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Abstract

Motivated by studies of wildfire seasonality, we propose a non-homogeneous hidden
Markov random field to model the spatial distribution of geo-referenced fire occurrences
during the year, by representing occurrence times as circular data. The model is based
on a mixture of Kato-Jones circular densities, whose parameters vary across space ac-
cording to a latent non-homogeneous Potts model, modulated by geo-referenced covari-
ates. It allows to segment fire occurrences according to a finite number of latent classes
that represent the conditional distributions of the data under specific periods of the
year, simultaneously accounting for unobserved heterogeneity and spatial autocorrela-
tion. Further, it parsimoniously accommodates specific features of wildfire occurrence
data such as multimodality, skewness and kurtosis. Due to the numerical intractability
of the likelihood function, estimation of the parameters is based on composite likelihood
(CL) methods. It reduces to a computationally efficient Expectation-Maximization al-
gorithm that iteratively alternates the maximization of a weighted CL function with
weights updating. The proposal is illustrated in a study of wildfire occurrences in the
Iberian peninsula during a decade.

Keywords: spatial circular data, composite likelihood, fires, Kato-Jones density, land use,
Markov random field.

1 Introduction

Wildfires represent a major environmental and economic issue in Southern Europe. In Spain
and Portugal, for example, some areas have been recently devastated by wildfires. In mid June
2017, more than 45.000 hectares were devastated in the district of Leiria (central Portugal),
with around 150 active fires in a week. Some years before, in 2006, the damaged region
was Galicia (NW Spain), with almost two thousand active fires during the first fortnight of
August which destroyed an area larger than the one affected by wildfires in the five previous
years.

Studies on wildfires typically focus on specific aspects of wildfires, such as fire frequency,
fire intensity and fire extension. This paper focuses on the spatial distribution of wildfire



seasonality. As a part of fire regimes characterization, the spatial analysis of fire seasonality
is crucial for understanding fires behavior at global and local spatial scales (Benali et al.,
2017). In addition, knowledge of seasonal patterns of fires across space is useful for designing
appropriate precautionary and intervention measures against wildfires.

Basic information available for our study includes occurrence of geo-referenced wildfire
events (day of the year) across a decade (2002-2012). On a yearly scale, event times can be
placed on a unit circle corresponding to a period of 365 days which, without loss of generality,
can be rescaled to the support [0, 27). The idea of studying seasonality by viewing event times
as circular data is not new and it has been, for example, recently used by Shirota and Gelfand
(2017) in a study of crime events. By taking this approach, geo-referenced event times can
be represented as spatial circular data.

While methods for handling independent circular data are well established (Ley and Verde-
bout, 2017), the analysis of spatially dependent circular data is a new emerging area of re-
search. Some proposals in this context rely on the extension of geostatistical models to the
circular setting. Spatial wrapped-Gaussian processes (Jona Lasinio et al., 2012) and spatial
projected-Gaussian processes (Wang and Gelfand, 2014) have been proposed for modelling
sea motion. Consistently with the geo-statistical paradigm, these models consider spatial
circular processes that vary continuously over space. Alternative approaches are based on
circular processes that vary discretely over space. Some proposals in this context make use
of adaptations of spatial auto-regressive processes to the circular setting. For example, Mod-
lin et al. (2012) introduce a circular autoregressive model, based on the wrapped normal
distribution for studying hurricane wind directions. Lagona (2016) introduces a circular au-
toregressive model, based on the multivariate von Mises distribution, for characterizing sea
wave directions. Other proposals consider hidden Markov random fields for spatial circular
data (Lagona and Picone, 2016; Ranalli et al., 2018). In this setting, spatial circular data
are conditionally independent given a latent Markov random field (MRF), i.e. a multinomial
process in discrete space which fulfils a spatial Markov property (Gaetan and Guyon, 2010)
and which segments the study area according to a finite number of latent classes. This ap-
proach is useful when the interest is focused on segmenting the area under study according
to a small number of classes, each one associated with a specific distribution of the data.

Hidden MRFs are popular models in spatial statistics, since the seminal paper by Besag
(1975). They can be seen as a spatial extension of the hidden Markov models (HMMs) that
are exploited in time series analysis. Circular extensions of HMMs have been widely used for
the analysis of time series with circular components (Holzmann et al., 2006; Lagona et al.,
2015; Mastrantonio et al., 2015; Maruotti et al., 2016). On the contrary, the widespread use
of circular hidden MRF has been limited by the intractability of the likelihood function of
these models. Following Alfé et al. (2008), Lagona and Picone (2016) adapt a mean-field
approximation for Gaussian hidden MRFs to the circular setting and develop a computa-
tionally intensive Expectation-Maximization (EM) algorithm. Unfortunately, the method is
numerically unstable and little is known about the distributional properties of the estima-
tors. More recently, Ranalli et al. (2018) suggest composite-likelihood methods to estimate
a (homogeneous) circular hidden MRF, showing that this method provides a good solution
to balance statistical and computational efficiency, through an extensive simulation study.

In studies of wildfire seasonality, circular hidden Markov fields provide a natural approach
to segment an area of interest according to regions that are associated with specific seasonal
patterns of fire events. In this paper, specifically, we assume that the distribution of the fires
occurrence recorded as days on a yearly base (viewed as circular data) is well approximated by



a mixture of Kato-Jones densities, whose parameters vary across space according to a non-
homogeneous Potts model. The Kato-Jones density is a four-parameter unimodal density
which flexibly accommodates skewness and kurtosis on the circle (Kato and Jones, 2015).
The proposed non-homogeneous Potts model is a MRF, whose parameters depend on geo-
referenced covariates. The model is estimated by extending the proposal by Ranalli et al.
(2018) to the case of a non-homogeneous hidden MRF that is modulated by geo-referenced
covariates.

The rest of the paper is organized as follows. Section 2 briefly describes the wildfire data
that motivated this study. Section 3 presents the structure of the proposed non-homogeneous
hidden MRF and Section 4 illustrates the CL methods that we suggest for estimation. Section
5 is devoted to the results that have been obtained by the proposed methods on the real data.
Section 6 finally summarizes relevant points of discussion.

2 Wildfire occurrences in the Iberian peninsula

The identification of fire peaks in certain spatial areas should serve to warn the authorities
in order to organize appropriate interventions or campaigns, especially when a critical period
is highly probable (a critical day for fire risk is identified by the 30-30-30 conditions: more
than 30°, winds of more than 30 km/h and less than 30% of humidity).

In the Iberian peninsula, most fires occur during summer with a peak of activity in
August-September. In terms of climatological and weather conditions, summer is the most
suitable season for fires in latitudes over the Tropic of Cancer, because dry weather conditions
are predominant. Authorities are certainly concerned with wildfire problems during summer
season and rangers and firefighters groups are reinforced in this period. Nevertheless, wildfires
do not only occur in summer. A recent example was October 2017, when northern Portugal
counted 600 fires in five days and in Galicia more than one hundred fires occurred in a day. In
this case, authorities were not prepared for fighting wildfires, since October is not considered
as a peak season.

In addition to summer weather conditions, land management practices also influence
fire seasonality, showing in this case preferential timings. Although some human fires are
produced intentionally or unintentionally during dry months, there are other activities that
cause fires in periods that are outside the principal peak of fires. These activities include,
for example, agriculture burning for preparing fields (for harvest work) or for clearing the
crop residues (after harvesting or in order to avoid future burnings during the climatological
season of fires). The distribution of fire activity peaks during the year and across the study
area helps to explain where and how human activity changed fire seasonality using fires as a
land management tool (Ameijeiras-Alonso et al., 2018).

For studying the distribution of the times of wildfires occurrences, we collected data of the
fires in the Iberian Peninsula from 10 July 2002 to 9 July 2012, detected by the MODerate
resolution Imaging Spectroradiometer (MODIS), launched into Earth orbit by NASA on board
of the Terra (EOS AM) and the Aqua (EOS PM) satellites. MODIS identifies locations where
fires are actively burning at the time of satellite overpass, using for this purpose an algorithm
that summarizes a number of measures such as brightness, temperatures, cloud and water
masks and the sun glint (Giglio et al., 2003; Oom and Pereira, 2013).

During the study period, a total of 63127 fires were detected by MODIS in the inland
territory of Spain and Portugal. By wrapping the day of occurrence of these fires around a
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Figure 1: Distribution of fire occurrence times in the Iberian peninsula during the period
2002-2012. Left: rose diagram of the raw data. Middle: circular kernel density estimate.
Right: land use of the Iberian peninsula. The ticks in the left and the middle pictures
represent the beginning or the end of the month that is indicated between them.

circle of circumference 365 days, we obtain the rose diagram in Figure 1 (left side), where
the area of each circular sector is proportional to the class frequency. The multimodality of
these data is better visualized by the von Mises-kernel non-parametric density estimate of
the data (Taylor, 2008), displayed in the middle of Figure 1. For simplicity, it is displayed as
a function over the real line, although its support is the circle and so it should be wrapped
around by joining both ends of the curve. As expected, most of the fires are concentrated
around the first fortnight of August (climatological peak of fires). However, two additional
peaks appear during the second fortnight of March and at the beginning of October. This
alteration of fire seasonality is well documented in the forestry literature (see, e.g., Korontzi
et al., 2006; Le Page et al., 2010; Magi et al., 2012; Benali et al., 2017) and the regularity of
these multimodal patterns was recently studied by Ameijeiras-Alonso (2017) in a worldwide
setting.

Ignoring the spatial dimension of the data, Figure 1 suggests that the distribution of fire
occurrence over the year is a mixture of either two or three components that pertain to specific
seasonal patterns of fire occurrences. We are interested in modeling the spatial distribution
of these components through a hidden MRF. The model accommodate the spatial aspect of
the data by a neighborhood structure between wildfire sites. Such a spatial neighborhood
structure can be specified in different ways (Bivand et al., 2008, chapter 9). A feasible strategy
relies on defining the neighbors of each site ¢ in terms of the Euclidean distance. Hence, the
Iberian Peninsula was first partitioned by a square grid of resolution 300m? and each fire
event 7 was associated to a grid cell. Let A = {aq,as,...} be the set of centroids that were
associated with at least one fire event. For each a € A, let d; be the shortest Euclidean
distance between a and any other centroid in A. Then, for each site ¢ that is associated with
centroid a, we refer to N (i) = {j € S :d(i,j) < d} and j # i} as the neighborhood of i.

Since land use can alter the timing of fire occurrence, this information was included
in the analysis. We obtained land use at a 300m? resolution from the European Space
Agency Climate Change Initiative project (Land Cover version 2.0.7; available at http:
//www.esa-landcover-cci.org), which describes the physical material at the surface of the
earth, including various types of vegetation, bare rock and soil, water, snow and ice, and
artificial surfaces. In our study, land cover before the fire event is included as a factor with
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six levels that are respectively associated with cropland (rainfed; irrigated or post-flooding),
forest (tree cover; broadleaved, needleleaved or mixed leaf type; evergreen or deciduous; closed
or open), shrubland, grassland (herbaceous cover, grassland), mized vegetation, low vegetation
(sparse vegetation; tree cover, flooded; urban areas; bare areas; water bodies; permanent snow
and ice). In the Iberian peninsula a total of 16145 fires were produced in cropland , 25963
in forest, 9868 in shrubland, 1621 in grassland, 3096 in mixed vegetation and 6434 in low
vegetation areas. The summary of 10-years land cover is shown, for the Iberian Peninsula,
in Figure 1 (right).

3 A circular hidden Markov random field

The data that motivated this work are in the form of a spatial series of circular observations,
say y = (yi,t =1,...,n), y; € [0,27). Each observation is associated with the ith row vector
x; of a design matrix X. In our case study, y; indicate the day of the year of the ith fire
event, while X is a 6-column coding matrix that includes land cover before the fire event as a
factor with 6 levels. In this section we describe a circular hidden MRF model that spatially
segments these data according to K latent classes. The model can be seen as a mixture
of K unimodal circular densities, whose parameters vary across space according to a latent
multinomial process. We specify the mixture components as Kato-Jones densities (Kato and
Jones, 2015). The latent multinomial process is instead specified by a non-homogeneous
Potts model (Strauss, 1977), whose parameters are modulated by the design matrix X. In
Section 3.1 we briefly describe the Kato-Jones density and Section 3.2 is devoted to the
Potts model. Finally, section 3.3 describes the proposed HMRF model, by integrating the
Kato-Jones distribution with the latent Potts model.

3.1 The Kato-Jones density

The choice of the component density in a mixture model should be always driven by the
purpose of the analysis. If the purpose is model-based classification, then the component
should be unimodal and appropriate in light of the data (McNicholas, 2016, chapter 9, p. 157).
A recent proposal that suits our needs is the four-parameter Kato-Jones density, namely

1 yeos(d —p) —v
; = —(1+27? 2
f(y’/’[ﬁfya V?"?) 27_(_ < + ’y 724’1/2+77272’)/(]/COS(9*,U,)+7781H(07M)) ) ye [07 7-‘-)7
(1)

where (v,7n) # (7,0) and

0 <wp<2m
0 <v<1 (2)
(v =72+ <AP(1-7)%

The properties of this density are extensively described by Kato and Jones (2015). We
summarize here the most practical advantages of this density. First, the meaning of the
parameters is intuitively appealing. Precisely, p indicates the circular mean, vy is the concen-
tration parameter (if v = 0 then the density reduces to a uniform density on the circle), v
measures kurtosis (the greater the value of v the sharper the peakedness of the density) and,
finally, 7 indicates skewness (the density is symmetric if and only if » = 0). Second, sam-
ples from the Kato-Jones distribution can be easily generated by drawing samples from the



wrapped Cauchy distribution and then using the acceptance/rejection algorithm proposed
by Kato and Jones (2015). Third, maximum likelihood is numerically tractable by using
a maximization algorithm that allows for constraints such as that provided by the nlminb
function in R. This function requires that the range of each parameter should not depend on
other parameters, and a suitable re-parametrization is necessary, such as that suggested by
Kato and Jones (2015).

3.2 A non-homogeneous Potts model

The Potts model is a multinomial process in discrete space (lattice) with K classes. Given a
lattice that divides an area of interest according to n observation sites i = 1,...,n, a sample
that is drawn from a spatial multinomial process is a segmentation of this area, obtained
by associating each site with a segmentation label k = 1,..., K. Formally, each observation
site 7 is associated with a multinomial random variable U; = (Uj1,...,U;x) with one trial
and K classes, where U is a Bernoulli random variable that is equal to 1 if ¢ is labelled
by k and 0 otherwise. A specific segmentation of the area can be accordingly represented
as a sample drawn from the multinomial process U = (Uy,...U,). The Potts model is a
spatial multinomial process which accounts for a neighborhood structure N(i),i = 1,...,n
among the observation sites, which associates each site with a set N (i) of neighbors. Section
2 described the neighborhood structure that was exploited for our case study. By taking the
class K as a reference, each segmentation u is associated with K sufficient statistics: the
number of neighboring sites which share the same class k # K

n K-1
n(u) = E E g UikUjk,
i=1 j>i:j€N(3) k=1

and K — 1 sufficient statistics
ng(w) = ug k=1,...,K—1
i=1

which indicate the number of neighboring sites that are associated with latent class k. Under
the Potts model, the probability of a specific segmentation u is known up to K parameters
ay...ax_1,p and it is given by

exp (S5 mi(w)a + n(wp)
W(e, p) ’

p(wa, p) = (3)
where W (a, p) is the normalizing constant. The parameter p is an autocorrelation parameter:
if it is positive (negative) then it penalizes segmentations with a few concordant (discordant)
neighbors. In the image analysis literature, it often referred to a regularization parameter,
given that large values of p are associated with segmentations where areas with the same
label are geometrically regular. Each parameter oy penalizes segmentations with a few sites
that belong to class k. When p = 0, then (3) reduces to a multinomial distribution where
the parameters a are class-specific log-odds:

_10 P(uzkzl)
Gk = gP(uiKzl)'



Model (3) is an homogeneous Potts model, because the parameters oy do not vary across
the observation sites. We extend this setting by assuming that these parameters depend on
site-specific covariates, through a multinomial logistic model:

ik =% B k=1...K—1, (4)

where the regression coefficients §; indicate the influence of the available covariates on the
frequency of label k£ in the segmentation. As a result, we obtain the non-homogeneous Potts

model N
exp (Zi:1 X;rﬁ + n(“)ﬁ)
W(B,p) ’

where W (3, p) is the normalizing constant. For each site i and each label k, let

nk(uN(i)) = Uik Z Ujk

JEN(3)

p(u; B, p) = (5)

be the number of sites in the neighborhood of i that are labelled by k, where N (i) indicates
the neighborhood of 4, completed by 7. Under model (3), the conditional distribution of each
site depends only on the labels taken by the neighboring sites, namely

exp (ozk + pnk(umi)))
K—1 )
L+ 5 exp (ak + pnk(umi)))

(6)

p(uik =1 | u17...ui,1,ui+1,...un) =

Accordingly, the Potts model is a Markov random field with respect to the neighborhood
structure. Under the non-homogeneous random field (5), these conditional probabilities re-
duce to

exp (X" Br + pnr(uy)))
1+ 30 exp (xT Bk + pr(ug )

; (7)

p(ulk =1 | 111,...111'_17112'4_1,...11”) =

and the autocorrelation coefficient p can be viewed as an auto-regression coefficient that is
associated with the the spatially-lagged outcome ny(u N(i)) .

3.3 A circular hidden Markov random field

The proposed hidden MRF is specified by assuming that the observed data are conditionally
independent, given a segmentation generated by the non-homogeneous Potts model (5). Pre-
cisely, we assume that the conditional distribution of the observed process, given the latent
segmentation u, takes the form of a product density, say

n K
Fy 1w ) =TT T £ vis 0n)*, (8)

i=1k=1

where the vector § = (61,...,0k) includes K label-specific parameters and f(y;0), k =
1,..., K, are K Kato-Jones circular densities (1). The joint density of the observed data and
the unobserved class memberships is therefore given by

[y, w;0,8,p) = f(y | w;0)p(u; p, B). (9)



By integrating this distribution with respect to the segmentation u, we obtain the likelihood
function of the unknown parameters

L(8,p,8) Zf | w; 0)p(w; p, B). (10)

When p = 0, then the model reduces to a latent class model with concomitant covariates.
Otherwise, when p # 0, the model is a mixture of circular densities, whose parameters vary
across space according to a Markovian process.

4 Parameter estimation through composite-likelihood meth-
ods

4.1 An EM algorithm

Direct maximization of the likelihood function (10) is unfeasible. As a result, we propose to
estimate the parameters by maximizing a surrogate function, namely a composite likelihood
(CL) function (Lindsay, 1988). Our proposal relies on covering the set S = {1...n} of the
observation sites by all the pairs S5 of neighboring sites. For each subset S, we define

K
Ls,(0,0,8) =Y _p(usyip, ) [T TT f(wis 00)*

us, €S9 k=1

as the contribution of the data in S3 to the CL function, where ug, = {u; : i € Se} and

€xp (ZieSQ x{ B+ ”(uSa)P)
W2 (67 p) ’
with W5(, p) being the normalizing constant, is a two-site non-homogeneous Potts model.

We propose to estimate the parameters by maximizing the following composite log-
likelihood function

p(u52;p7 6) =

cl(0,p,8) =Y _log Ls, (0, p, B). (11)
Sa

To this aim, we use an EM algorithm that iteratively generates a sequence of parameter
values by alternating an E step and an M step, until convergence. During the E step, it
computes the expected value of the complete-data composite log-likelihood with respect to
the predictive distribution of the segmentation. This step reduces to the computation of the
following expected value for each pair of sites

ElogLSz(9 P, 5 Z Zuzk logf(yl79k +Zu52 Ing(u5'27pa 6)7
i€S2 k=1 us,

where the K x K predictive probabilities Gig, are given by

p(uSQ; pAv B)fA(yS'z, é) _
> s, P(Us 7 B) f (ys:0)

ﬁSQ :p(US2 | ySzaﬁaéaﬂA) =



whereas p, 6 and B are the parameter values that were available from the previous step of
the algorithm. The normalizing constant of these probabilities is numerically tractable, as it
involves a summation over two sites. Suitable marginalization of (12) provides the univariate
probabilities 0; = p(u; | ys,, P, 0, ,5’), withi=1,...,n.

During the M step, the algorithm maximizes the expected complete-data composite log-
likelihood with respect to the unknown parameters. Because this function is the sum of two
components that depend on different sets of parameters, the M-step reduces to the separate
maximization of two functions, namely

K
Z Z Zﬁzk log f(y:; Ok) (13)

Q) =
So i€8S2 k=1
Q(pvﬂ) = ZZﬁSQ logp(uSQ;paﬁ)' (14)
Sz us,

Maximization of both Q(#) and Q(p, ) can be carried out by a standard optimization
routine that allows for parameter constrains, such as that provided by the nlminb function
in R.

4.2 Computational details

The proposed composite likelihood has been defined by covering the study area with pairs of
neighboring sites. Covering the area by larger subset might have been an option. However,
the numerical tractability of EM algorithm dramatically decreases with the cardinality of
the largest subset of the cover. A cover that includes subsets with two elements is therefore
a natural strategy. When the cover includes all the subsets of two elements, equation (11)
reduces to the pairwise likelihood function (Varin et al., 2011). In a spatial setting, a pairwise
likelihood can be further simplified by discarding all the pairs {i,j} that do not include
neighboring sites. Ranalli et al. (2018) provide an extensive simulation study that shows
that this choice provides a computationally efficient EM algorithm, without a relevant loss
in statistical efficiency.

It is well known that the EM algorithm suffers from two drawbacks: it is sensitive to the
choice of starting points and it may converge to local maxima. These two aspects are strictly
linked to each other. To avoid local maxima we follow a short-runs strategy, by running the
EM algorithm from 50 random initializations, and stopping the algorithm without waiting for
full convergence, i.e. when the relative increase in two consecutive composite log-likelihoods
is less than 1072, The best solution is taken as starting point to run the EM algorithm until
full convergence, that is when the difference in two consecutive composite log-likelihoods is
less than 107°.

Standard errors could in principle be obtained by numerically approximating the observed
Godambe matrix (Godambe, 1960), which is however known to present numerical instability.
This computation requires both the numerical approximation of variability and sensitivity
matrices, and the inversion of the variability matrix (i.e. the covariance of the CL score), that
it is usually a large-size matrix. A feasible alternative can be found in parametric bootstrap
methods, to obtain quantiles of the distribution of the estimates. In this paper, we re-fitted
the model to R = 500 bootstrap samples, which were simulated from the estimated model
parameters. We then computed the 2.5% and the 97.5% quantiles of the empirical distribution



Table 1: Composite integrated classification likelihood values, estimated by fitting a hidden
MRF model with components K = 2,...6.

Number of components
2 3 4 5 6
C-ICL \ 2128333 1974793 2280843 2033279 2346882

of each bootstrap estimate. Simulation of the circular hidden MRF is straightforward, by
taking advantage of standard simulation routines available for the Potts model and the Kato-
Jones distribution. Specifically, we exploited the Gibbs sampler algorithm (Feng et al., 2012)
that is available in the R package PottsUtils to simulate a configuration of segmentation
labels. Given a configuration of segmentation labels, a circular observation y; is drawn at
each lattice site ¢, according to the appropriate Kato-Jones distribution, evaluated at § = ék,
where k is the segmentation label that has been generated by the Potts model at location i.
Kato and Jones (2015) suggest a simple acceptance/rejection algorithm to simulate from a
their distribution and we follow their proposal.

5 Spatial segmentation of fire occurrence times

A collection of hidden MRF models have been estimated in order to obtain the spatial seg-
mentation of the wildfire data described in Section 2, by varying the number of states K
from 2 to 6. The number K of latent classes was chosen by selecting the model minimizing
the composite integrated classification likelihood (C-ICL; Ranalli and Rocci, 2016), which
extends the integrated classification likelihood to the CL framework. According to Table 1,
a model with 3 components attains the minimum C-ICL value.

Table 2 (top panel) includes both the estimates and the bootstrap confidence intervals
of the parameters of the 3 class-specific Kato-Jones densities that have been obtained by
estimating a hidden MRF model with K = 3 components. These values should be interpreted
by recalling the specific support of each parameter, displayed also in Table 2. In particular,
we remark that the supports of the kurtosis and the skewness parameters depend on the
value taken by the concentration parameter. By rescaling the mean parameters to the scale
of a circle of circumference 365 days, the values p; = 1.335, us = 3.798 and p3 = 4.800
are respectively associated with the dates March 18th, August 8th and October 6th. The
three latent classes can be therefore interpreted as three different periods of the year that
respectively occur in Spring, Summer and Autumn, in the corresponding latitudes. The data
are rather concentrated within these classes, as shown by the large values attained by the
concentration parameters (y; = 0.861, y2 = 0.858 and 3 = 0.816, in a unit scale). The
kurtosis parameter indicates that the summer latent class is more peaked than the other
two classes. This is an expected result, as summer is the season associated to most wildfires
(v1 = 0.699, vy = 0.736 and v3 = 0.666). More interestingly, while the Spring component is
left skewed, the shape of the other two components is quite symmetric and well approximated
by a wrapped Cauchy density (when n = 0 and v = 42, the Kato-Jones distribution reduces
to the two-parameter wrapped Cauchy density).

Table 2 (bottom panel) shows the estimated influence of land cover on the marginal
distribution of the latent classes, by taking the class 3 as reference. As expected, latent class
2 is associated with positive estimates, indicating that the proportion of fires during summer
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Table 2: Parameter estimates of a hidden MRF model with K = 3 states and relating
bootstrap 95% confidence intervals (within brackets) and parameter supports (italics).

Latent classes
1 (Spring) 2 (Summer) 3 (Autumn)
Parameter Est. Conf. Int.  Est. Conf. Int.  Est. Conf. Int.
i (mean) 1.335  (1.320,3.781) 3.798  (3.795,3.837) 4.800 (4.540,4.822)
[0,2r) [0,2r) [0,2r)
v (concentration) | 0.861  (0.741,0.873) 0.858  (0.827,0.869) 0.816 (0.374,0.818)
0.1) 0.1) f0.1)
v (kurtosis) 0.699  (0.628,0.762) 0.736  (0.718,0.755) 0.666  (0.297,0.672)
[0.622,0.861] [0.614,0.858] [0.516,0.816]
7 (skewness) 0.047  (-0.003,0.060) 0.000 (-0.010,0.016) 0.000 (-0.018,0.105)
[-0.120,0.120] [-0.122,0.122] [-0.150,0.150]
Latent classes (reference = latent class 3)
Land cover 1 (Spring) 2 (Summer)
Cropland -0.636  (-0.777,0.080) 0.523  (-0.249,0.663)
Forest 0366 (-0.469,0.553) 0.956  (0.297,1.259)
Shrubland 0.066 (-0.075,0.740) 1.331  (0.433,1.604)
Grassland 0.390  (0.388,1.159) 1.474  (0.559,2.058)
Mixed vegetation | -0.377  (-0.453,0.336) 0.874 (-0.080,1.036)
Low vegetation -0.713  (-0.789,0.883) 1.142  (0.498,1.620)
p (spatial) 0.952  (0.751,1.005)

Table 3: Conditional latent class distribution of wildfire events given land use, estimated
by a 3-state hidden Markov random field. Bold: estimated marginal latent class distribution
and observed marginal land cover distribution.

Latent classes

Land cover 1 2 3

0.113 0.700 0.187
Cropland 0.256 0.122 0.584 0.294
Forest 0.411 0.110 0.728  0.162
Shrubland 0.156 0.126 0.748 0.126
Grassland 0.026 0.151  0.687 0.162
Mixed vegetation | 0.049 0.136 0.684 0.180
Low vegetation 0.102 0.060 0.813 0.127
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Figure 2: Estimated mixture of the three Kato-Jones densities,
weighted according to the conditional latent class and land cover.

12

01 02 03 04 05 06

0.0

01 02 03 04 05 06

0.0

Shrubland

Low vegetation

where each component is



is larger than during autumn, regardless of land cover. More interestingly, the proportion of
fires in spring is larger than in autumn only when fires occur in shrublands and grasslands.
In all the other cases, the proportion of fires in spring is smaller than in autumn.

The estimated model segments the Iberian Peninsula according to three latent classes that
are associated with three well distinct seasonal patterns of fire occurrences. Each fire event
can be allocated to a given class by comparing the posterior probabilities t1; and associating
each event with the most likely class. By counting the events that the model allocated to each
class across land cover, we obtain the estimated marginal distribution of the latent classes
(Table 3, first bold row) and the conditional distribution of latent classes within each land
type. These probabilities were integrated with the parameters of the top panel of table 2 to
compute the distribution of wildfire occurrence days within each land cover, shown in Figure
2. This figure decomposes the marginal distribution of the data (figure 1) into land-specific
components, showing that wildfire seasonality varies across lands of different types.

Figure 3 displays the final segmentation of the wildfire occurrence data across the study
area, obtained by associating each geo-referenced event with the posterior probability of
being in each class. In particular, dark colors indicate a higher posterior probability of
latent class membership. It can be clearly seen from top and bottom-left panels that the
wildfire distribution across space is quite different for the three latent classes. Although we
do not aim at drawing thorough conclusions about fire dynamics, this figure depicts some
relevant association between fire occurrence and land use. Wildfires occurrence in Portugal
can be divided in three regions: the north-east district of Braganca, affected by Spring fires;
the south-central region of Alentejo, which suffers from Autumn fires; and the rest of the
country, with a high incidence of summer fires. Actually, these summer fires are spatially
concentrated in the western part of the peninsula, both in Portugal and Galicia. With a
closer look at the Spanish territory, the Autumn component seems to be related with regions
where winter cereal crops are frequent. This is the case of the central part of Castile and
Leén and the south-central and south-eastern part of the Iberian Peninsula (south-central
region of Alentejo, south of Extremadura, around Sevile and Cérdoba in Andalusia and some
regions in Castile-La Mancha), which are also the predominant areas where barley, wheat and
rye are harvested (the area harvested for each crop in the Iberian Peninsula can be obtained
at http://wuw.earthstat.org). In addition, maize and sunflower crops play an important
role in these areas, because also maize (and potato) is harvested in the western part of the
Iberian Peninsula that is characterized by summer fires.

6 Concluding remarks

Scaling georeferenced event times to a unit circle allows to view fire occurrences as a spatial
series of circular data. Circular spatial series however require special methods that address
the circular nature of the data in a spatial setting. Our proposal is based on a hidden Markov
random field for circular data. It segments the study area according to latent classes that
represent specific seasons of fire occurrence. By taking this approach, we were able to indicate
the most likely places where fires could occur in specific periods of the year and to capture
the association between fire occurrences and land use within each season of the year.

From a technical viewpoint, this approach offers a number of advantages. First, it flexibly
accommodates multimodality, skewness and kurtosis, simultaneously accounting for spatial
auto-correlation. Second, it provides a parsimonious representation of the data distribution
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Cropland = Shrubland = Mixed vegetation
Latent class 3 (Autumn) = Forest Grassland = Low vegetation

Land Cover

Figure 3: Top and bottom-left: locations of wildfires in the Iberian Peninsula in the period
2002-2012. Each point is associated to a grey level that is proportional to the posterior
probability of latent class membership (darker levels indicate higher probabilities). Bottom-
right: land cover in the study area.
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by means of a small number of latent classes that offer an intuitively appealing interpretation
of fire regimes. Third, despite of the huge sample size, model estimation is computationally
feasible.

The model provides a platform for a number of possible extensions. For example, it
could be exploited to investigate at what extent covariates of land morphology and weather
conditions might influence the seasonality of fires. Furthermore, it could be extended to
a cylindrical setting, by simultaneously modeling the time of fire occurrence and the fire
intensity. Although further research is needed to explore these possibilities, in its present
form the model is already capable to capture relevant aspects of fires seasonality and provide
crucial information for policy planning.
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