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Abstract 19 

The goal of this paper is to review and critically assess different methods to monitor key process 20 

variables for ethanol production from lignocellulosic biomass. Because cellulose-based biofuels 21 

cannot yet compete with non-cellulosic biofuels, process control and optimization are of 22 

importance to lower the production costs. This study reviews different monitoring schemes, to 23 

indicate what the added value of real-time monitoring is for process control. Furthermore, a 24 

comparison is made on different monitoring techniques to measure the off-gas, the 25 

concentrations of dissolved components in the inlet to the process, the concentrations of 26 

dissolved components in the reactor, and the biomass concentration. Finally, soft sensor 27 

techniques and available models are discussed, to give an overview of modeling techniques that 28 

analyze data, with the aim of coupling the soft sensor predictions to the control and optimization 29 

of cellulose to ethanol fermentation. The paper ends with a discussion of future needs and 30 

developments. 31 

 32 

Keywords 33 

Real-time monitoring; monitoring devices; fermentation; models; soft sensors; cellulosic ethanol 34 

1 Introduction 35 

The monitoring of bioprocesses in real-time is a widely studied area, as real-time measurements 36 

of reactor conditions allow for a higher degree of control and process optimization than off-line 37 

monitoring [1]. In large scale biotechnology processes there is usually only a rather limited 38 

capability for real-time monitoring of the process due to lack of suitable – and affordable – 39 

monitoring techniques. Monitoring applications have been developed mainly for laboratory use 40 

[2]. There are many reports on the availability, advantages, and challenges of different 41 

monitoring techniques, but large scale monitoring in real-time with advanced sensors is rarely 42 

done. This is because there are hardly any investigations on the potential benefits of these 43 
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methods [3]. Kiviharju et al. [4] compared different monitoring methods based on specific 44 

requirements for biomass monitoring, providing a guide to select the appropriate method under 45 

specific conditions. A number of papers review specific monitoring devices, in which the devices 46 

are described as single entities. For instance, Marison et al. [5], gave an extensive review of 47 

near infrared spectroscopy (NIR), mid infrared spectroscopy (MIR), Raman spectroscopy, 48 

dielectric spectroscopy (DS), and biocalorimetry, and Marose et al. [6], studied in situ 49 

microscopy, NIR spectroscopy, and fluorescence spectroscopy. Nevertheless, as the 50 

performance of these methods for specific monitoring objectives was not compared, it did not 51 

provide the reader enough information to support the selection of a given alternative. 52 

 53 

Cellulose-based biofuels are produced from biomass mainly consisting of plant material, in 54 

which sugars are fixed in structures of cellulose and hemicellulose that are intertwined with lignin 55 

[7]. The cost of cellulose-based biofuels production cannot yet compete with non-cellulosic 56 

biofuels [8], in which the carbon source comes from relatively simple and easily accessible 57 

sources such as corn or sugar beet (FIGURE 1). Non-cellulosic biofuels have been produced for 58 

more than two decades [9] and are now a mature technology given the considerable experience 59 

gathered operating and building plants for non-cellulosic biofuel production. As a consequence, 60 

monitoring is essential in cellulosic biofuel production in order to ensure that the process runs at 61 

the optimal process conditions and to compensate the relative lack of process understanding of 62 

this technology [10]. One of the goals of monitoring cellulose to ethanol fermentation is to 63 

increase the profit associated with the process [11]. An increased profit can be obtained by 64 

reaching a high ethanol yield (income increase) and by running the process under non-sterile 65 

conditions (cost reduction). However, there is an increased risk of contamination when working 66 

under non-sterile conditions, which would decrease the ethanol yield, compared to a sterile 67 

process. Monitoring the process to detect contaminations is therefore of importance to be able to 68 

stop the process as soon as a contamination is detected and avoid the loss of substrate. 69 
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Another challenge in cellulosic ethanol production is overcoming the action of inhibitors. Indeed, 70 

inhibition decreases the productivity, which makes the process last longer, and thus increases 71 

the costs. Furthermore, the longer the process lasts, the higher the risk of contamination. 72 

Monitoring of inhibitory components in the feed and the reactor is therefore needed so that a 73 

real-time strategy can be applied to improve the process performance. As the introduction of 74 

novel control and optimization techniques has a cost related not only to the equipment and 75 

implementation but also to the training of operators, the benefits must be demonstrated and 76 

clearly outperform the current process as it is operated. In optimal conditions, one would desire 77 

direct measurements of all components of interest – for example, substrates, biomass, inhibitory 78 

substances, and product concentration. However, this is not an economically viable option, due 79 

to the high costs associated with installing and maintaining the equipment needed to establish 80 

the different monitoring techniques.  81 

 82 

The contribution of this study is to assess the alternatives for real-time monitoring of 83 

fermentation and link them with industrial challenges faced during ethanol production from 84 

lignocellulosic biomass. The application of combined techniques for advanced monitoring is 85 

covered for the first time. Beyond the review made by Pohlschleidt et al., [12], this study 86 

explicitly relates the monitoring equipment and combinations thereof with the specific objectives 87 

of the process, in particular for the production of cellulosic ethanol [12]. Furthermore, this study 88 

evaluates the potential benefits of the methods with a case study involving the production of 89 

cellulosic ethanol. This is a relevant case study, as the complex feed stream containing multiple 90 

carbon sources, inhibitors, and particulates needs accurate monitoring to obtain knowledge of 91 

the process characteristics (FIGURE 1). Furthermore, because the feed stream contains a 92 

significant amount of solid particles, the monitoring techniques need to be able to distinguish 93 

between relevant and irrelevant compounds.  94 

 95 
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The organization of this paper is such that section 2 describes the process layout of a cellulosic 96 

ethanol fermentation. Section 3 focuses on the added value of monitoring different key process 97 

variables versus the requirements for such set-ups, while section 4 discusses different sampling 98 

techniques in case of at-line sampling. In section 5, different techniques per monitoring 99 

approach, are evaluated based on the previously defined requirements. This section will go 100 

more in depth about specific measuring devices to monitor the key process variables. Section 6 101 

and 7 discuss models and soft sensors, which can be used for optimization and control of a 102 

fermentation process. Finally, the discussion evaluates the applicability to the case study and 103 

discusses an optimal strategy for the monitoring of cellulose to ethanol fermentation.  104 

 105 

[FIGURE 1 should be approximately here] 106 

Figure 1: Differences between non-cellulosic and cellulosic ethanol production. Note that both, non-cellulosic 107 

and cellulosic ethanol can also be produced from other sources such as sugar beets or wood chips 108 

respectively. 109 

2 The Cellulosic Ethanol Fermentation Process 110 

The process to produce cellulosic ethanol typically consists of four consecutive steps: the 111 

pretreatment of the lignocellulosic material, the enzymatic hydrolysis of the pretreated material, 112 

the fermentation of the hydrolysate and the separation processes (FIGURE 1) [13]. In the 113 

pretreatment, the lignocellulosic fibers are broken down to smaller pieces, and exposed to 114 

increase the hydrolysis rate in the following step. Several methods are available for the 115 

pretreatment, most of them including high temperatures and pressures, and pH variations by 116 

addition of acid or base. Some conventional pretreatment methods are acid hydrolysis, steam 117 

explosion or ammonia treatment [13]. The choice of a specific pretreatment strategy will have an 118 

impact on the downstream processing, the hydrolysis and the fermentation steps, and may raise 119 

different challenges for the implementation of analytical methods to monitor the fermentation 120 
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process, which must be considered. The enzymatic hydrolysis is the step in which the fibers of 121 

lignocellulose are enzymatically hydrolyzed to release the monosaccharides. In some cases, the 122 

enzymatic hydrolysis and the fermentation are performed simultaneously (simultaneous 123 

saccharification and fermentation, SSF) and in some other cases they are done consecutively 124 

(separate hydrolysis and fermentation, SHF) [13,14]. The performance of the hydrolysis will also 125 

have an impact on the fermentation, as it determines the concentration of fermentable sugars. 126 

The system considered in this case study is the fermentation step in a separate hydrolysis and 127 

fermentation process. 128 

 129 
The fermentation for the production of cellulose-based ethanol usually consists of a batch phase, 130 

followed by a fed-batch phase, and finally another batch phase. A fed-batch operation typically 131 

starts and ends with a batch phase[15]. In the first batch phase, the cells grow at a maximum 132 

growth rate, and the cell density increases significantly. Cell and process characteristics define 133 

this growth rate. During the fed-batch phase, a feed stream enters the reactor increasing the 134 

volume in the reactor. In the reactor, anaerobic conversion of the substrates to product and 135 

biomass takes place with a rate dependent on the microorganisms used and the process 136 

characteristics (Figure 2). During the fed-batch phase, the conversion rate is limited by the feed 137 

rate and the detoxification of inhibitors. In effect, the admissible feed rate is generally limited by 138 

the presence of inhibitors in the feed and cannot proceed faster than the capacity of the micro-139 

organism to detoxify the medium. It is therefore important that the amount of inhibitors is 140 

monitored during the fed-batch phase as a means to maximize the feed rate and productivity. 141 

During the final batch phase the consumption, production, and growth rates are not controlled. 142 

The capacity is defined by the host organism and the process characteristics, such as pH and 143 

temperature, and the presence of inhibitory compounds. The main cost components of this 144 

fermentation process are the feedstock, utilities, and capital cost [11]. It is therefore desirable to 145 

utilize as much of the feedstock as possible for ethanol production, so a high ethanol yield is 146 
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required. Furthermore, to minimize the utilities cost, a high productivity is desired to minimize the 147 

fermentation time.  148 

 149 

For this case study, it is assumed that the carbon source originates from wheat straw, which 150 

yields mainly glucose, xylose, furfural, 5-HMF, acetic acid, and lignin after pre-treatment and 151 

enzymatic hydrolysis [11]. In the current study, it is assumed that the yeast, which is a 152 

genetically engineered strain, can consume glucose and xylose simultaneously [16]. The 153 

productivity of the process is mainly dependent on the xylose consumption rate, as this is the 154 

rate-limiting step in mixed glucose/xylose fermentation. Furfural is a major inhibitor of yeast [17], 155 

and it is therefore important to keep this concentration low throughout the fermentation process. 156 

Acetic acid is also a major inhibitor, but the inhibition effect of this compound depends on the pH 157 

as only the unionized (neutral) form is inhibitory. This indicates that pH control is of importance 158 

for the process. As the fermentation is run without gas sparging, oxygen will be present in the 159 

beginning of the fermentation. This is important to monitor, as the presence of oxygen decreases 160 

the ethanol yield, as ethanol is produced under anaerobic conditions. It is therefore desired that 161 

the oxygen has been consumed before the fed-batch phase starts. The most important variables 162 

of cellulose to ethanol fermentation are therefore the carbon sources glucose and xylose, the 163 

product ethanol, the inhibitors furfural and acetic acid, carbon dioxide and oxygen, and the pH. 164 

These variables can be monitored in real-time by either direct measurement or indirect modeling 165 

techniques. The monitored variables can then be used in a model for optimization and control, 166 

as shown in Table 1 and Table 2, where respectively the process objectives and different risks 167 

and solutions associated with cellulosic ethanol fermentation are shown. 168 

 169 
Table 1: Monitoring targets to achieve process objectives 170 

[TABLE 1 should be approximately here] 171 
 172 
[FIGURE 2 should be approximately here ] 173 
Figure 2: Schematic overview of a fed-batch reactor with a feed rate Fin. The components in italics indicate  174 
the uncertainties in the process. These are the substrate (S), product (P), biomass (X), dissolved oxygen (DO), 175 
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and the possible presence of a contamination. The feed rate Fin is known and controlled. The off-gas 176 
composition is not known, but as it is an indirect indication of the state of the process, it is not a direct 177 
uncertainty in how the fermentation behaves. The volume (V), pH, and temperature (T) are usually monitored 178 
and controlled, and therefore not uncertain. 179 

 180 
 181 
Table 2: Overview of risks associated with cellulose to ethanol fermentation. 182 

[TABLE 2 should be approximately here] 183 
 184 

3 Key process variables 185 

In this section, the added value of the monitoring of each key process variable will be evaluated 186 

in terms of what a monitoring strategy of different variables can add to the total quantity of 187 

process data that can be analyzed. Figure 2 gives an overview of the uncertain elements in 188 

cellulose to ethanol fermentation, which are shown in italics. A comparative table of the 189 

evaluation results can be found in Table 3, where each monitoring step has been assigned a 190 

number of points, depending on how much the measurements contribute to the analysis of the 191 

key variables. While Table 1 describes why components are measured, Table 3 describes how 192 

they are measured. Temperature and pH, which are standard monitoring techniques, are set at 193 

zero points. The other techniques are pointwise compared to the added value of temperature 194 

and the pH. The next few paragraphs will focus on how the table and figure are linked, and how 195 

the system is graded. The end rankings, which were reviewed by an industrial panel in ØRSTED 196 

(Denmark), with plenty of experience in operating a cellulosic ethanol demonstration plant, are a 197 

result of combining an extensive literature study, including academic research and published 198 

patents, and the authors’ experience with monitoring and control. The targets addressed are 199 

monitoring the off-gas, the components dissolved in the feed stream, the components dissolved 200 

in the reactor, the biomass concentration, and detecting contaminations, such as the occurrence 201 

of lactic acid bacteria. 202 
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3.1 Temperature and pH 203 

The most basic approaches to monitor a fermentation process are through the temperature and 204 

the pH. Most fermentation processes are run at constant pH with a relatively loose control. As 205 

carbon dioxide is produced along the fermentation, base is added to keep the pH constant. 206 

Under normal circumstances, the addition of base to the reactor at a relatively constant pace 207 

would indicate stable growth and ethanol formation. However, an abnormally large addition of 208 

base is an indication of a contamination with undesired lactic acid bacteria, as the production of 209 

lactic acid substantially acidifies the medium [18]. When a contamination is detected, the most 210 

convenient solution is to stop the process, as the substrate represents a major share of the 211 

production costs, and a contamination will take valuable carbon source away from ethanol 212 

production. 213 

3.2 The off-gas 214 

Measurements of the off-gas give the highest added value as a stand-alone method. It is 215 

possible to detect carbon dioxide, oxygen, and ethanol directly in the off-gas, and thus predict 216 

the concentrations in the liquid phase. This is usually done by using Henry’s law, which is 217 

dependent on the process conditions, in particular temperature and, for carbon dioxide, pH. One 218 

can also indirectly monitor the growth rate, the total sugar consumption, and detect 219 

contaminations through mass balances and growth kinetics [19]. The ethanol concentration can 220 

give information on the process yield, while the process rates indicate the productivity of the 221 

process. Furthermore, monitoring the oxygen in the off-gas is important, as the presence of 222 

oxygen is unwanted in cellulose to ethanol fermentation.  223 

3.3 The off-gas and components dissolved in the inlet 224 

Combining off-gas measurements with measurements of the components dissolved in the inlet 225 

can give, additionally, the xylose and glucose concentrations in the liquid, as these can be 226 

estimated through mass balances and growth kinetics [20]. The off-gas provides feedback 227 
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information about the rate of consumption/growth whereas the inlet measurements give 228 

feedforward information about the actual substrate provided. This also allows better estimation 229 

of the biomass concentration, as compared to solely off-gas measurements. Another advantage 230 

is that the inhibitory components entering the reactor are directly monitored, which has the result 231 

that the feed rate can be manipulated, to maintain a low concentration of inhibitors in the reactor 232 

during the fed-batch phase. 233 

3.4 The off-gas and components dissolved in the reactor 234 

When combining off-gas measurements with measurements of the components dissolved in the 235 

reactor, no predictions are needed to acquire these data, and real-time information of the actual 236 

state of the process can be obtained. On the other hand, not having any measurements of the 237 

inlet is a disadvantage because characterizing the inlet is important in general control of 238 

fermentations, especially when the inlet can be a potential source of disturbances. In this 239 

strategy, such disturbances would only be measured inside the reactor. During the fed-batch 240 

phase, the only manipulated variables are the feeding rate, the addition of base or to stop the 241 

batch and start all over again. While the pH is often maintained within certain bounds (at the 242 

expense of using base, which is expensive), the feeding rate can be adjusted to keep the 243 

concentration of inhibitors inside the reactor below a threshold. In this regard, the difference 244 

between monitoring the components dissolved in the reactor or in the inlet would be that the 245 

former would allow to control the feeding rate based on actual measurements, while the latter 246 

would depend on the prediction of how fast the cell culture can detoxify the inhibitors.  Also, by 247 

monitoring compounds dissolved in the reactor it would be possible to directly measure the 248 

concentration of lactic acid, which would allow to early detect contaminations by lactic acid 249 

bacteria and to stop the batch on time.  250 
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3.5 The off-gas and the biomass concentrations 251 

Another option is combining the off-gas measurements with the monitoring of the biomass 252 

concentration. This will not yield direct concentrations of glucose, xylose, ethanol, and furfural, 253 

but with the right measuring method contaminations could be observed directly. This is the only 254 

beneficial aspect of monitoring the biomass concentration instead of the before mentioned 255 

monitoring schemes, although as will be described in section 5.3, so far no applications are 256 

available that can distinguish cells on-line in industrial scale. The effect of inhibitory compounds 257 

can be seen in the biomass activity, but there is no knowledge of the amount of inhibitors that 258 

are present. This makes control of especially the feed rate significantly more complex.  259 

3.6 Components dissolved in the inlet and in the reactor 260 

If off-gas measurements are not possible, one could also measure the components in the inlet 261 

and in the reactor. This does not change the added value compared to the previous two 262 

mentioned methods, but measuring components dissolved in the liquid phase is more complex 263 

than off-gas measurements. Section 5 will elaborate in more detail on these differences. 264 

3.7 Addition of multiple monitoring methods 265 

Increasing the number of monitoring methods to three or four increases the added value, as 266 

different measurements will add more direct data. However, it should be noted how much 267 

additional monitoring approaches contribute to the total amount of information obtained from 268 

combining hardware and software sensors, as soft sensors are often capable of analyzing what 269 

is going on in the reactor from less complex measuring methods, such as the off-gas 270 

composition measurement. Hardware sensors should be better capable of giving accurate 271 

information on the current reactor state. However, this is only true if the sensors can measure all 272 

components of interest, are accurate and not subjected to interference. Furthermore, fast 273 

response times are beneficial for fast control, but the techniques should not be too expensive. 274 

Biomass concentration measurement techniques should be able to detect contaminations and 275 
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distinguish between viable and non-viable cells to be of any extra value. Most techniques will 276 

need soft sensors for calibration and to convert the measured data into valuable information. 277 

The complexity of the calibration, maintenance and data analysis differs per technique, and this 278 

can be of importance when considering that factories are often built in remote areas, where 279 

expert knowledge will not always be available at all times. These considerations will be taken 280 

into account in section 5, where equipment is discussed. 281 

 282 
Table 3: The added value of (combinations of) different monitoring strategies of key process variables. -: 283 
does not monitor, +: monitors indirectly, ++: monitors indirectly through different models, +++: monitors 284 
directly. Each plus counts as one point, while the points of the standard setup (pH and temperature 285 
measurements) are subtracted from the total amount of gained points for each monitoring strategy.  286 
[TABLE 3 should be approximately here] 287 

4 Sampling 288 

Real-time measurements can be performed either in-line, on-line or at-line (¡Error! No se 289 

encuentra el origen de la referencia.) [21]. With in-line monitoring, the measurements are 290 

performed directly inside the reactor without removing or diverting the sample from the process 291 

stream. On-line and at-line measurements, in contrast, take place outside the reactor. While the 292 

sample is diverted and may be returned to the reactor (e.g. analysis through a flow cell) for on-293 

line measurements, the sample is removed when performing at-line measurements. In order to 294 

maintain real-time measurements, on/at-line methods need to be automated for industrial 295 

applications. There is, therefore, a need for a reliable sampling technique, connected to one or 296 

multiple pre-treatment devices, and subsequently the measuring device. The pre-treatment 297 

devices often include filtration units to remove the suspended solid particles and flow systems to 298 

prepare the samples (e.g., to dilute or stain them). A promising automated pre-treatment method 299 

is cross-flow filtration, where a constant flow through a hollow fiber keeps solid particles from 300 

clogging the membrane [22,23]. This method has been used by Meschke et al. [22] in 301 

combination with high-performance liquid chromatography (HPLC), and by Rocha and Ferreira 302 

[23] with an amperometric biosensor. Also, the wastewater treatment sector applies cross-flow 303 
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filtration in order to remove particles from the water or retain biomass in the reactor [24,25]. 304 

Another type of automated sampling techniques which is being developed is applied in the 305 

BioScope [26]. The BioScope can be used for experimental research of microbial kinetics in a 306 

fermentation, in which rapid sampling is desired. However, so far, this technique is developed for 307 

experimental research, and not for industrial applications. Automated sampling devices 308 

combined with a sample preparation system have also been described for the application of flow 309 

cytometry [27]. A general challenge for an automated sampling system is that sterility in the 310 

reactor needs to be maintained. However, for the case of cellulosic ethanol production, this is 311 

not an issue as the reactor is operated  under non-sterile conditions. 312 

 313 

[FIGURE 3 SHOULD BE APPOXIMATELY HERE] 314 
Figure 3. Conceptual approaches to real-time monitoring according to the guidance for industry PAT — A 315 
Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance [21] . PAT: 316 
process analytical technology. 317 

5 Sensors 318 

This section will evaluate different measuring techniques for the monitoring approaches 319 

discussed in section 3.  320 

5.1 The off-gas analyzer 321 

Previously, an extensive review has been written on different methods to measure the off-gas 322 

composition, which is considered as a continuous measurement  [19]. For this study it was 323 

chosen to only focus on techniques that can measure all gas components of interest, as 324 

combining different gas monitoring methods in tandem will be more expensive [3]. The only two 325 

techniques that can measure all components of interest, carbon dioxide, oxygen, and ethanol, 326 

are electronic noses and mass spectrometry, as these methods are capable of measuring a 327 

broad spectrum of volatile components in the off-gas. The electronic nose works as a 328 

semiconductor, where the resistance of sensors changes when exposed to volatile organic 329 

compounds (VOC) or gases. An electronic nose consists of multiple sensors with high 330 
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sensitivity, but a slow response time. Furthermore, pattern recognition algorithms are needed to 331 

analyze the obtained data. Another issue is that background gases such as water vapor can 332 

interfere with the measurements [28]. A solution for this has been proposed, where samples 333 

were dehydrated before injection into the electronic nose [29]. A significant amount of research 334 

is being conducted on the electronic nose, but the main applications are in food technology, and 335 

most of the applications are still performed on lab scale. Mass spectrometry (MS) on the other 336 

hand is a well-established method [30] capable to quantify a broad range of substances with 337 

high accuracy, typically from 100% to a few parts per million. One can choose for quadrupole 338 

MS, which is the cheaper option, or magnetic MS, which is more expensive, but also more stable 339 

and offers a higher resolution.  340 

5.2 Components dissolved in the liquid 341 

In Table 5, the different techniques to monitor components dissolved in the liquid for both the 342 

inlet and the reactor are compared. The techniques evaluated are in-line, on/at-line near-infrared 343 

spectroscopy (NIR), mid-infrared spectroscopy (MIR), Raman spectroscopy, UV-Vis 344 

spectroscopy, biosensors, and HPLC. Fluorescence spectroscopy is not considered in this 345 

section because the key components dissolved in the liquid (i.e. glucose, xylose, ethanol, acetic 346 

acid, lactic acid, furfural and HMF) are not fluorescent. The evaluation is based on the following 347 

eight requirements of measured components: sensitivity, accuracy, drift, calibration and data 348 

analysis, sample preparation, response time, industrial availability, and costs. In order to 349 

compare the potential of each technique, a scoring matrix is introduced which is made 350 

considering each of the previous criteria. The scoring matrix aims at reflecting the applicability 351 

and complexity of each method to provide a better understanding of the possibilities of each 352 

technique. The requirements were based on previous literature [12] and discussions with 353 

industry. An example of how the scoring matrix is done is provided for the first criterion 354 
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(measured components) in Table 4. A detailed explanation of the development of the scoring 355 

matrix for the remaining seven criteria is provided in the supplementary material. 356 

 357 

 358 
Table 4.  Scoring matrix to evaluate the capabilities of the different methods to monitor the key compounds of 359 
the cellulose to ethanol fermentation. A method capable of monitoring all the relevant compounds would 360 
receive a score of 3, while a method unable to monitor any of the compounds would receive a score of 0. 361 

[Table 4 should be approximately here]   362 

 363 

 364 

 365 

 366 

5.2.1 Vibrational spectroscopy 367 

 368 

Vibrational spectroscopy (UV-Vis, NIR, MIR and Raman spectroscopy) is a group of analytical 369 

techniques that allow a  fast detection of several compounds directly from the fermentation 370 

media without the need for sample preparation. The primary challenge for the application of 371 

vibrational spectroscopy to monitor cellulose to ethanol fermentation is the high content of 372 

suspended solid particles derived from lignin and biomass. These particles interfere with the 373 

light, reflecting and scattering it. This limits the implementation of vibrational transmission 374 

spectroscopy to on-line or at-line modes only, where a filtration unit is added before the 375 

spectroscopic analysis [31]. In contrast, reflectance vibrational spectroscopy (mainly attenuated 376 

total reflectance (ATR) and diffuse reflectance [32]), and backscattered Raman spectroscopy do 377 

not depend on the light transmitted through the media but on the light reflected or backscattered 378 

by the media, making these methods more suited for in-line monitoring cellulose to ethanol 379 

fermentations [33–35]. Despite the advantages of reflectance and backscattered spectroscopy, 380 

the interference between the particles and the light still entails extensive data pre-treatments and 381 



16 
 

results in lower accuracy and sensitivity [35,36]. For this reason, vibrational spectroscopy 382 

methods performed better in the evaluation for on-line or at-line modes than for in-line modes. 383 

 384 

Among the different vibrational spectroscopy techniques, near-infrared (NIR) spectroscopy is the 385 

most mature and well-established method [14,35,37], and it has been applied to monitor a wide 386 

variety of fermentations [33,38–40] including cellulose to ethanol processes [34,41,42]. Pinto et 387 

al. [41] used at-line transmission NIR to monitor the concentration of glucose and ethanol during 388 

cellulose to ethanol fermentation at lab-scale. Despite filtering the samples before analysis, the 389 

high interference of NIR with water and the highly overlapped spectra resulted in high prediction 390 

errors (6.60 g/L and 3.02 g/L for glucose and ethanol respectively). In another study, Sundvall et 391 

al. [42] used an on-line NIR probe (score of 11) in a demonstration-scale cellulose-to-ethanol 392 

plant (EPAB/SEKAB E-Technology, Sweden) to monitor the concentration of total sugars, 393 

glucose, ethanol, and suspended solids. Despite the good correlation between the off-line and 394 

the on-line samples, the reported concentration ranges were quite high (17-30 g/L and 2-40 g/L 395 

for glucose and ethanol respectively) and more sensitive measurements would be needed for 396 

accurate monitoring of the fermentation.  Austin et al. [34] monitored the concentration of total 397 

sugars, glucose, and ethanol in a 23 m3 reactor using an in-line diffuse reflection probe (score of 398 

11). The measurements were noisy due to the high concentration of solid particles but in 399 

accordance with the off-line measured samples, giving valuable qualitative information about the 400 

process  endpoint. In general, NIR spectroscopy has the advantage of being a robust method 401 

that can be implemented in, on or at-line, and requiring very little or no sample preparation. 402 

Although it is not as sensitive and accurate as other techniques, NIR delivers qualitative 403 

information that can increase the process knowledge. For these reasons, on-line and in-line NIR 404 

is given a score of 11. 405 

 406 
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Mid-infrared spectroscopy (MIR) offers a higher accuracy and a larger number of variables to be 407 

analyzed compared to  NIR [5,34,43]. Several implementations of MIR in cellulose to ethanol 408 

bioprocesses are reported in the literature [31,34,44]. Juhl et al. [31,44] used an at-line 409 

transmission system to monitor the concentration of glucose, lactic acid, glycerol, acetic acid, 410 

and ethanol. The samples were filtered prior to analysis in order to avoid the interactions with the 411 

solid particles. The predictions with MIR had a significant lower root mean square error of 412 

prediction (RMSEP) when compared to the ones obtained with NIR in a similar set-up (e.g., the 413 

RMSEP for glucose was  0.12% for MIR and 0.26% for NIR). In another study, Austin et al. [34] 414 

used an in-line attenuated total reflectance MIR (ATR-MIR) probe (score of 13) to monitor the 415 

glucose, xylose, lactic acid, acetic acid and ethanol concentration in a 23 m3 reactor. Their 416 

results were directly compared with in-line diffuse reflectance NIR and showed that ATR-MIR 417 

had a significantly higher accuracy than NIR [34], allowing a better understanding of the 418 

dynamics of the fermentation. On-line ATR-MIR (score of 12) has also been applied to the 419 

hydrolysis step of starch-based ethanol production and brewing processes, which present similar 420 

challenges as cellulose-based ethanol production regarding suspended solid particles [45,46]. 421 

ATR-MIR has a shallow penetration depth in the sample media, making it more robust in media 422 

with suspended particles than transmission MIR. The main disadvantages of  ATR-MIR are the 423 

fouling on the surface of the ATR crystal [31] and the high costs associated with the optical 424 

fibers required to transmit the signal. ATR-MIR scores higher than NIR spectroscopy (12 and 13 425 

for on-line and in-line respectively) due to the higher sensitivity and accuracy, and due to the 426 

potential to measure lactic acid, a crucial compound to detect contaminations.  427 

 428 

Raman spectroscopy is an attractive method foremost because there is, unlike for NIR and MIR, 429 

no water interference. Additionally, Raman spectra are better resolved and require less modeling 430 

efforts than NIR and MIR [47,48]. However, the Raman signal is relatively weak and attenuated 431 

mainly by the suspended solid particles and by the background fluorescence emitted by lignin 432 
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[48], altogether, limiting its potential for in-line monitoring. Ewanick et al. [49,50] used on-line 433 

Raman spectroscopy (score of 12) to measure the concentrations of glucose and ethanol in a 434 

lab-scale cellulose to ethanol fermentation (1.3 L). In order to avoid the interference with 435 

suspended solid particles, the fermentation medium was filtered prior to the fermentation. The 436 

concentration of glucose and ethanol were monitored with a prediction error of 1 g/L. Also at lab-437 

scale, Iversen et al. monitored the concentration of glucose, ethanol and acetic acid using in-line 438 

Raman spectroscopy (score of 12) [47,48]. To account for the reduction of fluorescence caused 439 

by the suspended solid particles, Iversen et al. included an internal standard as a correction 440 

factor [51]. Despite the efforts to minimize the effect of the solid particles, their research showed 441 

that accuracy of Raman spectroscopy improves when lignin particles are removed before the 442 

measurement, which on full-scale could be achieved by using an automated sample port in 443 

combination with a filtration or sedimentation step. In spite of the potential of Raman 444 

spectroscopy as analytical technique, the expensive material and the lack of relevant industrial 445 

implementation lead to suggest a final score of 12 for both, on-line and in-line Raman 446 

spectroscopy.  447 

 448 

UV-Vis spectroscopy is often not considered as a method for real-time monitoring of 449 

fermentations because it cannot detect many key compounds (e.g. glucose or ethanol) and 450 

because the light scattering caused by the suspended solid particles dominates the absorption 451 

process [35,52]. However, in the context of cellulose to ethanol fermentation, the technique 452 

gains special relevance because many of the inhibitors present in lignocellulosic hydrolysate 453 

including furfural, HMF or acetic acid absorb in this region [53]. Pinto et al. [53] used at-line UV-454 

Vis spectroscopy to quantify the concentration of furfural and HMF from filtered samples, 455 

attaining a high sensitivity and low prediction errors (RMSEP of 0.375 g/L and 0.041 g/L for 456 

furfural and HMF respectively). UV-Vis is a useful method to quickly detect inhibitory compounds 457 
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and lactic acid (useful to detect contaminations), in an inexpensive manner. For this reason, UV-458 

Vis gets an overall score of 10. 459 

 460 

5.2.2 Biosensors 461 

Biosensors (total score of 10) in general use enzymatic reactions to monitor concentrations of 462 

specific components [54]. The way the reactions are monitored differs per type of biosensor. The 463 

most widely known biosensor is the amperometric glucose sensor, which is used by diabetes 464 

patients to measure glucose levels in the blood [55]. In the biosensor glucose oxidase converts 465 

glucose to hydrogen peroxide (H2O2), which reacts with specific compounds in the sensor and 466 

generates, in the case of an amperometric biosensor, a current, which is measured. Ethanol can 467 

be monitored by the same principle through the use of alcohol dehydrogenase [56]. The 468 

measurement of xylose can be monitored simultaneously with glucose by the YSI 2700 SELECT 469 

probe (YSI Life Sciences, Yellow Springs, Ohio, USA), but sample filtration and dilution are 470 

required. Concentration ranges of 0.05 g/L – 9 g/L and 0.5 g/L – 30 g/L were reported for 471 

glucose and xylose, respectively  (YSI Life Sciences, 2008). Amperometric sensors for the 472 

detection of lactic acid have been developed and applied to monitor malolactic fermentations 473 

[58]. This can be used to detect lactic acid bacteria. The measurements are fast, sensitive, and 474 

have a high selectivity. However, the sensors have limited long term stability and drift is 475 

encountered [3]. This happens in the time range of days to months, depending on the sensor 476 

[56]. Electrochemical sensors to monitor the concentration of acetic acid in fermentations have 477 

also been described in the literature [59]. There are also no reports on the measurement of 478 

furfural through biosensors, but as the sensors work enzymatically, this should theoretically be 479 

possible. The technique has not yet been applied on industrial scale, which forms an indication 480 

that there is still considerable development work needed. 481 
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5.2.3 High-performance liquid chromatography (HPLC) 482 

The most widely used and known method of measuring specific components is HPLC, which is 483 

commonly used as reference measurement to calibrate other monitoring methods. For at-line 484 

applications, a flow injection system that withdraws, filters and prepares the sample is required 485 

so that only particle-free liquid is analyzed by the HPLC [2]. This adds complexity to the set-up 486 

and increases its costs and operational time. Furthermore, the HPLC columns need to be 487 

washed regularly to guarantee that one obtains reliable results. In order to reduce the complexity 488 

of the set-up, it is desired to use a single chromatographic column able to analyze as many 489 

relevant compounds as possible. In the context of cellulosic ethanol production, the 490 

simultaneous quantification of sugars (glucose and xylose), ethanol, acetic acid and common 491 

inhibitors (HMF and furfural) is challenging and slow due to their different chemical properties 492 

and concentration ranges [60]. The simultaneous quantification of the previously mentioned 493 

compounds has only been reported using an Aminex HPX-87H column and requires between 40 494 

to 55 minutes for one analysis depending on the mobile phase [60–62]. Faster analysis (up to 15 495 

minutes) would be achieved using different columns, but it would increase the costs of the set-up 496 

and the complexity of the operation [5,22,61,63]. At-line HPLC gets a high score as an analytical 497 

tool (as it can measure all relevant compounds with high sensitivity and accuracy, and a small 498 

drift), but it is somewhat challenging to automate, requires sample preparation and has a slow 499 

response time (total score of 12).  500 

 501 

 502 

Table 5: Overview of all the techniques discussed to monitor components in the liquid phase. Scores from 0 503 
to +++ are given for each criterion, 0 indicating a negative effect and +++ indicating a positive effect. The 504 
costs are evaluated with scores from --- to 0, --- indicating more costly and 0 less costly.  A thorough 505 
description of the scoring system is provided in the supplementary material.  506 

[TABLE 5 should be approximately here] 507 
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5.3 The biomass 508 

 509 

Monitoring biomass in cellulose to ethanol fermentation is a significant challenge foremost 510 

because the conventional methods used in other fermentation processes (e.g., optical density 511 

probes or infrared spectroscopy) fail at differentiating cellular biomass from the suspended solid 512 

particles and therefore are not suitable for lignocellulosic ethanol fermentations [6]. Moreover, 513 

standard methods to assess cell culture viability (e.g., methylene blue test) cannot be applied 514 

due to the dark color of the media [64]. In biomass monitoring, unlike in methods to monitor 515 

compounds in the liquid, the samples cannot be filtered prior to  analysis because that would 516 

also remove the cells. In this section, different methods to monitor the biomass concentration are 517 

discussed and evaluated regarding their ability to differentiate between biomass and solid 518 

particles, to assess the cell culture viability, to detect contaminations, sample preparation, 519 

calibration, and data analysis, industrial availability and costs.  An overview of the evaluation can 520 

be found in Table 6, and a detailed explanation of the scoring system is provided in the 521 

supplementary material. 522 

 523 

5.3.1 Multi-wavelength fluorescence spectroscopy 524 

Fluorescence spectroscopy (total score of 7) can monitor biological compounds such as NADH, 525 

tryptophan, and riboflavin [6]. These compounds are closely related to the generation of cells 526 

and can be used as indirect measurements of biomass [65–68]. Multi-wavelength fluorescence 527 

spectroscopy produces three-dimensional data sets (time, excitation spectra and emission 528 

spectra) which are analyzed using advanced chemometric methods (typically using parallel 529 

factor analysis, PARAFAC [65–67]). By using these models, it is possible to resolve the pure 530 

spectra of each fluorophore from the mixture, making multi-wavelength fluorescence more 531 

robust to changes in the composition of the media and to the background fluorescence emitted 532 
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by lignin [65,66,69].  In addition, similarly to other spectroscopic techniques, fluorescence 533 

spectroscopy is also affected by the high content of suspended solid particles. Multi-wavelength 534 

fluorescence has previously been used to monitor ethanol fermentations at lab-scale, but there 535 

are no reports of utilizing fluorescence spectroscopy for cellulose-based ethanol production. The 536 

BioView fluorescence spectrometer (Delta, Hørsholm, Denmark) claims to be applicable in 537 

industrial settings [70] but has to our knowledge not been used for the monitoring of ethanol 538 

production from lignocellulosic biomass at pilot or even larger scale. 539 

 540 

5.3.2 Biocalorimetry 541 

A biocalorimeter (score of 8) monitors biomass growth based on the metabolic heat, which is 542 

calculated from all the heat flows concerning the reactor [71]. The main advantage of this 543 

technique is that the equipment needed, mainly temperature probes and flow meters, is cheap 544 

[72]. A direct relation was even found between the consumption of cooling water and the 545 

metabolic heat generation in an industrial-sized bioreactor of 100 m3, where the biomass 546 

concentration could be estimated more accurately using the cooling water consumption data 547 

than from elemental and electron balances [72]. In fact, as the scale of the reactor increases, 548 

smaller influences such as heat loss to the environment and noise become less significant. This 549 

method monitors the biomass concentration indirectly through heat balances, in a similar way as 550 

it can be monitored through a carbon balance, although no distinction between cell types can be 551 

made. The initial biomass concentration needs to be known to estimate the concentration over 552 

time from the metabolic activity. Response times are between 1 and 2 minutes [5]. 553 

5.3.3 Flow cytometry 554 

Flow cytometry (score of 8) is an at-line method to characterize and count cells through light 555 

scattering and fluorescence [73]. It can monitor the biomass concentration accurately and allows 556 

to distinguish between viable cells, non-viable cells, and other types of biomass [74]. Flow 557 
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cytometry is expensive, but it has been applied on large scale and many different devices are 558 

available [73]. In addition, several approaches have been developed to automate the sampling 559 

procedure, dilution, and staining of the cells via flow injection systems, thereby reducing the 560 

required labor and allowing the design of control strategies based on the physiological properties 561 

of the cell culture [75–79]. The main drawback of flow cytometry in cellulose to ethanol 562 

fermentations are the suspended solid particles, which cannot be filtered and can only be 563 

differentiated from the biomass via expensive fluorescent stains and not via light scattering. 564 

Apart from that, accuracies have been reported to be good enough up to a concentration of 565 

2·106 cells/mL, which means that the samples will need to be diluted. As dilutions also increase 566 

the measurement error, it was observed that flow cytometry can only work well with a total 567 

concentration of up to 30·106 cells/mL [75]. The dilution steps will also increase the time needed 568 

for sample preparation. Sampling results can be obtained every 15 minutes [3]. 569 

 570 

5.3.4 Dielectric spectroscopy 571 

Dielectric spectroscopy (score of 12), the most advantageous technique according to this study 572 

(Table 6), can monitor viable cells in-line by using an electric field at different frequencies to 573 

characterize the capacitance and conductivity of the system. The applied electric field induces 574 

the polarization of viable cells only [80,81], and this is reflected in the capacitance of the system 575 

[82]. Since polarization is only induced in viable cells, this method has no interference with gas 576 

bubbles and dead cells [83]. Dielectric spectroscopy has been applied to monitor cell viability in 577 

different fermentations with concentration ranges reported to be between 0 g/L and 200 g/L [4,5]. 578 

Furthermore, this technique  has also been applied to control fermentations based on the 579 

specific growth rate [84]. Bryant et al., [80] applied dielectric spectroscopy to monitor the 580 

hydrolysis of pretreated lignocellulose in a simultaneous saccharification and fermentation (SSF) 581 

process. Wang et al. [64] combined dielectric spectroscopy with multivariate analysis to measure 582 
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the viability of yeast during a fed-batch SSF. Despite the positive results, the method requires 583 

extensive calibration to account for the different process parameters that affect dielectric 584 

spectroscopy (e.g., suspended solids, ethanol concentration or conductivity of the media). 585 

Another advantage of this technique is that it is available for industrial use, as industrial brewing 586 

processes already apply dielectric spectroscopy [5]. 587 

 588 

5.3.5 Microscopy and image analysis 589 

Microscopy combined  with image analysis (score of 11) is an automatic cell counting method 590 

based on the identification of individual cells from pictures taken with microscopy from 591 

fermentation samples [85].  It was developed 30 years ago in the brewing industry, and it has 592 

significantly developed with the recent advances in machine learning and improvements in 593 

detection sensors (i.e., charge coupled devices) [85,86]. Image analysis has also been used to 594 

correlate several features (e.g., cell size or cell volume) with cell viability. Donnelly et al. [87] 595 

developed a method to predict the viability of cell cultures with the cell volume distribution and 596 

used it to calculate the pitch size in industrial fermentations. Belini et al. [88] used in-line 597 

microscopy combined with image analysis to monitor yeast growth in a lab-scale molasses-to-598 

ethanol fermentation. By using classification algorithms, they were able to differentiate between 599 

yeast cells and other solid compounds present in the fermentation media (e.g., plant fibers, 600 

sugar crystals or gas bubbles). If the resolution of the microscope is high enough, this method 601 

can also be used to detect microbial contaminations, as suggested by Belini et al. [86].   602 

 603 
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Table 6: Overview of all the techniques discussed to monitor the biomass concentration. Scores from 0 to 604 
+++ are given for each criterion, 0 indicating a negative effect and +++ indicating a positive effect. The costs 605 
are evaluated with scores from --- to 0, --- indicating more costly and 0 less costly.  A thorough description of 606 
the scoring system is provided in the supplementary material.  607 

[TABLE 6 Should be approximately here] 608 

6 Previous modelling efforts 609 

The previous sections evaluated what measurements add to the extent of knowledge of 610 

cellulose to ethanol processes, and what measurement equipment is actually available for full-611 

scale bioreactors. Models will be needed to predict the yield and productivity from the available 612 

data. The use of models is beneficial to control the process and optimize at specific points, such 613 

as the feed rate. Furthermore, it is important to model the variables that are considered as risks 614 

in Table 2, namely if there is contamination, inhibition, or presence of oxygen. These risks can 615 

be monitored directly through measurements, as described previously or indirectly through 616 

modelling. This section will look into the available models that take into account the 617 

measurements that were previously shown to be important to monitor the yield, productivity, and 618 

risks. A list of the models that have been evaluated can be found in Table 7. The models 619 

evaluated in this study are all unstructured models with simplified kinetic expressions (containing 620 

only substrate, product, and biomass), as structured models, containing synthesis rates of 621 

enzyme and intracellular metabolite production are considered too complex for routine daily use 622 

in a production environment. An interesting observation is that only one of the models described 623 

takes carbon dioxide in the form of total inorganic carbon into account [89], while the monitoring 624 

of this compound in the off-gas can relate significantly to the process characteristics. However, 625 

as cellulose to ethanol fermentation is not aerated or sparged, it is relatively difficult to monitor 626 

the gas flow rate out of the reactor and relate it to the dissolved CO2 concentration. Therefore, it 627 

would be necessary to compare it with previous fermentations, and generate a relation based on 628 

experience. All evaluated models contain inhibition functions, often with Monod type kinetics. All 629 

studied models take product inhibition into account. Substrate inhibition and furfural inhibition, 630 
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which was previously mentioned to be a strong inhibitor (see section 1), are also often modelled. 631 

In fact, Navarro et al. [90] only used furfural as state variable to describe the process. Monitoring 632 

the inhibitory compounds is important in a cellulose to ethanol fermentation, as the amount of 633 

inhibitory compounds in the reactor can be controlled through the feed rate. With the exception 634 

of the model published by Navarro et al. [90], all models contain at least the substrate and 635 

product as state variables, while the cell biomass is often present. These state variables are 636 

important to model the yield and productivity of the fermentation. Furthermore, sudden changes 637 

in yield and productivity can indicate the presence of inhibitory compounds or a contamination. 638 

In the case of Hanly and Henson [91], Palmqvist et al. [92], and Mauricio-Iglesias et al. [89], 639 

other major components present in the reactor are also included. In general, the more 640 

components are added in a model, the more accurate balance equations can be applied, and 641 

the more time will be spent on model development as well. Balance equations use relationships 642 

that are derived from theory or experiments to estimate states from measurements [93]. 643 

 644 
Table 7: Overview of the process models researched in this study.  645 

 646 

 647 

[TABLE 7 should be approximately here] 648 

7 Soft sensors 649 

Soft sensors are important for data analysis, process control, and process optimization. Data 650 

driven soft sensors are used to calibrate and interpret the data from measuring devices 651 

(hardware sensors), and to perform fault detection, from which deviating activity in the system 652 

can be found [101]. The most used soft sensors for this purpose are based on principal 653 

component analysis (PCA) decomposition and partial least squares (PLS) regression [35–654 

37,67,101,102], which are applicable to linear relationships. For non-linear relationships, artificial 655 

neural networks (ANN) are often used. A challenge of ANN’s is that they tend to get stuck in 656 

local minima [101]. For this reason ANN’s need a significant amount of calibration data and 657 
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tuning [103]. Soft sensors based on chemometrics, PCA for exploratory analysis and PLS 658 

regression are a mature technology and currently the most frequently applied tools in industry for 659 

monitoring fermentation processes. Furthermore, these soft sensors comply with the process 660 

analytical technology (PAT) initiative by the American Food and Drug Administration. These 661 

methods are very efficient for quality surveillance in order to detect if a particular process is 662 

following the intended production recipe. Hence, these tools provide insight into the current 663 

behavior of the principal components, but do not provide information which can be directly 664 

coupled with a first principles process model in order to predict or optimize future behavior.    665 

 666 

Model-driven soft sensors on the other hand are applied to estimate variables from other 667 

monitored variables, to work as a backup for when hardware sensors fail, and to perform fault 668 

detection. The model-based soft sensors rely on first principles process models (balance 669 

equations for mass and energy as well as constitutive equations for e.g. reactions and transport) 670 

and on an algorithm that reconciles the available measurements with predictions by the model. 671 

This is also known as a filter or a state observer. Examples of such algorithms are Luenberger or 672 

Kalman filters or asymptotic observers [104,105].  673 

 674 

Soft sensor technology has been utilized in the bulk chemical industry for decades but industrial 675 

applications in the biochemical industry are recent and under development [106,107]. The 676 

reasons for later utilization in e.g. fermentations can be several, among others, process-model 677 

mismatch, nonlinear dynamics, noisy measurements and that the development of state 678 

estimators of sufficient quality is troublesome for many industrial fermentation processes. Much 679 

of the research in state estimation focuses on ensuring the long-term (asymptotic) convergence 680 

of the developed algorithms. However, as the biochemical industry is dominated by batch and 681 

fed-batch processes (time limited), the ability of many popular state estimators to monitor 682 

bioprocesses is somewhat limited [104]. Furthermore, the instrumentation can be insufficient in 683 



28 
 

order to have enough information available for the estimation. In industrial fermentation 684 

applications, spectroscopic methods dominate to a high degree, and these are not as 685 

straightforward to couple to the estimation scheme as direct measurements of e.g. temperature, 686 

pressure or pH, as is the case in classic chemical processes.  687 

 688 

According to Luttmann et al. [108] soft sensors are mainly applied to determine the rate of 689 

oxygen consumption and carbon dioxide production, as well as the relationship between the two, 690 

the respiratory quotient (RQ) [109], but the number of applications at industrial scale is low. 691 

Furthermore, the RQ is not applicable to cellulose to ethanol fermentation, as there is no oxygen 692 

consumption. Mauricio-Iglesias et al. [89] explored the use of the continuous-discrete extended 693 

Kalman filter to estimate biomass, furfural and acetic acid by measuring glucose, xylose, ethanol 694 

and pH. The in silico results were promising as the estimation was reasonably good even in 695 

conditions of simulated contamination by lactic acid bacteria. So, to our opinion this is certainly a 696 

route that could be exploited further, for example for more standardized comparison of sensors, 697 

monitoring and control strategies in silico. Here, inspiration can be found in the wastewater 698 

treatment field, where benchmarking efforts aiming at in silico comparison of control strategies 699 

have been ongoing for almost 20 years now [110]. 700 

8 Discussion 701 

This paper aimed to identify key variables to monitor in cellulose to ethanol fermentation. As 702 

cellulosic ethanol cannot yet compete with non-cellulosic ethanol regarding process economy, it 703 

is important to reduce the costs, which are mainly associated with utilities, substrate, biomass, 704 

and capital costs. Hence, an increase in profit can be achieved by increasing the yield and 705 

productivity as well as by running the fermentation in non-sterile conditions. However, to reach 706 

these objectives and to maintain the highest possible yield and productivity, monitoring and 707 

control are needed.  708 
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 709 

The current real-time monitoring methods used in the non-cellulosic ethanol industry (as in many 710 

other low-value, high-volume processes) consist of secondary measurements such as pH, 711 

turbidity, CO2 in the offgas or temperature [111]. Although these measurements provide valuable 712 

information about the process, they do not directly relate to the state of the system, making it 713 

challenging to establish advanced control strategies. Similar to fermentation processes for non-714 

cellulosic ethanol production, cellulosic ethanol fermentations are subject to fluctuations in the 715 

substrate composition that change the dynamics of the fermentation. Therefore, these processes 716 

would benefit from more advanced monitoring methods that can generate data that can be used 717 

for adjusting the operation of the process. When compared with non-cellulosic ethanol 718 

production processes, cellulose-based ethanol production is a more complicated process 719 

involving more phenomena such as inhibition, or a mixed substrate. In consequence, the 720 

monitoring methods typically used for the production of non-cellulosic ethanol fail in cellulosic 721 

ethanol production processes at providing real-time information, which would otherwise be 722 

useful for implementing control strategies. Additionally, advanced monitoring methods are 723 

required to improve the performance of cellulosic ethanol fermentations. 724 

 725 

Models are needed to control and optimize the process. For reliable and accurate models, 726 

measurements are necessary. In the reactor, fast response times are also desired, as the 727 

process characteristics will constantly change. As the response times needed differ per process, 728 

it would be of value to investigate the actual response times needed in different processes. 729 

Automatic controllers will also need real-time measurements as input. However, real-time 730 

monitoring of cellulosic ethanol fermentation is complex and troublesome due to the presence of 731 

suspended solid particles and the complexity of the fermentation matrix, while mixed substrate 732 

consumption and the presence of inhibitory compounds will further increase the complexity of 733 

the model. The choice of a suitable monitoring strategy depends on the model and the specific 734 
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equipment requirements. Quantitative data (e.g., on accuracy, costs or concentration ranges) is 735 

desired for making objective decisions for control and optimization, but also to support and justify 736 

the choice of specific equipment. The collection of quantitative data is somewhat troublesome, 737 

as data from different sources either contradicted one another, as this could be dependent on 738 

the manufacturer and the specific reactor conditions, or was not available at all. The most 739 

reliable option, but also the most expensive and time-consuming one, is to test measurement 740 

equipment under practical conditions on a cellulose to ethanol fermentation plant and to make 741 

the results available to a broader public. It is not very realistic to assume that one organization 742 

can perform such tests alone. Therefore, it would be obvious to set up a consortium of 743 

stakeholders such that the test work – and the costs related to it – can be shared. It should also 744 

be in the interest of the measurement equipment manufacturers if an objective evaluation of the 745 

potential of the different measurement techniques would be available. 746 

 747 

In Section 3 it was determined that the off-gas is the easiest to monitor in real-time because it 748 

avoids the interferences with the suspended solid particles. Also, off-gas analyzers that can 749 

detect oxygen, carbon dioxide or ethanol are often available in the industry. With this 750 

information, the controller can increase or decrease the batch times, and adjust the feeding rate 751 

based on the productivity of the fermentation. In section 5.1 it was evaluated that magnetic mass 752 

spectrometers are the most advantageous because they can evaluate a broad range of 753 

substances in a wide range of concentrations.  Although the off-gas can give insight into the 754 

reactor characteristics, the evaluation of several models showed that the gas components such 755 

as carbon dioxide are hardly considered, while the ethanol stripping is not considered at all. 756 

Modeling the carbon dioxide concentration could potentially be useful in detecting uncommon 757 

behaviors in the system, as a deviation from mass balances might indicate that something is 758 

wrong in the process. However, it was shown that most models mainly consider substrates, 759 

products, biomass, and inhibitors, which can only be monitored in the liquid phase, and 760 
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predictions based on off-gas only would not be as accurate. Contaminations by lactic acid 761 

bacteria can also be potentially monitored through mass balances and kinetics, but this option 762 

has not been thoroughly explored yet.  763 

 764 

Monitoring the compounds dissolved in the liquid phase allows measuring the concentration of 765 

substrates, products, and inhibitors directly, giving a more clear picture of the actual state of the 766 

system. This information permits a better estimation of the biomass concentration and a control 767 

of the fermentation time and the feeding rate based on the actual concentrations of substrates 768 

and inhibitors. The main challenges are the interference with the suspended solid particles and 769 

the complex fermentation matrix of cellulose-to-ethanol fermentations. In this context, the choice 770 

of a monitoring method for the compounds in the liquid phase is not obvious and becomes a 771 

trade-off between the quality of the measured data, the speed of the analysis and the ease of 772 

the operation. On the one side of the spectrum, HPLC (score 12) is an excellent and well-known 773 

analytical tool with very high sensitivity and accuracy, but somewhat slow and complex to use. In 774 

addition to measuring substrates, products, and inhibitors, HPLC can measure the concentration 775 

of lactic acid, allowing the direct detection of contaminations by the LAB. On the other side of the 776 

spectrum, different in-line spectroscopies are easy to implement and have a high measuring 777 

frequency, but the measurements are noisy and less accurate. The accuracy of the 778 

spectroscopic methods improves when a filtration unit is added before the analysis, but this also 779 

increases the complexity of the operation. Among the different spectroscopic methods, in-line 780 

ATM-MIR is evaluated with the highest  score (total score of 13) because it can measure the 781 

substrates, products, and lactic acid and it has been tested in demonstration scale cellulosic-782 

ethanol fermentation. UV-Vis spectroscopy (score of 11) is also an interesting option as a fast 783 

on-line method to measure the concentration of inhibitors in the inlet or in the reactor. 784 

Biosensors (score of 10) obtained the lowest score, as they are sensitive and accurate methods 785 

to measure with high frequency the concentrations of glucose, xylose, ethanol or lactic acid, but 786 
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they cannot be implemented in-line and require clear and diluted samples. The main challenges 787 

are that the sensors have limited long-term stability and will encounter drift, while there are also 788 

no furfural or 5-HMF biosensors available yet.  789 

 790 

For biomass monitoring (section 5.3) dielectric spectroscopy was the most beneficial (total score 791 

of 12, Table 6) since it can differentiate cells from other suspended solid particles, it is able to 792 

detect viable cells, and it has been shown to work on lab-scale in cultures with lignocellulosic 793 

material. Although contaminations cannot be detected with this method, this study has shown 794 

other indirect methods to detect contaminations, such as the observation of a sudden increase in 795 

base addition to indicate lactic acid production from lactic acid bacteria. Unlike dielectric 796 

spectroscopy, flow cytometry (score of 8) can directly detect contaminations by lactic acid 797 

bacteria. However, flow cytometry is an expensive technique difficult to implement for on/at-line 798 

monitoring. 2D fluorescence and bio-calorimetry (scores of 7 and 8 respectively) are indirect 799 

methods to measure biomass, but they cannot detect contaminations. Finally, microscopy and 800 

image analysis (score of 11) appears as a method with the potential to measure biomass since it 801 

can differentiate cells from particles, viable and non-viable cells and also contamination. 802 

However, this method still needs further development. 803 

 804 

When deciding on extending the monitoring scheme, one should first gain insight into what 805 

strategies will be the most useful for control and optimization. This will depend on how the 806 

process is modeled, but also on the type of process and the specific conditions applied. Off-gas 807 

measurements by mass spectrometry were found to be the most important in cellulosic ethanol 808 

fermentation, followed by the addition of the monitoring of the inlet. If it is assumed that the inlet 809 

composition is not dynamic, a delay in measurements is not an issue at all. HPLC is therefore 810 

suitable and reliable to monitor the inlet under this assumption. These two measurement 811 

techniques combined with kinetic models can generate data needed for control. Monitoring 812 
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dissolved components and biomass in the reactor is of importance for fault detection and 813 

optimization, as this will need accurate data on the state of the reactor.  A simulation study [89] 814 

including the addition of in situ measurements to estimate state variables, showed that the 815 

prediction error decreased when the reactor holdup, substrates, product, and pH were monitored 816 

with a sampling interval of 240 minutes. Interestingly, when excluding the pH from these 817 

measurements, the prediction error increased. Although total inorganic carbon was a state 818 

variable in this study, no off-gas monitoring was performed. It is recommended that a similar 819 

study is performed when a monitoring scheme is considered, to give a better insight into the 820 

added value of a specific monitoring scheme linked with a specific model. 821 

 822 

Considering that cellulosic ethanol production processes have now reached a stage of maturity 823 

which allows operating a process at demonstration scale or even full-scale, it would be obvious 824 

to allocate some more resources to investigating the potential of further improving the operation 825 

of such installations by adding more on-line monitoring and control. In order to reach a situation 826 

where real-time control is put in operation on the basis of on-line measured data, our suggestion 827 

is, therefore, to focus on a detailed evaluation of the most promising monitoring methods that 828 

have been highlighted in this manuscript. As mentioned before, an in-silico approach could be 829 

useful here, inspired by the work on benchmarking of control strategies that has been done in 830 

the wastewater field [110]. 831 

9 Conclusion 832 

Cellulose to ethanol fermentation is a complex process that is often operated far from its optimal 833 

conditions. In consequence, the implementation of advanced monitoring and control strategies is 834 

necessary to improve the process efficiency compared to non-cellulosic ethanol production 835 

processes.  836 

 837 
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Lignocellulosic waste includes a wide variety of materials ranging from wood chips to different 838 

kinds of straw. These materials have very different properties and compositions, and affect the 839 

fermentation differently. Likewise, the influence of the available process alternatives must be 840 

carefully considered before deciding on the most adequate monitoring and control system. In 841 

this review, different monitoring schemes and methods for cellulosic  ethanol fermentation have 842 

been reviewed. The fermentation of wheat straw hydrolysate in an SHF process was used as a 843 

case study. However, the challenges described for this case study (e.g., high concentration of 844 

suspended solids, the complex fermentation matrix or the presence of inhibitors) are common to 845 

other substrates or process configurations.  846 

 847 

The risk of contamination by lactic acid bacteria, the inhibition by  furfural and acetic acid and the 848 

presence of oxygen in the fermenter were identified as the major threats for the cellulose to 849 

ethanol fermentation. Among the different monitoring schemes reviewed in this article, it was 850 

found that monitoring the off-gas, the inlet, and the liquid phase of the  reactor would add 851 

significant value to the currently used monitoring methods (i.e., pH and temperature). Among all 852 

the methods available to monitor off-gas, only electronic noses and mass spectrometry are 853 

considered in this review as the two techniques able to simultaneously detect all the compounds 854 

of interest (glucose, xylose and ethanol). Despite the significant amount of research done in 855 

electronic noses, mass spectrometry is a more mature and implemented technology. To monitor 856 

the inlet and the liquid phase in the reactor, in-line ATR-MID spectroscopy was deemed as the 857 

most advantageous technique because it is able detect simultaneously most of the compounds 858 

of interest, it does not require sample preparation and it is not affected too much by the high 859 

concentrations of suspended solids. Monitoring the biomass was also found to be valuable. The 860 

most suited analytical instrument for real-time monitoring of the biomass is dielectric 861 

spectroscopy. However, the developments in microscopy and in image analysis make the 862 

technology attractive, especially for its potential to detect contaminations. It was found that quite 863 
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some quantitative data on measuring devices is missing in the literature and that the available 864 

data can vary considerably depending on the manufacturer of a device, and on the reactor 865 

conditions. Research on the objective comparison of different devices in specific case studies or 866 

applications would be of interest, especially to companies aiming at selecting a device for a 867 

specific application.  868 

 869 

Another important step is to investigate in more detail how the monitoring can contribute 870 

specifically to the control and optimization of industrial applications, and the most viable option 871 

there seems to use an in-silico approach to save on costs. 872 
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11 Supplementary material 1220 

11.1 Scoring method for the evaluation of the discussed methods to monitor the 1221 

dissolved components 1222 

 1223 

All methods were evaluated based on the following eight criteria: measured compounds, 1224 

sensitivity, accuracy, drift, calibration and data analysis, sample preparation, response time, 1225 

industrial implementation and costs.  1226 

 1227 

The scores for measured compounds were based on the capabilities of each method to monitor 1228 

key compounds of the cellulose to ethanol fermentation (Table S 1). A method capable of  1229 

monitoring all the relevant compounds would receive a score of 3, whilst a method able to 1230 

monitor none of the compounds would receive a score of 0. Methods able to monitor glucose 1231 

 1232 
Table S 1. Scores given based on the capabilities to measure relevant compounds in the liquid phase. 1233 
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Ethanol Yes Yes Yes Yes Yes Yes No Yes Yes 

Acetic acid Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Lactic acid No No Yes Yes Yes Yes Yes Yes Yes 

Furfural No No No No No No Yes No Yes 

HMF No No No No No No Yes No Yes 

Total score 1 1 2 2 2 2 1 2 3 

  1234 

Accuracy and sensitivity are evaluated based on the values found in the literature and discussed 1235 

in Section 0 (Table S 2). 1236 

 1237 
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Table S 2. Scores given based on the sensitivity and accuracy of each method. 1238 

 

O
n

-l
in

e
 N

IR
 

In
-l

in
e

 N
IR

 

O
n

-l
in

e
 M

IR
 

In
-l

in
e

 M
IR

 

O
n

-l
in

e
 R

a
m

a
n

 

In
-l

in
e

 R
a
m

a
n

 

O
n

-l
in

e
 U

V
-V

is
 

B
io

s
e

n
s

o
rs

 

A
t-

li
n

e
 H

P
L

C
 

Sensitivity 1 1 2 2 2 2 1 2 3 

Accuracy 2 1 2 1 2 1 2 2 3 

 1239 
Drift is evaluated based on the deviation of the measurements over time. All methods start with a 1240 

maximum score of 3. Long-term deviations result in the subtraction of 1 point. Drift between and 1241 

within batches results in the subtraction of 1 and 2 points, respectively (Table S 3). 1242 

 1243 
Table S 3. Scores given based on the basis of information collected about drift of each method. 1244 
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Drift 1 1 1 1 2 2 2 0 2 

 1245 
Scores related to the calibration and data analysis are based on two criteria: the complexity of 1246 

calibration methods and the pre-processing requirements of each type of data. Univariate 1247 

methods are the simplest ones and receive a score of 3, multivariate methods receive a score of 1248 

2 and multiway methods a score of 1. Preprocessing requirements are classified into P1 1249 

(including basic pre-processing techniques such as base-line correction or mean centering) and 1250 

P2 (including P1 and additional methods to correct for other disturbances). A method requiring a 1251 

pre-processing of type P1 or P2 would receive -1 or -2 points in their final scores, respectively 1252 

(Table S 4).   1253 

 1254 
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Table S 4. Scores given to each method according to the required calibration methods and data analysis. P1 1255 
includes basic pre-processing techniques such as base-line correction or mean centering. P2 includes P1 1256 
and additional methods to correct for other disturbances. 1257 
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Univariate No No No No No No No Yes Yes 

Multivariate Yes Yes Yes Yes Yes Yes Yes No No 

Multiway No No No No No No No No No 

Pre-process P1 P2 P1 P2 P1 P2 P1 P1 P1 

Total score 1 0 1 0 1 0 1 2 2 

 1258 
The sample preparation is evaluated based on the number of steps required prior to analysis. A 1259 

method requiring no sample preparation (in-line methods) would receive a score of 3, whilst 1260 

methods requiring 1, 2, or 3 steps, would receive a score of 2, 1 or 0, respectively (Table S 5).  1261 

 1262 

 1263 
 1264 
Table S 5. Scores assigned to each method according to the sampling preparation requirements. 1265 
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Filtration Yes No Yes No Yes No Yes Yes Yes 

Dilution No No No No No No No Yes Yes 

Derivation
1 

No No No No No No No No Yes 

Total score 2 3 2 3 2 3 2 1 0 
1
 Derivation may include sample staining, or  

 1266 
The sampling frequency is divided into methods able to deliver almost real-time information (< 5 1267 

min), which receive a score of 3, methods with a delay of less than one hour (receiving a score 1268 

between 2 if they need less than 20 minutes and 1 if they need more) and methods with a delay 1269 

greater than one hour (receiving a score of 0) (Table S 6) 1270 

 1271 
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Table S 6. Scores given to each method according to sample frequency. 1272 
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< 5 min No Yes No Yes No Yes No No No 

< 1 hour Yes No Yes No Yes No Yes Yes No 

> 1 hour No No No No No No No No Yes 

Total score 2 3 2 3 2 3 2 1 0 

 1273 
The evaluation of industrial implementation has been based on an extensive review of papers 1274 

and patents. Industrial implementation refers to any fermentation process and it is not limited to 1275 

cellulose to ethanol fermentations. Methods not implemented at industrial scale or that are rarely 1276 

used would receive 0 and 1 point respectively, and methods commonly used at industrial scale 1277 

would receive 2 points. Methods tested in large scale cellulose to ethanol fermentations would 1278 

receive an additional point (Table S 7). 1279 

 1280 

The scores regarding costs are divided into operational and investment costs and they are 1281 

compared relatively to each other. A score of -3 is given to the most expensive equipment and a 1282 

score of 0 is given to the cheapest one. The final score results from the rounded up average 1283 

between the operational and the investment costs (Table S 8). 1284 

Table S 7. Industrial implementation. 1285 
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Total score 2 2 2 2 1 0 0 0 1 

 1286 
Table S 8. Scores of each method related to the investment and operation costs. 1287 
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Operation -1 0 -1 0 -1 0 -1 -1 -2 

Investment -2 -2 -3 -3 -3 -3 -1 0 -2 

Total score -1 -1 -2 -1 -2 -1 -1 0 -2 

 1288 
 1289 

11.2 Scoring method used to evaluate the discussed methods to monitor biomass 1290 

according to the different evaluation criteria 1291 

Each method is given 3  points if they are able to detect the corresponding feature (cells/particles, 1292 

viable/dead or contaminations. The final score is obtained from the sum of each individual score.  1293 

 1294 
Table S 9. Scores based on the capabilities to differentiate cells and solid particles, to assess the viability of 1295 
the cell culture and to detect contaminations. 1296 
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Cells/particles 0 0 3 3 3 3 3 

Viable/dead 0 0 0 0 3 3 3 

Contaminations 0 0 0 0 3 0 3 

Total score 0 0 3 3 9 6 9 

 1297 

The sample preparation is evaluated based on the number of steps required prior to the 1298 

analysis. A method requiring no sample preparation (in-line methods) would receive a score of 3, 1299 

whilst methods requiring dilution, derivation or both, will receive between 0 and 2 points (Table S 1300 

10). 1301 

 1302 
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Table S 10. Scores given to each method according to the sample preparation requirements. 1303 
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Dilution Yes No No No Yes No Yes 

Derivation No No No No Yes No No 

Total score 2 3 3 3 0 3 2 

 1304 
Scores related to the calibration and data analysis are based on two criteria: the complexity of 1305 

calibration methods and the pre-processing requirements of each type of data. Univariate 1306 

methods are the simplest ones and receive a score of 3, multivariate receive a score of 2 and 1307 

multiway methods and non-linear machine learning a score of 1. Preprocessing requirements 1308 

are classified into P1 (including basic pre-processing techniques such as base-line correction or 1309 

mean centering) and P2 (including P1 and additional methods to correct for other disturbances). 1310 

A method requiring a pre-processing of type P1 or P2 would receive -1 or -2 points in their final 1311 

scores, respectively (Table S 11).   1312 

 1313 
 1314 
Table S 11. Scores given to each method according to the calibration and data analysis requirements. P1 1315 
includes basic pre-processing techniques such as base-line correction or mean centering. P2 includes P1 1316 
and additional methods to correct for other disturbances. 1317 
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Univariate Yes No No Yes Yes No No 

Multivariate No Yes No No No Yes No 

Multiway/Non-linear 

machine learning 
No No Yes No No No Yes 

Pretreatment No P1 No No P1 P1 P1 

Total score 3 1 1 3 2 1 0 

 1318 
The evaluation of industrial implementation has been based on an extensive review of papers 1319 

and patents. Industrial implementation refers to any fermentation process and it is not limited to 1320 
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cellulose to ethanol fermentations. Methods not implemented at industrial scale or that are rarely 1321 

used would receive 0 and 1 point respectively, and methods commonly used at industrial scale 1322 

would receive 2 points. Methods tested in large scale cellulose to ethanol fermentations would 1323 

receive an additional point (Table S 12). 1324 

 1325 

The scores regarding costs are divided into operational and investment costs and they are 1326 

compared relative to each other. A score of -3 is given to the most expensive equipment and a 1327 

score of 0 is given to the cheapest one. The final score results from the rounded up average 1328 

between the operational and the investment costs (Table S 13). 1329 

 1330 
Table S 12. Scores given to each method according to the industrial availability. 1331 
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Tested in large scale 

cellulose-to ethanol 
- - - - - + - 

Total score 2 1 1 0 0 2 1 

 1332 
 1333 
Table S 13. Scores given to each method according to operational and investment costs. 1334 
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Operation 0 0 0 0 -3 0 -1 

Investment -1 -2 -2 -2 -3 -1 -1 

Total score 0 -1 -1 -1 -3 0 -1 
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