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Highlights

e DPG and DTG react rapidly with chlorine and bromine

e The pH dependance of the reaction was modelled

e Several transformation products were identified by LC-QTOF
e Chloroform and dichloroacetonitrile are also produced

e TPs are more toxic than DPG and DTG

Abstract

This works investigates the chlorination and bromination of two rubber and polymer
related chemicals, which have emerged as relevant water contaminants, i.e. 1,3-di-o-
tolylguanidine (DTG) and 1,3-diphenylguanidine (DPG). Kinetic constants at different
pH values were obtained and modelled, taking into account the pK, values of DTG/DPG
and HCIO, showing that the maximum reaction rate (kapp > 10* M s?) is obtained at
pH values 8.8 for DPG and 9.1 for DTG. Bromination is also very fast, although unlike

chlorination, deviation from the model was observed at neutral pH, which was
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attributed to formation of metastable transformation product (TP). A total of 35 TPs,
corresponding to halogenation, hydroxylation, formation of monophenylguanidine
derivatives and cyclization reactions, were tentatively identified. Furthermore it was
found that chloroform can be formed up to a 25% molar vyield, while
dichloroacetonitrile was formed into less than a 3% yield. Several ecotoxicological
endpoints were predicted by quantitative structure—activity relationship models
(QSAR) for the TPs, some of which were predicted to be more toxic than DPG/DTG.
Also a chlorinated solution investigated by a Vibrio Fisheri acute toxicity test,

confirmed that toxicity increases with chlorination.

Keywords

Halogenation; transformation products; high-resolution mass spectrometry (HRMS);

ecotoxicity; disinfection by-products.

1. Introduction

Polar organic compounds, if persistent, spread along the water cycle, even becoming a
human health problem if that substances reach drinking waters (Herndndez et al.
2015, Reemtsma et al. 2016, Schulze et al. 2019). 1,3-Di-o-tolylguanidine (DTG) and
1,3-diphenylguanidine (DPG) are chemicals used as accelerators in the vulcanization
processes of rubber and other polymers manufacture, with a registered production in
Europe, according to the REACH dossiers, in the 100-1000 tons (DTG) and 1000-10,000

tons (DPG) (ECHA 2018a, b). However, so far, little information about their
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environmental (particularly water) occurrence is available. A first study from Montes et
al. (Montes et al. 2017), in the frame of the project PROMOTE(Metcalfe et al. 2003),
reported DTG occurring in environmental water samples across Europe by liquid
chromatography-high resolution mass spectrometry (LC-HRMS) screening. Later on,
within the same project, it has been shown that DPG as well as DTG occur in different
water compartments at the ng L level (Montes et al. 2019, Schulze et al. 2019). Zahn
et al. have recently shown that, when considering natural processes, DPG (DTG was
not considered in that study) photolyzes and reacts with manganese oxide, but does
not biodegrade and is stable to hydrolysis (Zahn et al. 2019). Furthermore, this
compound has been identified in drinking water in China at 0.7 mg L%, migrating from
polyethylene pipes (Tang et al. 2015) and, more recently, has also been recently
identified as being the major chemical leaching from tire wear particles (Hibner et al.
2019, Zahn et al. 2019). Furthermore, there is some literature that describes DTG and
DPG toxicity and pharmacological activity in mice and rats (Jaramillo-loranca and Es-

ram 2015, Lamy et al. 2010).

Yet, the possible reaction of both chemicals with chemical oxidants used in drinking
water treatment plants (DWTPs) and wastewater treatment plants (WWTPs) has not
been studied so far. Several disinfection techniques and processes are employed in
DWTPs and WWTPs. Among them, chlorine is the oxidant used in the vast majority of
DWTPs in Europe, and also in some WWTPs to a minor extent (Benitez et al. 2011,
Quintana et al. 2014). Although chlorine is effective to inactivate bacteria, the
formation of possible harmful transformation products (TPs), including well-known
disinfection byproducts (DBPs), as e.g. trihalomethanes, needs to be taken into

account (Acero et al. 2013, Postigo and Richardson 2014, Quintana et al. 2014, Rodil et
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al. 2012). Such TPs (including DBPs) may in some cases be more (eco)toxic than the
precursor chemicals themselves (Postigo and Richardson 2014, Quintana et al. 2014).
Therefore, their identification is necessary in order to obtain a relevant interpretation

of the reaction.

Thus, the aim of this work was to perform a comprehensive study about the
chlorination of DTG and DPG in water. This includes a kinetic study and modelling,
identification of TPs (including those formed by bromination, since hypobromite is
rapidly formed from bromide into solution during chlorination (Benitez et al. 2011)) by
LC-HRMS, quantification of the yield of known DBPs formed and preliminary

(eco)toxicological assessment.
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2. Materials and methods

2.1. Chemicals and stock solutions

DTG (99%) and DPG (97%) were purchased from Sigma-Aldrich (Steinheim, Germany)
and stock solutions were prepared in ultra-pure water. Ultra-pure water was obtained
directly in the lab from a Milli-Q Gradient A-10 system (Millipore, Bedford, MA, USA).
All solutions and dilutions necessary for the experiments were done in ultra-pure

water until desired concentration.

Sodium hypochlorite (8-14% Cl;), ammonium chloride (> 99%) and potassium
phosphate dibasic trihydrate (> 99%) were obtained from Sigma-Aldrich. Sodium
thiosulfate (99.5%) and potassium bromide were from ACS Acros Organics (Thermo
Fisher Scientific, Waltham, MA, USA) and potassium di-hydrogen phosphate (99.5%)
was from Panreac (Barcelona, Spain). Standard solutions of chloroform and
haloacetonitriles (HANs) were prepared from EPA 551B Halogenated Volatiles Mix
supplied from Supelco. The exact nominal free chlorine content employed was
regularly determined spectrophotometrically by measuring the hypochlorite anion
absorption at 292 nm (g = 350 L' cm™) (Johnson and Melbourne 1996) of the stock

solution (pH >10).

2.2. Real samples

Two samples were used to study the extent of the chlorination reaction with a real
matrix. A surface water sample was collected from the River Sarela in Santiago de
Compostela (pH 6.8, Dissolved Organic Carbon: 2.42 mg L%, chloride: 7.98 mg L%,
bromide: 0.043 mg L!). A wastewater effluent was collected from a WWTP comprising

a primary and a secondary conventional sludge treatment (pH: 7.5, Dissolved Organic
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Carbon: 14.1 mg L%, chloride: 23.1 mg L, bromide: 0.075 mg L!). Dissolved organic
carbon was measured with a Shimadzu 5000A TOC analyzer (Duisburg, Germany),
while bromide and chloride were determined with a Metrohm 850 Professional lon

Chromatograph (Zofingen, Switzerland).

2.3. Chlorination experiments

Chlorination of DTG and DPG were performed individually in 100 mL amber closed vials

at room temperature. Also, experiments without chlorine were prepared as a control.

Experiments to study chlorination kinetics were performed in a similar way, but with
lower compound concentrations (1 uM), an excess of chlorine (10 uM, 20 uM or 50
uM) and different pH of sample (5-12) being considered in 10 mM phosphate buffer
and NaOH for very basic pHs. Aliquots of 1 mL were taken at different reaction times
and the reaction stopped with 20 pL of 0.01 M sodium thiosulfate before residual
concentration of guanidine was analysed by liquid chromatography-photodiode array
detection (LC-PDA). Ammonium chloride (1 mM) was used in some experiments as
“soft” quenching method as being selective to free chlorine and as to avoid any
NazS;03-induced back reaction that could interfere with determination of rate
constant (Dodd and Huang 2004). An experiment was also performed without stopping
the reaction and aliquots were manually injected at different reaction times using a

Rheodyne valve in the LC-PDA system.

Experiments were performed at room temperature (22 +1°C). The pH was measured
before and after the experiment, and variation was less than 0.1 unit. Free active

chlorine was analysed by DPD colorimetric method (Clesceri et al. 1998) at the end of
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reaction time. Chlorine consumption was usually below 10% and pseudo-first-order

plots were always linear (see Figure S1 for examples).

Additional experiments for the identification of TPs (performed in triplicate) were
carried out with a similar procedure. For these experiments, ultrapure water adjusted
at pH 7.0 was used, spiked with the compound at 10 uM, and initial chlorine dose set
to 100 uM. TPs were identified after reduction by ascorbic acid for reaction times of 30

s, 1 min, 2 min, 5 min, 10 min and 30 min.

DBPs formation potentials (chloroform and haloacetonitriles) were determined for a
reaction time of 2 days at pH 7.0 in ultrapure water with an initial concentration (of
either DPG or DTG) of 10 uM and molar chlorine to guanidine ratios of 1, 10 and 100 in

headspace-free conditions.

2.4. Bromination experiments

Bromination experiments were performed under the same conditions as chlorination,
in order to determine apparent rate constants and detect TPs that can be produced in
bromide containing waters. Bromine was generated in the lab according to the
procedure described by Benitez et al. (Benitez et al. 2011). Briefly, bromine was
produced from the reaction between 9 mM HOCI and 10 mM potassium bromide. The
yield of this reaction was followed spectrophotometrically (hypobromite anion
maximum absorption wavelength at 329 nm with an € =332 M* cm™ at pH above 11.5)

(Benitez et al. 2011).

Kinetics of bromination were studied as for chlorination for pH values ranging from 5
to 9 using direct method in batch reactor with an excess of bromine (10 to 100 uM)

compared to 1 uM DPG or DTG solution (see Figure S2 for examples of bromination of
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DPG). Apparent rate constants were also determined by using the competition kinetics
method (Acero et al., 2005) with 4-bromophenol (BP) in pH 8 - 11 range or 2,4,6-
tribromophenol (TBP) at pH 7.0 and 8.0 as reference compounds (see Figure S3). In this
method, different concentrations of bromine from 0 to 10 uM were introduced in 25
mL of a 10 mM phosphate buffer solution containing 5 uM DPG or DTG and 5 uM
reference compound (either BP or TBP). Residual concentrations of organic
compounds were determined by LC-PDA. Apparent rate constants of BP and TBP were
calculated for each pH from intrinsic rate constants compiled by Heeb et al. (2014) and
pKa nosr/sro- = 8.8. Values are given in Table S3 and S4. An apparent rate constant of
2063 M st was determined for the reaction of bromine with TBP at pH 6.94 by direct
method using 20 uM bromine and 1 uM TBP (Figure S4); value similar to 2100 M s

determined by Acero et al. (2005) and used in this study.

2.5. Liquid chromatography - photodiode array detection (LC-PDA)

The chlorination kinetic study was followed by analysing the samples in a LC-PDA
system. The instrument was a Waters 2695 LC (Milford, MA, USA) equipped with a
degasser, binary high-pressure pump, LC column oven and an autosampler. The PDA
was a Waters 2996 equipped with a deuterium lamp. DPG was monitored at 235 nm,

whereas DTG, BP and TBP were measured at 225 nm.

The LC column used was a 250 mm x 4.6 mm; 5 um Kinetex EVO C18 (Phenomenex,
Torrance, CA, USA) at a flow rate of 1 mL minl. Mobile phase consisted in Milli-Q
water (eluent A) and acetonitrile (eluent B), both acidified with 0.1 % formic acid.

Gradient was as follows: 0 min, 5% B; 10 min, 100% B; 12 min, 100% B; 12.10 min, 5%
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B; 20 min, 5% B. Injection volume was set to 50 pL. Instrument control and data

treatment were done with Empower software (Waters).

2.6. LC-HRMS

The system used for the determination of TPs was an Agilent 1200 Series LC (Agilent
Technologies, Santa Clara, CA, USA) equipped with a degasser, a binary high-pressure
pump, LC column oven and an autosampler. This LC system was interfaced to an
Agilent 6520 Series Quadrupole-Time of Flight (QTOF) MS equipped with a Dual

Electrospray (Dual-ESI) ion source.

The LC column was a Luna 150 mm x 2 mm; 3 um C18 (2) (Phenomenex) at a flow of
mobile phase of 0.2 mL mini, and column temperature established at 35 °C. Mobile
phase and gradient used are the same as described in Section 2.5. Injection volume

was set at 10 pL.

For the QTOF, Nitrogen (99.999%) used for nebulising and drying gas was supplied by a
nitrogen generator (Erre Due Srl, Livorno, Italy). Collision-Induced Dissociation (CID) in
tandem mass spectrometry analysis (MS/MS) was performed with Nitrogen
(99.9995%) purchased from Praxair (Santiago de Compostela, Spain) as collision gas.
ESI source operated in positive (no TPs were detected in negative) polarity and its
parameters were as follows: gas temperature 350 °C; drying gas 5 L min%; nebulizer 42
psig, capillary 4000 V; fragmentor 120 V; skimmer 65 V; and octapole RF 750 V.
Instrument acquired MS spectra in centroid mode and operated at 2 GHz (extended-
dynamic range), which provided a Full Width at Half Maximum (FWHM) resolution of
ca. 4500 at m/z 121 and ca. 11000 at m/z 922, scan range: 70-1000 m/z. The

manufacturer reference solution was also infused during every run and ionized with
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the second sprayer of the Dual-ESI at 5 psig, to calibrate automatically and keep the
mass accuracy. In this solution, two masses, m/z 121.0509 and 922.0098 for ESI (+)

were used for m/z-axis continuous recalibration.

Instrument control and data treatment were done with different software included in
the MassHunter package (Agilent Technologies). Determination of TPs was performed
as described elsewhere (Carpinteiro et al. 2017). Briefly, the algorithm “Find by
Molecular Feature” from the MassHunter Qualitative (Agilent Technologies) software
was used to generate a list of features (chromatographic peaks and m/z values) with a
response higher than 1000 counts. Data obtained was then analysed with the software
Mass Profiler Professional (Agilent Technologies) that compares the intensity of those
features at different reaction times, where features whose intensity increases as
compared to time O can be possible TPs. Then, formulas were generated for those
features. The isotope pattern matching as well as error between the experimental m/z
values and those calculated (from the generated formula) is grouped by the software

to provide a score in percentage, in which 100% would indicate a perfect match.

Tandem mass spectrometry (MS/MS) analysis were obtained for the structure
elucidation of the TPs structures, using CID with different collision energies between

10 and 40 V.

2.7. Determination of DBPs

Chloroform was analysed by headspace injection and gas chromatography coupled to
mass spectrometry detection (GC-MS). Analysis was performed by using a CTC
Analytics Combi Pal autosampler with an Agilent 7890 GC and an Agilent 5975C mass

spectrometer. 10 mL of sample were poured in 20 mL headspace vials containing 10 pL
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of 1M ascorbic acid to quench residual chlorine. Vials were heated at 50°C and stirred
at 500 rpm for 10 min before 2.5 mL gas phase was injected into the gas
chromatography in pulsed split mode (ratio 1:10). The analytical column was an Agilent
HP-5MS column (30 m x 0.25 mm; film thickness 1 um). Retention time of chloroform

was 3.8 min for temperature program starting at 40°C and ending at 55°C in 8 min.

Haloacetonitriles (HANs) were analysed by the 551.1 EPA extraction method followed
by GC-MS determination as described elsewhere (Le Roux et al. 2011). Detection limits

for DBPs were 0.1 pg L.

2.8. Toxicity assessment

An estimation of the (eco)toxicity was done for DTG, DPG and the identified TPs by
using the US Environmental Protection Agency Toxicity Estimation Software Tool
(TEST) version 4.1, which provides a prediction of the toxicity according to
guantitative-structure property relationships (QSAR) by the consensus method, which
uses an average value of the calculated toxicities by five different developed QSAR
methodologies (Carpinteiro et al. 2017, Gonzdlez-Marifio et al. 2015). Only the oral rat
LCso, Daphnia Magna LCso and Tetrahymena pyriformis 50% growth inhibition
concentration (IGCsg) were considered since other ecotoxicological endpoints could

not be calculated by the software for most TPs.

Besides the QSAR prediction, a bioluminescent Vibrio Fisheri test evaluation of the
toxicity of DPG and DTG and different chlorination mixtures was performed according
to the standard method NF EN ISO 11348-3 (2009) by using a LumisTox® 300. Details of

the procedure are described elsewhere (Tawk et al. 2015).
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3. Results and Discussion

3.1. Chlorination kinetic study

A full kinetic study of DTG and DPG reaction with chlorine was performed considering a
wide range of pH from 5 to 11-12. In excess of chlorine, results were adjusted to a
pseudo-first order kinetic equation (Figure S1a) to obtain the observed rate constant
kobs in s as the slope of the linear regression. The first order with respect to chlorine
was verified by changing the initial concentration of chlorine (Figure S1b). In addition,
it was verified that guanidine concentrations were similar when thiosulfate or
ammonium chloride were used to stop the reaction or when manual injection was
used without quenching the reaction (Figure Sla) suggesting that N-chlorinated

guanidine was not formed (Dodd and Huang 2004).

The apparent rate constant (kapp in M s) was determined for each experiment from
kobs value and the initial concentration of chlorine. The values of kapp are compiled in
Tables S1 and S2. They range from 32 M s at pH 5 to a maximum of ca. 1.11 x 10* M~
151 at pH 8.4 for DPG. In the case of DTG, reaction is even faster, with kapp ranging
from 25 (at pH 4.9, the lowest pH tested in this case) to 1.83 x 10* M s at pH 9.9. At
natural water pH values, this translates in very fast reactions, with half-lives of a few

seconds to some minutes with typical chlorine doses (1-10 mg L1).

A theoretical model of the pH-dependent apparent rate constant (kapp) for the reaction
between each guanidine and chlorine was described based on the speciation of
HOCI/CIO™ (pKa = 7.54) and guanidines (pKa = 10.67 for DTG, and pKa, = 10.12 for DPG
(Perrin 1965)) and considering HOCI as the only active electrophile (Gallard and von

Gunten 2002). The large increase in kapp When the pH increased from 5 to 9 suggests a
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greater contribution of the neutral guanidine to the protonated form. Thus, the
resulting model for the DTG and DPG reaction mechanism is described as follows

assuming that HOCI reacts only with neutral guanidine species in the first assumption:

Ka

() Hocl == ocl+H fast

K

2) guanidine” =~—  guanidine + H*  fast

k
3) guanidine + HOCI —> TPs slow

The general expression for the reaction of the guanidine compound (either DPG or

DTG) with chlorine is then:

J i
[guanidine];_ k [guanidine][HOCI] = -k

R app [guanidine]; [HOCI];

and

(4)

(5) kapp = k apoc Xguanidine

where: k is the specific rate constant of HOCI with the neutral species of DTG/DPG,
Ka is the acid-base equilibrium constant of HOCI, [HOCI]r is the total concentration of
free chlorine (HOCI + OCI"), [guanidine]y is the total concentration of DPG or DTG, and
oHocl and Oguanidine are the molar fractions of HOCI and neutral guanidine species,

respectively.

By introducing the expression of both, HOCI and guanidine molar fractions, the kapp

value is given by the following expression:

k K[HY]
(K+[Ht])(Ka+[H*])

(6) kapp =
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The value of the rate constant k was determined by a non-linear least-square
regression of the experimental pH profile of the kapp values using Sigma Plot 11.0

(Systat Software Inc., San Jose, CA, USA).

The pH dependence of kapp is shown in Figures 1la and 1b for DPG and DTG,
respectively. For both compounds, the pH profile exhibits a maximum between pH 8
and pH 10. This maximum corresponds to the concomitant presence of both HOCI and
neutral guanidine. The maximum pH value is equal to the average value of the pK, of
HOCI and guanidines i.e. 8.8 for DPG and 9.1 for DTG. As shown in Figure 1, the model
fits well with the experimental data considering only the reaction of HOCI with neutral
guanidine. No improvement was obtained by including the reaction of CIO" with
neutral guanidine and the reaction of HOCI with protonated guanidine (see Text S1 and
Table S5), which is in accordance with the literature (Deborde and von Gunten 2002).
The rate constants, k, of the reactions between HOCl and DPG and DTG neutral species
determined from model fitting to the experimental values are 4.1 (+0.3) x 10® M s!
and 2.6 (+0.1) x 10’ M1 s’ for DPG and DTG, respectively. The apparent rate constants
at neutral pH (~103 M s1) and intrinsic rate constants (k) of neutral species (~10° - 10’
M- s1) are in the range of rate constants of secondary amines with chlorine (Deborde
and von Gunten 2008). However, N-chloroamino compounds were not detected during
kinetic experiments and identification of TPs would indicate that initial reactive site is
the aromatic ring. Lower rate constant of 19 M s'! was obtained for ethyl guanidine at
pH 7.2 — 7.4 (Pattison and Davies 2001), which can be explained by the stronger basic

character of alkyl guanidines.

3.2. Bromination kinetic study

Page 15



The apparent rate constants of bromination determined by using direct and
competition kinetics methods are listed in Table S3 and S4 for DPG and DTG,
respectively and are plotted versus pH in Figure 2. Examples of pseudo-first-order and
competition kinetics plots are given in Figure S2 and Figure S3 for DPG. The apparent
rate constants range from 76 to 2.89 x 10° M s for DPG and from 36 to 5.87 x 10* M-
151 for DTG. In contrast to chlorine, lower rate constants were determined for DTG,
which could be attributed to steric effects between the bulky bromine atoms and the

methyl groups in DTG.

The experimental results fit well with the proposed model at pHs below 6 and above 9,
while a strong deviation and even discrepancies between rate constants determined
by the direct kinetics method and the competition kinetics method using BP as
reference compound in the pH 7 — 9 range. Such deviations are attributed to a
metastable TP with oxidizing properties which could not be identified by LC-HRMS in

that pH range (see detailed discussion in Text S2 and Figures S3-S6).

Excluding those pH values, and compared to chlorination, maximum kapp values are
slightly shifted to higher pH values due to the higher pK; of HOBr (pK, = 8.8).
Calculated intrinsic rate constants for the reaction of HOBr with neutral DPG and DTG
were 8.3 (+0.4) x 10® and 5.5 (+0.7) x 108, respectively. While HOBr reacts usually much
faster than HOCI with organic compounds (Heeb et al., 2014), the rate constant of
HOBr with DPG was only twice as high as the reaction of HOC| with DPG and the rate
constant for the reaction of HOBr with DTG was lower than that of HOCI. Steric

hindrance (as mentioned), different reactive sites and type of reaction (oxidation vs
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substitution) might explain this unexpected result, which requires further

investigation.

3.3. Transformation products

Identification of TPs was performed for both DTP and DPG considering chlorination
and bromination. Experiments were carried out as described in sections 2.3 and 2.4. All
samples were analysed in the LC-QTOF equipment as detailed in 2.6. The proposed
structures of the TPs are presented in Figures 3 and 4. Further details on formulas,
mass errors and scores of the TPs, as well as individual structures derived from the
interpretation of MS/MS spectra are presented in Tables S6 and S7. TPs were named
with the precursor compound abbreviation followed by the nominal mass of its [M+H]*
ion. As it can be observed the empirical formula could be proposed with a high degree
of certainty, with score values higher than 95% and mass errors lower than 5 ppm,
except for DTG-274, whose score was 79% and mass error was 9.7 ppm due to its low

intensity.

The proposed structures are based on the interpretation of the MS/MS spectra, which
are presented into Figures S7 and S8, for DPG and DTG TPs, respectively. Moreover,
DPG-136 (i.e. monophenylguanidine) was unequivocally identified by purchasing its

authentic standard from Sigma-Aldrich.

There are four main types of reactions occurring during chlorination, i.e. ipso-
chlorination to produce monoguanidine derivatives, introduction of chlorine atoms
(bromine when samples are brominated) into an aromatic ring, hydroxylation and
intramolecular cyclization. Thus, DPG-136 was easily identified by its spectrum (Figure

S7), and because an authentic standard was available, as mentioned. This TP further
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reacts by halogenation to the corresponding chlorinated or brominated derivatives
(DPG-170 and DPG-214), easily identified because their MS/MS spectra is similar to
DPG-136 and exhibit the halogen isotopic pattern (Figure S7). DPG-119 is also
produced at long reaction times. Hydroxylation of DPG produces DPG-228, while
halogenation produces DPG-246 (chlorination) and DPG-290 (bromination), all of them

easily identified by their MS/MS spectra (Figure S7).

A key TP is DPG-210, which a similar empirical formula than DPG itself but with one
further double-bond equivalent (i.e. 2 atoms of H less), Table S6. Its MS/MS spectrum
exhibits first the loss of ammonia to m/z 192.0671 and also the elimination of CHsN; to
m/z 167.0720 from the protonated molecular ion (Figure S7e). This second ion would
not be possible unless a cycle is formed. Because of this, we hypothesize here that
DPG-210 corresponds to the structure shown in Figure 3, by formation of the 7-
membering cycle from DPG-228 (hydroxylated DPG) by elimination of water. In fact the
maximum intensity of DPG-228 was observed at 0.5 min and then its intensity rapidly
drops, while DPG-210 maximum is reached at 1 min and then drops more slowly (see
Figure S9a). The fact that DPG-210 has also been observed as a photolysis TP by Zahn
et al. (Zahn et al. 2019), although no structure was proposed in that publication,
further supports this hypothesis. Once DPG-210 is formed, this molecule further reacts
to yield a mono-hydroxylated-TP (DPG-226), a hydroxychloro-TP (DPG-260) or a

dichloro,hydroxy-TP (DPG-294).

In the case of DTG, the reaction was similar to DPG, as expected, but a larger number
of TPs could be identified (23 vs. 11 TPs). In general, the main difference in the TPs

produced is that a greater degree of hydroxylation and halogenation is observed, e.g.
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DTG-308 (a dichlorinated derivative of DTG), which can be explained by the electron-
donor effect of the methyl group on aromatic ring. Although no MS/MS spectra (Figure
S8) was obtained for all TPs, due to the low intensity of some of them, structures
compiled into Figure 4 and Table S7 (those TPs without MS/MS data are marked with a
* symbol in the Table) were assigned on the basis of the MS/MS spectra (when

available) and by analogy to DPG TPs.

As regards of the most relevant TPs, Figures S9b and 10b present the normalized
amount of each TP and their precursors for a reaction with 100 uM chlorine and up to
30 min of contact time. Normalization was performed by using the signal of the
original compound (DPG or DTG) as a surrogate to calculate an approximate yield,
except for DPG-136, DPG-119, DPG-170, DTG-150, DTG-166, DTG-184 and DTG-228,
where monophenyl-guanidine (DPG-136) was used instead, as being considered
structurally closer. In the case of DPG (Figure S9), the most intense TP is DPG-136 with
a yield of ca. 5% at 0.5-2 min, dropping down to 3% at 30 min. The second most
relevant TP is DPG-246 (monochloro-DPG), with a yield of ca. 3% at 0.5-2 min, dropping
down to ca. 0.2% at 30 min. It is noteworthy that at 30 min, there was no DPG
detectable and the sum of all TPs intensities would approximately represent a 5%
yield. This could likely be attributed to the formation of ring-opening products like
chloroform with a relatively high yield (see 3.4) and the uncertainty of the semi-

guantitative approach, due to the lack of authentic standards for most TPs.

In the case of DTG (Figure S10), the most intense TP is DTG-254 (hydroxylated cyclic
product) with a yield of ca. 30% at 0.5-2 min, followed by DTG-290 (hydroxy,chloro-

DTG) with a yield of ca. 15% at 0.5-2 min. These two TPs are also the most relevant at
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30 min, representing an estimated yield of 4 and 8% respectively. Also, in the case of

DTG, the total yield of TPs at 30 min is ca. 20%.

3.4. Disinfection by-products

Subsequently to TPs identification, we investigated the formation potential of classical
DBPs (chloroform and HANs). Chloroform was measured as the only trihalomethane
that can be formed without bromide and representing the most relevant group of
DBPs, while HANs is another important group of DBPs which can be produced from N-
containing chemicals, as it is the case of DPG and DTG. Figure S11 shows the molar
yields of CHCI; and dichloroacetonitrile (DCAN), the only HAN detected, produced from
the chlorination of DPG and DTG after 2 day reaction time. Similar yields were
obtained for both guanidines. For CHCl3, the yield of ca. 25% for a molar guanidine/Cl;
ratio of 1:100 is similar to CHCIs yields ranging from 10 to 32% already described for
hydroxylated and chlorinated aromatic compounds (Gallard and von Gunten 2002).
This is consistent with the formation of chloro or/and hydroxy DPG and DTG that
further react with chlorine leading to CHCl3 as end-product after ring cleavage. Among
HANs, only DCAN was detected at significant levels and with yields much lower than
CHCIs. For a ratio of 1:100, molar yields were 4.4% and 2.3% for DPG and DTG,

respectively.

3.5. Reaction in real sample matrices

The reactivity of both guanidine compounds was tested by spiking two real matrices (a
surface water and a wastewater effluent) with 1 uM (i.e., ca. 200 pg L?) of either DPG
or DTG and 10 uM chlorine and the reaction kinetics followed for 20 min (reaction

qguenched with ascorbic acid) by LC-HRMS.
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In the case of the surface water, DPG and DTG reacted rapidly, being below 1% of their
initial concentration after 2 min (Figure S12a-b). Conversely, with the effluent
wastewater (with a higher TOC), still an 87% of DPG and 73% of DTG remained after 20
min (Figure S12c-d). Indeed, formation of TPs is easier to happen during drinking water
production than by chlorination of wastewater (after secondary treatment). Even so,
the chlorinated wastewater was analysed for the TPs previously identified in ultrapure
water and several of them could be detected. The amount of bromide in those samples
is very low (<0.1 mg L%, see 2.2), therefore no brominated TPs were detected. When
excluding those brominated TPs, 6 out of 9 TPs where detected for DPG (DPG-136,
DPG-228, DPG-210, DPG-226, DPG-260 and DPG-294) and 7 out 16 where detected for

DTG (DTG-150, DTG-256, DTG-290, DTG-239, DTG-254, DTG-270 and DTG-288).

3.6. (Eco)toxicity assessment

To obtain a preliminary estimation of the ecotoxicological implications of the
chlorination reaction, the US-EPA TEST software was used in order to predict the
toxicity of the two guanidines and their TPs. This prediction was performed only for
Daphnia Magna LCso (48 h), Tetrahymena Pyriformis LCso (48 h) and oral rat LDso (as a
proxy of human toxicity), since the software was unable to produce an estimation for

other endpoints. The results obtained are summarized in Tables 1 and 2.

As it can be appreciated, oral rat toxicity LDso values are in the 602-805 mg Kg* bw for
the two guanidines, which would classify them as Category 4 (i.e. the less toxic
category) according to the ECHA Guidance (ECHA 2017). The TPs would also be

classified as Category 4. Hence human toxicological hazard is expected to be low.
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The predicted acute aquatic toxicity endpoint values lie in the 5-28 mg L't and 3-6 mg L
! ranges, for DPG and DTG respectively (Tables 1 and 2). Thus, they would not be
classified as Category Acute 1 (the only acute aquatic toxicity category) according to
the ECHA Guidance (ECHA 2017). As regards the TPs, the predicted aquatic toxicity of
the monoguanidine TPs is lower than the precursor guanidines for the crustacean
Daphnia Magna, while it could not be predicted for the fish T. pyriformis. On the other
hand, particularly TPs which are halogenated are predicted to be more toxic. Thus,
DPG-294 and 14 TPs from DTG (see Table 1 and 2) would have a predicted toxicity
endpoint <1 mg L and would thus be classified in the Category Acute 1 for aquatic
organisms. Care must be taken with these data, since the third trophic level (algae)
toxicity could not be predicted and values obtained for algae can likely result into more
ecotoxicity. In fact DTG is classified in the REACH dossier as Aquatic Acute 1 (ECHA

2018a).

Furthermore, the acute toxicity of DPG and DTG was assessed using the

bioluminescent Vibrio fisheri test.

The ECsop and ECyo values of Vibrio fisheri test were estimated from a series of
geometrical dilutions with dilution factors from 1 to 256 and initial guanidine
concentration of 100 mg L. Figure S13 shows two dose-response curves of DPG after
an incubation time of 30 min at 15°C. The initial ECyo of DPG was 40 +2 mg L and the
ECso was estimated (as detailed in Text S3) to be 245 +33 mg L from extrapolation of
the dose-response curves. The toxicity of DTG was lower and only an EC2o of 80 mg L?
could be determined. These results confirm that both guanidines have a low acute

aquatic toxicity. Due to solubility limitations, the effect of chlorination on acute toxicity
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was only tested with a DPG solution of 40 mg L corresponding to the ECy.
Chlorination was performed with chlorine doses of 40 and 400 mg Cl, L! (i.e. molar
Cl,/DPG ratio of 3 and 30). Toxicity tests were conducted after the absence of chlorine
residual was checked. Results in Figure 5 shows that the bioluminescence inhibition
strongly increases from 14% before chlorination to 45 and 99% for Cl,/DPG ratios of 3
and 30, respectively. Similar results were generally observed in the literature after
chlorination and were assigned to more toxic halogenated TPs (El Najjar et al. 2013,
Tawk et al. 2015). Even though the increase of toxicity could not be assigned to specific
TPs/DBPs, results of bioluminescent Vibrio fisheri test were in agreement with

predicted aquatic toxicity endpoints obtained by QSAR.

4. Conclusions

DPG and DTG rapidly react with chlorine and bromine at natural water pH values. This
reaction leads to the formation of several TPs via ipso-halogenation, hydroxylation,
halogenation and cyclization. Several of these TPs are predicted to be more toxic than
the original guanidine compounds, which was confirmed by measuring the acute
toxicity of a chlorinated mixture by a Vibrio Fisheri acute toxicity assay. Moreover,
chlorination leads to the production of the traditional/regulated DBPs chloroform and,
to a minor extent, dichloroacetonitrile, when the molar ratio of chlorine to DPG/DTG is

high.
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Figure 5. Evolution of bioluminescence inhibition measured using Vibrio fisheri
Microtox® test during DPG chlorination. [DPG], = 40 mg Cl> L%, molar DPG:Cl; ratios of

1:3 and 1:30, chlorination time of 4 days at pH 7.0.
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Table 1. QSAR Predicted toxicity values for DPG and its TPs.

Daphnia magna T. pyriformis Oral rat
LCso (48 hr) (mg/L) IGCso (48 hr) (mg/L) LDso (mg/kg)

DPG 5.09 28.5 805
DPG-119 16.4 np 493
DPG-136 30.6 np 500
DPG-170 11.5 np 455
DPG-210 5.29 11.4 908
DPG-214 1.14 9.53 1320
DPG-226 2.46 10.4 1143
DPG-228 5.24 21.1 2433
DPG-246 1.22 7.21 886
DPG-260 1.89 4.78 1241
DPG-290 1.14 9.53 1320
DPG-294 0.75 2.88 1019

np: no prediction possible
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Table 2. QSAR Predicted toxicity values for DTG and its TPs.

Daphnia magna T. pyriformis Oral rat
LCso (48 hr) (mg/L) IGCso (48 hr) (mg/L) LDso (mg/kg)
DTG 2.92 5.53 602
DTG-150 27.5 np 498
DTG-166 235 np 993
DTG-184 22.7 np 429
DTG-228 5.00 np 519
DTG-238 3.14 6.35 553
DTG-254 1.68 8.26 1036
DTG-256 3.43 9.19 1259
DTG-270 2.16 6.52 1121
DTG-272 2.52 11.2 2352
DTG-274 0.70 2.29 1178
DTG-286 8.28 9.80 527
DTG-288 0.76 1.98 721
DTG-290 0.93 2.14 1014
DTG-306 0.95 2.06 1870
DTG-308 0.49 1.24 1109
DTG-318 0.39 4.35 1103
DTG-324 0.74 1.11 940
DTG-332 0.51 1.55 1627
DTG-334 0.87 3.21 927
DTG-340 0.31 1.11 1074
DTG-250 0.79 2.38 1485
DTG-396 0.19 1.46 563
DTG-412 0.28 1.21 823
DTG-426 0.03 0.55 384

np: no prediction possible
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for calculation details. The two different symbols correspond to two replicate

experiments.
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Text S1. Full kinetic model

A full kinetic model was evaluated for initial reaction of halogenation of guanidines.
The model includes the reactions of hypohalous acid (HOCI or HOBr) with neutral or

protonated guanidines and the reaction of hypohalite ion (CIO” or BrO’) with neutral

guanidine:
K, _ .
(1) HOX —= OX+H fast
K

2) guanidine”® guanidine + H*  fast
k

(3) 8uanidine + HOX —L TPs slow
k

(4) guanidine® + HOX —2  TPs slow
k

(5) guanidine + XO° —3  TPs slow

Then, the general expression for the rate of halogenation of guanidine is given by the

following expression

d idi
[g%ne]g - k; [guanidine][HOX]- k, [guanidine*][HOX]

(6) - k5 [guanidine][XO] = -kapp [guanidine]; [HOX]

The apparent rate constant depends on the intrinsic rate constants k4, k;, and ks and
the molar fractions of guanidine and halogen species.
(7) and kapp = kl Thox aguanidine + kz Apox aguanidine+ + k3 Axo- aguanidine

Replacing the molar fractions by their expressions in function of H* concentration and

equilibrium rate constants give the following expression for kapp:

_ kyK[H]+k,[HY]?+k3K Kq
aPP T (Kg+[HY])(K+[HY])

8) k

Specific rate constants and coefficients of determination obtained by kinetic modelling
by non-linear regression (Sigma Plot 11.0) of the experimental pH profile of apparent
rate constants are given in Table S5. Values are compared with values obtained by the

simple kinetic model considering only the reaction of HOX with neutral guanidine.
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The results presented in Table S5 show that, except for chlorination of DTG, values of
k, and ks are very low or equal to zero and that determination coefficients are similar
for the two models. The only significant k3 value of 3.9 x 10° M* s was generated for
the chlorination of DTG with slightly higher R* for full kinetic model. Still ks is 4 orders
of magnitude lower than k;. This did not justify the use of the full kinetic model in
place of the simple model because this result only depends on the unique value of kapp

at pH 11.0 for DTG.
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Text S2. Further experiments investigating guanidines bromination

Several experiments were conducted in order to further investigate the observed
deviation from the model during the bromination of DPG and DTG. For DPG, apparent
rate constants determined at pH 8.5 and 9.0 by the direct kinetics method in batch
reactor were about 70-fold lower than rate constants determined by the competition
method using BP as reference compound. These rate constants are even 10-fold lower
than rate constants obtained during chlorination for the same pH range. Competition
kinetic method using TBP as reference compound (Figure S3b) gave also low apparent
constants at pH 7.0 and 8.0 and in the range of rate constants determined by the
direct method. Such experimental pH profiles of ks,pp could not be explained by

speciation of bromine or guanidines.

A further experiment performed at pH 6.9 with an excess of DPG (50 uM) compared to
bromine (5 uM) was performed. Residual oxidant was then analysed for different
reaction times as triiodide at 351 nm (g = 26 900 M™* cm™, Cimetiere et al. (2009)) in a
5-cm quartz spectrophotometric cell after addition of 250 pL of 1 M Kl phosphate
buffer (pH 6.5) solution in 5 mL of sample. This experiment showed an strong deviation
from the linear form of the pseudo-first-order kinetic model (Figure S5), which
suggests that compound(s) with oxidant properties remained in solution and could

interfere in rate constant determination.

Finally, when a higher concentration of 50 uM bromine was added in a 50 uM DPG
solution at pH 6.9, the colourless solution turned pink progressively for 3 minutes and
colour disappeared after addition of thiosulfate (see Figure S6 for UV/visible spectra).
In absence of thiosulfate, colour slowly disappeared for about 12 hours. The visible
absorption band was centered at 520 nm. These observations are very similar to the
formation of the highly colored semiquinoid free radical formed during oxidation of
N,N-di-ethyl-p-phenylenediamine and commonly used for chlorine analysis (Harp,
2002). Even though phenylguanidines differ from aromatic p-diamines and that the
formation of a radical cation during the oxidation of phenylguanidines could not be
confirmed in our study, a stable transformation product (TP) with oxidizing property

likely affected the determination of rate constants with bromine at pH 7 — 8. Such TP
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existence could not be confirmed, however, by LC-HRMS, likely because it is reduced

by the chromatographic eluents.

References:

Cimetiere N., Dossier-Berne F., De Laat J. (2009) Monochloramination of resorcinol:
mechanism and kinetic modelling. Environmental Science and Technology 43, 9380 -

9385.

Harp, D.L. (2002). Current Technology of Chlorine Analysis for Water and Wastewater.

Technical Information Series--Booklet No 17.
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Text S3. Description of Microtox®test inhibition calculations.

The inhibition of the luminescence was calculated according to the following equation:

HF%xloo

Ct

where  H;is the inhibition percentage of the luminescence after the incubation period t,

I; is the luminescence of the test solutions after the 30 min incubation period (i.e.

the final luminescence after addition of the sample),

I the corrected initial luminescence for the tested solution with I = fx x 1o, and |,

was the initial luminescence of the bacteria suspensions before the sample was

added, f¢ the correction factor fx = ?—Kwith lok is the initial luminescence of the
oK

control solution (2% NaCl) and Il is the luminescence of the control solution (2%

NaCl) after the 30 min incubation period.

The ECsp and EC,o values were calculated from the linear representation of log(c:)
versus log(H/(100 — Hy)), where c; = 100 x (1/dilution factor). The ECso value was given
by the point of intersection with the X-axis at log(H; /(100 — H;)) = 0. The ECyq value was
determined for log(H; /(100 — H;)) = -0.60.
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Table S1. Experimentally obtained k., for DPG at the different pH values and

corresponding half-lives calculated for 10 uM Cl, (i.e. 0.71 mg Cl, L™).

pH Kapp (M-l 5-1) t1/2 (s)
5.0 32 2203
5.6 73 950
5.9 170 408
6.0 194 357
6.1 230 301
6.4 580 120
6.5 670 104
6.7 1310 53
7.0 2400 29
7.5 3923 18
8.0 9760 7
8.4 11061 6
9.0 10776 6
9.5 4567 15
10.0 5999 12
11.0 1269 55
11.7 372 186
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Table S2. Experimentally obtained k.., for DTG at the different pH values and

corresponding half-lives calculated for 10 uM Cl, (i.e. 0.71 mg Cl, L™).

pH Kapp (M 5 ti/2 (s)
4.9 25 2803
5.5 148 469
6.0 364 190
6.5 1764 39
7.0 5599 12
7.5 7941 9
8.0 11327 6
9.9 18297 4
11.0 8205 9
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Table S3. Experimentally obtained kapp, kinetics methods for bromination of DPG at the
different pH values and corresponding half-lives calculated for 10 uM Br; (i.e. 0.71 mg
Br, L'"). BP and TBP are 4-bromophenol and 2,4,6-tribromophenol, respectively. Values

of k.. are apparent rate constants of BP and TBP calculated from Heeb et al. (2014).

pH Kinetic method Kref Kapp ty
(M*s7) (M*s7) (s)
5.00 direct - 76 916.9
5.18 direct - 84 827.0
5.50 direct - 314 220.7
5.63 direct - 195 354.7
5.74 direct - 334 207.5
6.00 direct - 228 304.0
6.83 direct - 344 201.6
7.00 competition with TBP 2112 311 222.9
7.08 direct - 363 190.9
7.57 direct - 460 150.7
8.00 direct - 940 73.7
8.00 competition with TBP 2842 4276 16.2
8.05 competition with BP 26900 16829 4.1
8.50 direct - 962 72.1
8.46 competition with BP 50700 61934 1.1
8.95 competition with BP 93300 158254 0.4
9.06 direct - 2240 30.9
9.65 competition with BP 439000 289338 0.2
10.00 competition with BP 245910 246000 0.3
10.48 competition with BP 93300 96164 0.7
11.03 competition with BP 27700 37977 1.8
11.75 competition with BP 5360 8245 8.4
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Table S4. Experimentally obtained kjpp, kinetics methods for bromination of DTG at the
different pH values and corresponding half-lives calculated for 10 uM Br; (i.e. 0.71 mg
Br, L'"). BP and TBP are 4-bromophenol and 2,4,6-tribromophenol, respectively. Values

of k.ef are apparent rate constants of BP and TBP calculated from Heeb et al. (2014).

Kinetic method et orr o
pH (Ms?)  (m?sT) (s)
5.22 direct - 36 1918.4
5.55 direct - 48 1438.6
6.04 direct - 113 611.7
6.50 direct - 277 250.3
6.85 direct - 318 217.8
6.99 competition with TBP 2112 127 545.8
7.50 direct - 417 166.2
8.02 competition with TBP 2842 797 86.9
9.15 competition with BP 698000 47857 1.4
9.90 competition with BP 294000 58707 1.2
10.55 competition with BP 80300 42185 1.6
10.94 competition with BP 33900 25430 2.7
11.80 competition with BP 4780 8355 8.3
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Table S5. Specific rate constants of halogenation of DPG and DTG determined by

kinetic modelling considering simple or full kinetic model.

Full model Simple model

ks ka ks R? k R?
Chlorination | DPG | 4.1x 10° 1.4x107 |2.4x10° |0.898 | 4.1x10° | 0.898
DTG | 2.4x 10’ 25x10° |3.9x10° |0.975|2.6x10" | 0.960
Bromination | DPG | 8.3 x 10° 2.2x10% |0 0.950 | 8.3x10° | 0.950
DTG | 5.5x10° 1.2x10° |0 0.997 | 5.5x10° | 0.997
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Table S6. List of chlorination and bromination DPG TPs.

Name Experimental Molecular Theoretical Error Error DBE Score Structure
m/z formula m/z (ppm) (mDa) (%)
NH
DPG 212.1182 Ci3Hiz N3 - - - 9 - NT N
H H
DPG-119 119.0604 C7 Hg N, 119.0604 -0.21 -0.03 6 100.00 ©\N,CN
H
NH
DPG-136 136.0867 C7Hg N3 136.0869 1.66 0.22 5 99.69
N~ "NH,
H
| N NH
DPG-170 170.0475 C; Hg N3 Cl 170.0480 2.67 0.45 5 98.90 V&
Cl N NH,
H
DPG-210 210.1025 Ci3 H11 N3 210.1026 0.35 0.07 10 99.97 O \H
N4
H NH
| N NH
DPG-214 213.9968 C; Hg N3 Br 213.9974 2.99 0.64 5 98.14 5 V& NN
r 2
H
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DPG-226 226.0975 Ci3H11 N3O 226.0975 -0.05 -0.01 10 100.00

DPG-228 228.1131 CizHiz N3O 228.1131 0.17 0.04 9 99.99
DPG-246 246.0795 Ci3 H12 N3 Cl 246.0793 -1.01 -0.25 9 99.74
DPG-260 260.0579 Ci3HioN; O Cl 260.0585 2.38 0.62 10 98.51
DPG-290 290.0287 Ci3 Hi2 N3 Br 290.0287 0.13 0.04 9 100.00

Az
Q XY,Z X' Y'Z'=H, OHOR CI

DPG-294 294.0186 Ci3 Hg N3 O Cl, 294.0195 3.22 0.94 10 96.91 O H=3
XA

) { OH=1
YZ  § N\ Cl=2
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Table S7. List of chlorination and bromination DTG TPs.

Experimental

Molecular

Theoretical

Error

Error

0,
Name m/2 formula m/z (ppm) (mDa) DBE Score (%) Structure
NH
DTG 240.1495 Cis Hi7 N3 - - 9 - N N
H H
NH
DTG-150 150.1026 Cg Hi1 N3 150.1026 -0.18 -0.03 5 100.00 J\
N~ 'NH,
H
| N NH
DTG-166 166.0971 CgHi1N3 O 166.0975 2.35 0.39 5 99.17 /) =
HO N° NH;
H
| N NH
DTG-184 184.0632 CgHio N3 Cl 184.0636 2.19 0.40 5 99.17 V&
Cl N NH>
H
| N NH
DTG-228 228.0131 Cg Hio N3 Br 228.0131 -0.06 -0.01 5 100.00 V&
Br N NH,
H
HN O
DTG-238 238.1336 Cis His N3 238.1339 1.16 0.27 10 99.68 HN=( O
HN
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DTG-254

DTG-256

DTG-270*

DTG-272

DTG-274*

DTG-286*

DTG-288*

254.1285

256.1436

270.1238

272.1391

274.1079

286.1182

288.0895

C15 H15 N3 0

C15 H17 N3 0]

Ci5 His N3 Oy

Cis H17 N3 Oy

Ci5 Hi6 N3 Cl

C15 H15 N3 03

CisHiaN;OCl

254.1288

256.1444

270.1237

272.1394

274.1106

286.1186

288.0898

1.14

3.29

-0.36

0.93

9.71

1.47

1.10

Page 18

0.29

0.84

-0.10

0.25

2.65

0.42

0.32

10

10

10

10

99.66

97.23

99.96

99.75

79.46

99.36

99.64



DTG-290

DTG-306*

DTG-308

DTG-318

DTG-324

DTG-332*

DTG-334

290.1042

306.0995

308.0706

318.0600

324.0657

332.0393

334.0550

Cis Hig N3 O Cl

Cis Hig N3 O, Cl

C15 H15 N3 CIZ

C15 H15 N3 Br

Cis His N3 Clz 0]

C15 H14 N3 O Br

C15 H16 N3 O Br

290.1055

306.0931

308.0716

318.0600

324.0665

332.0393

334.0550

4.38

2.89

3.19

0.12

2.46

0.00

-0.15
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1.27

0.88

0.98

0.04

0.79

0.00

-0.05

10

9

95.41

97.39

96.81

100.00

97.98

100.00

99.99

P aA
Ho/ Z N)J\N \\CI
H H

X.YZX'Y'Z'=H, OH OR Cl

ne NH

OH=2

Cl=1 Q\/NJKN\/@Z
XYz H H xY

XY, X",Y'=H OR CI

Cl=2 Jj\

T NN X
(oL
SN N
Br H H

X,Y,ZX'Y',Z'=H, OH OR Cl

o NH

OH=1

Cl=2 Q\/Nquj@;
XXz H H X

Br



DTG-340*

DTG-350*

DTG-396*

DTG-412

DTG-426*

340.0609

350.0499

395.9705

411.9655

425.9431

Cis Hi5 N3 O, Cl,

C15 H16 N3 02 Br

Ci5 His5 N3 Br;

C15 H15 N3 0] Brz

Ci5 H13 N3 O, Br

340.0614

350.0499

395.9705

411.9655

425.9425

1.50

-0.10

0.13

-0.09

-1.53

0.51

-0.03

0.05

-0.04

1.63

10

99.20

100.00

99.99

100.00

98.97

XYXY H, OH OR CI
Hrdael
OH2

X,Y,ZX\Y'\Z'=H, OH OR Br

O
Br—
N\
Br// N N > Br
H H

X,Y,ZX'Y'Z'=H, OH OR Br
OH 1
Br=2

X,Y,X',Y'=OH OR Br Xy

OH=2
Br=2

xY.
)\

* TPs with low intensity, thus no MS/MS spectra could be recorded
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Figure S1. Examples of pseudo-fist-order kinetics plots obtained during the
chlorination of DPG (Phosphate buffer 10 mM). (a) Influence of pH and quenching
methods ([DPG]o 1 UM, [chlorine], 10 uM). The reaction was stopped by thiosulfate
(full circle), ammonium (open circle) or manual direct injection was used (open
square). Linear regressions are plotted for reduction by thiosulfate. (b) Influence of

chlorine concentrations ([DPG]o 1 uM, pH 6.1). The reaction was stopped by

thiosulfate.
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Figure S2. Examples of pseudo-fist order kinetics plots obtained for bromination of
DPG (Phosphate buffer 10 mM). (a) Influence of pH ([DPG]g 1 puM). The reaction was
stopped by thiosulfate. (b) Influence of bromine concentration and quenching method
(IDPGJp 1 uM, pH 5.6). The reaction was stopped by thiosulfate (full circle) or manual
direct injection was used (open circle). Linear regression is plotted for reduction by

thiosulfate.
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Figure S3. Determination of apparent second order rate constants for bromination of
DPG by using competition kinetics method with (a) 4-bromophenol (BP) and (b) 2,4,6-
tribromophenol (TBP) as reference compound ([DPG]p 5 uM, [BP]p or [TBP]p 5 uM,
[bromine]o O to 10 uM, phosphate buffer 10 mM)
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Figure S4. Determination of apparent rate constant of bromination of TBP (pH 6.94,

[TBP]o 1 uM, [bromine]o 20 uM, 10 mM phosphate buffer)
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Figure S5. Decay of oxidant response during bromination of DPG (pH 6.9, [DPG]y 50
UM, [bromine]o 5 UM, phosphate buffer 10 mM)

e DP G
== DPG + bromine after 20 sec

=== DPG + bromine after 290 sec

DPG + bromine after 290 sec and thiosulfate reduction
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e —

O I I 1 - 1 I I 1 1
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Figure S6. UV/visible spectra of DPG solution before and after bromine addition (pH
6.9, 10 mM phosphate buffer, [DPG]g 50 uM, [Br,]o 50 uM, reduction by an excess of

thiosulfate)
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs.
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs. Continued.
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs. Continued.
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs. Continued.
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs. Continued.
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs. Continued.
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs. Continued.
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Figure S7. Chromatograms and MS/MS spectra of DPG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S8. Chromatograms and MS/MS spectra of DTG and its TPs. Continued.
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Figure S9. Plot summarizing the formation of TPs from DPG (10 uM DPG + 100 uM Cly)

at different reaction times: (a) results normalized to the time when the TP reached its

maximum; (b) results normalized by assuming that the response of the TPs was equal

to DPG, except for DPG-136, DPG-119 and DPG-170 (where DPG-136 was used instead)
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Figure S10. Plot summarizing the formation of TPs from DTG (10 uM DTG + 100 uM Cl,)
at different reaction times: (a) results normalized to the time when the TP reached its
maximum; (b) results normalized by assuming that the response of the TPs was equal
to DTG, except for DTG-150, DTG-166, DTG-184 and DTG-228 (where DPG-136 was

used instead).
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Figure S11. Molar yield of chloroform and dichloroacetonitrile (DCAN) obtained at
different molar DPG/DTG:chlorine ratios: (a) DPG, (b) DTG. (pH 7.0, [DPG], or [DTG],=

10 puM, reaction time 48 hours).
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Figure S12. Dissipation plots during the chlorination of real water samples (1 puM
DPG/DTG + 10 uM Cly): (a) DPG in river water, (b) DTG in river water, (c) DPG in
effluent, (d) DTG in effluent.
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Figure S13. Dose-response curves log(Ct) versus log (Ht / (100 — Ht)) for ECso and ECyg
value calculations of DPG toxicity using Microtox® test. See text S1 for calculation

details. The two different symbols correspond to two replicate experiments.
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