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Abstract

In this paper, a new methodology to select the best
storage format for sparse matrices based on deep
learning techniques is introduced. We focus on the
selection of the proper format for the sparse matrix-
vector multiplication (SpMV), which is one of the
most important computational kernels in many sci-
entific and engineering applications. Our approach
considers the sparsity pattern of the matrices as an
image, using the RGB channels to code several of
the matrix properties. As a consequence, we gener-
ate image datasets that include enough information
to successfully train a Convolutional Neural Network
(CNN). Considering GPUs as target platforms, the
trained CNN selects the best storage format 90.1%
of the time, obtaining 99.4% of the highest SpMV
performance among the tested formats.

Sparse matrix, Classification, Deep Learning,
CNN, Performance

1 Introduction

Sparse matrix-vector multiplication (SpMV) is a key
kernel at the core of many scientific and engineering
applications. SpMV is notorious for sustaining low

∗This work has been supported by MINECO (TIN2014-
54565-JIN and MTM2016-76969-P), Xunta de Galicia
(ED431G/08) and European Regional Development Fund.

fractions of the peak performance on modern parallel
architectures. As a consequence, it has attracted a lot
of attention from the research community to develop
efficient and optimized implementations. The perfor-
mance of the SpMV depends on both the target hard-
ware platform and the sparsity structure of the ma-
trix. For this reason many storage formats have been
proposed for a particular application domain, matrix
structure and computer architecture [1]. It has been
demonstrated that the selection of the proper stor-
age format has a big impact on the SpMV perfor-
mance. The compressed sparse row (CSR) format is
the de-facto standard representation for CPUs, while
there is no a dominant format for GPUs. We find
the cause in several factors that often conflict with
each other [2]: maximizing coalesced memory access,
minimizing thread divergence and maximizing warp
occupancy.

In this paper we address the problem of the auto-
matic selection of the best storage format for sparse
matrices on GPUs. With this goal in mind a new
methodology based on deep learning technologies is
introduced. In particular, we have considered Con-
volutional Neural Networks (CNNs), which are the
most important deep learning networks for image
recognition and classification. Our goal is to demon-
strate that a simple standard CNN architecture as
AlexNet [3] is powerful enough to provide very good
classification results. Therefore, it is not necessary to
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build an ad-hoc CNN architecture to deal with the
problem. In this way, our methodology can be easily
adopted by the research community since AlexNet is
available in the most important and common deep
learning frameworks. To train the network the spar-
sity pattern of the matrices is considered as an im-
age. Since the input size of CNNs is fixed, original
sparse matrices are scaled down to fit the CNN in
such a way that pixels in the images represent sub-
matrices. The RGB color of pixels is used to repre-
sent properties of the matrix. In this way, we create
image datasets with enough information to success-
fully train a CNN. An exhaustive experimental eval-
uation has been carried out using two different GPUs
as target platforms. Results show the benefits of our
methodology in terms of the global accuracy of the re-
sulting classifiers, reaching values above 90%. In ad-
dition, we are able to obtain within 99.4% on average
of the best SpMV performance available. Finally, we
demonstrate that using a pre-trained model speeds
up the training process with respect to training the
network for each GPU from scratch.

The paper is structured as follows. Section 2 ex-
plains the background of the work. Section 3 intro-
duces the deep learning methodology to deal with the
sparse matrix classification problem. Experimental
results are shown and discussed in Section 4. Related
work is presented in Section 5. Finally, the main con-
clusions derived from the work together with some
ideas for future work are explained.

2 Background

2.1 Sparse Matrix Formats

For a sparse matrix, substantial memory require-
ment reductions can be obtained by storing only the
nonzero entries. There exist many different stor-
age formats (an exhaustive list can be found in [1]),
being ones more appropriate than others for a par-
ticular sparse matrix depending on the number and
distribution of its nonzeros. These formats differ in
terms of the amount of storage required, the accessing
methods, and their adaptability to different applica-
tions or parallel architectures such as GPUs. Some of

these formats are only well suited for matrices with
a particular sparsity pattern like the diagonal for-
mat (DIA) or block formats such as BELLPACK [4],
other formats support efficient modification but not
efficient matrix operations like for example the coor-
dinate format (COO), and so on. In this work, we
focus on those formats that are suitable for matri-
ces with arbitrary structure and, at the same time,
efficient for matrix operations such as sparse matrix-
vector multiplication. More precisely, we have consid-
ered the compressed row storage (CSR), ELLPACK
(ELL), and hybrid (HYB) formats [5], which are im-
plemented in the NVIDIA cuSPARSE1 library (see
Figure 1):

• Compressed Sparse Row (CSR): It is a general-
purpose sparse matrix format. No assumptions
are needed about the sparsity structure of the
matrix. CSR allocates subsequent nonzeros in
each row in contiguous memory locations and
stores column indices and nonzero entries in two
arrays, indices and values respectively. Besides,
it needs another array of pointers that indicates
the offset for each row.

• ELLPACK (ELL): This storage scheme com-
presses the original sparse n × m matrix in a
dense n × k matrix, where k is the maximum
number of nonzeros per row of the original ma-
trix. It also needs another n × k array of in-
dices which stores the position (column) of each
nonzero in the original matrix. This format can-
not be considered a general-purpose matrix for-
mat because it needs that the number of nonze-
ros in each row do not vary greatly through all
the rows. In other case, a lot of storage space
will be wasted and also the computational effi-
ciency will decrease. However, it is suitable for a
variety of matrices and the performance results
it produces are generally good.

• Hybrid (HYB): This is a combination of two
storage formats: COO and ELL. It tries to com-
bine the computation efficiency of ELL with the
simplicity and generality of COO (that stores

1https://developer.nvidia.com/cusparse
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Figure 1: CSR and ELL sparse matrix storage formats.

row and column indices explicitly). The ma-
jority of the matrix entries are stored in ELL
format, and those rows with a substantially dif-
ferent number of nonzeros are stored in COO
format.

2.2 Convolutional Neural Networks

CNNs consist of a sequence of layers which transform
the original image layer by layer from the original
pixel values to the final class scores. We can classify
these layers into three groups: input layers, feature-
extraction layers and classification layers. A simple
CNN architecture is shown in Figure 2. Input layers
load and store the raw input data of the image for
processing in the network. This input data specifies
the width, height, and number of channels. Typically,
the number of channels is three, corresponding to the
RGB values for each pixel.

The feature-extraction layers have a general re-
peating pattern of the following operations: convo-
lution, non linearity (ReLU) and pooling or sub sam-
pling. The main goal of a convolution layer is to
extract features from the input image. Convolution
shifts a small window (filter) across the input, and at
each position, it computes the dot product between
the filter and the input elements covered by the fil-
ter. As we slide the filter over the image we will pro-
duce a 2D activation map that gives the responses of
that filter at every spatial position. In this way, the
network will learn filters that activate when they de-
tect some type of visual feature such as edges, curves,
etc. Note that several filters can be used in the same
convolution layer, which will generate multiple ac-

Input
Image

Conv1 Conv2Pool1 Pool2 Output
Predictions

Fully
connected

Sub 
sampling

Sub 
sampling

Convolution + 
ReLUConvolution + 

ReLU

Figure 2: A simple Convolutional Neural Network
(CNN) architecture.

tivation maps. An additional operation called ReLU
(Rectified Linear Unit) has been used after every con-
volution operation. It is a non-linear operation that
replaces all negative pixel values in the feature map
by zero. In addition, it is common to insert a pooling
layer in-between successive convolution+ReLU layers
in a CNN architecture. Its function is to progres-
sively reduce the spatial size of the representation
(sub sampling) to decrease the amount of parame-
ters and computation in the network while retaining
the most important information.

Finally, we have the classification layers in which
we have one or more fully-connected layers to produce
class scores. Fully-connected means that neurons in
this layer have full connections to all activations in
the previous one. This layer uses the high level fea-
tures generated by the convolutional and pooling lay-
ers for classifying the input image into several classes
based on the training dataset.

The training process of a CNN is iterative. First,
all the filters and parameters in the network are ini-
tialized to random values. Afterwards the network
takes a training input image, whose class/label is
known a priori, and gives a prediction after the for-
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ward propagation step (convolution, ReLU and pool-
ing operations along with forward propagation in the
fully-connected layers). A prediction error is calcu-
lated comparing the output of the network and the
expected result. The training process (by means of
back propagation) revises the network parameters it-
eratively to minimize the overall error on each train-
ing input. The network will be trained on the input
dataset for a given number of epochs (that is, passes
over the entire image dataset). Note that parameters
like number of filters, filter sizes, architecture of the
network, etc., do not change during the training pro-
cess. There are additional parameters in the training
process known as hyperparameters such as the learn-
ing rate or number of epochs that should be tuned to
make networks train better and faster.

Many CNN architectures have been proposed,
some of the most popular are LeNet [6], AlexNet [3],
GoogLeNet [7], VGGNet [8] and ResNet [9]. In this
paper we have used AlexNet, which has five convo-
lution layers of decreasing filter size, three pooling
layers, and three fully-connected layers with approxi-
mately 60 million free parameters. Although AlexNet
is relatively simple with respect to other standard
networks, we demonstrate in the following sections
that it is powerful enough to deal with the sparse
matrix format selection problem.

3 Methodology

In this section a new methodology to select the best
storage format for sparse matrices based on deep
learning techniques is introduced. In particular, we
have focused on the selection of the proper format
for the sparse matrix-vector multiplication (SpMV),
which is one of the most important computational
kernels in scientific and engineering applications.

Figure 3 shows the different phases of our ap-
proach. We assume that a large set of sparse matrices
coming from different real problems and representing
a variety of characteristics and nonzero patterns is
available. This dataset will be used as input of the
SpMV benchmarking and image generation phase.
The goal of the first step is to evaluate for all the
matrices in the dataset the performance of the SpMV

kernel when different storage formats are considered.
As a result we obtain the best format in terms of per-
formance for each matrix. That format associates a
label (class) to each matrix in the dataset, which will
be used later as ground truth in the CNN training
phase. Therefore, there are as many classes as stor-
age formats. Note that in this work we have consid-
ered GPUs as hardware platforms to build the ground
truth information, but our methodology is completely
agnostic with respect to the underlying parallel sys-
tem and can be applied, for example, to multicore
CPUs or accelerators as the Intel Xeon Phi.

The image dataset generation is the core of our
methodology. To build the dataset we consider the
sparsity pattern of the matrices as an image. As
a first approach, a n × m matrix is equivalent to
a n × m binary image where a white pixel at loca-
tion (i, j) represents a nonzero in row i and column
j. Black pixels correspond to zeros in the sparsity
pattern. However, the size of the input to a CNN is
fixed, so matrices of different sizes should be scaled
to the same size. The following method explains how
to scale a matrix. Let’s assume that the size of the
input image should be p × p pixels and, for simplic-
ity, the considered sparse matrix is n × n (i.e., it is
a square matrix), where n > p. We split the matrix
into p× p submatrices. To build the new p× p scaled
matrix, we insert a nonzero at position (i, j) if there
is, at least, one nonzero value in the corresponding
submatrix (i, j). If the submatrix only contains ze-
ros then the corresponding entry in the scaled matrix
will be zero. In this way, creating a p× p binary im-
age from the scaled matrix is straightforward. Figure
4(a) illustrates this procedure showing a 63× 63 pix-
els image generated from a 71, 505 × 71, 505 sparse
matrix.

The above method is a simple and easy way to gen-
erate a binary image dataset that fits a CNN. How-
ever, scaling down a sparse matrix simplifies the ap-
pearance of its sparsity pattern, which could cause
a loss in the information provided to the CNN in
the training phase. Recall that a single pixel in the
image represents a submatrix in the original matrix.
For instance, one pixel in Figure 4(a) corresponds to
a 1, 135 × 1, 135 submatrix (that is, 71,505/63). As
we demonstrate in Section 4, training the network
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Figure 3: Scheme of the new classification methodology.

using the binary image dataset do not provide com-
petitive results. In this way, it is necessary to provide
additional information to the CNN with the aim of
improving the global accuracy of the classifier. With
this goal in mind, we propose to use the RGB chan-
nels of the image to code information related to some
characteristics and properties of the original sparse
matrix. In particular, we have considered the follow-
ing global metrics about the matrices (numbers are
used as identifier of the metric):

(0) Matrix size (n): number of rows and columns of
the matrix.

(1) Average number of nonzeros per row of the ma-
trix (nnzrow).

(2) Standard deviation of the number of nonzeros
per row of the matrix (σrow).

(3) Matrix density (ρ): calculated as the ratio be-
tween the number of nonzeros and the number
of rows multiplied by the number of columns.

(4) Maximum number of nonzeros in a row of the
matrix (maxrow).

In our implementation pixels corresponding to empty
submatrices are always black, that is, their RGB color
is (0, 0, 0). Only those pixels representing non-empty
submatrices have a different associated RGB color.
The color of these pixels is always the same, whose
value for each RGB channel is within the interval
[1, 255]. Metrics should be normalized to fit that in-
terval (details about the normalization of our dataset

are provided in Section 4). Note that it is possible
to use one, two or three color channels to include the
matrix information. When a channel is not used, its
value for all the pixels in the image is 0.

From now on the notation RxGyBz is used to in-
dicate that metrics x, y and z were selected to calcu-
late the R, G and B values of an image, respectively.
There are multiple combinations of number of chan-
nels and metrics that can be utilized in the image
dataset generation phase. In this paper we only show
results for the most relevant combinations in terms
of performance. In particular, datasets were gen-
erated using the following configurations: R1G2B3,
R2G3B4, R1G3B4 and R0G1B4. In addition, for il-
lustrative purposes, we have also included results for
a binary image dataset (black and white pixels, with-
out metrics) and R1 (using only the red channel to
code the average number of nonzeros per row of the
matrix). Therefore, six different image datasets have
been generated and analyzed in the paper. An ex-
ample is shown in Figure 4 that displays the result-
ing images obtained for the same input sparse matrix
when considering different configurations. We must
highlight that the assignment of metrics to channels
do not affect the results of the CNN training phase.
It means that is irrelevant to consider, for instance,
R1G2B3 or R3G1B2.

The next stage in our method involves the train-
ing of the CNN. To do so, it is necessary to feed the
CNN with a set of images labeled with their class
(best storage format). This data was generated in
the previous phases: SpMV benchmarking and im-
age generation. Note that the image dataset is di-
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(a) Pattern/binary (b) R1

(c) R1G2B3 (d) R2G3B4

(e) R1G3B4 (f) R0G1B4

Figure 4: Images of 63 × 63 pixels generated from a
71, 505×71, 505 sparse matrix using different number
of channels and metrics.

vided into training and test sets (see Figure 3). In
this way, the training process is performed only con-
sidering images in the training set, while images in
the test set are necessary to assess the error of the
final chosen classification model. We have used a
cross-validation method, which is generally consid-
ered the best method both for model selection and
assessment. In particular, we have opted for a k-fold
cross-validation. This method is used when some hy-
perparameter of the network have to be estimated. In
our case the hyperparameter of interest is the optimal
number of training epochs. This validation method
divides the training set into k folds. For each fold k
(known as validation set), the network is trained with
all the folds but k (e.g., up to some maximum num-
ber of epochs). After each epoch, the global accuracy
on the corresponding validation set is recorded. Af-
terwards the average validation set accuracy is com-
puted (across the k folds) for each number of epochs.
The chosen number of epochs will be the one that
maximizes this value. The CNN is then trained using
as input the complete training set until the number
of iterations reaches the selected value.

Finally, the resulting trained CNN will be the one
used for the storage format prediction. The image
test set, which was part of the complete image dataset
but it was not used in the training process, is utilized
as input of the CNN to validate the accuracy of our
classifier.

4 Experimental Evaluation

4.1 Hardware platforms and software

In this work we have considered GPUs as hardware
platforms to evaluate our methodology for the pre-
diction of the best storage format when the SpMV
operation is performed. However, as we commented
previously, our proposal could be applied to other
parallel systems. Table 1 shows the main character-
istics of the NVIDIA GPUs used in the experimental
evaluation. From now on, we use GTX and TITANX
to refer to GPUs with Kepler and Pascal architecture,
respectively.

For the SpMV benchmarking, we use the kernels
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Table 1: Main characteristics of the NVIDIA GPUs used in the tests.

Model GeForce GTX
TITAN

TITAN X

Architecture Kepler Pascal
CUDA capability 3.5 6.1
Multiprocessors (MP) 14 28
CUDA Cores/MP 192 128
GPU Max Clock rate (GHz) 0.88 1.53
Global memory (MBytes) 6,082 12,190
L2 Cache Size (MBytes) 1.5 3

implemented by the NVIDIA cuSPARSE library in-
cluded in the CUDA toolkit version 8. CSR, HYB
and ELL storage formats were studied (see Section 2
for details). Training the CNN was also performed
using a GPU. In particular, the most powerful GPU
(TITANX) was utilized with the aim of reducing the
training times. NVIDIA Deep Learning GPU Train-
ing System2 (DIGITS) was the selected software plat-
form to carry out the training phase. DIGITS allows
to design, train and visualize deep neural networks
for image classification taking advantage of the deep
learning framework Caffe3. Several of the most im-
portant CNN architectures such as LeNet, AlexNet
and GoogLeNet are predefined and ready to use in
the platform.

4.2 Sparse matrix dataset

As we point out in Section 3, it is necessary to have
a large set of sparse matrices in order to train the
network. This dataset should contain matrices com-
ing from different real problems and applications. In
this way, we expect that these matrices cover a wide
range of characteristics and nonzero patterns. We
have created a dataset that fulfills those assumptions
consisting of 8,111 sparse matrices. The dataset was
generated using as basis 812 square matrices from
the SuiteSparse matrix collection [10] and applying
to them some transformations like cropping (similar
to [11]). The main characteristics of the dataset in

2https://developer.nvidia.com/digits
3http://caffe.berkeleyvision.org

terms of the average, minimum and maximum values
are displayed in Table 2.

4.3 SpMV benchmarking

To train the CNN, a class (best storage format)
should be assigned to matrices in the dataset. This is
the goal of the SpMV benchmarking phase. We con-
ducted experiments by measuring the performance
of the single precision SpMV kernel using different
storage formats (CSR, HYB and ELL) on the con-
sidered GPUs (see Table 1). For each matrix and
format, the performance was calculated as the aver-
age of 1,000 SpMV operations. Each matrix is then
labeled according to the highest performing format.
The classification results expressed as the number
and percentage of matrices belonging to each class
are displayed in Table 3. Note that there are no-
ticeable differences in the classification depending on
the considered GPU. For example, we observe that
the largest class is different on the two GPUs (ELL
for the GTX and CSR for the TITANX). This de-
pendence on the hardware platform confirms the im-
portance and difficulty of the issue addressed in this
work.

On the other hand, a bad choice of the storage for-
mat will have a negative effect on the SpMV perfor-
mance. Figure 5 illustrates this behavior measuring
the speedup between the best and the worst perform-
ing formats for all the matrices in the dataset. Con-
sidering the GTX platform, the boxplot shows that
the median, first quartile and third quartile speedups
are 1.81×, 1.51× and 2.25×, respectively. It means
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Table 2: Global metrics of the sparse matrices in the dataset.

Avg. Min. Max.

Number of rows/columns (n) 153.3K 1.9K 21.2M
Nonzeros (nnz) 1.4M 120K 89.3M
Nonzeros per row (nnzrow) 29.03 0.08 1.26K
Std. Dev. nonzeros per row (σrow) 27.02 0 1.81K
Density (ρ) 4.35×10−3 4.08×10−8 2.82×10−1

Maximum nonzeros in a row (maxrow) 1.84K 1 2.31M

Table 3: Classes of the matrices in the complete dataset (left), and only considering matrices for training
(middle) and tests (right).

Dataset Training set Test set

Class GTX TITANX GTX TITANX GTX TITANX

CSR 2,661
[32.8%]

4,612
[56.9%]

2,128
[32.8%]

3,689
[56.9%]

533 [32.8%] 923 [56.9%]

HYB 1,882
[23.2%]

1,455
[17.9%]

1,505
[23.2%]

1,164
[17.9%]

377 [23.2%] 291 [17.9%]

ELL 3,568
[44.0%]

2,044
[25.2%]

2,855
[44.0%]

1,635
[25.2%]

713 [44.0%] 409 [25.2%]

Total 8,111 6,488 1,623

that for 50% of the matrices choosing the best storage
format accelerates the SpMV operation more than
1.81×. The median, first quartile and third quar-
tile speedups for the TITANX are 1.47×, 2.05× and
2.66×. In addition, we have detected some outliers
(points in the plots) where the SpMV is performed
from tenths to hundreds of times faster when choos-
ing the proper format. Therefore, a misprediction in
the classification may lead to important performance
degradations.

4.4 Image dataset generation & Net-
work training

Several of the characteristics in Table 2 correspond
to the global metrics detailed in Section 3. Metrics
should be normalized to fit the interval [1,255] since
their values will be assigned to a RGB color channel
in the images. The way this normalization is per-
formed has an impact on the results of the classifier.
As a consequence, many experiments have been car-

ried out in order to find out the best normalization
method. Next, we detail how the RGB values were
calculated for the image datasets used in the evalua-
tion (numbers identify the corresponding metric):

(0) b n
4000c+ 1

(1) nnzrow = nnz
n (no normalization is required)

(2) σrow (no normalization is required)

(3) b100000× nnz
n×nc+ 1

(4) bmaxrow

4 c+ 1

In case some of the previous values exceeds 255 for
a particular matrix, the corresponding color in the
image will be automatically fixed to 255.

We have generated and studied six different im-
age datasets: binary image dataset (no metrics),
R1,R1G2B3, R2G3B4, R1G3B4 and R0G1B4. The
size of the images is always 256×256 pixels, which
corresponds to the input size for the AlexNet net-
work. To train the AlexNet network we have used a

8
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Figure 5: Speedup obtained considering the best stor-
age format with respect to the worst one for all the
matrices in the dataset.

k-fold cross-validation (see Section 3). In particular,
the dataset is split into a training set (80% of the ma-
trices) and a test set (20% of the matrices). Table 3
shows the number and classes of the matrices in each
set. Recall that the test set is not used in the training
process. In addition, the training set was divided into
5 folds. The goal of this validation method is to fig-
ure out the optimal number of training epochs. This
procedure was applied to the six image datasets and
two GPUs. We have found that the optimal number
of epochs ranges from 20 (binary dataset, GTX) to
42 (R0G1B4 dataset, TITANX). We must highlight
that other hyperparameters take the default values
provided by the DIGITS platform.

The AlexNet network is then trained using the
complete training set until the iterations reach the
optimal number of epochs. Training times on the
TITANX GPU vary from 6.3 minutes (binary-GTX
dataset) to 14.5 minutes (R0G1B4-TITANX dataset).

4.5 Prediction accuracy and perfor-
mance analysis

Next, the trained CNNs for each dataset and GPU
will be evaluated using only the test set. In addition
to the global accuracy of the classifier (overall per-
centage of correct classified matrices), we provide two
metrics to better understand how well the classifier
is performing: precision and recall. The degree to
which repeated measurements under the same con-
ditions give us the same results is called precision.
Recall or sensitivity is also known as the true posi-
tive rate, and quantifies how well the model avoids
false negatives. Let’s assume that there are TA ma-
trices of class A in the dataset. Our network classifies
CA matrices as class A, where PA has been correctly
classified (true positive). Then, precision and recall
for class A can be calculated as PA/CA

and PA/TA
,

respectively.

Table 4 shows the global accuracy, precision and
recall of the classifiers for all the datasets on both
GPUs. A noticeable accuracy of 90.1% and 89% was
obtained for GTX and TITANX GPUs training the
network with images whose RGB channels code in-
formation about the matrix size, the average number
of nonzeros per row and the maximum number of
nonzeros in a row (R0G1B4). Good results were also
observed when considering other configurations, es-
pecially R2G3B4 and R1G3B4. Since there are less
matrices of classes HYB and ELL on the TITANX
dataset (see Table 3), precision and recall are lower
with respect to CSR values. Finally, we must high-
light that our methodology is very robust since con-
sistent results were obtained in terms of accuracy,
precision and recall for the same image datasets on
both GPUs.

Another way to prove the benefits of our approach
consists in measuring how close to the maximum
achievable SpMV performance are the classifiers. In
this way, we measure the SpMV performance for all
the matrices in the test set using the format selected
by each classifier. Normalized results are shown in
Figure 6 in such a way that 1 corresponds to the max-
imum achievable performance (always choosing the
best format). For instance, considering the R0G1B4

classifier, average performances higher than 0.99 are
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Table 4: Prediction accuracy of the trained network considering different image datasets on the GTX (top)
and TITANX (down) platforms.

GTX Binary R1 R1G2B3 R2G3B4 R1G3B4 R0G1B4

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.

CSR 0.62 0.70 0.79 0.73 0.84 0.81 0.87 0.86 0.89 0.86 0.90 0.90
HYB 0.63 0.72 0.53 0.80 0.73 0.90 0.82 0.91 0.82 0.92 0.82 0.90
ELL 0.80 0.69 0.84 0.75 0.89 0.83 0.91 0.88 0.92 0.90 0.95 0.90

Global Accuracy 0.702 0.750 0.836 0.876 0.888 0.901

TITANX Binary R1 R1G2B3 R2G3B4 R1G3B4 R0G1B4

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.

CSR 0.85 0.75 0.86 0.62 0.91 0.91 0.94 0.91 0.95 0.91 0.94 0.93
HYB 0.43 0.78 0.46 0.69 0.68 0.65 0.72 0.92 0.71 0.93 0.71 0.95
ELL 0.61 0.60 0.74 0.66 0.87 0.77 0.86 0.80 0.87 0.80 0.91 0.78

Global Accuracy 0.713 0.758 0.861 0.879 0.885 0.890

achieved for both GPUs. It means that the difference
in the SpMV performance between the best possi-
ble classification and the one obtained by our clas-
sifier is less than 1%. Therefore, considering only
the global accuracy, precision and recall to evaluate
the quality of classifiers for sparse matrix classifica-
tion hide important information regarding the per-
formance. Since the final objective of choosing the
proper storage format is obtain the maximum SpMV
performance, the above analysis is of great impor-
tance.

4.6 Speeding up the training process

As we pointed out previously the classes of the ma-
trices depend on the hardware platform considered
in the SpMV benchmarking phase. As a consequence
networks should be trained for each particular GPU.
However, next we will demonstrate that it is not nec-
essary to carry out the training process from scratch.

The idea is to consider a pre-trained model as start-
ing point of the training process instead of consid-
ering the AlexNet network initialized with random
values (i.e., training from scratch). This pre-trained
model corresponds to a CNN trained for a different
GPU. In this way, the network inherits many param-
eters which captured important characteristics and

features from the considered storage formats and ma-
trices in the dataset. In addition, we must take into
account that classes of the matrices differ between
GPUs, but not for all the dataset.

As a result of using this methodology very good
accuracy results are obtained with less training data
in comparison to training from scratch. Therefore,
since the data required to train the network decrease,
training times are also lower. Figure 7 illustrates this
behavior training a classifier for GTX using a pre-
trained TITANX model. In this example we have
considered the R0G1B4 image dataset. For instance,
we get a 88.1% and 89% accuracies training the net-
work using only 30% and 50% of the training data,
respectively.

Another important consequence of reducing the
training data size is the impact on the SpMV bench-
marking phase (see Figure 3). This is the most time
consuming phase, requiring several hours to obtain
the best storage format (class) for all the dataset
on each GPU. Note that it requires to perform the
SpMV operation 1,000 times for each matrix and for-
mat. In this way, it is possible to reduce noticeably
the benchmarking times while achieving very good
performance in terms of accuracy.
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Figure 6: Average SpMV performance obtained using
the storage format selected by the classifiers.

5 Related Work

We can find in the literature many analytical ap-
proaches that deal with the identification of the opti-
mal sparse matrix format for GPUs based on perfor-
mance models [12–14]. They show a good accuracy
but models are usually tested considering a small set
of matrices. Other authors use traditional machine
learning approaches to select automatically the best
storage format for sparse matrices. Only some of
them focus on GPUs as target platforms. In [2], the
authors build a decision tree to choose the best repre-
sentation for a given sparse matrix based on a several
matrix structure features. Their classifiers report a
global accuracy in the range 64.6-83.8%, obtaining a
95% of the maximum achievable SpMV performance.
A similar approach that takes advantage of support
vector machines to deal with the classification prob-
lem was published in [15]. They demonstrated accu-
racies in the range 73-88.5%, increasing the obtained
average SpMV performance up to 98%. We must
highlight that the best results in both works are be-
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Figure 7: Global accuracy (blue line) and times
(green line) required to train a GTX classifier using
as basis a pre-trained TITANX model.

low the numbers obtained using our approach. In
addition, the maximum accuracy observed in both
works was always obtained training the classifiers us-
ing feature sets with more than three matrix prop-
erties. None of the works commented above have
considered deep learning technologies. In a recent
paper [11] the authors deal with the sparse matrix
format selection problem using CNNs. They propose
several ways to represent the matrices to train the
network. Best results are achieved using histograms
that capture the spatial distribution of nonzero ele-
ments in the matrix. Unlike our approach, they do
not take advantage of the RGB channels of the images
to code some features of the matrices. Using their
representation leads the authors to create an ad-hoc
CNN architecture. Our approach demonstrates that
a simple standard CNN architecture as AlexNet is
enough to provide good classification results. In this
way, our methodology can be easily adopted by the
research community since AlexNet is available in the
most important and common deep learning frame-
works. In addition, AlexNet could be easily replaced
in the future by other standard architectures such as
VGGNet [8] and ResNet [9] in order to improve the
accuracy results or speed up the learning process.

Other papers focus only on applying machine
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learning techniques to multicore processors [16]. Fi-
nally, in [17] the authors propose a mechanism to
select the best SpMV code implementation for both
CPUs and GPUs using deep learning technologies.
It is an interesting work conceptually but their ap-
proach obtains low accuracy results (only 54%) with
75% of the maximum attainable performance.

6 Conclusions

In this work we demonstrated that deep learning
technologies can be successfully applied to classifica-
tion problems different from the traditional machine
learning tasks. We focused on the selection of the
best storage format for the SpMV kernel on GPUs.
A new methodology is introduced based on the idea
of considering the sparsity pattern of the matrices as
an image. Coding several matrix characteristics as
the RGB color of the pixels in the images, we are
able to generate image datasets with enough infor-
mation to successfully train a CNN. We prove that a
simple trained CNN architecture as AlexNet, without
any fine-tuning, achieves very good results in terms of
accuracy, precision, recall and average SpMV perfor-
mance. In particular, we observed a maximum global
accuracy of 90.1%, obtaining within 99.4% on aver-
age of the best performance available. In addition,
we demonstrate that it is possible to speed up the
training process using a pre-trained model as start-
ing point instead of training from scratch. Using a
pre-trained model reduces the requirements of train-
ing data to obtain high global accuracies.

As future work we will deal with the classification
problem on GPUs and other parallel architectures
adding specialized storage formats [18–20]. In ad-
dition, we will apply dimensionality reduction tech-
niques such as Principal Component Analysis (PCA)
to code more than three matrix properties in the
RGB channels of the images with the aim of improv-
ing the global accuracy of the classifiers.
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