
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2008, Article ID 796851, 13 pages
doi:10.1155/2008/796851

Research Article
Multiple Positive Solutions in the Sense of
Distributions of Singular BVPs on Time Scales and
an Application to Emden-Fowler Equations

Ravi P. Agarwal,1 Victoria Otero-Espinar,2 Kanishka Perera,1

and Dolores R. Vivero2

1 Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
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1. Introduction

The Emden-Fowler equation,

uΔΔ(t) + q(t)uα(σ(t)
)
= 0, t ∈ (0, 1)

T
, (1.1)

arises in the study of gas dynamics and fluids mechanics, and in the study of relativistic
mechanics, nuclear physics, and chemically reacting system (see, e.g., [1] and the references
therein) for the continuous model. The negative exponent Emden-Fowler equation (α < 0)
has been used in modeling non-Newtonian fluids such as coal slurries [2]. The physical
interest lies in the existence of positive solutions. We are interested in a broad class of singular
problem that includes those related with (1.1) and the more general equation

uΔΔ(t) + q(t)uα(σ(t)
)
= g

(
t, uσ(t)

)
, t ∈ (0, 1)

T
. (1.2)

Recently, existence theory for positive solutions of second-order boundary value
problems on time scales has received much attention (see, e.g., [3–6] for general case, [7]
for the continuous case, and [8] for the discrete case).
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In this paper, we consider the second-order dynamic equation with homogeneous
Dirichlet boundary conditions:

(P)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−uΔΔ(t) = F
(
t, uσ(t)

)
, Δ-a.e. t ∈ (

Dκ
)o
,

u(t) > 0, t ∈ (a, b)
T
,

u(a) = 0 = u(b),

(1.3)

where we say that a property holds for Δ-a.e. t ∈ A ⊂ T or Δ-a.e. on A ⊂ T, Δ-a.e., whenever
there exists a set E ⊂ Awith null LebesgueΔ-measure such that this property holds for every
t ∈ A \ E, T is an arbitrary time scale, subindex T means intersection to T, a, b ∈ T are such
that a < ρ(b), D = [a, b]

T
, Dκ = [a, ρ(b)]

T
, Dκ2

= [a, ρ2(b)]
T
, Do = [a, b)

T
, (Dκ)o = [a, ρ(b))

T
,

and F : D × (0,+∞) → R is an L1
Δ-Carathéodory function on compact subintervals of (0,+∞),

that is, it satisfies the following conditions.

(C) (i) For every x ∈ (0,+∞), F(·, x) is Δ-measurable in Do.

(ii) For Δ-a.e. t ∈ Do, F(t, ·) ∈ C((0,+∞)).

(Cc) For every x1, x2 ∈ (0,+∞)with x1 ≤ x2, there exists m(x1,x2) ∈ L1
Δ(D

o) such that

∣∣F(t, x)
∣∣ ≤ m(x1,x2)(t) for Δ-a.e. t ∈ Do, x ∈ [

x1, x2
]
. (1.4)

Moreover, in order to use variational techniques and critical point theory, we will
assume that F satisfy the following condition.

(PM) For every x ∈ (0,+∞), function PF : D × [0,+∞) → R defined for Δ-a.e. t ∈ D and
all x ∈ [0,+∞), as

PF(t, x) :=
∫x

0
F(t, r)dr, (1.5)

satisfies that PF(·, x) is Δ-measurable in Do.

We consider the spaces

C1
0,rd

(
Dκ) := C1

rd

(
Dκ) ∩ C0(D),

C1
c,rd

(
Dκ) := C1

rd

(
Dκ) ∩ Cc(D),

(1.6)

where C1
rd(D

κ) is the set of all continuous functions on D such that they are Δ-differentiable
on Dκ and their Δ-derivatives are rd-continuous on Dκ, C0(D) is the set of all continuous
functions on D that vanish on the boundary of D, and Cc(D) is the set of all continuous
functions onD with compact support on (a, b)

T
. We denote as ‖·‖C(D) the norm in C(D), that

is, the supremum norm.
On the other hand, we consider the first-order Sobolev spaces

H1
Δ(D) :=

{
v : D −→ R : v ∈ AC(D), vΔ ∈ L2

Δ

(
Do

)}
,

H = H1
0,Δ(D) :=

{
v : D −→ R : v ∈ H1

Δ(D), v(a) = 0 = v(b)
}
,

(1.7)
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where AC(D) is the set of all absolutely continuous functions on D. We denote as

∫ t2

t1

f(s)Δs =
∫

[t1,t2)T

f(s)Δs for t1, t2 ∈ D, t1 < t2, f ∈ L1
Δ

([
t1, t2

)
T

)
. (1.8)

The set H is endowed with the structure of Hilbert space together with the inner
product (·, ·)H : H ×H → R given for every (v,w) ∈ H ×H by

(v,w)H :=
(
vΔ, wΔ)

L2
Δ
:=

∫b

a

vΔ(s) ·wΔ(s)Δs; (1.9)

we denote as ‖·‖H its induced norm.
Moreover, we consider the sets

H0,loc := H1
loc,Δ(D) ∩ C0(D),

Hc,loc := H1
loc,Δ(D) ∩ Cc(D),

(1.10)

whereH1
loc,Δ(D) is the set of all functions such that their restriction to every closed subinterval

J of (a, b)
T
belong to the Sobolev space H1

Δ(J).
We refer the reader to [9–11] for an introduction to several properties of Sobolev spaces

and absolutely continuous functions on closed subintervals of an arbitrary time scale, and to
[12] for a broad introduction to dynamic equations on time scales.

Definition 1.1. u is said to be a solution in the sense of distributions to (P) if u ∈ H0,loc, u > 0
on (a, b)

T
, and equality

∫b

a

[
uΔ(s) ·ϕΔ(s) − F

(
s, uσ(s)

) ·ϕσ(s)
]
Δs = 0 (1.11)

holds for all ϕ ∈ C1
c,rd(D

κ).

From the density properties of the first-order Sobolev spaces proved in [9, Seccion 3.2],
we deduce that if u is solution in the sense of distributions, then, (1.11) holds for all ϕ ∈ Hc,loc.

This paper is devoted to prove the existence of multiple positive solutions to (P) by
using perturbation and variational methods.

This paper is organized as follows. In Section 2, we deduce sufficient conditions for
the existence of solutions in the sense of distributions to (P). Under certain hypotheses,
we approximate solutions in the sense of distributions to problem (P) by a sequence of
weak solutions to weak problems. In Section 3, we derive some sufficient conditions for the
existence of at least one or two positive solutions to (P).

These results generalize those given in [7] for T = [0, 1], where problem (P) is defined
on the whole interval (0, 1) ∩T and the authors assume that F ∈ C((0, 1)× (0,+∞),R) instead
of (C) and (PM). The sufficient conditions for the existence of multiple positive solutions
obtained in this paper are applied to a great class of bounded time scales such as finite union
of disjoint closed intervals, some convergent sequences and their limit points, or Cantor sets
among others.
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2. Approximation to (P) by weak problems

In this section, we will deduce sufficient conditions for the existence of solutions in the sense
of distributions to (P), where F = f + g and f, g : D × (0,+∞) → R satisfy (C) and (PM), f
satisfies (Cc), and g satisfies the following condition.

(Cg) For every p ∈ (0,+∞), there exists Mp ∈ L1
Δ(D

o) such that

∣
∣g(t, x)

∣
∣ ≤ Mp(t) for Δ-a.e. t ∈ Do, x ∈ (0, p]. (2.1)

Under these hypotheses, we will be able to approximate solutions in the sense of
distributions to problem (P) by a sequence of weak solutions to weak problems.

First of all, we enunciate a useful property of absolutely continuous functions on
Dwhose proof we omit because of its simplicity.

Lemma 2.1. If v ∈ AC(D), then v ± := max{±v, 0} ∈ AC(D),

[(
v+)Δ − vΔ]·(v+)Δ ≤ 0,

[(
v−)Δ + vΔ]·(v−)Δ ≤ 0, (2.2)

Δ-a.e. on Do.

We fix {εj}j≥1 a sequence of positive numbers strictly decreasing to zero; for every

j ≥ 1, we define fj : D × (0,+∞) → R as

fj(t, x) = f
(
t,max

{
x, εj

})
for every (t, x) ∈ D × (0,+∞). (2.3)

Note that fj satisfies (C) and (Cg); consider the following modified weak problem

(
Pj

)

⎧
⎪⎪⎨

⎪⎪⎩

−uΔΔ(t) = fj
(
t, uσ(t)

)
+ g

(
t, uσ(t)

)
, Δ-a.e. t ∈ (

Dκ
)o
,

u(t) > 0, t ∈ (a, b)
T
,

u(a) = 0 = u(b).

(2.4)

Definition 2.2. u is said to be a weak solution to (Pj) if u ∈ H, u > 0 on (a, b)
T
, and equality

∫b

a

[
uΔ(s) ·ϕΔ(s) − (

fj
(
s, uσ(s)

)
+ g

(
s, uσ(s)

)) ·ϕσ(s)
]
Δs = 0 (2.5)

holds for all ϕ ∈ C1
0,rd(D

κ).
u is said to be a weak lower solution to (Pj) if u ∈ H u > 0 on (a, b)

T
, and inequality

∫b

a

[
uΔ(s) ·ϕΔ(s) − (

fj
(
s, uσ(s)

)
+ g

(
s, uσ(s)

)) ·ϕσ(s)
]
Δs ≤ 0 (2.6)

holds for all ϕ ∈ C1
0,rd(D

κ) such that ϕ ≥ 0 on D.
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The concept of weak upper solution to (Pj) is defined by reversing the previous
inequality.

We remark that the density properties of the first-order Sobolev spaces proved in [9,
Seccion 3.2] allows to assert that relations in Definition 2.2 are valid for all ϕ ∈ H and for all
ϕ ∈ H such that ϕ ≥ 0 on D, respectively.

By standard arguments, we can prove the following result.

Proposition 2.3. Assume that f, g : D × (0,+∞) → R satisfy (C) and (PM), f satisfies (Cc), and
g satisfies (Cg).

Then, if for some j ≥ 1 there exist uj and uj as a lower and an upper weak solution, respectively,
to (Pj) such that uj ≤ uj on D, then (Pj) has a weak solution uj ∈ [uj, uj] := {v ∈ H : uj ≤ v ≤
uj on D}.

Next, we will deduce the existence of one solution in the sense of distributions to
(P) from the existence of a sequence of weak solutions to (Pj). In order to do this, we fix
{ak}k≥1, {bk}k≥1 ⊂ D two sequences such that {ak}k≥1 ⊂ (a, (a + b)/2)

T
is strictly decreasing

to a if a = σ(a), ak = a for all k ≥ 1 if a < σ(a) and {bk}k≥1 ⊂ ((a + b)/2, b)
T
is strictly

increasing to b if ρ(b) = b, bk = b for all k ≥ 1 if ρ(b) < b. We denote that Dk := [ak, bk]T,
k ≥ 1. Moreover, we fix {δk}k≥1 a sequence of positive numbers strictly decreasing to zero
such that

[
σ
(
ak

)
, ρ(bk

))
T
⊂ [

a + δk, b − δk
)
T
, δk ≤ b − a

2
for k ≥ 1. (2.7)

Proposition 2.4. Suppose that F = f + g and f, g : D × (0,+∞) → R satisfy (C) and (PM), f
satisfies (Cc), and g satisfies (Cg).

Then, if for every j ≥ 1, uj ∈ H is a weak solution to (Pj) and

νδ := inf
j≥1

min
[a+δ,b−δ]

T

, uj > 0 ∀δ ∈
(
0,

b − a

2

]
, (2.8)

M := sup
j≥1

max
D

uj < ∞, (2.9)

then a subsequence of {uj}j≥1 converges pointwise in D to a solution in the sense of distributions u1

to (P).

Proof. Let k ≥ 1 be arbitrary; we deduce, from (2.2), (2.7), (2.8), and (2.9), that there exists a
constant Kk ≥ 0 such that for all j ≥ 1,

∫bk

ak

(
uΔ
j (s)

)2
Δs =

(
uΔ
j

(
ak

))2 ·μ(ak

)
+
(
uΔ
j

(
ρ(bk

)))2 ·μ(ρ(bk
))

+
∫ρ(bk)

σ(ak)
uΔ
j (s) ·

((
uj − νδk

)+)Δ
(s)Δs

≤ Kk +
(
uj ,

(
uj − νδk

)+)

H
.

(2.10)
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Therefore, for all j ≥ 1 so large that εj < νδ1 , as uj is a weak solution to (Pj), by taking
ϕ̃1 := (uj − νδ1)

+ ∈ H as the test function in (2.5), from (2.9), (Cc) and (Cg), we can assert that
there exists l ∈ L1

Δ(D
o) such that
∫b1

a1

(
uΔ
j (s)

)2
Δs ≤ K1 +

∫b

a

F
(
s, uσ

j (s)
) · ϕ̃σ

1 (s)Δs

≤ K1 +M

∫b

a

l(s)Δs,

(2.11)

that is, {uj}j≥1 is bounded in H1
Δ(D1) and hence, there exists a subsequence {u1j}j≥1 which

converges weakly in H1
Δ(D1) and strongly in C(D1) to some u1 ∈ H1

Δ(D1).
For every k ≥ 1, by considering for each j ≥ 1 the weak solution to (Pkj )ukj and

by repeating the previous construction, we obtain a sequence {u(k+1)j}j≥1 which converges

weakly in H1
Δ(Dk+1) and strongly in C(Dk+1) to some uk+1 ∈ H1

Δ(Dk+1) with {u(k+1)j}j≥1 ⊂
{ukj}j≥1. By definition, we know that for all k ≥ 1, uk+1|Dk = uk.

Let u1 : D → R be given by u1 := uk on Dk for all k ≥ 1 and u1(a) := 0 =: u1(b) so that
u1 > 0 on (a, b)

T
, u1 ∈ H1

loc,Δ(D) ∩ C((a, b)
T
), u1 is continuous in every isolated point of the

boundary of D, and {ukk}k≥1 converges pointwise in D to u1.
We will show that u1 ∈ C0(D); we only have to prove that u1 is continuous in every

dense point of the boundary of D. Let 0 < ε < M be arbitrary, it follows from (Cc) and (Cg)
that there exist mε ∈ L1

Δ(D
o) such that mε ≥ 0 on Do and F(t, x) ≤ mε(t) for Δ-a.e. t ∈ Do and

all x ∈ [ε,M]; let ϕε ∈ H be the weak solution to

−ϕΔΔ
ε (t) = mε(t), Δ-a.e. t ∈ (

Dκ)o, ϕε(a) = 0 = ϕε(b); (2.12)

we know (see [4]) that ϕε > 0 on (a, b)
T
.

For all k ≥ 1 so large that εkk < ε, since ukk and ϕε are weak solutions to some problems,
by taking ϕ̃2 = (ukk − ε − ϕε)

+ ∈ H as the test function in their respective problems, we obtain

(
ukk , ϕ̃2

)
H =

∫b

a

F
(
s, uσ

kk
(s)

) · ϕ̃σ
2 (s)Δs

≤
∫b

a

mε(s) · ϕ̃σ
2 (s)Δs =

(
ϕε, ϕ̃2

)
H ;

(2.13)

thus, (2.2) yields to
∥∥ϕ̃2

∥∥2
H ≤ (

ukk − ϕε, ϕ̃2
)
H ≤ 0, (2.14)

which implies that 0 ≤ ukk ≤ ε + ϕε on D and so 0 ≤ u1 ≤ ε + ϕε on D. Thereby, the continuity
of ϕε in every dense point of the boundary of D and the arbitrariness of ε guarantee that
u1 ∈ C0(D).

Finally, we will see that (1.11) holds for every test function ϕ ∈ C1
c,rd(D

κ); fix one of
them.

For all k ≥ 1 so large that supp ϕ ⊂ (ak, bk)T and all j ≥ 1 so large that εkj < νδk , as ukj

is a weak solution to (Pkj ), by taking ϕ ∈ C1
c,rd(D

κ) ⊂ C1
0,rd(D

κ) as the test function in (2.5)
and bearing in mind (2.7), we have

∫bk

ak

uΔ
kj
(s) ·ϕΔ(s)Δs =

(
ukj , ϕ

)
H =

∫bk

ak

F
(
s, uσ

kj
(s)

) ·ϕσ(s)Δs, (2.15)
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whence it follows, by taking limits, that
∫bk

ak

((
uk)Δ(s) ·ϕΔ(s) − F

(
s,
(
uk)σ(s)

) ·ϕσ(s)
)
Δs = 0, (2.16)

which is equivalent because u1|Dk = uk and ϕ = 0 = ϕσ on Do \Do
k to

∫b

a

(
uΔ
1 (s) ·ϕΔ(s) − F

(
s, uσ

1 (s)
) ·ϕσ(s)

)
Δs = 0, (2.17)

and the proof is therefore complete.

Propositions 2.3 and 2.4 lead to the following sufficient condition for the existence of
at least one solution in the sense of distributions to problem (P).

Corollary 2.5. Let F = f + g be such that f, g : D × (0,+∞) → R satisfy (C) and (PM), f satisfies
(Cc), and g satisfies (Cg).

Then, if for each j ≥ 1 there exist uj and uj a lower and an upper weak solution, respectively,
to (Pj) such that uj ≤ uj on D and

inf
j≥1

min
[a+δ, b−δ]

T

uj > 0 ∀δ ∈
(
0,

b − a

2

]
, sup

j≥1
max
D

uj < ∞, (2.18)

then (P) has a solution in the sense of distributions u1.

Finally, fixed u1 ∈ H0,locis a solution in the sense of distributions to (P)with F = f + g,
we will derive the existence of a second solution in the sense of distributions to (P)greater
than or equal to u1 on D. For every k ≥ 1, consider the weak problem

(
P̃k

)
⎧
⎨

⎩

−vΔΔ(t) = F
(
t,
(
u1 + v+)σ(t)

) − F
(
t, uσ

1 (t)
)
, Δ-a.e. t ∈ (

Dκ
k

)o
,

v
(
ak

)
= 0 = v

(
bk
)
.

(2.19)

For every k ≥ 1, consider Hk := H1
0,Δ(Dk) as a subspace of H by defining it for every

v ∈ Hk as v = 0 on D \Dk and define the functional Φk : Hk ⊂ H → R for every v ∈ Hk as

Φk(v) :=
1
2
∥∥v

∥∥2
H −

∫bk

ak

G
(
s,
(
v+)σ(s)

)
Δs, (2.20)

where function G : D × [0,+∞) → R is defined for Δ-a.e. t ∈ D and all x ∈ [0,+∞) as

G(t, x) :=
∫x

0

(
F
(
t, uσ

1 (t) + r
) − F

(
t, uσ

1 (t)
))
dr. (2.21)

As a consequence of Lemma 2.1, we deduce that every weak solution to (P̃k) is
nonnegative on Dk and by reasoning as in [4, Section 3], one can prove that Φk is weakly
lower semicontinuous, Φk is continuously differentiable inHk, for every v,w ∈ Hk,

Φ′
k(v)(w) = (v,w)H −

∫bk

ak

(
F
(
s,
(
u1 + v+)σ(s)

) − F
(
s, uσ

1 (s)
)) ·wσ(s)Δs, (2.22)

and weak solutions to (P̃k) match up to the critical points of Φk.
Next, we will assume the following condition.
(NI) For Δ-a.e. t ∈ Do, f(t, ·) is nonincreasing on (0,+∞).
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Proposition 2.6. Suppose that F = f +g is such that f, g : D× (0,+∞) → R satisfy (C) and (PM),
f satisfies (Cc) and (NI), and g satisfies (Cg).

If {vk}k≥1 ⊂ H, vk ∈ Hk is a bounded sequence inH such that

inf
k≥1

Φk

(
vk

)
> 0, lim

k→+∞

∥
∥Φ′

k

(
vk

)∥∥
H∗

k
= 0, (2.23)

then {vk}k≥1 has a subsequence convergent pointwise in D to a nontrivial function v ∈ H such that
v ≥ 0 in D and u2 := u1 + v is a solution in the sense of distributions to (P).

Proof. Since {vk}k≥1 is bounded inH, it has a subsequence which converges weakly inH and
strongly in C0(D) to some v ∈ H.

For every k ≥ 1, by (2.2), we obtain
∥
∥v−

k

∥
∥
H ≤ ∥

∥Φ′
k

(
vk

)∥∥
H∗

k
, (2.24)

which implies, from (2.23), that v ≥ 0 on D and so u2 := u1 + v > 0 on (a, b)
T
.

In order to show that u2 := u1 + v ∈ H0,loc is a solution in the sense of distributions
to (P), fix ϕ ∈ C1

c,rd(D
k) arbitrary and choose k ≥ 1 so large that supp ϕ ⊂ (ak, bk)T, bearing

in mind that u1 is a solution in the sense of distributions to (P), and the pass to the limit in
(2.22)with v = vk and w = ϕ yields to

0 =
∫b

a

[
vΔ(s) ·ϕΔ(s) − (

F
(
s,
(
u1 + v

)σ(s)
) − F

(
s, uσ

1 (s)
)) ·ϕσ(s)

]
Δs

=
∫b

a

[
uΔ
2 (s) ·ϕΔ(s) − F

(
s, uσ

2 (s)
) ·ϕσ(s)

]
Δs;

(2.25)

thus, u2 is a solution in the sense of distributions to (P).
Finally, we will see that v is not the trivial function; suppose that v = 0 onD. Condition

(NI)ensures that function G defined in (2.21) satisfies for every k ≥ 1 and Δ-a.e. s ∈ Do,

G
(
s,
(
v+
k

)σ(s)
) ≥ (

f
(
s,
(
u1 + v+

k

)σ(s)
) − f

(
s, uσ

1 (s)
)) · (v+

k

)σ(s)

+
∫ (v+

k
)σ(s)

0

(
g
(
s, uσ

1 (s) + r
) − g

(
s, uσ

1 (s)
))
dr,

(2.26)

so that, by (2.20) and (2.22), we have, for every k ≥ 1,

Φk

(
vk

) ≤ 1
2
∥∥vk

∥∥2
H − (

vk, v
+
k

)
H
+ Φ′

k

(
vk

)(
v+
k

)

−
∫b

a

(
g
(
s,
(
u1 + v+

k

)σ(s)
) − g

(
s, uσ

1 (s)
)) · (v+

k

)σ(s)Δs

+
∫b

a

[∫ (v+
k
)σ(s)

0

(
g
(
s, uσ

1 (s) + r
) − g

(
s, uσ

1 (s)
))
dr

]
Δs;

(2.27)

moreover, as we know that v+
k ≤ p on D for some p > 0, it follows from (Cg) that there exists

m ∈ L1
Δ(D

o) such that

Φk

(
vk

) ≤ 1
2

(∥∥v−
k

∥∥2
H − ∥∥v+

k

∥∥2
H

)
+ Φ′

k

(
vk

)(
v+
k

)
+ 2

∫b

a

m(s) · (v+
k

)σ(s)Δs

≤ 1
2
∥∥v−

k

∥∥2
H +

∥∥Φ′
k

(
vk

)∥∥
H∗

k
·∥∥v+

k

∥∥
H + 2

∫b

a

m(s) · (v+
k

)σ(s)Δs,

(2.28)
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and hence, since {v+
k}k≥1 is bounded inH and converges pointwise inD to the trivial function

v, we deduce, from the second relation in (2.23) and (2.24), that limk→∞Φk(vk) ≤ 0 which
contradicts the first relation in (2.23). Therefore, v is a nontrivial function.

3. Results on the existence and uniqueness of solutions

In this section, we will derive the existence of solutions in the sense of distributions to (P)
where F = f + g0 + ηg1, η ≥ 0 is a small parameter, and f, g0, g1 : D × (0,+∞) → R satisfy (C),
(PM) as well as the following conditions.

(H1) There exists a constant x0 ∈ (0,+∞) and a nontrivial function f0 ∈ L1
Δ(D

o) such
that f0 ≥ 0 Δ-a.e. on Do and

f(t, x) ≥ f0(t), g0(t, x), g1(t, x) ≥ 0 for Δ-a.e. t ∈ Do, x ∈ (
0, x0

]
. (3.1)

(H2) For every p ∈ (0,+∞), there exist mp ∈ L1
Δ(D

o) and Kp ≥ 0 such that

∣∣f(t, x)
∣∣ ≤ mp(t) for Δ-a.e. t ∈ Do, x ∈ [p,+∞),

∣∣g1(t, x)
∣∣ ≤ Kp for Δ-a.e. t ∈ Do, x ∈ (0, p].

(3.2)

(H3) There are m0 ∈ L2
Δ(D

o) such that

∣∣g0(t, x)
∣∣ ≤ λx +m0(t) for Δ-a.e. t ∈ Do, x ∈ (0,+∞), (3.3)

for some λ < λ1, where λ1 is the smallest positive eigenvalue of problem

−uΔΔ(t) = λuσ(t), t ∈ Dκ2
,

u(a) = 0 = u(b).
(3.4)

3.1. Existence of one solution. Uniqueness

Theorem 3.1. Suppose that f, g0, g1 : D × (0,+∞) → R satisfy (C), (PM), and (H1)–(H3). Then,
there exists a η0 > 0 such that for every η ∈ [0, η0), problem (P) with F = f + g0 + ηg1 has a solution
in the sense of distributions u1.

Proof. Let η ≥ 0 be arbitrary; conditions (H1)–(H3) guarantee that g := g0 + ηg1 satisfies
(Cg). We will show that there exists a η0 > 0 such that for every η ∈ [0, η0), hypotheses in
Corollary 2.5 are satisfied.

Let x0 and f0 be given in (H1), we know, from [4, Proposition 2.7], that we can choose
ε ∈ (0, 1] so small that the weak solution u ∈ H to

−uΔΔ(t) = εf0(t), Δ-a.e. t ∈ (
Dκ)o, u(a) = 0 = u(b), (3.5)

satisfies that u > 0 on (a, b)
T
and u ≤ x0 on D.

Let j ≥ 1 be so large that εj < x0, we obtain, by (H1), that

−uΔΔ(t) ≤ f0(t) ≤ fj
(
t, uσ(t)

)
+ g

(
t, uσ(t)

)
, Δ-a.e. t ∈ Do, (3.6)

whence it follows that u is a weak lower solution to (Pj).
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As a consequence of (C), (PM), and (H1)–(H3), by reasoning as in [4, Theorem 4.2],
we deduce that problem

−uΔΔ(t) = fj
(
t, uσ(t)

)
+ g0

(
t, uσ(t)

)
+ 1, Δ-a.e. t ∈ (

Dκ
)o
,

u(t) > 0, t ∈ (a, b)
T
,

u(a) = 0 = u(b)

(3.7)

has some weak solution uj ∈ H which, from Lemma 2.1 and (H1), satisfies that u ≤ uj on
D. We will see that {uj}j≥1 is bounded in C0(D), by taking ϕj := (uj − x0)

+ ∈ H as the test

function, we know from (2.2), (H2), and (H3) that there exist mx0 ∈ L2
Δ(D

o) such that

∥
∥ϕj

∥
∥2
H ≤ (

uj − x0, ϕj

)
H

=
∫b

a

(
fj
(
s, uσ

j (s)
)
+ g0

(
s, uσ

j (s)
)
+ 1

) ·ϕσ
j (s)Δs

≤
∫b

a

(
λuσ

j (s) +mx0(s) +m0(s) + 1
) ·ϕσ

j (s)Δs;

(3.8)

so that, it follows from the fact that the immersion from H into C0(D) is compact, see [9,
Proposition 3.7], Wirtinger’s inequality [10, Corollary 3.2] and relation λ < λ1 that {ϕj}j≥1 is
bounded in H and, hence, {uj}j≥1 is bounded in C0(D). Thereby, condition (H2) allows to
assert that there exists η0 ≥ 0, such that for all η ∈ [0, η0)

−uΔΔ
j (t) ≥ fj

(
t, uσ

j (t)
)
+ g0

(
t, uσ

j (t)
)
+ ηg1

(
t, uσ

j (t)
)
, Δ-a.e. t ∈ Do, (3.9)

holds, which implies that uj is a weak upper solution to (Pj).
Therefore, for every j ≥ 1 so large, we have a lower and an upper solution to (Pj),

respectively, such that (2.2) is satisfied and so, Corollary 2.5 guarantees that problem (P) has
at least one solution in the sense of distributions u1.

Theorem 3.2. If f : D × (0,+∞) → R satisfies (C), (Cc), and (NI), then, (P) with F = f has at
most one solution in the sense of distributions.

Proof. Suppose that (P) has two solutions in the sense of distributions u1, u2 ∈ H0,loc. Let ε > 0
be arbitrary, take ϕ = (u1 − u2 − ε)+ ∈ Hc,loc as the test function in (1.11), by (2.2) and (NI),
we have

‖ϕ‖2H ≤ (
u1 − u2 − ε, ϕ

)
H =

∫b

a

(
f
(
s, uσ

1 (s)
) − f

(
s, uσ

2 (s)
)) ·ϕσ(s)Δs ≤ 0, (3.10)

thus, u1 ≤ u2 + ε on D. The arbitrariness of ε leads to u1 ≤ u2 on D and by interchanging u1

and u2, we conclude that u1 = u2 on D.

Corollary 3.3. If f : D × (0,+∞) → R satisfies (C), (PM), (NI), and (H1)-(H2) with g0 = 0 = g1,
then (P) with F = f has a unique solution in the sense of distributions.
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3.2. Existence of two ordered solutions

Next, by using Theorem 3.1 which ensures the existence of a solution in the sense of
distributions to (P), we will deduce, by applying Proposition 2.6, the existence of a second
one greater than or equal to the first one on the whole interval D; in order to do this, we will
assume that f, g0, g1 : D × (0,+∞) → R satisfy (C), (PM), (H1)–(H3), as well as the following
conditions.

(H4) For Δ-a.e. t ∈ Do, f(t, ·) is nonincreasing and convex on (0, x0] with x0 given in
(H1).

(H5) There are constants θ > 2, C1, C2 ≥ 0 and x1 > 0 such that
∣∣g1(t, x)

∣∣ ≤ C1x
θ−1 + C2 for Δ-a.e. t ∈ Do, x ∈ (0,+∞),

0 <

∫x

0
g1(t, r)dr ≤ 1

θ
xg1(t, x) for Δ-a.e. t ∈ Do, x ∈ [

x1,+∞
)
.

(3.11)

We will use the following variant of the mountain pass, see [13].

Lemma 3.4. If Φ is a continuously differentiable functional defined on a Banach space H and there
exist v0, v1 ∈ H such that

c := inf
γ∈Γ

max
v∈γ([0,1])

Φ(v) > Φ(v0),Φ(v1), (3.12)

where Γ is the class of paths inH joining v0 and v1, then there is a sequence {vk}k≥1 ⊂ H such that

lim
k→+∞

Φ
(
vk

)
= c, lim

k→+∞
(
1 +

∥∥vk

∥∥
H

)∥∥Φ′(vk

)∥∥
H∗ = 0. (3.13)

Theorem 3.5. Let f, g0, g1 : D × (0,+∞) → R be such that (C), (PM), and (H1)–(H5) hold. Then,
there exists an η0 > 0 such that for every η ∈ (0, η0), problem (P) with F = f + g0 + ηg1 has two
solutions in the sense of distributions u1, u2 such that u1 ≤ u2 on D and u2 − u1 ∈ H.

Proof. Conditions (H1)–(H4) allow to suppose that for Δ-a.e. t ∈ Do, f(t, ·) is nonnegative,
nonincreasing, and convex on (0,+∞) because these conditions can be obtained by simply
replacing on D × (x0,+∞)f and g0 with f(t, x0) and g0(t, x) + f(t, x) − f(t, x0), respectively.

Let u1 be a solution in the sense of distributions to (P), its existence is guaranteed by
Theorem 3.1, and let η > 0 be arbitrary; it is clear that F = f + g with g := g0 + ηg1satisfies
hypothesis in Proposition 2.6; we will derive the existence of an η0 > 0 such that for every η ∈
(0, η0), we are able to construct a sequence {vk}k≥1 ⊂ H in the conditions of Proposition 2.6.

For every k ≥ 1 and v ∈ Hk, as a straight-forward consequence of (NI), (H3), (H5),
and the compact immersion from H into C0(D), we deduce that there exist two constants
C3, C4 ≥ 0 such that function G, defined in (2.21), satisfies for Δ-a.e. s ∈ Do,

G
(
s,
(
v+)σ(s)

) ≤ λ

2
(
vσ)2(s) + C3

(
m0(s) + 1

)‖v‖H + ηC4
(
1 + ‖v‖H

)θ−1‖v‖H, (3.14)

which implies, by (2.20) and Wirtinger’s inequality [10, Corollary 3.2], that there exists a
constant C5 ≥ 0 such that

Φk(v) =
1
2
‖v‖2H −

∫bk

ak

G
(
s,
(
v+)σ(s)

)
Δs

≥ 1
2

(
1 − λ

λ1

)
‖v‖2H − C5

(
1 + η

(
1 + ‖v‖H

)θ−1)‖v‖H.

(3.15)
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Thereby, as λ < λ1, there exist constants R, η0, c0 > 0 such that

inf
v∈Hk

‖v‖H=R

Φk(v) ≥ c0 > 0 ∀ k ≥ 1, η ∈ (
0, η0

)
. (3.16)

Let η ∈ (0, η0) be arbitrary. From the second relation in (H5), we obtain that

g1(t, x) ≥ C6x
θ−1 for Δ-a.e. t ∈ Do, x ∈ [

x1,+∞
)
, (3.17)

for some constant C6 > 0; thus, it is not difficult to prove that there is a v1 ∈ H1 such that
v1 > 0 on (a, b)

T
, ‖v1‖H > R and Φ1(v1) < 0 and hence, since Φ1(0) = 0, by denoting as Γ1 the

class of paths inH1 joining 0 and v1, it follows from (3.16) that

c1 := inf
γ∈Γ1

max
v∈γ([0,1])

Φ1(v) ≥ c0 > Φ1(0),Φ1
(
v1
)
, (3.18)

hence, Lemma 3.4 establishes the existence of a sequence {vk}k≥1 ⊂ H1 such that

lim
k→+∞

Φ1(vk) = c1, lim
k→+∞

(
1 +

∥∥vk

∥∥
H

)∥∥Φ′
1

(
vk

)∥∥
H∗

1
= 0. (3.19)

Consequently, bearing in mind that H1 ⊂ Hk and Φk|H1 = Φ1 for all k ≥ 1 and by
removing a finite number of terms if it is necessary, we obtain a sequence {vk}k≥1 ⊂ H such
that vk ∈ Hk for every k ≥ 1 and

0 <
c0
2

≤ Φk

(
vk

) ≤ k ≥ 1, lim
k→+∞

(
1 +

∥∥vk

∥∥
H

)∥∥Φ′
k

(
vk

)∥∥
H∗

k
= 0, (3.20)

we will show that this sequence is bounded inH.
From (2.2), we deduce that

0 ≤ lim
k→+∞

∥∥v−
k

∥∥
H ≤ lim

k→+∞

∥∥Φ′
k

(
vk

)∥∥
H∗

k
= 0, (3.21)

For every k ≥ 1, from (2.2), (2.20), and (2.22), we have that

Φk

(
vk

) − 1
2
Φ′

k

(
vk

)(
v+
k

) ≥ 1
2
∥∥v−

k

∥∥2
H +

∫b

a

HF

(
s,
(
v+
k

)σ(s)
)
Δs, (3.22)

where, for Δ-a.e. s ∈ Do,

HF

(
s,
(
v+
k

)σ(s)
)

=
1
2
(
F
(
s,
(
u1 + v+

k

)σ(s)
)
+ F

(
s, uσ

1 (s)
)) · (v+

k

)σ(s) −
∫ (u1+v+

k
)σ(s)

uσ
1 (s)

F(s, r)dr;
(3.23)

as a straight-forward consequence of the convexity of f and conditions (H2), (H3), (H5), and
(3.17), we deduce that there exist constants C7 > 0 and C8, C9 ≥ 0 such that

∫b

a

HF

(
s,
(
v+
k

)σ(s)
)
Δs ≥ C7

∥∥(v+
k

)σ∥∥θ

Lθ
Δ
− C8

(∥∥(v+
k

)σ∥∥2
L2
Δ
+ 1

)
− C9. (3.24)

Therefore, relations (3.20), (3.21), (3.22), and (3.24) allow to assert that sequence
{(v+

k)
σ}

k≥1 is bounded in Lθ
Δ(D

o) and so, as for every k ≥ 1,

1
2
∥∥vk

∥∥2
H ≤ Φk

(
vk

)
+
∫b

a

[∫ (v+
k
)σ(s)

0

(
g
(
s, uσ

1 (s) + r
) − g

(
s, uσ

1 (s)
))
dr

]
Δs. (3.25)

We conclude by (3.20), (H3), and (H5) that {vk}k≥1 is bounded inH and Proposition 2.6 leads
to the result.
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