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Abstract 8 

Today's society is increasingly aware of food consumption patterns. Under the perspective that 9 

real consumption trends are often not in line with healthy recommendations, this research 10 

focuses on the study of the environmental and nutritional sustainability of two types of food 11 

consumption habits present in the northern Atlantic area of Spain (Galicia). The main objective 12 

is, therefore to detect the existing deviations between the current Galician diet (GD) and the 13 

traditional and increasingly relevant Recommended Atlantic Diet (RAD), allowing verifying 14 

whether current consumption patterns ensure an optimal and sustainable nutritional profile.. In 15 

this sense, the carbon footprint from a Life Cycle Assessment perspective has been estimated 16 

as environmental indicator of both dietary patterns and, the nutritional quality has been 17 

determined by the Nutrient Rich Diet 9.3 index and the Health gain score. The carbon footprint 18 

of both dietary models is moderately high compared to recommended diets such as the 19 

Mediterranean one. Comparing the two scenarios, the associated greenhouse gas emissions 20 

are about 15% higher for GD than for RAD, mainly due to the higher intake of beef and dairy 21 

products. On the other hand, nutritional quality is comparatively higher for RAD than for GD, 22 

associated with higher consumption of vegetables and fruits. An additional objective of this work 23 

has been to consider a sensitivity analysis to determine the effect of replacing beef with 24 

alternative sources. 25 

Having in mind this study, it can be concluded that the real consumption pattern in Galicia is far 26 

from the recommended one, with worse environmental and nutritional quality. The promotion of 27 

social awareness policies to guide consumers in the choice a healthier and more 28 

environmentally sustainable dietary pattern should be advisable for regional decision-makers as 29 
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well as for those who wish to promote adherence to the Atlantic diet in other regions and 30 

countries. 31 

 32 

Keywords: Atlantic diet; consumption patterns; GHG emissions; LCA; nutritional quality; 33 

sustainability. 34 

  35 
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1. Introduction 36 

There is a crucial need to make a change in the present unsustainable trends in food 37 

production and consumption. According to the literature (Garnett, 2011; Tukker and Jansen, 38 

2006; Vringer et al., 2010), one third of human impact on climate change is related to the food 39 

production chain and consumption patterns. For this reason, consideration of more 40 

environmental friendly dietary patterns may be a good option to help climate change mitigation. 41 

In order to understand the concept of sustainable diets, it is required to take into account the 42 

definition of the Food and Agriculture Organization of the United Nations - FAO (FAO, 2010). 43 

According to this organization, sustainable diets are those with low environmental impacts, that 44 

contribute both to food and nutritional security as well as to healthy life for present and future 45 

generations. In this regard, it is also advised food that comes from agricultural production 46 

systems with low environmental impact, such as less limited dependence on food of animal 47 

origin, short distance production and consumption networks, and minimal food processing and 48 

refining, among others (FAO, 2010). 49 

Food consumption trends have a significant influence on environmental impact (Garnett, 50 

2011; Irz et al., 2016; Sonesson et al., 2005). Nevertheless, numerous studies have been 51 

conducted in recent years to assess the environmental profile of the human diet (Castañé and 52 

Antón, 2017; Coelho et al., 2016; Pernollet et al., 2017; van de Kamp et al., 2018) since dietary 53 

habits have shifted from traditional to the so-called “Western diet” based on the intake  of animal 54 

based products in portions greater than recommended. As a result, the amount of GHG 55 

associated with a dietary choice varies significantly depending on the different products that 56 

makes it up (Carlsson-Kanyama and González, 2009; Committee on Climate Change, 2010; 57 

Scarborough et al., 2014), and largely depends on the efficiency of the production chain.On the 58 

road to healthier and more environmentally friendly dietary patterns (Van Dooren et al., 2014) 59 

governments from countries such as Sweden (Livsmedelsverket, 2009), United Kingdom 60 

(Reddy et al., 2009), Germany (Gerlach et al., 2013) and Finland (Steering Group, 2010) have 61 

strengthened their efforts to set up committees to advise society on more sustainable dietary 62 

patterns. Among the recommended diets, the well-known Mediterranean diet, traditionally 63 

present in Mediterranean countries (Spain, Italy, Greece, Croatia, Maghreb, Cyprus and 64 

Portugal), receives special attention. It is considered a healthy diet by global organizations such 65 
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as the World Health Organization (WHO, 2012) and FAO (FAO, 2010). The Mediterranean diet 66 

is related to a low incidence of chronic diseases due mainly to the high intake of vegetables, 67 

fruits and whole grains (Cencic and Chingwaru, 2010) and to the low intake of animal fats, with 68 

the moderate use of olive oil as a source of healthy fatty acids (Charro et al., 2006). 69 

It is interesting to note how countries outside the traditional area of the Mediterranean diet 70 

have begun to promote the Mediterranean diet style (van Dooren and Aiking, 2016; Wilson et 71 

al., 2013), as well as to create new dietary choices following that philosophy (e.g. the New 72 

Nordic diet) to achieve healthier consumption patterns (De Boer et al., 2014; Donati et al., 2016; 73 

Hoek et al., 2017; Saxe et al., 2012; van Dooren and Aiking, 2016). In line with the 74 

Mediterranean style, the Atlantic diet (Tojo and Leis, 2009) represents a dietary pattern 75 

traditionally associated with the northwest of the Iberian Peninsula including Galicia (Spain) and 76 

northern Portugal. The Atlantic diet has been recently considered a world reference for a 77 

healthy diet (Vaz Velho et al., 2016), as it maintains the basic characteristics of the 78 

Mediterranean diet while promoting the intake of fresh local and seasonal products, avoiding 79 

complex cooking methods. This diet also includes plant-based foods, seafood, legumes and 80 

nuts, with moderate consumption of animal products (i.e. pork and beef, milk and dairy 81 

products, and eggs), a significant intake of potatoes (higher than in Mediterranean countries), 82 

preferential use of olive oil for seasoning and cooking, and high consumption of mineral water. 83 

Therefore the optimal intake of polyunsaturated fatty acids, complex sugars, vitamins, fiber, 84 

minerals and functional components is guaranteed (Tojo and Leis, 2009; Vaz Velho et al., 85 

2016). In this sense, the consumption of a balanced diet as in the aforementioned diets is 86 

beneficial for the prevention of numerous chronic diseases (Cencic and Chingwaru, 2010). For 87 

instance, the consumption of fruits, vegetables, nuts and fish is related with the low incidence of 88 

cancers, neurodegenerative and cardiovascular diseases and Type II diabetes (Bach-Faig et 89 

al., 2011). Furthermore, consumption of fruits and vegetables is also related to protective effects 90 

against cell oxidation (Charanjit Kaur and Harish C. Kapoor, 2001; Wang et al., 1996). 91 

Numerous studies available in the literature report that there are outstanding differences 92 

between the dietary recommendations established by health administrations and actual food 93 

consumption patterns (Sáez-Almendros et al., 2013). While the Atlantic diet recommends a high 94 

consumption of fresh produce such as vegetables and fruits, data on actual consumption habits 95 
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indicate that this is not being met as it should be (Sáez-Almendros et al., 2013). Thus, there is a 96 

significant gap between recommended dietary patterns and actual food consumption trends, 97 

which implies an intensification of resources in the production chain. Current patterns of actual 98 

consumption are associated with increased intake of processed food and other resource-99 

intensive products, such as those of animal origin or processed foods (Cencic and Chingwaru, 100 

2010; Tilman and Clark, 2014; Tukker et al., 2011). 101 

Therefore, the main goal of this study is to compare, from a sustainability perspective, the 102 

recommendations of the traditional Atlantic diet with the real consumption trends, considering 103 

Galicia as case study, as well as to provide an answer to the question whether current 104 

consumption patterns ensure an optimal nutritional profile. Finally, the level of concurrence 105 

between both dietary patterns was also determined by taking into account both the carbon 106 

footprint (CF), from an LCA approach associated with food production, as well as the nutritional 107 

quality. Regarding the latter, two different indexes have been proposed for analysis to improve 108 

robustness and consistency of results: The Nutrient Rich Diet 9.3 score, which takes into 109 

account the intake of certain valuable and harmful nutrients (Van Kernebeek et al., 2014) and 110 

the health gain score, which follows a similar approach for food groups (Van Dooren et al., 111 

2014). Furthermore, from a practical point of view, the study will allow to identify the weak spots 112 

of the GD from both a nutritional and environmental point of view and will serve as a guide for 113 

decision-makers to promote a consumption pattern in pursuit of the traditional diet. 114 

 115 

2. Materials and methods 116 

The comparative assessment of sustainability between two different dietary patterns related 117 

to the recommended Atlantic diet and the actual consumption pattern has been carried out by 118 

estimating the CF as a representative environmental indicator, as well as by means of two 119 

nutritional quality indexes. A detailed description of both perspectives is presented below. 120 

 121 

2.1. Carbon footprint methodology 122 

2.1.1. Description 123 

 124 
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In this study, the environmental sustainability of the two different dietary patterns in terms of 125 

their CF (i.e., GHG emissions) has been determined from a Life Cycle Assessment (LCA) 126 

approach, which systematically assesses the environmental burdens of each type of diet at all 127 

stages of its life cycle (ISO 14040, 2006). The carbon footprint is selected as an environmental 128 

indicator due to its great relevance and widespread use in related studies of dietary patterns 129 

(Aleksandrowicz et al., 2016; Batlle-Bayer et al., 2019; González-García et al., 2018; Ritchie et 130 

al., 2018; Springmann et al., 2018). In this case, the CF has been estimated considering the 131 

stages of production and transport to retailer, as detailed below. 132 

 133 

2.1.2. Functional unit 134 

The selected functional unit to report the results corresponds to the daily amount of food 135 

eaten per person, that is, the individual daily diet. This functional unit allows the comparison 136 

between the scenarios proposed, as well as with other related studies available in the literature 137 

on environmental assessment of different types of daily diets (Castañé and Antón, 2017; 138 

Pernollet et al., 2017; Werner et al., 2014) regardless of daily energy intake (i.e. kcal per capita 139 

and day). 140 

 141 

2.1.3. Scope of the dietary scenarios 142 

The scope of the CF study for both scenarios considered a cradle-to-mouth perspective. Thus, 143 

the systems analyzed included the stages of food production (i.e., production of the foodstuffs 144 

included in each daily diet) and transport activities (i.e. the distribution of the products from the 145 

factory, farm or port to the corresponding retailers and from retailers to households). Therefore, 146 

storing at retailers and consumption stage at the households, which should include operations 147 

such as food preparation at home, refrigeration and final waste disposal, were disregarded. The 148 

rationale behind their exclusion from the scope of the study is that these consumer activities 149 

should have a similar impact in both dietary scenarios, considered for the same region (Heller et 150 

al., 2013). Moreover, other studies (Berlin and Sund, 2010) established that the consumption 151 

stage could contribute up to 10% of the total life cycle GHG emissions when estimated 152 

considering the food consumed in a typical menu. However, with regard to the estimation of 153 

GHG emissions from food cooking in or outside households, it should be necessary to have real 154 
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information on the menus and the cooking method (i.e., boiling, frying, baking, …) considered 155 

information that is not available for the GD scenario. Thus and taking in mind the mentioned 156 

studies, the exclusion of the consumption stage (i.e., food preparation) from the analysis could 157 

be justified. In addition, the exclusion of the stages mentioned also allows the results of this 158 

study to be compared with other relevant ones available in the literature (Castañé and Antón, 159 

2017; Risku Norja et al., 2009; Sáez-Almendros et al., 2013; Saxe et al., 2012; Van Dooren et 160 

al., 2014). 161 

Food losses along the chain considered in both scenarios have been calculated based on 162 

García-Herrero et al. (2018), especially regarding the distribution to retailer and consumption 163 

stages (Garcia-Herrero et al., 2018). This estimation is based on the losses reported by FAO for 164 

European countries (FAO, 2011). Bearing in mind that there is not detailed information on  the 165 

loss percentage for pre-cooked food – an important item in the current diet, the highest 166 

percentage reported by García-Herrero et al. (2018) for processed food (5%) has been 167 

assumed for this type of foodstuff as the  worst case. With regard to the foodstuffs production 168 

stage, information on losses has been included in the corresponding background processes due 169 

to the consideration of the cradle-to-gate approach of the references consulted. 170 

2.1.4. Description of dietary patterns 171 

Galicia (NW Spain) has been historically characterized as the cradle of a wide selection of 172 

high quality food products, appellation of origin and organic farming with prestige beyond its 173 

borders (Xunta de Galicia, 2005). All these concepts are included within the Atlantic diet model, 174 

fulfilling its basic characteristics such as abundance of seasonal, local and fresh products, high 175 

intake of plant-based products and seafood, as well as a moderate intake of animal-origin 176 

foodstuffs (Vaz Velho et al., 2016). Nevertheless, the current dietary choices of the Galician 177 

region may not be at all in line with these recommendations and with traditional patterns, which 178 

seem to vary in proportion and quantity of certain categories of foodstuffs. The spread of the 179 

occidental culture and the globalization of food consumption and production are behind these 180 

alternative choices; however, this trend is also observed in other dietary patterns such as the 181 

Mediterranean diet (Da Silva et al., 2009). 182 

 183 

 184 
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Recommended Atlantic Diet – RAD scenario  185 

This scenario corresponds to the Atlantic diet recommendations defined by the Health 186 

Department of the Xunta de Galicia (2013). The 7 daily-menus reported by Esteve-Llorens et al. 187 

(2019) have been taken into consideration (See SM Table 2 to 8) (Esteve-Llorens et al., 2019). 188 

This study includes 67 foodstuffs grouped into 11 different categories (i.e., fruits, vegetables, 189 

legumes, grains, nuts, dairy products, eggs, meat, fish, sweets and oils/fats), all of which are 190 

recommended ingredients in the Atlantic food pyramid (Tojo and Leis, 2009) as well as in the 191 

traditional Galician gastronomy (Xunta de Galicia, 2013). In this scenario it has been assumed 192 

that the recommended servings according to the Atlantic diet pyramid (Tojo and Leis, 2009) are 193 

applied to the entire population even though they are aimed at the adult population. Therefore, 194 

the average daily intake of each food group (g·day-1) has been considered for evaluation to 195 

facilitate the resulting comparison with the other scenarios proposed for analysis. Table 1 196 

summarizes the daily intake of each food category per capita. 197 

Galician Diet – GD scenario 198 

The second scenario considered for analysis is based on the actual consumption patterns 199 

of the Galician diet. The available surveys from the Galician Ministry of Health (SERGAS, 2007) 200 

have been analyzed to gather dietary information. The consulted study reports Galician eating 201 

habits in 2007 (last year updated) and it is based on data from 3,148 participants, both urban 202 

and rural residents. The nutritional analysis  included 129 food-items according to the surveys 203 

(SERGAS, 2007). As a result, in addition to the food categories indicated in the RAD scenario, 204 

an additional group of industrially processed foods has been included in the GD scenario which 205 

appears in the current consumption trends but is not included in the Atlantic dietary philosophy 206 

due to its low nutritional quality. The surveys were based on a dietary plan of 24 hours, 207 

conducted in two different seasons (Spring-Summer and Fall-Winter) to cover seasonal 208 

differences in the intake of some foodstuffs (e.g. broccoli, asparagus, peach, fig); in addition, a 209 

food consumption questionnaire was also carried out, supported by photographs of food 210 

servings to calculate the size of the portions eaten. The reported global food-items intakes (See 211 

SM Table 9) have allowed the estimation of the apparent food consumption per capita a whole 212 

day (g·person-1·day-1) as shown in Table 1. Nevertheless, the aforementioned SERGAS survey 213 

(2007) only provides an average figure of the food consumed per person per day. Thus 214 
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variations between the different individuals surveyed cannot be appreciated. It is therefore 215 

important to take potential uncertainty into account when discussing the results. 216 

Table 1. Daily amount (g) of each food category in the Recommended Atlantic Diet (RAD) and 217 
Galician Diet (GD) scenarios. 218 

 219 

Food category 
RAD 

(g·person-1 ·day-1) 
GD 

(g·person-1·day-1) 

Fruits 1024 439 

Vegetables 633 581 

Legumes 29.3 20.1 

Grains 291 319 

Nuts 33 5.0 

Dairy 419 472 

Eggs 23.7 26.2 

Meat 91.9 213 

Seafood 195.7 182 

Processed food 0.00 88.1 

Sweets 11.7 15.5 

Oil/fats 29.9 23.6 

TOTAL 2753 2387 
 220 

2.1.5. Inventory data for carbon footprint estimation  221 

After an extensive literature review, a total of 139 food products from 42 LCA studies (see 222 

Supplementary material) have been included in the inventory data set to determine the CF 223 

scores of both diet scenarios, all of which have been analyzed from a cradle-to-gate 224 

perspective. In addition, these foodstuffs have been grouped into 12 representative food 225 

categories: fruits, vegetables, legumes, grains, nuts, dairy, eggs, meat, fish, processed food, 226 

sweets and oil/fats (Aguilera et al., 2015; Clune et al., 2017; González-García et al., 2013; 227 

Gunady et al., 2012; Iribarren et al., 2011; Nielsen et al., 2013; Notarnicola et al., 2017; Noya et 228 

al., 2017; Volpe et al., 2015), attending to the Atlantic diet pyramid and other relevant studies in 229 

literature (Castañé and Antón, 2017). In order to apply a similar scope for both dietary 230 
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scenarios, some assumptions have been made. In this sense, most of the foodstuffs LCA 231 

studies cover a cradle-to-gate perspective; however, when the CF of a food product includes 232 

transportation from retailer to households, food preparation or waste disposal, stages that have 233 

not been included in this study, the related GHG emissions have been discarded, by subtracting 234 

the corresponding percentage, according to specific LCA study indications. In addition, due to 235 

their minor contribution on the daily diets (Castañé and Antón, 2017; Van Kernebeek et al., 236 

2014), food condiments, soft drinks, infusions, coffee and alcoholic beverages have been left 237 

out of the scope of the study.  238 

On the other hand, certain products have been assimilated to others with similar production 239 

process and/or comparable nutritional characteristics due to the lack of data for the estimation 240 

of their environmental profiles. This is the case of chard (assimilated as lettuce), curd (as 241 

yogurt), semi-cured and cured cheese (as Galician cheese), leek (as onion), nectarine (as 242 

peach) and clams, oysters and scallops (as mussels). 243 

In terms of distribution, Euro 5 diesel freight lorries (>32 tons) have been chosen for 244 

transport activities from the factory/farm gate to retailers for Spanish products. Thus, distribution 245 

distances of 60 km and 400 km (on average) have been set for the foodstuffs supply from inside 246 

and outside Galicia, respectively, for all products included in the study. In this sense, it is 247 

assumed that the vast majority of the products are manufactured in Spanish territory, except 248 

certain foodstuffs that are imported such as pineapple, coffee, cod or salmon. In these cases, 249 

an average distance by ship and lorry from their country of origin to Galicia has been estimated. 250 

Regarding the transport from retailers to households, assumptions from Esteve-Llorens et al., 251 

(2019) have been considered. Concerning the estimation of the CF of transport activities, the 252 

Intergovernmental Panel on Climate Change (IPCC) characterization factors have been applied 253 

to quantify the equivalent CO2 emissions to be added to those of the food production phase. 254 

Inventory data taken from the Ecoinvent ® v3.2 database (Wernet et al., 2016) have been 255 

considered for road and sea transport. 256 

 257 

2.2. Nutritional quality estimation 258 

As previously mentioned, the nutritional quality of a diet is as important as its environmental 259 

impact, whether or not it is considered a sustainable diet, and it is also an important concept in 260 
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our time, when the growing trend towards a healthy lifestyle includes the consumption of 261 

nutrient-rich foods instead of high-calorie products (FAO, 2010). In this sense, the nutritional 262 

quality of both dietary scenarios (RAD and GD) has been analyzed from an average daily menu 263 

perspective rather than from a single meal evaluation, which would not provide sufficient 264 

representative information on consumer habits (Van Kernebeek et al., 2014). In this case, the 265 

concept of daily menu is based on the average amount of each food-item consumed per person 266 

in a day.  267 

In this study, two different nutritional indexes have been proposed for analysis, as they 268 

could be considered complementary. Firstly, the Nutrient Rich Diet 9.3 (NRD9.3) index 269 

proposed by Van Kernebeek et al. (2014) was calculated (see Equation 1). This score considers 270 

the daily intake of nine nutrients to encourage (protein, fiber, calcium, iron, magnesium, 271 

potassium, vitamin A, vitamin E and vitamin C) and three nutrients to limit (total sugar, saturated 272 

fats and sodium) (Castañé and Antón, 2017; Van Kernebeek et al., 2014). Consequently, the 273 

greater the amount of nutrients ingested to encourage and the smaller the amount of nutrients 274 

to limit, the higher the NRD 9.3 index is. Nevertheless, when the 9 nutrients to encourage 275 

exceed the Recommended Daily Value (RDV), they are capped to this former value, in order to 276 

avoid overestimation caused by overconsumption.  277 

𝑁𝑁𝑁𝑁𝑁𝑁9.3 = �∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

𝑖𝑖=9
𝑖𝑖=1 − ∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘

𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘
𝑘𝑘=3
𝑘𝑘=1 � ∗ 100                      (1) 278 

On the other hand, a health gain score has also been proposed for estimation, which is 279 

based on certain parameters other than the nutrients mentioned above (see Equation 2). This 280 

health index has been developed by Van Dooren et al. (2014) taking into account the 281 

complexity of determining the health benefits of diets (Van Dooren et al., 2014). To this end, the 282 

health parameters established by different health organizations such as WHO1, World Cancer 283 

Research Fund (WCRF)2 or Dutch Health Council (DHC)3 were taken into account. 284 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣
200

+ 𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
200

+ 𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
30

+ 30
𝑒𝑒𝑒𝑒 % 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓

+ 10
𝑒𝑒𝑒𝑒 % 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

+ 6
𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

+ 2000
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� ∗ 100
7

  (2) 285 

The following parameters have been considered for the estimation: the daily intake of two 286 

food groups (i.e., vegetables and fruits), the daily percentage of energy obtained from total fatty 287 

                                                           
1 http://www.who.int/   (accessed June, 2018) 
2 https://www.wcrf.org/ (accessed June, 2018) 
3 https://www.gezondheidsraad.nl/en/home (accessed June, 2018) 

http://www.who.int/
https://www.wcrf.org/
https://www.gezondheidsraad.nl/en/home
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acids and free sugars, the daily intake of sodium and fiber and the total daily energy intake 288 

(kcal·day-1). Therefore, the amounts of vegetables, fruits and fiber consumed are beneficial 289 

elements to encourage. Furthermore, it is not recommended to exceed the reference values for 290 

the daily percentage of energy intake obtained from total fatty acids and free sugars and the 291 

daily intake of sodium. Moreover, to contextualize the health gain score obtained for the RAD 292 

and GD scenarios, the recommended reference values of the mentioned parameters reported 293 

by the WHO (WHO, 2003) have been considered. Additionally, the complete nutritional 294 

composition of the foodstuffs has been obtained from the Spanish Food Composition Database 295 

(AECOSAN, 2018). 296 

Finally, the estimated indexes for both dietary scenarios will be compared with other results 297 

(for these scores) available in the literature (van Dooren and Aiking, 2016; Van Kernebeek et 298 

al., 2014) to rank their position in terms of nutritional quality. 299 

 300 

  301 
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3. Results and discussion 302 

3.1. Carbon footprint assessment 303 

The estimated CF for RAD and GD is 4.53 kg CO2 eq ·person-1·day-1 and 5.22 kg CO2 eq 304 

person-1·day-1 respectively. The main factor responsible for the total GHG emissions is the 305 

foodstuffs production stage regardless of the scenario (i.e. 4.07 kg CO2 eq ·person-1·day-1 and 306 

4.80 kg CO2 eq·person-1·day-1 for RAD and GD, respectively). The food production stage 307 

includes all the background processes related to agricultural and farming activities, as well as 308 

the corresponding industrial preparation activities if necessary (e.g., slaughterhouse, 309 

refrigeration and packaging). Consequently, it can be observed that transport activities are 310 

responsible for around 10% of total GHG emissions in both scenarios, specifically, ~0.4 kg CO2 311 

eq·person-1·day-1. The rationale behind this fact is that, in the case of food patterns from the 312 

same geographical area, the foodstuffs come from the same sources in most cases and are 313 

transported over similar distances. 314 

Figure 1 shows the individual CF per scenario for the food production phase, including the 315 

distribution by contributing food category. As it can be observed, livestock products (i.e. meat 316 

and dairy products) are the main contributor to the CF. Not only because they are some of the 317 

most consumed foods (Table 1) but also because they are the foods with the worst associated 318 

environmental profiles (Aleksandrowicz et al., 2016). 319 

 320 



14 
 

 321 

Figure 1. Distribution of food category contributions to the global carbon footprint. Acronyms: 322 
RAD – Recommended Atlantic Diet scenario; GD – Galician Diet scenario.  323 

Focusing on meat products, both scenarios have a similar CF (i.e. 1.9 kg CO2 eq and 2.2 kg 324 

CO2 eq respectively for RAD and GD), despite the fact that the amount of meat ingested is 325 

roughly double in the GD compared to RAD as shown in Table 1. The rationale behind this 326 

result is associated with beef consumption, which is similar in both scenarios (66.9 g and 56.6 g 327 

respectively in RAD and GD), being this type of meat the one with the worst associated 328 

environmental profile: 28.60 kg CO2 eq·kg-1 according to the average value reported by Clune et 329 

al. (2017). The CF associated with this amount of beef is 1.91 kg CO2 eq and 1.62 kg CO2 eq 330 

per person and day, being responsible for 42% and 31% of total GHG emissions in RAD and 331 

GD, respectively. 332 
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By comparison, the contribution to the total CF from meat consumption, taking into account 333 

other types of meat, is much lower than that from beef and veal. In addition, it can be noted that 334 

beef alone accounts for about half of the total CF in RAD, and about a third in the GD. 335 

For all other food products, dairy products also report a remarkable effect on the CF 336 

regardless the scenario under study. In RAD, dairy products are responsible for 16% of the total 337 

CF. In the case of GD, their contribution is lightly lower (15%). This is a consequence of the 338 

notable intake of dairy products in the Galician region as shown in Table 1. The production of 339 

the seafood consumed is the third largest in terms of GHG emissions in both scenarios (see 340 

Figure 1). However, in this food category it is necessary to distinguish between RAD and GD. 341 

Although the amount of seafood products is similar in both dietary patterns (195 g and 182 g 342 

respectively for RAD and GD), the derived CF is almost twice as much in GD as in RAD (0.73 343 

and 0.41 kg CO2 eq respectively). The rationale behind this surprising result is mainly explained 344 

by the consumption of certain species in the GD, with relatively high GHG emission factors (e.g. 345 

salmon, hake, flatfish, prawns and canned tuna), which were not considered within the designed 346 

menus of RAD. As a result, seafood products account for about 14% of the total CF for the GD, 347 

and about 9% for RAD.  348 

Moreover, it is interesting to note the contribution of the processed food category in the 349 

case of GD. As mentioned above, this category only appears in GD, as it includes products not 350 

recommended by the health authorities due to their low nutritional quality (Xunta de Galicia, 351 

2013). However, they are actually present in the current consumption trends. In this sense, the 352 

consumption of processed foods represents around 6% (0.29 kg CO2 eq) of the total CF in GD, 353 

which is a higher ratio than that associated with other ingredients such as vegetables and fruits 354 

(≈4% and ≈2% respectively), which are considered basic foods in the diet. 355 

Finally, in terms the contribution to the CF score of food losses along the food supply chain, its 356 

relevance to the environmental footprint can be highlighted, since food losses represent around 357 

14% of the total CF for both scenarios (around 0.7 kg CO2 eq). Therefore, attention should be 358 

paid to this hotspot. 359 

3.2 Comparing the nutritional quality of RAD and GD scenarios 360 

Regarding the NRD9.3 index, the results estimated for RAD and GD are 474 and 242, 361 

respectively, as shown in Table 2. The amount of each nutrient ingested to limit and promote is 362 



16 
 

also depicted in the table, as well as its recommended daily intake value (RDV). It is important 363 

to note that when the RDV outcomes fall between two values, an average value has been 364 

considered in the estimate. 365 

Table 2. Nutrient Rich Diet 9.3 (NRD9.3) index for both Recommended Atlantic Diet (RAD) and 366 
Galician Diet (GD) and Recommended Daily Value (RDV) for each nutrient considered in the 367 
index. 368 

 369 

As can be seen, the intake amount of many nutrients is higher than the RDV in both 370 

scenarios. On the other hand, comparing the ingestion values corresponding to the nutrients to 371 

encourage, their intake is higher for most nutrients in RAD than in GD mainly due to the large 372 

consumption of fruits and vegetables (see Table 1). However, in terms of protein and calcium, 373 

the situation is reversed. The higher intake of protein in GD (2.5 times higher than the RDV) is 374 

related to the remarkable consumption of meat, considerably higher than the recommended 375 

values (see Table 1). The higher intake of dairy products in GD consequently increases the 376 

amount of calcium ingested, being 0.2 times higher than the RDV. 377 

When comparing the intake of nutrients to limit, saturated fat, free sugars and sodium are 378 

ingested in higher amounts in the GD than in the RAD, which is mainly attributed to the 379 

Nutrient Units RDV RAD GD 

Protein g 50 101 133 

Fiber g 25 39.9 36.8 

Vit A µg 700-3000 1448 967 

Vit C mg 60-2000 320 195 

Vit E mg 20-1000 23.0 11.7 

Ca mg 1000-2500 1083 1182 

Fe mg 18-45 33.0 18.5 

K mg 3500 4938 4151 

Mg mg 400 435 364 

Saturated fats g 20 19.3 35.2 

Free sugars g 50 117 101.1 

Na mg 1500-2400 1449 2537 

NRD9.3   474 242 
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consumption of processed foods (AECOSAN, 2018). In this regard, it is important to mention 380 

that in RAD, the intake of all limiting nutrients is below the RDV. In contrast, the intake of 381 

saturated fat and sodium in the GD is considerably higher than the recommended values. The 382 

intake of added free is much higher than the RDV for the GD, mainly due to the intake of 383 

processed foods and sweets. Considering that sodium is the leading cause of death due to an 384 

inadequate diet, followed by a low intake of fiber and fruits (Afshin et al., 2019), emphasis is 385 

placed on avoiding excessive consumption of this element. 386 

The health gain scores for the RAD and GD scenarios are shown in Table 3, as well as the 387 

required reference values for each parameter (Equation 2). As previously reported, the health 388 

gain score is the result of the ratio between the reference intake values considered for 389 

vegetables, fruits, total fatty acids, free sugars, fiber, sodium and energy and those for actual 390 

intake in both scenarios. 391 

Table 3. Health gain score results for both Recommended Atlantic Diet (RAD) and Galician Diet 392 
(GD) scenarios. 393 

 394 

As can be seen, the amount of vegetables and fruits consumed in both scenarios is higher 395 

than the reference values set by WHO (WHO, 2003). In this sense, it is important to note that 396 

the intake of vegetables is more than double the reference quantity regardless of the scenario 397 

analyzed, and almost three times higher for the intake of fruits for RAD. Even the quantity of 398 

fruit consumed in the GD is 50% higher than the reference value (321 g versus 200 g). The 399 

justification for these differences is associated with the high availability of vegetables and fruits 400 

Indicator Units Reference value RAD GD 

Vegetables g 200 462 424 

Fruit g 200 747 321 

Total fatty acids % 30 31.8 31.9 

Free sugars % 10 22.3 23.5 

Fiber g 30.0 39.9 36.8 

Sodium g 6.0 1.4 3.1 

Energy kcal 2000 2100 2381 

Health gain score 
 

100 198 115 
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in the Atlantic region throughout the year, as well as the cultural culinary tradition of the region. 401 

In terms of fiber intake, it can be seen that the amount consumed in both scenarios is also 402 

above the reference value (30 g), an increase of 33% and 23% respectively for RAD and GD. 403 

As beneficial parameters, a higher intake of vegetables, fruits and fiber leads to better nutritional 404 

quality and, consequently, a higher health gain score. Taking into account the percentage of 405 

energy obtained from total fatty acids and free sugars, it should be mentioned that the 406 

proportions are above the reference value. While it is only 2% higher for total fatty acids, the 407 

percentage of energy from sugars far exceeds the recommended value, which is evidenced by 408 

a clear negative effect on the final health gain score. However, it is important to point out that 409 

the high intake of free sugars is directly related to high fruit consumption. On the other hand, the 410 

daily intake of sodium is lower than the recommended dose (6 g), at values around 75% and 411 

50% lower in RAD and DG, respectively. 412 

Energy intake in both scenarios varies slightly from the 2,000 kcal set by WHO (WHO, 413 

2012). An increase in calorie intake is not considered advisable and has a negative impact on 414 

the health benefit score. With all these data reported, the health gain score has been estimated 415 

for both scenarios according to Equation 2.  416 

The values obtained for both scenarios are 198 points and 115 points respectively for RAD 417 

and GD (Table 3). Despite this outstanding difference, both scores are above the WHO 418 

benchmark (i.e. 100 points). Comparing the RAD and DG scores, it can be seen that the reason 419 

for the large difference in health gain scores is directly associated with fruit intake, as no notable 420 

differences in the remaining parameters can be identified. Otherwise, this practice also 421 

influences the fact that the health gain values in GD are above the reference value, mainly due 422 

to higher consumption of vegetables and fruits. Furthermore, it should be borne in mind that due 423 

to non-excessive energy intake (Table 3), the Health Score is not affected by this factor which 424 

on the contrary, would significantly penalize the nutritional quality.  425 

3.3. Benchmarking environmental and health gain scores 426 

Taking into account the results obtained in terms of nutritional and CF indexes, it is 427 

necessary to establish a relationship between them and those of the different studies available 428 

in the literature (Van Dooren et al., 2014; van Dooren and Aiking, 2016). The health gain score 429 

for RAD (198) is above the values found in the literature for other well-positioned dietary options 430 
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from environmental and health approaches such as the Mediterranean (MD), vegan (VD), 431 

vegetarian (VGD) and semi-vegetarian (SVGD) diets as can be seen in Figure 2. On the other 432 

hand, the health gain score achieved for GD (114) is above the reference value (100) as 433 

mentioned above, and is consistent with those identified for other dietary patterns (Figure 2), 434 

and even better than VGD or SVGD. 435 

 436 

Figure 2. Comparison in terms of Health gain score of RAD and GD with alternative healthy 437 
diets available in literature. Acronyms: MD - Mediterranean diet; VD - Vegan diet; VGD - 438 
Vegetarian diet; SVGD - Semi-Vegetarian diet. 439 

 440 

In order to establish a relationship between the nutritional quality and the CF, Table 4 441 

details the NRD9.3 and CF scores of both scenarios under study and the studies available in 442 

the literature; the health gain score has not been included in this table due to lack of information 443 

to perform the estimation of this index for these diets. Regarding the NRD9.3 values, RAD and 444 

GD obtain a score in line with those of these diets that use the same RDV (Castañé and Antón, 445 

2017). As it can be seen in Table 4, the RAD score reports a higher nutritional quality than 446 

others in the literature. On the other hand, the nutritional score for GD is lower than most of the 447 

values cited (e.g., Mediterranean and Healthy diets). Nevertheless, it is necessary to keep in 448 

mind that this is a scenario based on real consumption trends and it is not a one based on 449 

recommendations such as the other studies mentioned in the literature (Castañé and Antón, 450 

2017; Pathak et al., 2010; Risku Norja et al., 2009; Saxe et al., 2012; Van Dooren et al., 2014). 451 

It means that certain type of foods of lower nutritional quality, such as processed food and 452 

sweets, are included. 453 
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 454 

Table 4. Summary of NRD9.3 and Carbon Footprint (CF) indexes regarding RAD 455 
(Recommended Atlantic diet), GD (Galician diet) and other diets available in literature. 456 

 NRD9.3 CF (kg CO2 eq·person-
1·day-1) 

RAD 474 4.53 
GD 242 5.22 
Mediterranean diet 
(Castañé and Antón, 2017) 389 2.86 

Vegan diet 
(Castañé and Antón, 2017) 469 1.86 

Mediterranean diet 
(Sáez-Almendros et al., 2013) -* 2.19 

Spanish current diet 
(Sáez-Almendros et al., 2013) -* 4.39 

Vegan diet 
(Castañé and Antón, 2017) 469 1.86 

Vegetarian diet 
(Pathak et al., 2010) 424 0.58 

Healthy diet 
(Risku-Norja et al., 2009) 382 3.84 

Vegan diet 
(Risku-Norja et al., 2009) 442 2.47 

Vegetarian diet 
(Van Dooren et al., 2014) -* 3.2 

Danish dietary pattern 
(Saxe et al., 2012) 112 5.52 

*nutritional information not available.  457 
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Taking into account the CF for RAD and GD, and comparing these values with others 458 

reported in the literature, our scenarios involve relatively high CF scores (i.e. 4.53 and 5.22 kg 459 

CO2 eq·pers-1·day-1 respectively for RAD and GD) mainly due to the huge consumption of beef 460 

as mentioned above. In view of the results, it is important to refer to the fact that all the dietary 461 

patterns mentioned, except the current Spanish dietary pattern of Sáez-Almendros et al. (2013), 462 

the Danish dietary pattern of Saxe et al., (2012) and GD, are diets based on recommendations, 463 

generally leading to lower CF outcomes. However, attention should be paid to the system 464 

boundaries considered since waste production and distribution to households have been 465 

included in our study, these stages being responsible for 24% of total CF. In this sense, food 466 

distribution and waste are relevant hotspots that significantly increase the CF value and have 467 

not been considered in the abovementioned studies. As can be seen, nutritional quality and CF 468 

are not always inversely proportional parameters when comparing diets from different studies; 469 

however, there is a trend that links both. In this sense, a higher nutritional quality usually 470 

translates into a lower CF, as is also observed for the Mediterranean and vegan diets in 471 

Castañé and Antón (2017). Considering these interactions, it is important to stand out that the 472 

variation on both the nutritional quality and the CF is always related to the products of animal 473 

origin (i.e. meat and dairy). 474 

 475 

3.4. Sensitivity analysis of diets sustainability 476 

As mentioned above, beef meat is the main source of GHG emissions for both scenarios 477 

under study. For this reason, a sensitivity analysis is proposed to determine the effect of the 478 

substitution of this type of meat by other types of foods that imply lower GHG emissions and a 479 

similar contribution of protein in both diets, as summarized in Table 5, without significantly 480 

affecting energy intake (kcal per day).In this sense, six protein-rich foods have been selected: 481 

Two alternative types of meat (pork and chicken) have been selected as alternatives to beef, 482 

taking into account that they are the second (pork) and third (chicken) most consumed meats in 483 

Galicia (SERGAS, 2007); two legumes (lentils and peas) have also selected for analysis taking 484 

into account the recommendations from Jungbluth at al. (2016), which advise the consumption 485 

of vegetable proteins as opposed to animal proteins (Jungbluth et al., 2016); finally a couple of 486 
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fish products (hake and tuna) have been considered, considering the priority of fish 487 

consumption in the Atlantic diet (Álvarez and Peláez, 2018).  488 

Table 5. Sensitivity analysis of Carbon Footprint (CF) and NRD9.3 results when substituting 489 

beef-meat in RAD and GD scenarios by alternative foodstuffs (meat, legumes and fish).  490 

 491 

As regards the simulations carried out for RAD and GD, it is noted that the removal of beef 492 

meat in both cases results in a drastic reduction in the CF. In this sense, the highest variation in 493 

both the CF and NRD9.3 scores occurs when beef is replaced by legumes, with a reduction in 494 

the CF of about 40% and 30% for RAD and GD respectively, and an improvement in the 495 

nutritional quality of about 10% in both situations. On the other hand, the consideration of 496 

alternative meats reduces the CF by 40% and 30% in RAD and GD respectively, resulting in an 497 

improvement of the nutritional quality in both scenarios, around 10% for RAD and 2% for GD. 498 

Finally, the alternative of fish products also leads to an improvement in the nutritional quality, in 499 

this case the highest one in the GD. Regarding the CF score, it is also reduced in both 500 

scenarios although the reduction is lower if hake is considered than tuna, which has a 501 

moderately high GHG emission factor. It could therefore be reported that the replacement of 502 

beef with alternative food products would be a beneficial measure both environmentally and 503 

nutritionally.  504 

Analysis of data quality 505 

In terms of data quality, CF is selected as an environmental indicator. In this regard, the 506 

variability of LCA data for each product should be taken into account,  e.g., for beef meat the 507 

carbon footprint ranges from 9.3 kg CO2 eq·kg-1 for organic farming (Solid Forest, 2011) to 508 

 RAD GD 

Scenario 
CF (kg CO2 
eq·person-

1·day-1) 
NRD9.3 CF (kg CO2 

eq·person-1·day-1) NRD9.3 

Beef-meat 4.53 474 5.22 242 
Meat 
Pork 2.81 512 3.79 245 
Chicken 2.84 515 3.77 247 
Legumes 
Lentils 2.63 513 3.67 269 
Peas 2.62 523 3.62 266 
Fish 
Hake 3.08 512 3.96 271 
Tuna 2.72 515 3.69 272 
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28.73 kg CO2 eq·kg-1 for conventional farming (Clune et al., 2017). Thus, most conservative 509 

figures have been taken into account and the results have been carefully discussed. 510 

Furthermore, the beef meat has been identified as a hotspot regarding the results for CF, which 511 

could be identified as an opportunity by LCA practitioners to improve their production processes 512 

(e.g., technological adaptation at the farm level in order to minimize methane emissions from 513 

either enteric fermentation or manure management)(Hyland et al., 2017). Moreover, additional 514 

environmental indicators, such as water footprint or land occupation, should be taken into 515 

consideration to obtain a more complete environmental profile. 516 

Additionally, with regard to the source of actual food consumption figures for the GD 517 

scenario, data from a survey conducted in 2007 has been used, as previously mentioned, due 518 

to the lack of more updated real representative data. Thus, this survey is the most recent one 519 

for Galicia and the most detailed. However, consumption habits evolve and consequently the 520 

CF and nutritional quality. Therefore, efforts should be conducted in the design of a food 521 

frequency consumption questionnaire to be supplied to the Galician population for the handling 522 

of real parameters.  523 

 524 

4. Conclusions 525 

The outcomes of this study prove that there is a deviation between actual consumption 526 

patterns and diets based on health recommendations, both from an environmental and 527 

nutritional point of view. Thus, in the specific case of Galicia, the current dietary pattern obtains 528 

much lower scores in nutritional indexes and a higher CF than the recommendations from the 529 

traditional Atlantic diet. Therefore, a change in the current trends of food consumption towards 530 

the recommendations of the Atlantic pyramid would be beneficial. In this sense, as weak spots 531 

in the GD (excessive sodium intake), processed and pre-cooked foods should be left aside, as 532 

they are the ones with the worst nutritional quality. However, it has also been proven that both 533 

the nutritional and environmental quality of the two studied scenarios can be improved by 534 

replacing beef with a more sustainable source of protein, taking as reference the methodology 535 

used in this study. In this sense, it is advisable to provide more proteins of vegetable origin than 536 

those of animal origin, with legumes being the best possible substitute.   537 
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The results can be useful for regional policy makers and sanitary authorities to act on the 538 

hotspots that cause the greatest loss of nutritional quality and the resulting increased carbon 539 

footprint. In the same way, they can be also extended to other regions or countries interested in 540 

promoting adherence to the Atlantic diet. 541 

Further research should be based on the design of new variants for the Atlantic diet, 542 

focusing on improving environmental quality without affecting its nutritional quality; the changes 543 

should be made by replacing foods with a higher environmental impact with more sustainable 544 

ones, included in the traditional foods of the Atlantic diet. In addition, taking into account the 545 

concept of sustainable diet, future research should include other relevant environmental impacts 546 

that are also significant in studies related to food production, such as the water footprint, and 547 

socio-economic indicators related to the affordability of diets. 548 
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