is
composed by classes at high quality schools, which present a higher expected enrollment and
comply the assignment rule given by PCS (i.e. the official rule setting a maximum CS of 40
students). The second group includes low quality schools presenting a lower expected enroll-
ment, which apply a different assignment rule setting a maximum CS of 30 students (henceforth
PCS30). This group of schools is responsible for the outlier generation in CS values, with a
similar pattern of outliers described in Figure 3.4. For these schools we assume that observed
difference between the application of its own rule (PCS30) and the couterfactual official rule
PCS (i.e A = PCS30 — PCS), negatively affects the students achievement. This is consistent to
the findings in our empirical dataset, in which the set of outlier classes present a lower mean
test score (60.3 points) than the rest of classes (64.8 points), with that difference of 4.5 points
being different from 0 with 99.9 % confidence level.

Additionally, DGP imply that low quality schools assigns well-behaved students in bigger
classes and worst-behaved ones to smaller classes, in an attempt to improve scholastic achieve-
ment. This students allocation originates bigger classes with higher scores and smaller classes
with lower scores. Finally, each observation simulated by the DGP represents a class-level
aggregated information.

DGP for the high quality schools/classes is given by

Enrollment, = 40+ 0y,

Enrollmenty,
int[(Enrollmenty, — 1) /40] + 1
CSpg = ®1 PCSpg + Vpg,

Scorehq =0+ oc1CShq + ®py,

PCSjy =

with 0y, ~ N(0,20), vy, taking integers in [—5,2] with equal probability
and Jy, taking integers in [—25,25] with equal probability , (3.8)

and DGP of low quality classes is established as follows
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Enrollment;; = 30+ 9y,
Enrollment,,
int[(Enrollment;; — 1) /30] + 1

CSiy = mPCS30;4 +M + vy,

PCS30;, =

Enrollment,,
int[(Enrollment;; — 1) /40] + 1
A = PCS30;, — PCS),
Scorejy = g+ a4 CSy + 20 + A + @y,
with o, ~ N(0,20), vy, taking integers in [—3, 1] with equal probability

PCS;, =

9, taking integers in [—18, 18] with equal probability
and n taking integers in [—5, —4,—3,3,4,5] with equal probability . (3.9)

We set T1 = 1, aip = 80, CS effect oi; = 0.5 and the sample size n = 200 (100 high quality
classes and 100 low quality ones). The role of class-level component 1 is to model the schools
strategy of splitting students depending on its behaviour in classroom.

TABLE 3.15: Bias, standard error and mean squared errvor of OLS and 2SLS

estimators
Complete sample BDDV-Trimmed sample Complete sample

Regressor/Method OLS 2SLS OLS 2SLS Outlier-Robust 2SLS

Bias 0.595 -1.01 0.282 -0.003 -0.002
Class Size (CS) Std.Error  0.088 0.352 0.064 0.079 0.102

MSE 0.362 1.135 0.083 0.006 0.010

Bias - -0.491 - -0.017 -0.020
PCS (first stage) Std.Error - 0.07 - 0.038 0.056

MSE - 0.247 - 0.001 0.004

Percentage of classes considered as outliers: 13.5%
Number of simulated samples: 3000
Robust 2SLS was applied using the default options proposed by its authors in the R-library riv.

It can be seen from Table 3.15 that OLS estimator always present an upward bias for CS
effect, however such bias is about 50% smaller when the trimmed sample is used. On the other
hand, 2SLS method produces a large downward bias in CS effect using the complete sample and
presents a negligible bias if trimmed sample is used. Additionally, in the last column we include
the results obtained with a robust-to-outliers IV procedure recently proposed by Freue, Ortiz-
Molina, and Zamar, 2013, which robustify the solution of the ordinary estimating equations
of 2SLS. This robust IV estimator performs in a similar way than the ordinary 2SLS with the
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trimming strategy, except for showing a slightly larger standard errors for both CS and PCS
effects.

The key fact behind the good performance estimating CS effect of both 2SLS with the
trimmed sample and robust 2SLS, is the unbiased estimation of PCS effect in the first stage
regression.

As expected, the sampling variability of all estimators is reduced when the outliers are
correctly handled. The percentage of sample considered as outliers is 13.5% in the trimming
strategy, a proportion similar to the one we have considered in our empirical illustration.

3.7 Main conclusions

Results in the present chapter demonstrate the relevance of concurrent methodological innova-
tions we proposed in the context of standard IV estimation of the CS effect on students achieve-
ment. As an illustrative application we studied the class size effect on literature test scores, in a
sample of schools in Montevideo (Uruguay).

Firstly, neglecting outlier schools’ influence in the first stage IV estimation produces a large
bias in the instrument (PCS)’s estimated effect. This bias causes a bias in the CS effect estima-
tion in the second stage. Such bias represented, in our illustrative application, an overestimation
of CS negative effect of about 342% in parametric case and 198% for the semiparametric addi-
tive model case (compared with estimates obtained by correcting the influence of outliers).

This finding is not exclusive of our analysis. In fact, analyzing available data from Angrist
and Lavy, 1999 and taking account of potential outliers by our proposed detection procedure,
we find a similar pattern of bias for both PCS and CS effects. For example, using outlier-free
data of fifth grade, we find nonsignificant CS effects of -0.08 on reading test scores and of about
-0.05 on math test scores. Those effects sizes are smaller than the values of -0.260 and -0,261
obtained with the full sample and reported for models (3) and (9) of Table IV in Angrist and
Lavy, 1999. Moreover, when the detected outliers are dropped we find an estimated PCS effect
equal to 0.89 in the first stage equation, which is larger than the value of 0.542 obtained with
the complete sample; see model (2) of Table III in Angrist and Lavy, 1999. Such a downward
bias in the first stage regression seems to be present in many of the recent articles on the subject.
For example, Li and Konstantopoulos, 2016 obtain values of the PCS effect on CS between 0.1
and 0.5 for 10 of a total of 14 European countries and Gary-Bobo and Mahjoub, 2013 find PCS
effects between 0.225 and 0.338 in four different grades at French junior high schools.

Our small simulation experiment helped to bring out the benefits of an adequate handling of
outliers observations when 2SLS is used. The simulation results are qualitatively the same as
those obtained in our empirical illustration and in re-analysis of Angrist and Lavy, 1999 data.
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The general strategy of outliers exclusion can be criticized in terms of the loss of sample
information concerning the relationship between CS and students achievement, specially when
the share of outliers in sample is high. Alternatively, other strategies that avoid such a loss can
be used relying on any outlier-robust estimator, in particular for the first stage regression.

Secondly, using a flexible additive model specification for the IV estimation helped isolate
the CS effect, especially when outlier schools were excluded from the sample. The flexible
specification helped to better account for smooth effects in key control variables, resulting in an
estimated negative effect 46% larger with respect to the parametric model estimation.

In the third place, the implementation of flexible Weighted Bootstrap for inference was help-
ful in two ways. First, it enables us to perform cluster-robust inference, through standard errors
and confidence interval computation, when flexible model specifications were used. Second, it
proved to be an alternative to the asymptotic approximations both when the number of cluster is
moderated and when parametric assumptions of asymptotic approach seem to be questionable.

In terms of empirical evidence, the combination of these innovations helped to identify a
statistically and practically significant negative effect for class size. The effect’s magnitude,
-0.314, represents a relatively large effect in terms of previous findings reported by specialized
literature.

Important statistical problems remain to be studied in the flexible model approach based on
2SAM estimator, mainly related to inference procedures. For example, construction of valid
point-wise confidence intervals for smooth terms components and statistical tests to assess the
exogeneity hypothesis when instrument presents a smooth effect, are of primary interest.
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Chapter 4

Flexible estimation of Triangular
Simultaneous Equations Models with
Weak Instruments

4.1 Introduction

The wide family of regression estimators based on instrumental variables (IV) share a necessary
identification condition, namely, the existence of ‘sufficient’ partial correlation between instru-
ments and corresponding endogenous variables. Non-compliance of this condition is known as
the problem of weak instruments or weak identification. In practical applications of standard IV
estimators, this problem causes undesirable results, mostly related to significant finite-sample
bias, loose of precision and unreliability of the asymptotic normality approximation.

The weak identification problem has been extensively studied over the past 20 years in the
parametric regression context. Main contributions can be found in Bound, Jaeger, and Baker,
1995, Staiger and Stock, 1997, Stock and Wright, 2000, Kleibergen, 2002, Stock and Yogo,
2005, Newey and Windmeijer, 2009 and Andrews and Cheng, 2012, all of them belonging to
the frequentist literature. Recently, bayesian approaches to IV estimation have been proposed,
which perform better than traditional frequentist alternatives (in terms of bias and confidence
interval coverage) in certain scenarios characterized by weak identification (see Burgess and
Thompson, 2012 and Conley et al., 2008).

In the nonparametric regression context several efforts have been made in designing a reli-
able IV method for estimation and inference. One research lines was opened by Newey, Powell,
and Vella, 1999 which proposes the use of nonparametric Triangular Simultaneous Equations
Systems. This alternative involves a two stage estimation procedure, similar to Two Stages
Least Squares (2SLS), and is generally known as the Control Function Approach.! It’s main
advantage is that it can exploit methodological advances from the nonparametric regression

I'A different alternative to nonparametric IV regression is known as the regularization approach, were a reg-
ularization parameter is needed to solve an ill-posed inverse problem (see for example Newey and Powell, 2003,
Darolles et al., 2011, Horowitz, 2014 and Shaw, Cohen, and Chen, 2016).
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literature. The practical advantage results from the partition of the problem into two stages,
each of them involving the estimation of single regression equations by standard nonparametric
methods. More recent works implementing this flexible Control Function Approach are Pinkse,
2000, Su and Ullah, 2008 and Marra and Radice, 2011.

Despite these contributions to nonparametric IV estimation, the study of the weak instru-
ments problem in this context has been largely neglected. One exception in the frequentist view
is the work in progress provided by Han, 2014, which defines the weak identification prob-
lem for the flexible Triangular Simultaneous Equations Model, and proposes a penalized series
estimation method that alleviates the weak instruments effect.

In this chapter we propose a new nonparametric bayesian IV method for Triangular Equa-
tions Models with one endogenous variable, presented recently by Wiesenfarth et al., 2014,
which appear to be competitive alleviating the weak identification effect. This bayesian method
has an advantage over the frequentist method presented in Han, 2014 as it performs the esti-
mation of all needed tuning parameters (including smoothing parameters) from the available
data. This advantage represents an invaluable benefit for applied research when nonparametric
methods are used.

In this chapter we establish a performance comparison in the context of a weak identifi-
cation scenario, between the later bayesian IV method and a convenient frequentist alternative
known as Two Stages Generalized Additive Models (2SGAM) introduced by Marra and Radice,
2011. Both bayesian and frequentist alternatives are comparable in several aspects, e.g. auto-
matic smoothing parameter estimation/selection, usage of splines for specification of the basis
functions and full implementation through packages written in R (R Core Team, 2014).

Our final results provide contributions in two directions. First, it is shown that, when weak
instruments are present, the bayesian estimator presents appreciable improvements (relative to
the 2SGAM estimator) in terms of bias and efficiency. And second, the proposition established
by Han, 2014 about the conditions under which an instrument must be considered as nonpara-
metrically weak, is revised for the case of 2SGAM.

The remainder of the chapter is organized as follows. Section 4.2 discusses the main features
of the weak identification problem in the context of the Control Function Approach to flexible
IV estimation. Section 4.3 reviews the frequentist and the bayesian estimation methods to be
compared (with more emphasis on the new bayesian estimator). Section 4.4 presents the Monte
Carlo simulation results. Finally, the relevant findings are discussed in Section 4.5.
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4.2 Weak identification in nonparametric IV estimation

This chapter is concerned with the weak identification effects in the context of flexible esti-
mation of Triangular Simultaneous Equations Models. The analysis is restricted to the case of
one endogenous variable in the just identified case (i.e. with only one corresponding instru-
mental variable). For simplicity, additional regressors are omitted without loss of generality.
Then, the basic model can be defined as the following two equations system with additive error
components

v2=f)+e, yi=AW) +E& 4.1)

where y; is a continuous response variable, y; is the (continuous) endogenous regressor, w
is the instrument for y; and the random errors are represented by €, and €; (note that the usual
additive constants, or intercepts, have been excluded to facilitates the exposition). The model
flexibility comes from the fact that effects f>(-) and fi(-) are smooth functions with unknown
functional form.

The first equation in (4.1) is known as the structural equation, and the second equation can
be called as the reduced form equation. Given system (4.1), the interest resides in consistently
estimating the expected value of y, conditional on yy, i.e. the regression function (4.2).

E(yaly1) = (1) (4.2)

In addition, we assume that there exists an endogeneity problem, i.e E(€;|€;) is a non-
constant function of €. Under these conditions the usual estimation of f;(-), applying any
nonparametric estimator to the first equation in system (4.1), will be inconsistent.

The endogeneity problem can be mitigated if w is a valid instrument satisfying the identifi-
cation assumptions given by

E(81|W) =0and E(82|£1,W) :E(Sz‘Sl), 4.3)
from which it can be derived the following conditional expectation
E(y2ly1,w) = o) +E(&2le1,w) = (1) + E(&2]€1) = fo(y1) + f3(e1),  (44)

where f3(€1), that is called the control function or control variable, represents a function of
the error term from the second equation of system (4.1), i.e. the reduced form equation.

This identification result enables the use of a two stage procedure, the Control Function
Approach mentioned in the previous section, to obtain a consistent estimator for f>(-). In the
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first stage any nonparametric consistent estimator can be used to get f () and obtain residuals
& =y — fl (w), which can be seen as consistent estimations of errors €;. In the second stage,
an Additive Model (Hastie and Tibshirani, 1986) can be used to adjust the structural equation
but including first stage residual €; as an additional regressor, obtaining:

v2=Fn)+ fE1) +&, (4.5)

where f, is a consistent estimator for the effect of endogenous variable y;. Consistency
is obtained because once €; is controlled for, the remaining variability of y; results from the
variation in w, which possesses an exogenous status due to identification assumptions (4.3).

The problem of weak identification arises when instrument w presents insufficient explana-
tory power for endogenous variable y; in the first stage regression. In the parametric linear IV
regression model this possibility can be detected through a testing strategy studied by Stock and
Yogo, 2005 for Two Stages Least Squares and Limited Maximum Likelihood estimators.

In the flexible nonparametric context, the weak identification problem was not seriously
studied before a recent working paper, Han, 2014, that characterizes the weak IV problem as a
concurvity issue. Concurvity arises in the structural equation (4.5) because endogenous variable
y1 tends to be equal to € when instrument w tends to be non-significant explaining y;. More
formally, this situation can be represented as

:fl,n(W)+€1—>81 a.s. asn — oo,

statement that is possible under a specific condition for weak identification (see pages 10 to
12 in Han, 2014 for technical details).

Representing the unknown functions to be estimated by means of a series of basis functions,
the structural equation (4.5) can be expressed as

= Z 1kbk(y1) Z 2ubi(€1) + &2, (4.6)
k=1 k=1

where the by(.)’s are the basis functions (e.g. B-splines, Fourier series or Legendre polyno-
mials series).

Through representation (4.6), the mentioned concurvity issue becomes a more familiar mul-
ticollinearity problem as

bk(yl) — bk(él) a.s. Vk.
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Due to this multicollinearity problem, estimators Blk and BZk are very unstable, even after
truncation of the aproximating function series (i.e. k < K < o).

Han, 2014 proposes a penalized estimator to control the estimators’ instability and then
regularizing the weak instruments problem.

One of the main practical contributions in Han, 2014 is concerned with the characterization
of nonparametrically weak instruments (i.e. if an instrument must be considered weak or strong
when used in nonparametric estimation), which extends parametric model results established by
Stock and Yogo, 2005 to the nonparametric case.

Assuming the following parametric linear model specification of the reduced form equation

Y1 =T +Tw+E€, 4.7)

it is possible to define an usual measure of strength for instrument w, called the concentra-
tion parameter, as

2

y=T

n 2
Ay (4.8)
O,

which coincides with the population version of the F-statistic to test global significance at
the reduced form equation (4.7). In the parametric context, Stock and Yogo, 2005 established in
10 the concentration parameter’s limiting value, so that for values smaller than 10 there exists a
weak instrument problem. In Han, 2014 such a concentration parameter’s threshold was settled
at the larger value of 16, when a nonparametric model is estimated in the second stage.

The larger value of the concentration parameter was detected through the comparison, be-
tween the new penalized series estimator and its naive (unpenalized) version, over a sequence
of specifications with increasingly weaker instrument. Specifically, the new threshold is set
at a minimum so that, for values smaller than such minimum, the penalized estimator shows
significantly better performance compared to the naive IV estimator.

The main drawback of Han, 2014 penalized estimator is the lack of an automatic procedure
to perform the selection/estimation of both, the penalty parameter (to control estimator instabil-
ity due to the weak instruments problem) and the smoothing parameters (to control smoothness
of flexible model terms), in a simultaneous way.

Due to the empirical relevance of both the weak identification problem and the availability of
an automatic procedure for tuning parameters selection, in the subsequent sections we present
and compare two approaches for Additive Model estimation, which share the advantage of
data-based estimation of smoothing parameters, but differs in its ability to alleviate the effects
of weak IVs presence.
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4.3 Description of the methods to be assessed

Over the past decade, empirical work based on nonparametric regression methods has increased
its relevance, due in part to the increasing availability of computational implementation of al-
gorithms for estimation and inference.

An important share of such an implemented estimators were freely available through specific
packages written in R language (R Core Team, 2014). Nowadays, the R environment plays a
key role inside the scientific community, providing implementation of new statistical methods,
in general, and nonparametric regression estimators, in particular.

One of the most complete R packages presently available, designed to perform estimation of
Additive Models and Generalized Additive Models, is the mgcy package (Wood, 2011, Wood,
2006a and Wood, 2004). It supports GAM estimation relying on alternative types of smoothing
parameter selection methods (e.g. Generalized Cross Validation, Restricted Maximum Likeli-
hood and Akaike Information Criterion) and splines basis functions (e.g. thin-plate regression
splines, cubic regression splines and B-splines).

Using the mgcv routines, Marra and Radice, 2011 proposed an estimation methodology
to fit Triangular Simultaneous Equations Systems through Two Stages Generalized Additive
Models (2SGAM). This estimator, based on the Control Function Approach and described in
the following subsection, is our chosen frequentist alternative to study the weak identification
effects and their characterization.

On the other hand, the bayesian nonparametric IV regression estimator proposed by Wiesen-
farth et al., 2014 is a competitive alternative to the later 2SGAM. This estimator, presented in
subsection 4.3.2, is expected to possess certain advantages when the weak identification prob-
lem arises?. For that reason, such bayesian estimator constitutes our chosen alternative to carry
out the comparison against 2SGAM in scenarios with weak instruments.

Both approaches, the frequentist and the bayesian, are based on the penalized splines (P-
splines) concept, introduced by Eilers and Marx, 1996 and extended by Lang and Brezger,
2004 to the bayesian case (Bayesian P-splines).

4.3.1 Frequentist Additive Model approach

To introduce 2SGAM’s estimation procedure in more detail, we start specifying the reduced
form equation and the structural equation in an additive model format, where the data set of

2Such expectation is justified with a deeper analysis presented in section 3.2.
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size n, {y2i,y1i, Wi}, is obtained by random sampling. The resulting triangular system of two
additive equations is given by the following expressions

yli:n0+fl(wi)+8li7 izl,...,n 4.9)

y2i = Bo+ 2 0ni) + f3(E1i) +&20, i=1,...,n 4.10)

where f3(-) is the control function term, {€;;}?_; are the residuals obtained by fitting the
reduced form equation (4.9) and €,; are error components such that E(&5;]y;;) = 0. The usual
constant terms are represented by 7y and Bo. In this context, the first and second stages of
2SGAM consist in estimating equations (4.9) and (4.10), respectively.

First, the reduced form equation (4.9) is estimated by minimizing the following objective
function

iYIl—WO—fl (w)]? +7»1/[ "(w)]?dw, 4.11)

=1

~.

where the first term is the sum of squared errors (i.e. the traditional least squares objective)
and the second term is the integrated square of the unknown function’s second derivative. The
last component of the objective function is introduced to penalize the wiggliness of term fi(+)
through the smoothing parameter A;, which controls the trade-off between the model’s fit and
model’s smoothness (i.e. the bias-variance trade-off). Once the instrument’s effect ( fl (+)) and
the intercept (fp) have been obtained, the corresponding residuals €; = y;; — fto — fl (w;) can
be obtained. These residuals are an input in the second stage estimation and represent that part
of endogenous variable y; related to the error component of the structural equation (€5).

Next, equation (4.10) can be estimated by minimizing the following objective
. a.\12 ! // 2 : 1a \12 74
Y v2i—Bo— f2(v1i) — f3(B1i)] +7»2/0 [f2 (v1)]dy +7»3/0 [f3 (&1)] dEy, (4.12)
i=1

where A, and A3 are the smoothing parameters of terms f>(-) and f3(+), respectively, and
first stage residuals €;; are introduced as an additional regressor.

It is important to note in (4.12) that the estimation of the endogenous variable term f>(y)
and the control function term f3(€) is performed by optimizing the same objective function
based on a global error criterion. This can lead to a confounded estimate of f>(y;) due to inap-
propriate choices for the smoothing parameter A3, as is documented in Wiesenfarth et al., 2014.
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This undesirable consequences can be exacerbated by the effects of the concurvity problem, in
the special context of weak identification.

Estimation through objectives (4.11) and (4.12) can be performed by several algorithms im-
plemented with the R package mgcv. Available algorithms differ in two principal aspects. First,
there are alternative options to represent unknown smooth functions, depending on the basis
functions used. We chose the mgcv package’s default basis functions representation which re-
lies on thin-plate regression splines (Wood, 2003), because they possess several advantages over
other options (see chapter 4 of Wood, 2006a). Second, smoothing parameters estimation can
be done using different approaches, including Generalized Cross Validation (GCV), Maximum
Likelihood (ML), Restricted Maximum Likelihood (REML) and Akaike Information Criterion
(AIC). GCV is the default method in the mgcv package, but REML has proved to be preferable
in some contexts, being less prone to display local minima and offering some improvement in
mean square error performance (Reiss and Todd Ogden, 2009 and Wood, 2011). Therefore, we
used both the GCV and the REML approaches, obtaining some behavior differences between
them, which are of interest beyond the main objectives of the Chapter.

4.3.2 Bayesian Additive Model approach

The bayesian nonparametric IV regression (BNIV) model can be defined by the following si-
multaneous equations system

yii=no+ filwi)+€1i, y2i=PBo+fo(vii) + €2, i=1,....0.
4.13)
with (81i782i) NN(‘UZ,ZZ), [ = 17"'7C'

The main innovation in (4.13) consist in the flexible specification of the errors components
distribution, (€1,€). It’s assumed they follow a mixture of bivariate gaussian distributions.
Therefore, errors components can be grouped into C < n clusters, with means y; = (uy, uy;)’
and covariances

2
(0 (0
Y = L N =5 el
2 ) ) ’
021, 6271

More specifically, the joint error distribution assumes an infinite mixture model with the
following hierarchy:
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(e11,€2) 1id. Y 0cN(ue,Xc)
c=1

(ue,Ze) iid. Go=N(uluo, Ty 'Z)IW(Z|sg, Sx)

c—1 c—1
0 = Vc<1_2(1—¢j)>:\/cn(1—v]’), c=1,2,...

j=1 j=l1
ve iid. Be(l,a).

In this specification, the mixture components (i.e. the clusters) are i.i.d. draws from the
base measure Gy (given by a normal-inverse Wishart distribution) of a Gaussian Dirichlet Pro-
cess (DP) while the mixture weights are generated in a stick-breaking manner based on a Beta
distribution depending on the parameter o. > 0 of the Dirichlet process. The concentration o
determines the strength of belief in the base distribution Gy, which is the expectation of the
Dirichlet process around which more mass will be concentrated for large a.

The expected number of components for a given sample size n is approximatively given by
E(K*|a,n) ~ alog(1+n/a) (Antoniak, 1974). Thus, the parameter o is directly related to the
number K* of unique pairs (u;, X;) in the data.

In order to avoid fixing K* arbitrarily, o is estimated from the data and consequently this
requires to set a new prior. The standard conjugate prior for o is a Gamma prior o ~ Ga(ag, by,),
with ag = by = 2 as default choices. This allows both small and large values of o corresponding
to many and few mixture components, respectively.

Since the model includes constants g and Py, it requires to ensure that E(g;,€5;) = 0 for
identifiability. This is achieved by choosing up = (0,0)" and constraining ¥, u; = Y7L | i =
0.

With respect to priors on the parameters in the base distribution Gy, the a diffuse gamma
prior tx ~ Ga(ay/2,by/2) is established for Ty, with default hyperparameters ay = 1 and
by = 100. On the other hand, although imposing an IW-prior on Sy is conceptually and compu-
tationally straight-forward, associated hyperparameter choice is unclear. Therefore, the default
is set sy = 3 obtaining Sy = 0.2/, and thus G%l ~1G(1,0.1) as a weakly informative prior on the
residual variances (see Wiesenfarth et al., 2014 for technical justifications of hyperparameter
choices).
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Flexible effects specification

The definition of the unknown smooth terms fi(-) and f>(-) in model (4.13) is based on the
Bayesian analogue to penalized splines (i.e. Bayesian P-Splines) as introduced by (Lang and
Brezger, 2004). Thus, we assume that each of the smooth functions f,(x) (with r = 1,2)) of
continuous covariate x can be approximated by a spline function s,(x) in the space of spline
functions S(d,,x%,) of degree d, with knots K, = {xXmin < K1 < K2 < ... < Kg, < Xmax}, ..
sr(xr) € 8(dy,xj). Since S(d,,x,) is a (K, +d, + 1)-dimensional vector space (a subspace of
all d,-times continuously differentiable functions), s,(x,) can then be represented as a linear
combination of suitable basis functions By, (x,). Hence, smooth effects fi(-) and f>(-) can be
expressed as

Krtd+1
frx)="Y BuBi(x) =XBr, withr=1,2. (4.14)
k=1

Due to their simplicity and numerical stability, B-spline basis functions are used.

Although the global smoothness properties are determined by the degree of the spline ba-
sis d,, the variability of the resulting estimates depends on the location and number of knots.
Instead of directly aiming at optimizing the number and position of the knots in a data-driven
manner, the penalized spline approach relies on using a generous number of equidistant knots
in combination with a penalty that avoids overfitting. The common rule of thumb is to choose
K, = min(n/4,40).

In the frequentist framework, Eilers and Marx (1996) proposed to penalize the squared g-th
order differences of adjacent basis coefficients, thereby approximating the integrated squared
g-th derivative of the spline function. In the Bayesian framework, this corresponds to assigning
a random walk prior to the spline coefficients to be estimated. Specifically, we use the second
order random walk priors

Brk = 2[3,,7/(_1 - Br,k—Z + Uy, with Uk 1id N(O,’E%), r= 1,2; (415)

which constitutes an explicit modeling for the second order difference of adjacent basis
coefficients. The random walk variance T2 acts as an inverse smoothing parameter with small
values corresponding to high smoothing, and with large values corresponding to a high variabil-
ity of the estimated function. In the limiting case of T2 — 0, the estimated function approaches
a a linear effect.

From the random walk specification, the joint prior distribution for the coefficient vector 3,
can be derived as a partially improper multivariate Gaussian distribution with density
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rank(Ar)

sl () e (—5uBas)

where A, is the penalty matrix given by the cross-product of a difference matrix D, of
appropriate order, i.e. A, = D.D,..

The bayesian prior specification is completed with a prior on 12, to include estimation of

the variance and therefore to allow for a data-driven amount of smoothness. This prior consist

in a conjugate inverse-gamma distribution with shape and scale parameters a;, and by, i.e.
2 ~1G(az,, by,

Tr (aTN Tr).

Finally, for parametric effects o and Bo , we use diffuse priors p(7p) o< const and p(Pg) o<
const, assuming a complete lack of prior knowledge.

The control function and smoothing parameters estimation

The BNIV model is closely related to the Control Function Approach, as can be seen consider-
ing the structural equation (4.16) derived from the system (4.13)

vai = f2(ni) + E(€ailens) + &, & ~N (0,0

(4.16)
G2, oy
1 ) 2 2 )
with E(€i|€1;) = pos + T(Sli —uy7) and O =9%21~ "3
G1, O1,
where E(€;|€};) is the control function and G%m) ; is the conditional variance in cluster /,
whit [ =1,...,C. Note that these conditional moments and parameters come from the condi-

tional distribution of mixtures of C bivariate normals. Thereby, mean and variance components
may vary with i such that E(gy;|€);) and (€1, ...,€,) may follow any functional form and distri-
bution, respectively.

In contrast to the 2SGAM approach, in particular, and flexible frequentinst approaches, in
general, in the BNIV model the control function term E(€p;|€;;) acts as a varying coefficient
allowing the degree of endogeneity correction to be different over observations. Moreover,
this control function is not a smooth function of €, therefore it does not impose dependencies
between the values it takes for adjacent errors €1;.

Control function approaches can be extremely sensitive to outliers in the error distribution,
since they do not account for the high variability of the control function at extreme values of €;
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where observations are scarce. BNIV has two features that helps to reduce the outliers effect.
On the one hand, the non-constant variances G%I and means uy; shrink the error terms €;; toward
their (non-constant) mean, reducing the weight of outlier errors. On the other hand, given that
Ty plays an important role for the smoothness of the error density, then a small Ty allows the py;
to vary more strongly around its mean which translates in a possibly stronger downweighting
of outliers in €; depending on Ty.

As described so far, the relevant smoothing parameters associated to the control function
estimation are the number of mixture components (governed by the parameter o and the data)
and parameter Ty. It is important to note that these parameters are different from the smoothing
parameters associated to estimation of terms f,(-) (i.e. T2). This feature of BNIV plays a crit-
ical role because, in the control function approach, smoothing parameter choice is particularly
delicate since smoothness of functions in the first stage and of the control function influence the
way of endogeneity bias correction for f>(y;).

The previously mentioned characteristic of BNIV contrast with the 2SGAM approach, which
optimizes the same global error criterion to selects the smoothing parameter of both the control
function and the effect of the endogenous regressor (as described in section 4.3.1).

In comparison with the frequentist approach, the distinctive features of BNIV seem to be
useful in alleviating the effects of the concurvity problem in weak identification scenarios. In
particular, its relative efficiency is high without a consequent relative bias compensation. Prob-
ably, such efficiency advantage is derived from, in first place, the robustness of control function
E (€3i|€1;) to outlier values in €; and, in second place, differentiating between, on the one hand,
estimation of the smoothing parameters in the control function E (€5;|€};) and, on the other hand,
estimation of the smoothing parameters for terms f(+).

The estimation of the BNIV model is fully Bayesian, involving posterior means from Gibbs
sampling steps in an efficient Markov Chain Monte Carlo (MCMC) implementation. This full
Bayesian procedure can be performed using R package bayesIV (Wiesenfarth et al., 2014). It
includes two alternative methods for estimation of the joint errors distribution through a Dirich-
let process mixture. We use the default method in package bayesIV, based on implementation
provided by R package DPpackage (Jara et al., 2011). The details on all full conditionals of the
bayesian specification are given in the following.

Full conditionals

The full conditionals for the coefficients vector B, of the smooth functions f, (i.e. r = 1,2 for
equations in system (4.13)) are Gaussian

-1
B |- ~ N(u, . B3 )
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with precision matrix

A

_ yty—1 r
Py, =X'T X+ =5,
2

rr|—r

where A, is the penalty matrix of flexible effect f, based on a random walk prior of second
order and mean

Hg, = PB:IXrtZ;‘ir(y, — M, —E(&[e-r))

where T, =N, — f> when f; is to be estimated.

Further, E(e,|e_,) with & = (&11,...,€mn,)" is the conditional mean of the error terms with
G12,ij
E(&rij|€—rij) = rij+ == (V—rij = H—rij = N—rij)
—nij

and X, _, is the conditional covariance matrix with

. 2 2
Zr|7r = dlag(c(r|,,),11 s O ¢ 7G(r\—r),nn,,)

and
2
O%n +:
’ B 5 AN 12ij
O (r—r)ij = Var(&ij|e—rij) = Orij o2 ..
77‘711

Note that the posterior mean of some function f, is given by (subject to centering con-
straints)

"r|—r "=r|—r

_ 1 _ _ .
() = X'z IXr+T_2Ar) Ix'x~! (y,—1m,—E(ele_,)).

It can be noted that the Dirichlet Process Mixture prior induces different variances and
therefore X, _, weighs observations accordingly just as in the case of heteroscedasticity.

The full conditionals for the smoothing variance parameters ‘c%, r = 1,2 follow inverse
Gamma distributions

T}%| ~ IG(aér,b;r)
with parameters

, rank(A,)

atr — aﬁ[r 2

1
) b;r = b, + EB;ArBr-
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In the case of the components of the error distribution, the full conditionals can be summa-
rized as the following

e Letc; €{l1,...,K*},i=1,...,n indicate the cluster observation i belongs to.
Fori=1,...,n:
— If ¢; = ¢, for some h # i, create auxiliary component ¢* with (ge+, X+ ) drawn from
Go.
- Ifc; #cp forall h # i, let ¢* = ¢; with (ues, Xex) = (e, Ze,)-

— Draw a new value for ¢; using

n

cile—isy1i, y2i, M1, 1, - M ZR e, Xe - ™ bl_lml’((ﬁli,ezi%m,zz)
o

—f—bmF((Sli,EZi)aﬂc*ch*)

where £~ is the number of distinct ¢, for i # i, n;i is the number of ¢;, for i = i that
are equal to /, b is a normalizing constant and F ((€1;,€2;),u1,%;) the likelihood for
observation i.

e Discard those y;,Y; that are not associated with one or more observations.

e Foralll € {cy,...,c,}: Update y; and ¥; using yy|- ~ N(m,v,l,Plvgl) and X;|- ~ IW(s;, S5)
with

my = (tz+1)7! (Tzuo+ ) ((YIiayZi)_(nlian%))[)

iici=lI

I T3 1
P, = L/m=(ts+ 1) L/n

K 1 J

! 1+15

s¢ = +ﬂ

by Py D)

1 1
S’Z = Syg+ = 1 Z ((yli,yzi)—(Tllimzi)—.Uo)l((hi,ni)—(nlimzi)—HO)

21 +TZ iici=lI

e The full conditionals of Ty are

ar+K* 1 K
’CENG3< 22 ,§<bz+ZZ, l(uz—uo)z)>

=1
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e The concentration parameter o is drawn from a mixture of two gamma distributions

ag+K*—1
n(by —log®)

ol-

Ga(ag+K*,by, —logm)

ag+K*—1 .
l—— |G K*—1,by —logm
+( n(ba—logm)> a(ag+ ,bg —log )

where  is a latent variable sampled from a beta distribution ® ~ Be(a+ 1,n).

4.4 Performance comparison through simulation

The comparison between the 2SGAM and BNIV approaches, in the context of weak identi-
fication scenarios, is accomplished by running Monte Carlo simulation from the same Data
Generating Process (DGP) used in Han, 2014.

That DGP is consistent with the model structure described in previous section, and can be
sketched as follows

VI=To+Tw+eg, y=® (}%) + &,
1

where w ~ N(0,1) and (&1;,€2;) ~ N(0,%), (4.17)

wich:(l p).
p 1

In DGP (4.17), ®(-) is the cumulative function of the standard Normal distribution and vari-
ables y1, y» and w are univariate. The degree of endogeneity is controlled by parameter p, which
we set at 0.5 implying a relatively large correlation between errors. The sample {y1;,y2, wi}7,
is i.i.d with n = 1000. We employed a moderated number of s = 300 simulation repetitions, due
to the high computational burden that BNIV estimations demand.’

It is important to note that the joint errors distribution in (4.17) follows a bivariate standard
Normal, implying that the true control function, E(€p;|€};) = p€y;, is a straight line with slope
p = 0.5 (i.e. the same linear function for all pair of errors). This DGP is a fair alternative to
compare 2SGAM versus BNIV, because the true control function is neither a smooth nonlinear

3Simulation results obtained using s = 1000 for 2SGAM estimators did not differ substantially from the results
based on s = 300
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function (which would favor the former) nor a varying coefficient term (which would favor the
later).

The linear specification of the reduced form equation enables us to control the strength of
the instrument z through parameter ;. Moreover, we can use (4.8) to relate the concentration
parameter with coefficient 7; as follows

n
’Yz:n%zwiz?

i=1

which presents an expected value equal to y> = Tl:%n.

We establish the sequence of values {4,10,12,16,32,64,256} for the concentration param-
eter, that includes the parametric threshold y> = 10 and values ranging from weak to strong
instruments. Finally, we set the reduced form intercept y equal to 2.

Even though the reduced form equation can be estimated using a linear model, and the
control function can be modeled with a linear term, we keep the skepticism about any particular
functional form, and estimate them in a flexible way (as is the case in Han, 2014).

Table 4.1 presents integrated squared bias, integrated variance and integrated mean squared
error (MSE) of the 2SGAM estimator (for both GCV and REML methods of smoothing param-
eter selection) and the GAM estimator using GCV method which constitutes the naive estimator
(i.e. without endogeneity correction). Additionally, ratios of integrated MSE are reported for
comparisons. All estimators was performed using a number of 20 knots for the spline basis
functions. Additional sensitivity analysis showed that using alternative basis functions (i.e.
modifying the number of knots and/or using different types of spline basis) does not signifi-
cantly change the estimation results.

For decreasing degrees of IV’s strength until Y = 10, the computed squared bias maintains
relatively low and stable values for both estimators 2SGAMgcy and 2SGAMRgEp 1, but variance
increases in an accelerated way. In general, it can be noted that 2SGAMcy presents lower bias
and higher variance than 2SGAMRrEg1, but differences are small for values of 10, 12 and 16 of
the concentration parameter .

In terms of integrated MSE, and for y* smaller than or equal to 10, both 2SGAM estimators
perform worse than the naive GCV (Naivegcy) estimator. This reveals the necessity to establish
a higher value for y* as the new threshold for characterizing nonparametric weak identification
scenarios, instead to the threshold of Y = 10 established in the parametric case. For ¥ equal
to 12, 16 and 32, integrated MSE of 2SGAM estimators represents about 60%, 40% and 15%
of the Naivegcy’s MSE, respectively. These results suggest that the new threshold for the
concentration parameter may be specified as a value between 12 and 16.
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TABLE 4.1: Integrated squared bias, integrated variance and integrated mean
squared error of the naive and 2SGAM estimators for the term ®(-).

,Y2

Estimator 4 10 12 16 32 64 256

Bias> 0.649 0.013 0.018 0.025 0.027 0.024 0.018
2SGAMgcy Var 6093 6.129 3.114 1.779 0.742 0385  0.148

MSE 6158 6.142 3.132 1.803 0.769 0.409 0.158

Bias®> 0571 0.022 0.024 0.029 0.035 0.033 0.028
2SGAMREML Var  61.83 6.059 3.001 1.662 0.661 0335 0.129

MSE 6240 6.082 3.025 1.691 0.696 0.369 0.166

Bias> 4.896 4.869 4.860 4.853 4.7840 4.6297 3.9672
Naivegcy Var  0.083 0.081 0.078 0.081 0.080 0.085  0.080

MSE 4979 4949 4940 4934 4864 4714 4.047

2SGAMGeyMSE
S 12.37 1.24 0.63 0.37 0.16 0.09 0.04
Naivegey MSE
2SGAMRpeM1i MSE
12.53 1.23 0.61 0.38 0.14 0.08 0.04
Naivegey MSE

Simulation results in Table 4.1 differ from findings in Han, 2014 which shows that the IV
estimator behaves worse than the naive one even for > = 16. This fact can be explained by
the lack of a data driven method for optimal smoothing parameter selection in Han, 2014’s IV
estimators.

Table 4.2 reports the same performance scores of Table 4.1 but for the BNIV estimator.
Compared to the 2SGAM and for y? ranging from 10 to 16, the BNIV shows equal or smaller
squared bias and a smaller variance with a notable smoother behavior. This enables the BNIV
estimator to present a relative MSE (over the Naivegcy’ MSE) of 45%, 40% and 30% for yz
equal to 10, 12 and 16 respectively. This result suggests that the parametric weak identification
threshold of ¥> = 10 can be valid in the case of BNIV.

Table 4.3 presents relative comparisons between BNIV and 2SGAM estimators, in terms of
bias, variance and mean squared error. For y> < 16 BNIV outperforms the 2SGAM estimators
(for both GCV and REML versions) in terms of bias and variance. This situation reverts when
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TABLE 4.2: Integrated squared bias, integrated variance and integrated mean
squared error of the BNIV estimator of the term ®(-).

v

Estimator 4 10 12 16 32 64 256

Bias> 0.409 0.013 0.006 0.002 0.002 0.003 0.007
BNIV Var 4292 2212 1958 1464 0.793 0.440 0.191

MSE 47701 2.225 1963 1.466 0.795 0.443 0.198

BNIVMSE

Naiveey MSE 094 045 040 030 0.16 0.09 0.05

concentration parameter takes values of 32 or larger.

TABLE 4.3: Performance comparison between BNIV and 2SGAM estimators of
the term ®(-).

,YZ
Estimator 4 10 12 16 32 64 256
BNIV Bias*
2SGAMpemLBias? 0.72 0.59 0.25 0.07 0.06 0.09 0.25
BNIVVar
m 0.07 036 065 088 1.19 131 148
BNIVMSE
2SGAMgys MSE 008 036 065 087 1.14 120 1.19
BNIV Bias*?
2SGAMacv Bias? 0.63 1 0.33 0.08 0.07 0.125 0.39
M 0.07 036 063 082 1.07 1.14 1.29
2SGAM ey Var
BNIVMSE
SCCAM M SE . . . 81 1. 1. 1.2
2SGAMoey MSE 0.08 036 0.63 0.8 03 08 5
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Previous considerations support the idea that BNIV must be the preferred option when po-
tentially weak instruments are present (i.e. when 10 < YZ < 16), mainly because of its ability to
mitigate the estimations variability induced by the concurvity problem.

To get a visual comparison between BNIV and 2SGAM, Figure 4.1 presents the mean and
0.03-0.97 quantile range for estimations of the function ®(-) with concentration parameter equal
to 10, 12, 16 and 32.
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FIGURE 4.1: Mean and 0.03-0.97 quantile range of BNIV (dashed line) and 2SGAM
(dotted line) estimations of ®(-) with ¥ equal to 10 (top-left plot), 12 (top-right plot), 16
(bottom-left plot) and 32 (bottom-right plot).

When > = 10, 12, the variance of 2SGAM is excessively large, producing a quantile range
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which may include a function of any shape. On the other hand, the variance of BNIV is signif-
icantly smaller implying a quantile range that preserves the positive shape of the true function

D(-).

In the case of > = 16, 2SGAM improves its variance performance, but BNIV still remains
superior in terms of variance.

It is remarkable that the above-mentioned higher efficiency of BNIV does not come at the
cost of a larger bias, in fact the bias of BNIV maintains stable values which are in general
smaller than the 2SGAM’s bias. Finally, when the concentration parameter is equal to 32, BNIV
and 2SGAM estimators perform in a similar way in terms of variance and quantile ranges.

A criticism that can be made to the previous comparison using DGP (4.17), is that a joint
normal distribution is assumed for error terms (€;;,€5;), which can favour estimation trough
BNIV.

To ensure a fairer comparison between BNIV and 2SGAM, a slight modification to the
DGP (4.17) is introduced. In DGP (4.18) joint normality of errors is replaced by a Uniform
distribution for €;; and a mixture of Uniform and Normal distributions for €;.

Y1 :750—{—7'C1W—{—81, yzzq)(yl;—‘uyl) +827
Y1

where w ~ N(0,1) , €;; ~ Unif(—1,7,1,7) , €2; = 0.5¢y; + €3;, (4.18)

with €3; ~ N(0,0.757).

Table 4.4 present the comparison between 2SGAM and BNIV estimators in the context of
DGP (4.18) and simulated samples {y1;,y2i,w;}?_; with n =200. In this case we increased the
number of simulation repetitions to s = 600.

Simulation results confirm the previous conclusions about the advantages of BNIV in terms
of lower bias and efficiency gains when compared to 2SGAM (for both versions GCV and
REML). In addition, new results extends such BNIV superiority to scenarios when the con-
centration parameter values are larger than 16 (i.e. y> => 16). For example, with Y = 64
2SGAM-REML is 58% larger than BNIV in terms of integrated mean squared error.
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TABLE 4.4: Integrated squared bias, integrated variance and integrated mean
squared error of 2SGAM and BNIV estimators for the term ®(-) in DGP (4.18).

,Y2

Estimator 10 16 32 64 128

Bias> 4.683 4452 3.875 3262 2.670
Naivegcy Var  1.673 1411 0.895 0.773 0.690

MSE 6355 5.863 4770 4.035 3.360

Bias®>  0.079 0.079 0.071 0.062 0.059
28GAMgcey Var  5.602 3.062 1.396 1.009 0.643

MSE 5.681 3.141 1467 1.071 0.702

Bias> 0.046 0.044 0.062 0.070 0.073
2SGAMREmL Var 4267 2048 0.832 0479 0.327

MSE 4314 2.093 0.894 0.549 0.400

Bias> 0.026 0.028 0.026 0.019 0.015
BNIV Var  0.812 0.629 0441 0328 0.277

MSE 0.838 0.658 0.467 0347 0.292

2SGAMgey MSE
28GAM ey MSE 678 477 314 308 24l
BNIVMSE
2SGAMpgy MSE
SGAMRemLMS 515 318 191 158 137
BNIVMSE

4.5 Results discussion

This chapter assesses the performance of two alternative flexible estimators of the Triangular
Simultaneous Equations Model when weak instruments are present. Both analyzed estima-
tors, the Two Stage Generalized Additive Model (2SGAM) and the Bayesian Nonparametric
Instrumental Variables (BNIV), are of greater relevance for applied research because they en-
able data-driven smoothing parameter selection and provide valid tools to perform statistical
inference.

Simulation results support the advantages of BNIV over 2SGAM when instruments are
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weak. Specifically, when the concentration parameter ranges between 10 and 16, BNIV outper-
form 2SGAM in terms of variance. This finding is not surprising because it is expected that the
flexible structure of the control function term, implied by BNIV, helps to reduce the concurvity
problem associated with weak identification.

It is important to note that the mentioned efficiency of BNIV does not imply an increment
in relative bias. In fact, bias in BNIV remains significantly smaller than 2SGAM’s bias when
concentration parameter is larger than 10.

The issue of the minimum value of the concentration parameter required to avoid the non-
parametric weak identification problem, in the context of additive frequentist estimators as
2SGAM, needs to be further studied. The suggestion made in Han, 2014 about that the concen-
tration parameter must exceed the value of 16 is called into question based on our simulation
results. We find that in the 12-16 range of the concentration parameter, the 2SGAM estimator
presents an acceptable performance even though it is outperformed by BNIV estimator.

Focusing on the BNIV estimator, it seems to yield useful estimation results in terms of
identification of the unknown function to be estimated, even when the concentration parameter
is equal to 10.

Comparing alternative approaches of smoothing parameter selection in the 2SGAM case,
we find that REML method is more efficient than GCV method, but the later presents lower
bias.

Beyond the results registered in this chapter characterizing the weak identification problem,
further research must be done to assess the performance of uncertainty measures, as confi-
dence/credible interval construction, for both methodologies, BNIV and 2SGAM .
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Chapters appendices

This final chapter has two goals. First, it introduces some additional explanations and estimation
details which complete the analysis of previous chapters. Second, it presents a part of the R (R
Core Team, 2014) code used in each of the previous chapters. This selected code might be useful
for practitioners trying to replicate some of the addressed analysis or for future construction of
functions that automate the estimation and inference procedures, originating a new R package.

A.1 Appendix of Chapter 2

A.1.1 Estimation details

Estimation of Additive Models (AM) and Generalized Additive Models (GAM) involves several
aspects that need to be carefully considered by the researcher. Particularly, the methodology to
select or estimate the so called smoothing parameters is of primary concern.

The flexible models (AMs and GAMs) in Chapter 1 have been estimated by Restricted Max-
imum Likelihood (REML) method, using the ‘gam()’ function of the R package ‘mgcv’ (Wood,
2011, Wood, 2006a and Wood, 2004), which estimates the smoothing parameters from the data.
This method has been chosen over several alternatives, including Generalized Cross Validation
(GCV), Akaike Information Criterion (AIC) or Un-Biased Risk Estimator (UBRE), due to spe-
cific advantages like the improvement in terms of the mean square error and in stability in the
presence of severe under-smoothing failures (Wood, 2011 and Wood, 2013). In fact, the estima-
tion results using default method GCV (Generalized Cross Validation) in the present application
tend to show an under-smoothing behavior for some model components, including T7DC effect.
All the others options in the ‘gam()’ function have been set to the default values.

The construction of point-wise confidence intervals is based on the Bayesian view of the
smoothing process, as proposed in Wood, 2006b and studied by Marra and Wood, 2012. Such
Bayesian approach enables us to test the significance of smooth terms through the computation
of Wald type statistics with their corresponding p-values (Wood, 2013). We followed Marra
and Radice, 2011 which extends this Bayesian methodology to be used in the simultaneous
equations framework.
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Another problem we dealt with was the heteroscedastic error’s structure, present in the struc-
tural equation 2.10. To deal with that problem we extended the procedure known as Feasible
Generalized Least Squared, commonly applied to linear models (Wooldridge, 2010), to the
Additive Model context. In concrete, we exploit the fact that variance of the binary outcome
variable Event is given by

P(Event = 1|TDC,...,u)P(Event = 0|TDC,...,u),

which can be consistently estimated by 2SAM or 2SGAM.

Then, to correctly estimate the Variance-Covariance matrix of estimated coefficients, we
have used the 2SAM procedure but applying the following weights in both stages

1

)

\/P(Evem = 1|TDC,...)P(Event = 0|TDC,...)

where the predicted probability P(Event = 1]...) was obtained by 2SGAM (with a Probit
link function) to assure non-negative predicted values. Then, the resulting Variance-Covariance
matrix was used to compute the Bayesian Confidence Intervals.

A similar weighted procedure has been applied to estimate Bayesian (heteroscedasticity
robust) standard errors in the linear model case, fitted through 2SLS. The estimates obtained
are very similar to the robust standard errors produced by Hubert-White asymptotic formula
reported in Table 2.7.

A.1.2 The R environment routines

In this subsection we introduce part of the R code used in Chapter 2. Estimation results for
flexible models with endogeneity correction can be obtained from this code. The results related
to the linear model and the GLM cases, can be obtained by R packages ‘AER’ and ‘ivpack’,
or by Stata (Statistics/Data Analysis - StataCorp) command ‘ivregress’ and ‘ivprobit’. The
software versions used in the analysis are R 3.0.3 and Stata 12.

The variables described in Chapter 2 possess a different name in the dataset, the new names
are TDC = horas-delay, Age = EDAD, Gr = GRS-iH, Fem = sex, Fr = 1Vvie, Sa = [Vsab and
Su = IVdom.

#4#4# Data ###
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library (foreign)
Data<-read.dta("C:/.../Cate2014_conIVdomOK_Completa.dta")
Datl<-Data[DataShoras_delay<=60, ]

library (mgcv)
library (mvtnorm)

#### 2.5 Empirical Results ####
FHEFH AR

## Table 2.9 and Figure 2.2: First stage
fs<-gam(horas_delay~IVsab+IVdom+IVvie+s (GRS_1iH) +s (EDAD)
+sex, method="REML", data=Datl, na.action="na.exclude")
summary (fs)

DatlSresi <- residuals(fs, type = c("response"))

## Table 2.10, part I:
# Second stage without heteroscedasticity correction
# (to get consistent coefficients estimation)
ss<-gam (Ex_IAM~s (horas_delay) +s (EDAD) +s (GRS_1iH) +sex
+s(resi), method="REML", data=Datl)
summary (ss)

## Table 2.10, part II:

# Second stage with heteroscedasticity correcton
# (to get robust confidence intervals)
ssPr<-gam(Ex_IAM~s (horas_delay)+s (EDAD) +s (GRS_iH) +
sex+s (resi), method="REML", data=Datl,
family=binomial (1link="probit"))
Pr.hat<-predict (ssPr, type="response")
DatlSweig <- 1 / (sqrt(Pr.hat*(1-Pr.hat)))

## First stage using weights
fsh<-gam(horas_delay~IVsab+IVdom+IVvie+s (GRS_iH) +

s (EDAD) +sex, method="REML", data=Datl, weights=weigq,

na.action="na.exclude")

DatlSresih <- residuals(fsh, type = c("response"))
## Second stage using weights

ssh<-gam (Ex_IAM~s (horas_delay) +s (EDAD) +s (GRS_iH) +sex
+s(resih) , method="REML", data=Datl, weights=weigq)

95



Appendix A. Chapters appendices

summary (ssh)

###### Bayesian Confidence Bands ######

yf <- fsSy

n.boot <- 100

n.draw <- 400

XE <- model.matrix(fs)

beta <- matrix(NA, length(coef(ss)), n.boot*n.draw)

coe
var
coe
var

for

list <= list ()

list <= list ()
J1ist[[1]] <- coef (ss)
J1ist[[1]] <- ssh$vp

(k in 1:(n.boot-1)) {

xe.star <- XE%*%t (rmvnorm (1l , fsScoeff, fsSVp ))
res <- yf - xe.star

xe.star2 <- XE$*$t (rmvnorm(l , fsScoeff, fshSVp ))
res2 <- yf - xe.star

#
#

Second Stage without heteroscedasticity correction
(to get simulated coefficients)

sstsp<-gam (Ex_IAM~s (horas_delay)+s (EDAD) +s (GRS_1iH) +sex
+s(res), method="REML", data=Datl, na.action="na.exclude")

#
#

Second Stage without heteroscedasticity correction
(to get Robust Var-Covar Matrix)

sst <-gam(Ex_IAM~s (horas_delay)+s (EDAD) +s (GRS_iH) +sex+
s(res2), method="REML",data=Datl,weights=weigq,
na.action="na.exclude")

coe.list[[k+1]] <- coef (sstsp)

var.list[[k+1]] <- sst$Vp

print (k)

for (k in l:n.boot) {
betal[, ((k-1)*n.draw+l): (k*n.draw) ] <- t(rmvnorm(n.draw,
coe.list[[k]], var.list[[k]] ))

LBl <- UBl <- LB2 <- UB2 <- LB3 <- UB3 <- LB4 <- UB4 <- NA
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sm <- 1

ind<-ssSsmooth[[sm]]S$first.para:ssSsmooth[[sm

Xq <- model.matrix(ss) [,ind]
Bg <- betalind, ]
F.q <- Xg%*3%Bqg

for(i in 1:dim(F.q) [1]){
LB1[i] <- quantile(F.q[i,],c(.025))
UB1[i] <- quantile(F.qli,],c(.975))

}

sm <- 2

ind2<-ss$smooth[[sm]]S$first.para:ssSsmooth[ [sm

Xg2 <- model.matrix(ss) [,ind2]
Bg2 <- betalind2, ]
F.qg2 <- Xg2%*%Bg2

for(i in 1:dim(F.q) [1]){
LB2[i] <- quantile(F.qg2[
UB2[i] <- quantile(F.qg2[
}

sm <- 3

ind3<-ss$smooth[[sm]]S$first.para:ss$smooth[[sm

Xg3 <- model.matrix(ss) [,1ind3]
Bg3 <- beta[ind3,]
F.qg3 <- Xg3%*%Bg3

for(i in 1l:dim(F.q)[1]){
LB3[i] <- quantile(F.g3[i,],c(.025))
UB3[i] <- quantile(F.g3[i,],c(.975)

}

sm <—- 4

ind4<-ss$smooth[[sm]]S$first.para:ss$smooth[[sm

Xg4 <- model.matrix(ss)[,ind4]
Bg4 <- beta[ind4, ]
F.gd <- Xqg4%*%$Bqg4

for(i in 1l:dim(F.q) [1]){
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LB4[i] <- quantile(F.q4[i,],c(.025
UB4[i] <- quantile(F.qg4[i,],c(.975))
}

~—
~

### Robust standard errors and confidence intervals
# of parametric components:

LBpa <- UBpa <- NA

beta.pa <- beta[l:2,]

for(i in 1:2){

LBpa[i] <- quantile(beta.pali,],c(.025))
UBpal[i] <- quantile(beta.pali,],c(.975))
}

# CIs
round (cbind(t (t (LBpa) ), summary (ss) Sp.coeff,t (t (UBpa))),4)

# Std Error
sqrt (var (beta.pall,])) # intercept
sqrt (var (beta.pal2,])) # sex

### First derivative of TDC: finite difference approx. ###
FrEfhdd AR R R R R R R R R R R

# new data for prediction

newDat<-with (Datl, data.frame (horas_delay=

unique (horas_delay)))

ng<-length (newDat[,1])

newDat SEDAD<-seq (min (Dat1SEDAD), max (Datl1SEDAD),
length=ngqg)

newDat SGRS_iH<-seq (min (Dat1$GRS_iH),max (Dat1SGRS_iH),
length=ngqg)

newDat$resi<-seq(min (Datl1Sresi), max(DatlSresi),
length=ngqg)

newDat$sex<-rep(0,ng) ## male patients only

# finite difference

eps <- le-07
X0 <- predict(ss, newDat, type = ’lpmatrix’)
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newDat_p <- newDat + eps
newDat_p$sex<-0
X1 <- predict(ss, newDat_p, type = ’lpmatrix’)

# finite difference approximation of first derivative
# the design matrix
xp <- (X1 - X0) / eps

# first derivative for treatment TDC

sm <- 1
ind<-ss$smooth[[sm]]Sfirst.para:ss$Ssmooth|[sm]]Slast.para
xg <= xp[,ind]

bg <- coef(ss) [ind]

dl_F.q <- xg%*%bq

### First derivative bayesian C.T.

Bg <- betalind, ]
D1_F.qg <- xg%*%Bg

dLBl <- dUBl <- dLB2 <- dUB2 <- dLB3 <- dUB3 <- NA

for(i in
1:dim(D1_F.q) [1]){

dLBI1[i] <- quantile(D1_F.q[i,],c(.025))
dUB1[i] <- quantile(D1_F.qli,],c(.975))
#dLB199[1] <- quantile(D1_F.q[i,],c(.01))
#dUB199[i] <- quantile(D1_F.q[i,],c (.99

}

## Figure 2.1 (right)

windows ()

plot (sort (newDatS$Shoras_delay),
dl_F.g[order (newDatS$horas_delay)], type="lines",
cex.axis=1.0, cex.main=1.3, ylim=c(-0.006,0.02),
col="grey60" , 1lwd=1.7, cex.lab=1.6, cex.axis=1.6,
ylab="f ’ (IDC)", xlab="TDC (hours)")
lines (sort (newDatShoras_delay),
dLB1 [order (newDat$Shoras_delay) ], col="grey60",
lty="dashed", lwd=1.7)
lines (sort (newDatShoras_delay),
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dUB1 [order (newDat Shoras_delay)], col="grey60",
lty="dashed", lwd=1.7)
abline (h=0, lty="dotted")

### TDC Average First Derivative (Marginal Effect: MgEf) ###
FHEF A F A H AR R R R R

## Marginal effect for the whole TDC range

xx <- model.matrix(ss)

eps <- le-07

XX0 <- predict(ss, Datl, type = 'lpmatrix’)

datl<- with(Datl, data.frame (EDAD, horas_delay, GRS_iH,
Ex_IAM, resi, sex))

datl_p <- datl + eps

XX1 <- predict(ss, datl_p, type = 'lpmatrix’)

XXp <- (XX1 - XX0) / eps

sm <- 1

ind<-ssSsmooth| [
xx1l <- xxp[,ind]
bbl <- coef(ss) [ind]
dl_ffl <- xx1%*%bbl

sm] ] S$first.para:ss$smooth[[sm]]S$last.para

mean (d1_£ff1)

## Marginal effect for TDC between 0 and 34

dat2<- with(Datl, data.frame (EDAD, horas_delay, GRS_iH,
Ex_IAM, resi, sex)) [DatlShoras_delay<=34,]

XX02 <- predict(ss, dat2, type = ’lpmatrix’)

dat2_p <- dat2 + eps

XX2 <- predict(ss, dat2_p, type = ’lpmatrix’)

XxXp2 <- (XX2 - XX02) / eps

sm <- 1
ind<-ssSsmooth[[sm]]$first.para:ss$smooth[[sm]]S$last.para
xx12 <= xxp2[,ind]

bbl <- coef(ss) [ind]

dl_ff2 <- xx12%*%bbl
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mean (dl_ff2)

A.2 Appendix of Chapter 3

A.2.1 Estimation methodology for flexible models

All flexible models in Chapter 3, single Additive Models (AM) and Two Stage Additive Mod-
els (2SAM), have been estimated by Restricted Maximum Likelihood (REML) method, using
‘gam()’ function of R package ‘mgcv’ (Wood, 2011), which estimates the smoothing param-
eters from the data. As we mentioned in subsection 5.1.1, the REML estimator is sometimes
preferred over Generalized Cross Validation (GCV), Akaike Information Criterion (AIC) or
Un-Biased Risk Estimator (UBRE) because it presents advantages like some improvement in

the mean squared error and robustness to occasional severe under-smoothing (Wood, 2011 and
Wood, 2013).

We restricted the Empirical Degrees of Freedom (e.d.f.) values, for all smooth effects terms
in all the estimated models, to a maximum of 5. This restriction was necessary to prevent over-
fitting. Such restriction is based on theory grounds, which expects the existence of smooth
effects of covariates.

The degrees of freedom restriction was more important for covariate Enrollment, which
was limited to a maximum of 2 e.d.f., because instrument PCS is in fact a deterministic (highly)
nonlinear function of Enrollment.

To run the outlier detection strategies, based on Stahel, 1981 and Donoho, 1982 univariate
projections estimator, we rely on the function "outlyingness" in R package "mrfDepth". That
function presents alternatives options to compute the robust standardised distance. We choose
default option with which the data for each projection is centred around the median and stan-
dardised by the median absolute deviation.

A.2.2 The R routine for analysis reproducibility

In this subsection we present the R (R Core Team, 2014) code used in Chapter 3. Regression
results, including bootstrap inference, similar to reported in Chapter 3, can be obtained from
this routine. The software version used in the analysis was R 3.0.3. The statistical program
Stata 12 was used to compute asymptotic robust standard errors for the estimated coefficients
in the parametric models (routines not reported).
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The variables referred to in Chapter 3 possess a different name in the dataset, new names are
Score Literature = score100-len, Class Size = numtest-ok, Predicted Class Size = IVxx, Enroll-
ment = smaxalul, Socioeconomic Index = sxf31sal, High education = por-edu-alta, Housing
Issues = por-prob-espac and Repeaters = por-repit.

#4444+ Data reading #####4#
HHEFHE AR AR A

library (mgcv)

library(foreign)

Unif.len<-read.dta("Unif96_final.dta", convert.factors = TRUE)
Unif.len<-as.data.frame (Unif.len)

#attach (Unif.len)

#### Sample excluding Outlier Schools

# Outliers exclusion from data
X<-matrix(c (Unif.lenS$Snumtest_ok, Unif.lenS$IVxx),nrow=4744, ncol=2)

library (mrfDepth)
OutAn<-outlyingness (x=X)

Unif.len2<-Unif.len[OutAn$flagX, ]
attach (Unif.len?2)

### Clusters ID (used hereafter for all regressions based on
# full sample)
rueesl<-c(1101001,1101002,1101003,1101005,1101006,1101017,1101018,
1101024,1101025,1101027,1101028,1101029,1101031,1101036,
1101037,1101039,1101040,1101046,1101048,1101049,1101050,
1101052,1101054,1101055,1101061,1101062,1101066,1101069,
1101073,1101074,1101075,1101076,1101077,1101079,1101081,
1101082,1101083,1101084,1101085,1101086,1101087,1101090,
1101092,1101094,1101098,1101100,1101101,1101103,1101104,
1101105,1101107,1101108,1101110,1101112,1101114,1101115,
1101116,1101117,1101118,1101120,1101122,1101124,1101127,
1101128,1101131,1101132,1101137,1101141,1101146,1101147,
1101149,1101150,1101154,1101155,1101156,1101164,1101166,
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1101167,1101170,1101171,1101172,1101173,1101174,1101175,
1101180,1101181,1101190,1101192,1101195,1101249,1101251,
1101255,1101258,1101262,1101263,1101266,1101267,1101268,
1101270,1101274,1101277,1101283,1101290,1101299,1101302,
1101309,1101317,1101321,1101323,1101330,1101339,1101344)

### Clusters ID (used hereafter for all regressions based on
# trimmed sample)

ruees <- ¢(1101001,1101002,1101003,1101005,1101006,1101017,
1101018,1101024,1101025,1101027,1101028,1101029,1101031,
1101036,1101037,1101039,1101040,1101046,1101048,1101049,
1101050,1101052,1101055,1101061,1101062,1101066,1101069,
1101073,1101074,1101075,1101076,1101077,1101079,1101081,
1101082,1101083,1101086,1101087,1101090,1101092,1101094,
1101098,1101100,1101101,1101103,1101105,1101107,1101108,
1101110,1101112,1101114,1101115,1101116,1101117,1101118,
1101120,1101124,1101127,1101131,1101132,1101137,1101141,
1101146,1101147,1101150,1101154,1101155,1101156,1101164,
1101166,1101167,1101170,11021171,1101172,1101173,1101174,
1101175,1101181,1101190,1101192,1101249,1101255,1101258,
1101262,1101263,1101266,1101270,1101283,1101290,1101299,
1101302,1101309,1101321,1101323,1101330,1101339,1101344)

FHH# 2SAM -> endogeneity correction SR
FHEF A AR R R R R R R A

#### 1. 2SAM with full sample
kx <- 6 # degrees of freedom restriction

# First stage (reduced form equation)
fs.len<-gam(numtest_ok~ s(smaxalul, k=3)+s(sxf3lsal, k=kx)
+s (por_repit, k=kx)+s(por_edu_alta, k=kx)+

s (por_prob_espac, k=kx) + IVxx, method = "REML",
data=Unif.len)

resid.fs.len<-fs.lenSresiduals

summary (fs.len)
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# Second stage (reduced form equation)
ss.len<-gam(scorel(00_len~ s(smaxalul, k=3)+ numtest_ok
+s(sxf3lsal, k=kx)+s(por_repit, k=kx)+s(por_edu_alta,k=kx)
+s (por_prob_espac, k=kx) + s(resid.fs.len), method="REML",
data=Unif.len)

summary (ss.len)

#4444 Weighted bootstrap  ####

B <- 1000
N1 <- length(Unif.lenSruee)

nescul <- length(rueesl)
weightsl<-c()
Unif.lenSweightsl<-NaN

cseffl<—-c()
interceptSE <- c{()
interceptPE <- c()
IV <- ¢ ()

for (i in 1:B) {

set.seed(1i)
weightsl <- sqgrt(-log(l-runif (nescul)) )

for (j in 1:N1) {

for (k in l:nescul) {

if (Unif.lenSruee[jl==rueesl[k])

Unif.lenSweightsl[j]<-weightsl[k]
}

fs<-gam(numtest_ok~ s(smaxalul, k=3)+ s(sxf3lsal, k=kx)
+ s(por_repit, k=kx)+ s(por_edu_alta, k=kx)
+ s(por_prob_espac, k=kx) + IVxx , method ="REML",
data=Unif.len, weights=Unif.lenSweightsl)
resid.fs<-fs$residuals
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ss<-gam(scorel(00_len~ s(smaxalul, k=3)+ numtest_ok

+ s(sxf3lsal, k=kx)+s(por_repit, k=kx)+s(por_edu_alta,k=kx)
+ s(por_prob_espac, k=kx) + s(resid.fs), method ="REML",
data=Unif.len, weights=Unif.lenSweightsl)

cseffl[i] <- ssScoeff[[2]]
interceptSE[i] <- ssS$Scoeff[[1]]

interceptPE[1] <- fsScoeff[[1]]
IV[i] <- fsScoeff[[2]]

### Second stage Confidence Intervals and standard errors
# CS effect

1%

g005<-quantile(cseffl,0.005, na.rm=T)
q995<-quantile(cseffl,0.995, na.rm=T)
q005;g995

5%

g025<-quantile (cseffl,0.025, na.rm=T)
g975<-quantile(cseffl,0.975, na.rm=T)
q025;9975

ee.cseffl<- sqgrt(var(cseffl))
ee.cseffl

# Intercept

1%

g005<-quantile (interceptSE, 0.005, na.rm=T)
q995<-quantile (interceptSE, 0.995, na.rm=T)
g005;9995

# 5%

g025<-quantile (interceptSE, 0.025, na.rm=T)
q975<-quantile (interceptSE,0.975, na.rm=T)
q025;q975
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ee.intSE <- sqrt(var (interceptSE))
ee.intSE

### Second stage Confidence Intervals and standard errors
# IV (PCS)

¥ 1%

q005<-quantile (IV,0.005, na.rm=T)
q995<-quantile (IV,0.995, na.rm=T)
q005;g995

¥ 5%

q025<-quantile (IV,0.025, na.rm=T)
q975<-quantile (IV,0.975, na.rm=T)
q025;9975

ee.IV <- sqgrt(var(IV))
ee.IV

# Intercept

¥ 1%

g005<-quantile (interceptPE, 0.005, na.rm=T)
q995<-quantile (interceptPE, 0.995, na.rm=T)
q005;9995

# 5%

g025<-quantile (interceptPE, 0.025, na.rm=T)
g975<-quantile (interceptPE, 0.975, na.rm=T)
q025;9975

ee.intPE <- sqrt(var (interceptPE))
ee.intPE

#### 2. 2SAM excluding outliers
# First stage (reduced form equation)

fs.len2<-gam(numtest_ok~ s(smaxalul, k=3)+s(sxf3lsal, k=kx)
+ s(por_repit, k=kx)+ s(por_edu_alta, k=kx)
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+ s(por_prob_espac, k=kx) + IVxx , method = "REML",
data=Unif.len2)

resid.fs.len2<-fs.len2%residuals

summary (fs.len2)

ss.len2<-gam(scorel00_len~ s(smaxalul, k=3)+ numtest_ok
ts(sxf3lsal, k=kx)+s(por_repit, k=kx)+s(por_edu_alta,k=kx)
ts (por_prob_espac, k=kx)+s(resid.fs.len2), method="REML",
data=Unif.len2)

summary (ss.len2)

#### Weighted Bootstrap  ####

B<-1000
N<-length (Unif.len2Sruee)

nescu <- length (ruees)
weights<-c()
Unif.len2Sweights<-NaN

cseff<-c()
interceptSE2 <- c()
interceptPE2 <- c¢{()
IV2 <= c¢()

for (1 in 1:B) {

set.seed (1)
weights <- sqrt(-log(l-runif (nescu)) )

for (j in 1:N) {

for (k in l:nescu) {

if (Unif.len2Sruee[j]==ruees[k]
J

)
Unif.len2Sweights[j]l<-weights[k]
}
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fs<-gam(numtest_ok~ s(smaxalul, k=3)+s(sxf3lsal, k=kx)
+ s(por_repit, k=kx)+ s(por_edu_alta, k=kx)
+ s(por_prob_espac, k=kx) + IVxx , method = "REML",
data=Unif.len2, weights=Unif.len2Sweights)
resid.fs<-fsSresiduals

ss<-gam(scorel(00_len~ s(smaxalul, k=3)+ numtest_ok
+s(sxf3lsal, k=kx)+s(por_repit, k=kx)+s(por_edu_alta,k=kx)
+s (por_prob_espac, k=kx)+s(resid.fs), method = "REML",
data=Unif.len2, weights=Unif.len2Sweights)

cseff[i] <- ssScoeff[[2]]
interceptSE2[1] <- ssScoeff[[1]]

# coeficientes de 1* etapa
interceptPE2[1] <- fsScoeff[[1]]
IV2[1] <- fsScoeff[[2]]

### Second stage Confidence Intervals and standard errors
# CS effect

¥ 1%

q005<-quantile(cseff,0.005, na.rm=T)
g995<-quantile (cseff,0.995, na.rm=T)
g005;q995

5%

q025<-quantile(cseff,0.025, na.rm=T)
q975<-quantile (cseff,0.975, na.rm=T)
q025;g975

ee.cseff <- sqrt(var(cseff))
ee.cseff

# Intercept
1%

q005<-quantile (interceptSE2,0.005, na.rm=T)
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q995<-quantile (interceptSE2,0.995, na.rm=T)

q005; 995
# 5%

g025<-quantile (interceptSE2,0.025, na.rm=T)
g975<-quantile (interceptSE2,0.975, na.rm=T)

q025;9975

ee.intSE2 <- sqgrt (var (interceptSE2))

ee.intSE2
# IV (PCS)
¥ 1%

g005<-quantile (IV2,0.005, na.
q995<-quantile (IV2,0.995, na.

q005;g995
# 5%

g025<-quantile (IV2,0.025, na.
g975<-quantile (IV2,0.975, na.

q025;9975

ee.IV2 <- sqrt(var(Iv2))
ee.IV2

# Intercept

¥ 1%

rm=T)
rm=T)

rm=T)
rm=T)

g005<-quantile (interceptPE2,0.005,
q995<-quantile (interceptPE2,0.995,

g005;9995
# 5%

g025<-quantile (interceptPE2,0.025,
q975<-quantile (interceptPE2,0.975,

q025;9975

na.rm=T)
na.rm=T)

na.rm=T)
na.rm=T)

ee.intPE2 <- sqgrt (var (interceptPE2))

ee.intPE2
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A.3 Appendix of Chapter 4

A.3.1 The R code to simulation reproducibility

This section presents the R (R Core Team, 2014) syntax necessary to reproduce the Monte
Carlo simulation results of Chapter 4. The code is established for a particular value of the
concentration parameter, specifically for u> = 4. Therefore, changing the value of u? in the
code is enough to obtain the complete set of reported results.

library (mvtnorm)
library (mgcv)
library (bayesIV)

### True Model Specification

num.sim=300
burnIn=5000
numSamples=30000
thin=30
numKnots=20

N<-1000

mu2=4 ### Concentration Parameter
theta <- sgrt( mu2 / N )

theta

thetal<-2

rho<-c (0.2, 0.5, 0.95)
cor=matrix(c(l,rho[2],rho[2],1),2,2)

est=function(x) { return((x-mean(x))/sqrt(var(x)))}
pb <- txtProgressBar (style=3)
REML=GCV=naive=bivDP_2=1ist ()

### Loop for to get simulated estimation results

for (it in l:num.sim) {
if ((it/num.sim*100)%%1==0) setTxtProgressBar (pb,
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it/num.sim)
set.seed(it)
var=rmvnorm (N, sigma=cor)
epsilon=var([, 1]
ve=var|[, 2]
z=rnorm (N)
xe=thetal+theta*z+ve
x=est (xe)
y=pnorm (x) +epsilon

first=x~s(z)
second=y~s (x)

ngrid=200

predlist= list(seq(-3,3,length.out=ngrid),
seq (-3, 3, length.out=ngrid))
data=data.frame(y, x,z)

## Bayes IV
bivDP_2[[it]]=try(bayesIV(first=first, second=second,
numBurnIn=burnIn, numSamples=numSamples, scbs=F, seed=it,
x.pred=predlist,thin=thin, data=data, mgcv=F,
record.npcoef=F, return.samples=T, return.f=T,
method="chol", plotpaths=F,progressBar=T,
numKnots = numKnots) )

if (length (bivDP_2[[it]])>1) bivDP_2[[it]]S$f.sample=NULL
if (length(bivDP_2[[it]])>1) bivDP_2[[it]]$f.pred.sample=NULL

## 2SLS REML
prim<-try(gam(x~s(z, k=numKnots), data=data,
method="REML") )
r<-try(residuals (prim))
segu<-try(gam(y~s (x, k=numKnots) +s (r, k=numKnots),
method="REML") )
REML[[it]]=1ist ()
newdata=data.frame (cbind(x, r))
dimnames (newdata) [[2]]=c ("x","r")
REML[ [it]]$data=newdata
REML[ [it]]$f=try (predict (sequ, newdata=newdata,
type="terms"))
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newdata=data.frame (cbind(seq (-3, 3, length.out=ngrid),
r[l:ngrid]))

dimnames (newdata) [ [2]]=c ("x","x")
REML[[it]]S$f.pred=try (predict (segu, newdata=newdata,
type="terms"))

REML[ [it]]Scoef=coef (prim)

(1
REML[ [it]]SVp=prim$Vp
REML[ [it]]Scoef2=coef (segu)
REML[ [1t]]$Vp2=seguSVp
## 2SLS GCV

prim<-try(gam(x~s(z, k=numKnots), data=data))
r<-try(residuals (prim))

segu<-try(gam(y~s(x, k=numKnots)+s(r, k=numKnots)))
GCVI[[it]]=1list ()

newdata=data.frame (cbind(x, r))

dimnames (newdata) [[2] ]=c("x","z")
GCV[[it]]S$data=newdata

GCV[[it]]S$f=try(predict (segu,newdata=newdata,
type="terms"))

newdata=data.frame (cbind(seq(-3,3, length.out=ngrid),
r[l:ngrid]))

dimnames (newdata) [ [2]]=c ("x","x")
GCV[[it]]1S$f.pred=try (predict (sequ, newdata=newdata,
type="terms"))

GCV[[it]]Scoef=coef (prim)

GCV[[it]]SVp=prim$vp

GCV[[it]]Scoef2=coef (sequ)

GCV[[it]]S$Vp2=segus$Vp

## Naive: without correction
segu2<-try(gam(y~s (x, k=numKnots)))
naive[[it]]=1list ()
newdata=data.frame (cbind(x))
dimnames (newdata) [[2] ]=c ("x")
naive[[it]]$data=newdata
naive[[it]]$f=try (predict (sequ2, newdata=newdata,
type="terms"))
newdata=data.frame (cbind(seq (-3, 3, length.out=ngrid)))
dimnames (newdata) [[2] ]=c("x")
naive[[it]]S$f.pred=try(predict (segu2, newdata=newdata,
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type="terms"))

close (pb)

### Simulation results: Figure 4.1, Squared Bias,
# Variance and MSE

center=function(x) return(x-mean(x))

# Mean estimated functions
b22.bivDP2 = rowMeans( sapply (bivDP_2,
function(x) return(xSf.pred[[2]])))
b22 .REML = rowMeans( sapply (REML,
function(x) return(xSf.predf[,1])))
b22.GCV = rowMeans ( sapply (GCV,
function(x) return(x$Sf.predl[,1])))
b22.naive = rowMeans( sapply(naive,
function(x) return(x$f.pred[,1])))

# Quantiles "estimated functions" (estimated points really)

b22.bivDP2.g975
return (x$f.pred|

= ly ( sapply (bivDP_2, function (x)
[2 /

b22.bivDP2.q025 =
[2

p

)), MARGIN=1, FUN=quantile, probs=0.97)
ply ( sapply (bivDP_2, function (x)

)), MARGIN=1, FUN=quantile, probs=0.03)
ply( sapply (REML, function (x)

), MARGIN=1, FUN=quantile, probs=0.97)

]

return (xSf.pred|
b22 .REML.q975
return (xSf.predl, 1]

ap
]
ap
1]
ap
)

b22 .REML.q025 = apply( sapply (REML, function (x)
return(xSf.pred[,1])), MARGIN=1, FUN=quantile, probs=0.03)
b22.GCV.g9%75 = apply( sapply(GCV, function (x)
return(x$f.pred[,1])), MARGIN=1, FUN=quantile, probs=0.97)
b22.GCV.q025 = apply( sapply(GCV, function (x)

return (x$f.pred(,1])), MARGIN=1, FUN=quantile, probs=0.03)
b22.naive.q975 = apply( sapply(naive, function (x)
return(x$f.pred[,1])), MARGIN=1, FUN=quantile, probs=0.97)
b22.naive.q025 = apply( sapply(naive, function (x)

return (x$f.pred[,1])), MARGIN=1, FUN=quantile, probs=0.03)
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# Figure 4.1
predlist = list(seq(-3,3,length.out=ngrid))
x11()
plot ( predlist[[1]],center (pnorm( predlist[[1]])),
col=1,type="1", ylim=c(-2.8,2.8), lwd=2,
ylab="Mean and 0.03-0.97 quantile range",
xlab="Endogenous variable", family="serif",
cex.axis=1l.7,cex.lab=1.7)
lines(predlist[[1]],b22.bivDP2,1ty=2, lwd=2, col=1)

lines(predlist[[1]],b22.REML, 1ty=3, 1lwd=2, col=1)

lines (predlist[[1]],b22.bivDP2.g9%975,col=1,1ty=2, lwd=2)
lines (predlist([[1]],b22.bivDP2.9025,col=1,1lty=2, lwd=2)
lines(predlist[[1]],b22.REML.q975,col=1,1ty=3, lwd=2)

lines(predlist[[1]],b22.REML.q025,col=1, 1lty=3, lwd=2)
legend ("bottomright",c("true ", "BNIV ", "2SGAM-REML ",
"Concent. par. = 32"),1lwd=c(2,2,2,2),1ty=c(1,2,3,0),cex=1.4)

### Computing Squared Bias, Variance, and MSE
## Squared Bias

true.f <- center (pnorm( predlist[[1]]))

grid. jump<-(predlist[[1]][200] - predlist[[1]][1] )/ngrid
Int.SgBias.BivDP2<-sum( grid. jump* ( (b22.bivDP2-true.f)"2))
Int.SgBias.REML<-sum( grid.jump*( ( b22.REML-true.f )"2))
Int.SgBias.GCV<-sum( grid.jump*( ( b22.GCV - true.f )"2))
Int.SqgBias.naive<-sum( grid.jump* ((b22.naive-true.f )"2))
Int.SgBias.BivDP2

Int.SgBias.REML

Int.SgBias.GCV

Int.SqBias.BivDP

Int.SqgBias.naive

### Integrated MSE
true.mat <- matrix(true.f, 200, num.sim)
imse_bivDP2 <- sum grid.jump* (rowMeans ( (sapply (bivDP_2,

function(x) return(x$f.pred[[2]])) - true.mat)”"2)) )
imse_reml <- sum( grid.jump*( rowMeans ((sapply (REML,
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function(x) return(xSf.pred[,1])) - true.mat)"2)) )
imse_gcv <- sum( grid.jump* ( rowMeans ( (sapply (GCV,
function(x) return(x$f.pred[,1])) - true.mat)”"2)) )
imse_naive <- sum( grid.jump* ( rowMeans ((sapply (naive,
function(x) return(x$f.pred[,1])) - true.mat)”"2)) )
imse_bivDP2

imse_reml

imse_gcv

imse_bivDP

imse_naive

### Integrated Variance
imse_bivDP2-Int.SqgBias.BivDP2
imse_reml-Int.SqgBias.REML

imse_gcv-Int.SgBias.GCV
imse_naive-Int.SgBias.naive
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Resumen en Espanol

B.1 Introduccion: Inferencia Causal y el Problema de Endo-
geneidad

Una preocupacion primordial en la investigacion empirica es el descubrimiento de relaciones
causales. Mas precisamente, si una intervencion o tratamiento en particular causa, explica o
motiva un efecto o resultado particular.

En presencia de experimentos aleatorios, con asignacion aleatoria del tratamiento entre las
unidades de estudio, es relativamente simple derivar conclusiones causales comparando el re-
sultado promedio para los individuos en el grupo tratado con el resultado promedio en el grupo
no tratado. El mecanismo de aleatorizacion tiende a equilibrar caracteristicas observables e
inobservables que hacen que los grupos sean comparables.

Por el contrario, la identificacion de relaciones causales en estudios observacionales, donde
el mecanismo que asigna individuos a diferentes estados de tratamiento es desconocido o no
aleatorio (es decir, el andlisis se realiza utilizando datos no experimentales), no es tan simple. En
este caso, los individuos de ambos grupos pueden ser sistematicamente diferentes en términos
de caracteristicas inobservables, lo que confunde los efectos causales del tratamiento.

Este trabajo pretende ampliar el conocimiento empirico y las posibilidades de un modelo de
regresion flexible disefiado para realizar inferencia causal en aplicaciones empiricas cuando los
datos provienen de un proceso de observacion. Este modelo, técnicamente conocido como el
Modelo de Ecuaciones Simultdneas Triangulares No Paramétricas, ayuda a mitigar el problema
que surge cuando los regresores o covariables del modelo no satisfacen la condicién conocida
como exogeneidad, que establece que el componente aleatorio del modelo debe ser independi-
ente en media de todos los regresores del modelo.

El anélisis de regresion con datos no experimentales se usa a menudo en ciencias sociales o
de la vida para inferir la existencia de una relacion causal entre una variable tratamiento x y una
variable respuesta y. La presencia (o ausencia) de una relacion estadistica entre esas variables
no es una condicidn suficiente ni necesaria para afirmar la presencia (o ausencia) de una relacion
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causal. Esto es asi porque los valores medidos de ambas variables, de tratamiento y respuesta,
se generan mediante un experimento no controlado (por ejemplo, un proceso natural o social)
que en principio es desconocido por el investigador.

Por lo tanto, se requiere una especificaciéon previa de un modelo tedrico o estructural,
estableciendo un vinculo causal y una direccién causal entre el tratamiento y la respuesta.
Ademds, dicho modelo debe tener en cuenta que el tratamiento x usualmente no se asigna
aleatoriamente a las unidades de poblacién y, como resultado, puede estar relacionado con otros
factores, digamos z, que afectan sistemdticamente la respuesta y ademads de x.

La estimacion del efecto marginal del tratamiento x sobre la respuesta y, suele ser el objetivo
principal del andlisis de inferencia causal basado en métodos de regresion. Se puede interpretar
como: el cambio marginal en el valor esperado de la respuesta y causado por un cambio
marginal en el tratamiento x, cuando los factores adicionales en z permanecen constantes.
Para la identificacion de este efecto marginal, es necesario el cumplimiento del supuesto de
exogeneidad antes mecionado, el cual necesita que se eviten las siguientes situaciones:

e S.1. La existencia de un mecanismo que determina simultineamente los valores de am-
bos, la respuesta y y el tratamiento x.

e S.2. La presencia de un problema de autoseleccion, que surge cuando los individuos bajo
andlisis pueden elegir el nivel de tratamiento x teniendo en cuenta su efecto esperado
sobre el resultado y.

e S.3. Presencia del problema de causalidad inversa. Tal problema surge cuando no solo el
tratamiento x tiene un efecto en la respuesta y pero también y tiene un impacto sobre x.

Por otro lado, desde un punto de vista empirico que involucra una aplicacion a datos reales,
el logro del supuesto de exogeneidad requiere la realizacién simultdnea de los siguientes condi-
ciones:

e C.1. Todos los factores relevantes en z deben medirse e incluirse en el modelo como
regresores.

e C.2. La especificacion del modelo de regresion debe ser suficientemente cercana al ver-
dadero Proceso Generador de Datos.

e (C.3. Todas las variables relevantes, y, x y aquellas en z, se deben medir sin error.

Si una o mds condiciones empiricas, C.1 a C.3, no estdn satisfechas y/o escenarios tedricos,
S.1 a S.3, no se manejan correctamente, entonces se viola el supuesto de exogeneidad. Tal
situacion es conocida como emph problema de endogeneidad en la literatura econométrica.
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Bajo estas circunstancias, los estimadores paramétricos y no paramétricos usuales para la regre-
sién de y sobre x y z serdn inconsistentes.

Para superar el problema de endogeneidad descrito en la seccion anterior, se han desar-
rollado varias metodologias. Uno de los métodos pioneros en el campo es la Regresion de
Variables Instrumentales (IVR), desarrollada por primera vez en el contexto del Modelo de
Regresion Lineal. En general, el método de las variables instrumentales (IV) se basa en la exis-
tencia de al menos una variable adicional (es decir, el instrumento) para cada regresor endégeno
en el modelo. Intuitivamente, este instrumento debe correlacionarse con su correspondiente re-
gresor enddgeno y no estar correlacionado con ningin otro factor variable en el modelo. Para
lograr la identificacién de la funcién de regresion de interés, el instrumento w debe cumplir
algunas condiciones especificas:

e ID.1 El instrumento w debe tener poder explicativo sobre el tratamiento x. Esto alude al
grado de asociacion condicional o parcial entre el tratamiento x y el instrumento w (dados
los controles adicionales z).

e ID.2 El instrumento no debe estar relacionado con los factores no observados (que repre-
sentamos con €) que determinan la variable de resultado y. Esta condicion asegura que w
no es una variable explicativa relevante para y. Esto significa, junto con la condicion ID.1,
que el instrumento w solo afecta el resultado y a través de su efecto sobre el tratamiento
enddégeno x.

El objetivo de los supuestos de identificacion ID.1 e ID.2 es establecer una fuente exdgena
de variacion en el tratamiento x, a través del instrumento w. Usar la variabilidad de w de esta
manera es equivalente a obtener una asignacion del tratamiento x (sobre la poblacién) que no
esté influenciada por €.

Como se sefial6 anteriormente, la Regresion de Variables Instrumentales (IVR) fué desar-
rollada por primera vez en el contexto del Modelo de Regresion Lineal. Pero cuando el modelo
de interés implica una funcién de regresion general (no paramétrica) es necesario basarse en
un estimador IV no paramétrico. Una metodologia que surgié para atacar este problema de
estimacion es la llamada Enfoque de Funcion de Control (CFA), propuesta por primera vez por
Newey, Powell, and Vella, 1999 y extendida por Pinkse, 2000, Su and Ullah, 2008 y Marra and
Radice, 2011. Este enfoque CFA se basa en un modelo de ecuaciones simultineas no paramétri-
cas triangulares (Newey, Powell, and Vella, 1999).

En este trabajo de tesis utilizamos la metodologia CFA para estimar varias funciones de
regresion pero con una estructura aditiva que incluye términos no paramétricos y paramétricos.
Como es conocido, dicho modelo aditivo o semi-paramétrico ayuda a evitar la maldicion de la
dimensionalidad que emerge en la estimacion no paramétrica cuando hay un gran nimero de
regresores.
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B.2 Modelos Flexibles para la Evaluaciéon del Tiempo ()p-
timo a Intervencion en Pacientes con Sindrome Coro-
nario Agudo

La intervencidn invasiva en pacientes con sindromes coronarios agudos sin elevacion del seg-
mento ST (SCASEST-ACS) incluye procedimientos de evaluacion (como lo es el cateterismo
cardiaco) y terapias como la revascularizacion. Los procedimientos de evaluacion se implemen-
tan primero y son utiles para decidir qué terapia seguir posteriormente. La ejecucion temprana
de este tipo de intervenciones, generalmente antes de las 72 horas desde la asistencia del pa-
ciente, se establece como la estrategia de tratamiento recomendada, en lugar de seguir un plan
conservador de administracién de medicamentos.

Sin embargo, el momento Optimo para la intervencion en pacientes con SCASEST sigue
siendo un tema abierto al debate (Navarese et al., 2013). Algunas de las causas de estos resul-
tados no concluyentes pueden estar relacionadas con cuestiones metodoldgicas, especialmente
cuando se explotan los datos de registro de observacion.

En estudios observacionales los procedimientos de estimacion mediante andlisis de regre-
sidn estan expuestos a sesgos debido al problema de endogeneidad del tratamiento. Por lo tanto,
los métodos de regresion basados en variables instrumentales (IV) son alternativas naturales
para manejar el problema del sesgo de endogeneidad.

En la Gltima década, varios estudios observacionales abordaron este tema, como Montale-
scot et al., 2005, Tricoci et al., 2007 y Sorajja et al., 2010, pero todos descuidaron el problema de
endogeneidad. Una excepcidn notable es Ryan et al., 2005, que utiliza el dia de la presentacién
en el hospital (fin de semana vs. dia de la semana) como variable instrumental (IV) para estudiar
el impacto del momento del cateterismo cardiaco y la terapia de revascularizacion sobre la mor-
talidad hospitalaria. Ellos encuentran beneficios no significativos para el cateterismo temprano,
aunque no se puede excluir una importante reduccién del riesgo.

Siguiendo una estrategia de identificacién similar a la de Ryan et al., 2005, estudiamos el
impacto del retraso en el cateterismo sobre los resultados (de mortalidad y reincidencia) para los
pacientes con Insuficiencia Miocardica con Elevacion del segmento, explotando el hecho de que
los pacientes ingresados los fines de semana son menos propensos a someterse a un cateterismo
temprano que los pacientes ingresados durante los dias laborables de la semana. Por lo tanto,
empleamos esta fuente exdgena de variacion en el tratamiento para identificar su efecto causal
en los resultados a través de modelos de regresion basados en variables instrumentales.

En contraste con el enfoque tradicional (generalmente seguido por los investigadores en
esta literatura especifica y empleado por Ryan et al., 2005), aqui presentamos innovaciones
en dos direcciones. Por un lado, mantenemos la variable continua original tiempo de retraso
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a cateterismo (TDC) como tratamiento relevante, medida en unidades de tiempo, en lugar de
especificarlo como una variable binaria (ficticia) que indica cateterizacion temprana. Por otro
lado, nuestro procedimiento de inferencia causal se basa en una especificacion flexible del Mod-
elo de Ecuaciones Simultaneas Triangulares, propuesto recientemente por Marra and Radice,
2011.

La variable de resultado se define mediante una variable binaria llamada Evento, que in-
dica la presencia de cualquiera de las dos situaciones: a) mortalidad por cualquier causa dede
la intervencién hasta los 12 meses de seguimiento y b) infracciéon miocardica aguda desde la
intervencion hasta los 12 meses.

Nuestra base de datos incluye pacientes ingresados consecutivamente entre noviembre de
2003 y enero de 2011 al Departamento de Cardiologia del Hospital Clinico de Santiago, con
diagn6stico de Sindrome Coronario Agudo (SCA). Los datos demograficos y clinicos se recopi-
laron prospectivamente y se registraron digitalmente.

La muestra disponible incluye pacientes con SCASEST que se han sometido a cateter-
ismo cardiaco con un retraso de entre 0 y 1000 horas. Esto nos permitié medir el retraso del
tratamiento en tiempo continuo y definir la variable de tratamiento 7DC, medida en horas.

Uno de los principales obsticulos a superar es la naturaleza endogena de TDC. Esto es asi
porque la decision de realizar un cateterismo se basa en las caracteristicas de los pacientes que
pueden ser percibidas por completo por el personal médico, pero solo son observadas parcial-
mente por el investigador.

Si las caracteristicas basales de los pacientes y los tratamientos hospitalarios habituales no
difieren seguin cudndo se presenten los pacientes (en el dia de la semana o el fin de semana) en
el hospital, la condicion de ser ingresado el fin de semana podria utilizarse como una IV vélida
para evaluar el efecto de la cateterizacion cardiaca.

Los pacientes ingresados el fin de semana incluyen a los que se presentaron en el hospital
entre las 5 p. m. del viernes y las 3 p. m. del domingo. Todos los demds pacientes fueron con-
siderados pacientes ingresados entre semana. Luego, las variables instrumentales se definieron
como un conjunto de tres variables ficticias mutuamente excluyentes, indicando admisiones los
viernes, sdbados y domingos.

Finalmente, incluimos dos variables de control continuas, Age (que contiene la edad del
paciente en afios) y Gr (GRACE, Registro Global de Puntuaciones de riesgo de Eventos Coro-
narios Agudos), junto con la variable de control binaria Fem que indica pacientes femeninos.

Los modelos de regresion utilizados incluyen al Modelo Lineal y al Modelo Lineal Gener-
alizado (GLM), en el caso paramétrico, y al Modelo Aditivo y al Modelo Aditivo Generalizado
(GAM). Tanto en el caso del GLM como el GAM, se utiliza la funcién link Probit.
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Pasando a los resultados empiricos, se encontrd que el sesgo por endogeneidad es de un
nivel importante a nivel préctico, lo que provoca que los modelos de regresion sin correccion
fallen en identificar un efecto significativo del tratamiento.

Desde una perspectiva médica, los resultados apoyan la existencia de un efecto positivo no
lineal de 7DC sobre la supervivencia y el estado de salud de los pacientes. Ademads, el uso de
un modelo flexible permite identificar un rango especifico de valores para TDC, dede 0 hasta 30
horas aproximadamente, en el que el tratamiento muestra un efecto marginal estadisticamente
significativo que varia entre 0.011 y un valor ligeramente superior a 0.

Los resultados del Modelo Aditivo, comparado con el Modelo Lineal, revelan cuin sesgado
podria ser el uso descuidado de éste ultimo, ya que implica un efecto marginal significativo
igual a 0,0048 para todo el rango TDC (es decir, de 0 a 60 horas). En cambio, con base en
el Modelo Aditivo podemos calcular un efecto marginal global de aproximadamente 0,0059
promediando en todo el rango TDC. Mas atn, promediando solo para los valores de TDC para
los que el efecto marginal es significativo estadisticamente (entre 0 a 34 horas), obtenemos un
efecto marginal mds grande de aproximadamente 0,0076. Ambas instancias demuestran una
sub-estimacion médicamente relevante si se utiliza el Modelo Lineal.

Los dos modelos flexibles, tanto el modelo aditivo como el GAM, aportan evidencia em-
pirica que respalda que la cateterizacion temprana es una buena decision dentro de las primeras
30 horas desde el ingreso en el hospital, y cuanto antes se realice mejores son las perspectivas
de supervivencia y no reincidencia.

B.3 Identificacion del Efecto del Tamano de la Clase sobre el
Rendimiento Escolar mediante Modelos de Ecuaciones
Triangulates Simultaneas

Este capitulo trata sobre las ventajas de usar modelos de regresion flexibles de variables instru-
mentales (IV), junto con un adecuado tratamiento de observaciones atipicas, en la estimacién
del efecto del tamaio de la clase (definido como el nimero de alumnos que asisten a una clase)
sobre el rendimiento escolar de los alumnos.

La estimacion de este efecto suele ser problemadtica por el cardcter endégeno del regresor
de interés, es decir, el tamafio de la clase. Son varias las fuentes de dicha endogeneidad que
pueden estar presentes en forma simultdnea. Entre ellas se destacan la distribucion no aleatoria
de los alumnos en funcién de su buena o mala conducta en clases y la eleccion por parte de los
padres de la escuela que ellos prefieren segtin su calidad educativa.
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Las innovaciones respecto del procedimiento estdndar consisten en, primero, usar un mod-
elo aditivo semi-paramétrico que incorpora potenciales efectos no-lineales de las variables de
control o explicativas, segundo, implementar un método de Bootstrap Ponderado para la infer-
encia que tenga en cuenta la estructura de clusters en las observaciones y, tercero, utilizar una
estrategia adecuada para evitar el sesgo producidos por observaciones atipicas en el valor del
tamafio de la clase.

El estimador utilizado se basa en el enfoque de Funcién de Control para la regresion con
variables instrumentales. El modelo de regresion especifico consiste en un sistema de ecua-
ciones simultdneas triangulares, desarrollado recientemente por Marra and Radice, 2011, el
cual es estimado por un procedimiento en dos etapas denominado Modelo Aditivo General-
izado de Dos Etapas (2SAM). Para llevar a cabo inferencia estadistica, en un contexto de datos
agrupados en escuelas, se utiliza el método de remuestreo llamado Bootstrap ponedrado (Chat-
terjee and Bose, 2005, Chatterjee and Bose, 2000 y Bose and Chatterjee, 2002). Este método
consiste en generar pesos, siendo cada uno de ellos asignado a estudiantes de una misma es-
cuela/cluster. De este modo, cada escuela de la muestra recibe un peso aleatorio, generando una
muestra Bootstrap. Luego, la estimacion por 2SAM es aplicada en cada muestra Bootstrap, que
es igual a la muestra original pero ponderada por los pesos aleatorios.

Finalmente, para detectar apropiadamente a las observaciones atipicas que afectan la primera
etapa de estimacion, proponemos aplicar una version modificada de la estrategia descrita en
Dehon, Desbordes, and Verardi, 2015. La modificacién propuesta es necesaria para evitar la
sub-deteccion de datos atipicos que ocurre al utilizar el procedimiento estdndar presentado en
Dehon, Desbordes, and Verardi, 2015.

El procedimiento propuesto es ilustrado mediante el anélisis de una base de datos de estudi-
antes de sexto grado de escuelas primarias del Uruguay. Estos datos provienen de un programa
de evaluacién nacional que aplica una prueba estandarizada en las temadticas de literatura y
matematica. En este caso se utilizan las puntuaciones de la prueba en literatura como forma
de aproximar el aprovechamiento escolar de los alumnos. Para obtener una medida adecuada
del tamaiio de la clase, se cont6 el nimero de estudiantes que tomaron al menios una de las dos
pruebas (Literatura o Matemadtica). Los datos también incluyen informacién adicional sobre car-
acteristicas de los estudiantes, de los profesores y de la escuela, permitiendo la incorporacién
de variables de control a nivel de alumnos y escuela.

Las variables que se incluyen en el andlisis son las siguientes:
e Puntuacidn en Literatura: es la calificacion del alumno obtenida en la prueba de literarura.

e Tamaiio de la Clase (CS): es el nimero de estudiantes dentro de la clase.

e Matricula: Numero total de alumnos matriculados.
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e Tamaiio de Clase Predicho (PCS): es la variable instrumental utilizada. La misma se basa
en el cumplimiento de la regla oficial de cantidad maxima de alumnos por clase, fijada en
40 alumnos. Esta regla estipula que cuando la matricula escolar supere los 40 alumnos,
la escuela debe separar a los estudiantes en dos aulas, cuando supere los 80 alumnos debe
separarlos en 3 aulas y asi sucesivamente. Esta regla genera una variabilidad exdgena del
CS, que no deberia ser modificada discrecionalmente por las escuelas, por tal motivo es
considerada como una variable instrumental vélida.

e Indice Socioecondémico: indice que caracteriza el contexto econdmico del drea donde la
escuela esta localizada.

e Educacion Alta (%): Porcentaje de alumnos en el aula para los cuales al menos uno de
sus padres posee educacién universitaria.

e Problemas Habitacionales (%): Porcentaje de alumnos en el aula que presentan proble-
mas habitacionales, definido como teniendo més de dos personas por habitacién en sis
hogares.

e Repitentes (%): Porcentaje de alumnos en el aula que son repitentes de algin afio escolar.

Enfocdndonos en los resultados del andlisis empirico, si se ignora el problema de endo-
geneidad y se aplican estimadores usuales, como Minimos Cuadrados Ordinarios (OLS) en el
modelo lineal y Médxima Verosimilitud Restringida (REML) en el modelo aditivo flexible, no
se obtiene evidencia de un efecto significativo del tamafio de la clase. Para este caso, el modelo
aditivo revela la existencia de efectos no-lineales para los regresores Indice Socioeconémico,
Educacién Alta y Problemas Habitacionales. En este mismo contexto, si se excluyen las es-
cuelas que presentan valores atipicos de CS, los resultados obtenidos implican un aumento del
efecto negativo del tamafio de clase, pero que solo resulta estadisticamente significativo uti-
lizando el modelo aditivo flexible (aunque con un limite superior del intervalo de confianza
muy cercano a cero, iagual a -0,029, que tendria poco impacto a nivel prictico).

Los resultados que se obtienen de las regresiones con la variable instrumental (TCP), tanto
paramétrica con 2SLS como flexible con 2SAM, dan cuenta de un efecto negativo y significativo
del tamaiio de clase, cercano a -1 punto de cambio en las calificaciones por cada estudiante que
se agrega a la calse. Este valor sugiere un efecto muy alto del TC a nivel préctico y la existencia
de un alto grado de endogeneidad de TC.

Por otro lado, cuando las observaciones atipicas son tratadas, se obtiene un efecto estimado
menor para el tamafo de clase. El modelo lineal arroja un efecto de -0,215 y el modelo aditivo
muestra un efecto de -0,314. La diferencia entre estas dos estimaciones es sustancial, impli-
cando que el modelo flexible arroja un efecto que es mayor en un 46% respecto al estimado con
el modelo lineal. Adicionalmente, la significatividad estadistica del efecto es débil en el caso
paramétrico, donde solo al 95% de confianza el efecto resulta diferente de cero, no asi para el
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99% de confianza. En cambio, con el modelo flexible el efecto del TC es significativo tanto al
95% como al 99% de confianza.

Estos resultados muestran el impacto que tiene tanto la utilizacién de un modelo flexible
como el correcto tratamiento de observaciones atipicas. En este caso puntual, la omision de
tratar las observaciones atipicas, produce una sobreestimacién del efecto del TC, tanto en el
modelo lineal como en el aditivo. Por otro lado, cuando se tratan adecuadamente los datos
atipicos, el uso del modelo aditivo arroja una estimacion significativamente mayor a nivel prac-
tico (y con mayor evidencia estadistica) respecto del resultado del modelo paramétrico.

Finalmente, el ejercicio de simulacién de Monte Carlo ayuda a ilustrar sobre la necesidad e
tratar los datos atipicos encontrados en algunas escuelas. Este ejercicio muestra que el uso del
modelo lineal de variables instrumentales, cuando los datos atipicos estdn presentes, produce un
elevado sesgo hacia abajo en la estimacion del efecto del tamaiio de clase. Por otro lado, cuando
los outliers son eliminados, el sesgo desaparece al utilizar el mismo método de estimacion. Lo
propio ocurre cuando la estimacidn se realiza con un estimador robusto de variables instrumen-
tales.

En términos de evidencia empirica, la combinacion de estas tres innovaciones procedimen-
tales ayudo a identificar un efecto del tamafio de clase que es significativo tanto a nivel estadis-
tico como practico. Tal efecto marginal, de -0,324 puntos, representa un valor alto en relacién
a los hallazgos previos de la literatura relacionada.

B.4 Estimacion flexible de Modelos de Ecuaciones Simultineas
Triangulares en contextos de instrumentos débiles

La amplia familia de estimadores de regresion basados en variables instrumentales (IV) com-
parten una condicion necesaria de identificacion, a saber, la existencia de una correlacién parcial
"suficiente" entre los instrumentos y las variables endégenas correspondientes. El incumplim-
iento de esta condicién se conoce como el problema de instrumentos débiles o identificacion
débil. En aplicaciones practicas de estimadores estdndar IV, este problema causa resultados
indeseables, principalmente relacionados con sesgos de muestra finita, pérdida de precisioén y
falta de fiabilidad de las aproximaciones asintéticas a la distribucién normal.

El problema de la identificacion débil ha sido estudiado ampliamente en los ultimos 20 afios
en el contexto de regresion paramétrica. Las principales contribuciones se pueden encontrar en
cite bound1995problems, Staiger and Stock, 1997, Stock and Wright, 2000, Kleibergen, 2002,
Stock and Yogo, 2005, Newey and Windmeijer, 2009 y Andrews and Cheng, 2012, todas ellos
pertenecientes a la literatura frecuentista. Recientemente, se han propuesto enfoques bayesianos
para la estimacion IV, que funcionan mejor que las alternativas frecuentistas tradicionales (en
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términos de sesgo y cobertura del intervalo de confianza) en ciertos escenarios caracterizados
por una identificacion débil (ver Burgess and Thompson, 2012 y Conley et al., 2008).

En el contexto de regresion no paramétrica, se han realizado varios esfuerzos para disenar
un método IV confiable. A pesar de estas contribuciones, el estudio del problema de los in-
strumentos débiles en este contexto ha sido en descuidado. Una excepcidn, dentro del enfoque
frecuentista, es el trabajo en progreso provisto por Han, 2014, que define el problema de iden-
tificacidon débil para el Modelo de Ecuaciones Simultdneas Triangulares flexible, y propone un
método de estimacion de serie penalizado que alivia el efecto de los instrumentos débiles.

En este capitulo se propone un método IV bayesiano no paramétrico para modelos de ecua-
ciones triangulares con una variable endégena (BNIV), publicado recientemente en Wiesenfarth
et al., 2014, el cual parece resultar competitivo en términos de aliviar el efecto de identificacion
débil. Este método bayesiano tiene una ventaja sobre el método frecuentista presentado en Han,
2014 ya que realiza la estimacion de todos los pardmetros de ajuste necesarios (incluidos los
pardmetros de suavizado) a partir de los datos disponibles.

Mediante dos ejercicios de simulacion se establece una comparacion, en el contexto de
un escenario de identificacion débil, entre el método IV bayesiano propuesto y una alternativa
frecuentista conocida como Modelo Aditivo Generalizado de Dos Etapas (2SGAM) introducido
por Marra and Radice, 2011. Ambas alternativas bayesiana y frecuentista son comparables en
varios aspectos, como ser la seleccion automatica de los parametros de suavizado y el uso de
splines para la especificacion de las funciones de base.

La comparacién entre los enfoques 2SGAM y BNIV, en el contexto de escenarios de identifi-
cacion débiles, se lleva a cabo ejecutando dos simulaciones de Monte Carlo basados en proceso
de generacion de datos utilizado en Han, 2014. Para las simulaciones se establece la secuencia
de valores {4,10,12,16,32,64,256} para el parametro de concentracién, que incluye el umbral
de 10 (que define si un instrumento es débil o fuerte en el modelo lineal o paramétrico) y valores
que van desde instrumentos débiles a fuertes.

Para grados decrecientes en la fuerza del instrumento, hasta un limite inferior de 10 para
el pardmetro de concentracion, el sesgo al cuadrado obtenido mantiene valores relativamente
bajos y estables para el estimador 2SGAM, pero la varianza aumenta en forma acelerada.

En términos de Error Cuadratico Medio Integrado (IMSE), y para un pardmetro de concen-
tracién menor o igual a 10, 2SGAM presenta un rendimiento peor que el estimador naive (sin
correccion de endogeneidad). Esto revela la necesidad de establecer un valor més alto para
el pardmetro de concentracion como el nuevo umbral para caracterizar escenarios de identifi-
cacion débiles no paramétricos, en lugar del umbral de 10 establecido en el caso paramétrico.
Para valores de 12, 16 y 32 del pardmetro de concentracion, los IMSE del estimador 2SGAM
representan aproximadamente 60 %, 40 % y 15 % del IMSE de estimador naive, respectiva-
mente. Estos resultados sugieren que el nuevo umbral para el parametro de concentracién se
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podria especificar como un valor entre 12 y 16.

Comparado con el estimador 2SGAM vy para un pardmetro de concentracion que va de 10 a
16, el método BNIV muestra un sesgo cuadrado igual o mas pequefio y una varianza menor con
un comportamiento notablemente mds suave. Esto permite que el estimador BNIV presente un
MSE relativo (respecto del estimador naive) del 45 %, 40 % y 30 % para valores del pardimetro
de concentracién igual a 10, 12 y 16, respectivamente. Este resultado sugiere que el umbral
de identificacién débil (para el caso paramétrico) puede ser valido en el caso de BNIV. Para
un pardmetro de concentracion igual a 10, el BNIV supera al 2SGAM en términos de sesgo y
varianza.

Las consideraciones anteriores apoyan la idea de que el estimador BNIV debe ser la opcion
preferida cuando instrumentos débiles estdn presentes (en particular, cuando el pardmetro de
concentracion esté entre 10 y 16), principalmente por su capacidad de mitigar la variabilidad de
las estimaciones inducida por el problema de identificacion débil.

Finalment, es destacable que la mayor eficiencia antes mencionada del estimador BNIV no
se obtiene a costa de un sesgo mayor, de hecho, el sesgo de BNIV mantiene valores estables
que son, en general, mds pequefios que el sesgo del estimador 2SGAM.
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