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Abstract

Given a compact set S ⊂ Rd we consider the problem of estimating, from a random sam-

ple of points, the Lebesgue measure of S, µ(S), and its boundary measure, L(S) (as defined

by the Minkowski content of ∂S). This topic has received some attention, especially in the

two-dimensional case d = 2, motivated by applications in image analysis. A new method to

simultaneously estimate µ(S) and L(S) from a sample of points inside S is proposed.

The basic idea is to assume that S has a polynomial volume, that is, that V (r) := µ{x :

d(x, S) ≤ r} is a polynomial in r of degree d, for all r in some interval [0, R). We develop a

minimum distance approach to estimate the coefficients of V (r) and, in particular µ(S) and L(S),

which correspond, respectively, to the independent term and the first degree coefficient of V (r).

The strong consistency of the proposed estimators is proved. Some numerical illustrations are

given.

Keywords: Set estimation; volume estimation; boundary length estimation

1 Introduction

The general background. Set estimation

The theory of set estimation is closely linked to nonparametric statistics and stochastic

geometry. The general goal of this theory is to estimate a compact set S ⊂ Rd from a random

sample of points; see, e.g., Cuevas (2009) for a short overview. Some relevant applications

appear in different areas, including ecology [estimation of the habitat of a species or the home

range of typical individuals; see Getz and Wilmers (2004), Kie et al. (2010)], econometrics

[estimation of the efficient boundary in productivity analysis; see Simar and Wilson (2000)],

image analysis (Willett and Novak, 2007; Jang, 2006), nonparametric quality control (Báıllo

and Cuevas, 2006), and clustering (Rinaldo and Wasserman, 2010).
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In this setting, a natural aim is the estimation of some functionals of S, in particular the

volume and boundary measure of S.

Some notations and basic definitions

Let us consider the d-dimensional Euclidean space Rd, equipped with the usual inner

product 〈·, ·〉 and the corresponding norm ‖·‖. Given a set A ⊂ Rd, we denote by Ac, int(A)

and ∂A the complement, interior and boundary of A, respectively. We denote by B(x, r) the

closed ball with centre x and radius r. Also, for any compact set A ⊂ Rd we will denote

(with a slight abuse of notation) by B(A, ε) the closed ε-neighbourhood, or ε-parallel set, of

A, B(A, ε) = {x ∈ Rd : d(x,A) ≤ ε}, where d(a,C) = inf {‖a− c‖ : c ∈ C}. If A and C

are non-empty compact subsets of Rd, the Hausdorff distance between A and C is defined

by dH(A,C) = inf{ε > 0 : A ⊂ B(C, ε), C ⊂ B(A, ε)}. Denote by µ(S) the d-dimensional

Lebesgue measure of S. Thus µ(S) is the volume of S for d = 3 and the area for d = 2. When

no confusion is possible we will sometimes use these terms even for the general case S ⊂ Rd.
The boundary measure of S (i.e., the “perimeter” or the “surface area” of S) is often

defined in terms of the Minkowski content, L0(S), or its one-sided version, L(S), given by

L0(S) = lim
ε→0

µ(B(∂S, ε))

2ε
, or L(S) = lim

ε→0

µ(B(S, ε) \ S)

ε
, (1)

provided that these limits do exist and are finite. Typically, the values L0(S) and L(S) coincide

for regular enough sets; see Ambrosio, Colesanti and Villa (2008) for details and additional

references on the Minkowski content. In what follows, we will mostly use L(S).

Let ν be a Borel measure on Rd. Let A,C be Borel sets with finite ν-measure. The

(pseudo) distance in measure between A and C is given by dν(A,C) = ν(A∆C), where ∆

denotes the symmetric difference between A and C, that is, A∆C = (A \ C) ∪ (C \ A). We

often use either the Lebesgue measure µ or a probability measure in the role of ν.

Statement of the problem

Suppose we have a random sample Xn = {X1, . . . , Xn} of iid observations from a random

variable X with absolutely continuous probability distribution PX ≡ P and compact support

S ⊂ Rd. We want to estimate the volume (Lebesgue measure) of S, µ(S), and the surface

measure, L(S), as defined in (1).
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A brief overview of boundary measure and volume estimation

To gain some perspective, and for comparison purposes with our proposal here, we list here

some (mostly recent) contributions on the topic of volume and boundary measure estimation.

These contributions can be organized according to different criteria depending on

i) the assumed model to generate the sample observations,

ii) the functional (volume or surface area) to be estimated,

iii) the type of estimator; in some cases the estimation is undertaken in a plug-in fashion,

as a by-product of a set estimator Ŝ of S so that µ(S) and L(S) are estimated by µ(Ŝ) and

L(Ŝ). In other cases direct estimators of the volume and boundary measure are constructed,

not relying on any previous estimation of S.

Whatever the chosen approach some restrictions must be imposed on the set S. It is clear

that the family of all compact sets with a finite boundary measure is huge and the task of

estimating both µ(S) and L(S) from a finite sample of points seems hopeless unless some

additional shape conditions are imposed.

We now summarize some contributions on the topic according to the criteria i)-iii) listed

above. First, let us consider the references dealing with estimation under convexity-type

restrictions on the basis of the “inside model”, i.e., all the sample points X1, . . . , Xn are taken

inside the target set S according to a distribution with support S. If S is assumed to be

convex, then the natural estimator for µ(S) is µ(Sn), where Sn denotes the convex hull of the

sample points. Some deep results concerning convergence rates and asymptotic distribution

for this estimator can be found in Brunel (2016) and Pardon (2011). Of course the estimator

µ(Sn) is typically biased since in general Sn ( S. The unbiased estimation of µ(S) when S is

convex is addressed in Baldin and Reiss (2016).

Although the assumption of convexity for S is natural and appealing from different points

of view, it is also quite restrictive for many practical applications. This has motivated the use

of several extensions of the notion of convex set. One of them is α-convexity: a closed set S

is said to be α-convex when it can be expressed as the intersection of the complements of a

family of open balls of radius α. This definition is clearly inspired in the characterization of
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a closed convex set as an intersection of closed half-spaces; see Cuevas et al. (2012) for some

background and references.

Assuming that S is α-convex the volume µ(Sn,α) of the α-convex hull of the sample provides

a natural, biased, estimator for µ(S); see Rodŕıguez-Casal (2007).

An improved (bias corrected) version of this estimator, has been proposed by Arias-Castro

et al. (2016). It achieves the minimax convergence rate under the regularity assumption that

both S and Sc are α-convex.

Regarding the estimation of the perimeter L(S), let us mention the case in which S ⊂
R2 satisfies the above mentioned α-convexity condition for a given α > 0. Now, a natural

estimator of L(S) from an inside sample, is the corresponding perimeter of the α-convex hull

of the sample, L(Sn,α). In Cuevas et al. (2012, Th. 6) it is proved, under mild conditions,

that in this α-convex bivariate case we have L(Sn,α)→ L(S), almost surely (a.s.), as n→∞.

The non-trivial computational aspects can be dealt with using the R-package alphahull by

Pateiro-López and Rodŕıguez-Casal (2010). Other related interesting ideas on the estimation

of the perimeter, relying on the use of the so-called α-shape, are analyzed in Arias-Castro and

Rodŕıguez-Casal (2016).

Now, let us focus on the references dealing with the estimation of the boundary measure

under the following “inside-outside” model: assume that the target set S fulfils S ⊂ (0, 1)d.

Under the “inside-outside” model we have independent identically distributed (iid) observa-

tions (X1, IS(X1)), . . . , (Xn, IS(Xn)) of a random variable (X, IS(X)) where X is uniformly

distributed on [0, 1]d and IS stands for the indicator function of S. Thus, under this model

we also have sample data outside S and we assume that for each Xi we know IS(Xi), that is,

we are able to decide whether Xi ∈ S or Xi ∈ Sc.
A plug-in type estimator of the boundary Minkowski content, see Cuevas et al. (2007);

Armendáriz et al. (2009), is:

Ln =
µ(Tn(εn))

2εn
, with Tn = {z ∈ [0, 1]d : ∃Xi ∈ B(z, εn) ∩ S, and Xj ∈ B(z, εn) ∩ Sc}.

A k-NN version of this idea can be found in Cuevas et al. (2013).

A different estimator based on Delaunay triangulations has been proposed by Jiménez and

Yukich (2011). In fact, the technique proposed by these authors allows for the estimation
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of more general surface integrals under quite general shape restrictions. Still, the considered

sampling model requires to have data points inside and outside the target set S.

Practical motivations

The perimeter L(S) and the area µ(S) are, obviously, basic functionals of primary interest

in the analysis of a set S ⊂ R2. The so-called “compactness index”

CI(S) =
Perimeter(S)2

Area(S)
=
L(S)2

µ(S)

has been used in shape analysis (with applications in medicine). See Montero and Bribiesca

(2009) for a survey. Roughly speaking, CI(S) measures how “irregular” the shape of S is.

The square root of CI(S) has been sometimes called “contour index”; see Canzonieri and

Carbone (1998) for an application in oncology.

Even if S is completely known, we might want to have good estimators of L(S) and

µ(S) based on Monte Carlo samples. Thus, the estimators of L(S) and µ(S) provide a sort of

stochastic algorithms to approximate these quantities as well as the compactness index CI(S).

2 The assumption of polynomial volume: its geometric meaning

As we have indicated in the introduction, when only an inside sample is available, most usual

estimators of µ(S) and L(S) use a geometric shape condition on S (such as convexity or α-

convexity) which is incorporated to the estimator Sn, via the “hull-principle” (that is, Sn is

defined as the minimal set fulfilling the imposed condition). Then µ(S) and L(S) are estimated

by µ(Sn) and L(Sn), which entails additional problems for the practical evaluation of these

quantities.

We will follow here a different strategy: first we will assume a condition on S expressed

in “analytic” or “algebraic” terms: it simply consists on imposing that the volume of the

parallel set V (r) = µ(B(S, r)) is a polynomial on some domain [0, R). Second, we will see that

the coefficients of such polynomial have a direct interpretation in terms of the parameters of

interest, µ(S) and L(S). Finally, the target parameters will be obtained by minimizing the

distance between the function V (r) and a consistent estimator Vn(r) of this function.

So we start by defining our crucial assumption.
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Definition 1. A compact set S ⊂ Rd is said to fulfil the polynomial volume property if there

exist constants θ0, . . . , θd ∈ R and R > 0 such that

µ(B(S, r)) = θ0 + θ1r + . . .+ θdr
d, for all r ∈ [0, R). (2)

This condition has been recently employed in a statistical context by Berrendero et al.

(2014). However these authors use a sample model quite different to that considered here.

Geometric aspects of the polynomial volume assumption

First, it is clear that under condition (2), the Lebesgue measure of S is µ(S) = θ0 and the

one-sided Minkowski content (1) of S is L(S) = θ1.

Second, we should mention that assumption (2) is closely related to the concept of convex-

ity. The classical Steiner’s theorem in convex geometry establishes that any compact convex

set satisfies condition (2) for all r ∈ [0,∞); see e.g. Morvan (2008, Ch. 16). In Heveling et al.

(2004) it is proved that, for the two-dimensional case d = 2, the validity of (2) in [0,∞) is in

fact equivalent to the convexity of S. These authors also give counterexamples to prove that

such equivalence does not hold for d = 3.

Third, and foremost, there is a class of sets, much wider than that of convex sets, which

satisfies condition (2). This is the class of sets with positive reach. This notion, first introduced

by Federer (1959), has a clear intuitive meaning. It is formally defined as follows. Let Unp(S)

be the set of points x ∈ Rd with a unique metric projection, denoted by ξS(x), on S. This

means that, for x ∈ Unp(S), ξS(x) is the unique point fulfilling d(x, S) = ‖x − ξS(x)‖. For

x ∈ S, let reach(S, x) = sup{r > 0 : int(B(x, r)) ⊂ Unp(S)
}

. Then, the reach of S is defined

by r0 := reach(S) = inf
{

reach(S, x) : x ∈ S
}

. We will say that S is a set with positive reach

if reach(S) > 0. The condition that S has a positive reach is clearly a sort of smoothness

assumption on S, expressed in purely geometric terms, with no direct use of differentiability

properties. In simple, informal terms, the assumption r0 > 0 rules out the existence of sharp

inwards peaks in the boundary of S. Positive reach is a well-known extension of the crucial

notion of convexity. Indeed it is not difficult to show that for a closed set S, reach(S) =∞ if

and only if S is convex.

In the pioneering paper by Federer (1959), the author proved the following result, estab-

lishing the relation between positive reach and polynomial volume.
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Theorem (Federer, 1959, Th. 5.6 and Th. 5.19). Let S ⊂ Rd be a compact set with

r0 = reach(S) > 0. Then there exist unique values Φ0(S), . . . ,Φd(S) such that

µ(B(S, r)) =

d∑
i=0

rd−iωd−iΦi(S), for 0 ≤ r < r0, (3)

where ω0 = 1 and, for j ≥ 1, ωj denotes the j-dimensional measure of the unit ball in Rj.
Furthermore, Φ0(S) coincides with the Euler characteristic of S.

As a consequence, if S is a compact set with positive reach, then Φd(S) = µ(S) and the

one-sided Minkowski content, L(S), in (1) always exists and corresponds to the coefficient of

the first-degree term in (3).

Federer’s result is in fact much deeper than stated here, since in particular the Φi(S) have

an interpretation in terms of curvature measures. For our purposes, besides the independent

term (= µ(S)) and the coefficient of the first order term (= L(S)), it is important that the term

Φ0(S) in (3) equals the Euler characteristic of S. This is an integer valued topological invariant

(i.e., it is preserved by homeomorphisms). For example, if S is a closed ball, Φ0(S) = 1, and

the same holds for any other compact set S homeomorphic to the closed ball. In practice,

this means that the highest order coefficient can be sometimes assumed to be known in (3).

This amounts to impose a further, not too restrictive, geometric condition. In particular, the

additional restriction θd = µ(B(0, 1)) in (2) is meaningful and useful in many cases.

As a further appealing feature of the polynomial volume assumption, let us mention that

many simple interesting sets not-fulfilling the positive reach property do in fact satisfy (2).

This is the case of the “pac-man” figure obtained in R2 by erasing in the unit ball all the

points in the first quadrant (see Figure 1), or two tangent spheres in R3, and many others;

see Heveling et al. (2004) for details.

3 Estimation of µ(S) and L(S) under the polynomial volume assumption

In this section we establish the theoretical basis of our method. In particular, it is shown how

to consistently estimate the coefficients θ0, . . . , θd in (2).
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Figure 1: The set in gray has not positive reach but satisfies the polynomial volume property (2).

3.1 An auxiliary result

The following elementary result is mentioned here just as an auxiliary tool in the proof of

Theorem 1. It establishes that the Hausdorff convergence of Sn to S entails the convergence

in measure for the corresponding parallel sets, that is, dµ(B(Sn, r), B(S, r)) → 0 for r > 0.

No further assumption is needed. In intuitive terms, this means that the parallel set is always

“regular enough” to ensure the convergence in measure. In particular, note that if we take the

sample itself, i.e., Sn = Xn, the assumption dH(Sn, S)→ 0 is obviously true, with probability

one, so that the estimation in measure of B(S, r) can be done even using the simplest possible

estimator, B(Xn, r) = ∪ni=1B(Xi, r); see Devroye and Wise (1980), Kim and Korostelev (2000),

Cuevas and Rodŕıguez-Casal (2004).

Lemma 1. Let S be a compact non-empty set in Rd. Let Sn be a sequence of compact sets

such that dH(Sn, S)→ 0. Then, for r > 0,

dµ(B(Sn, r), B(S, r))→ 0. (4)

Proof. We have to prove that µ(B(Sn, r)∆B(S, r)) → 0. Given ε ∈ (0, r/2] we have, for n

large enough,

µ(B(Sn, r) \B(S, r)) ≤ µ(B(Sn, r) \B(S, r − ε)) ≤ µ(B(S, r + ε) \B(S, r − ε)), (5)

since by the Hausdorff convergence, for n large enough, Sn ⊂ B(S, ε) and, therefore, B(Sn, r) ⊂
B(S, r + ε). Second, we have also eventually

µ(B(S, r) \B(Sn, r)) ≤ µ(B(S, r) \B(Sn, r − ε)) ≤ µ(B(S, r) \B(S, r − 2ε)), (6)

since, again by the Hausdorff convergence, for n large enough, S ⊂ B(Sn, ε) and, therefore,

B(S, r − 2ε) ⊂ B(Sn, r − ε). Now, the result follows directly from (5) and (6), together with
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the fact that the volume function V (r) = µ(B(S, r)) is continuous; see, e.g., Stachó (1976,

Theorem 4 and Lemma 2 (i)).

3.2 Our estimators: consistency results

The idea is that if, for a compact set S fulfilling the polynomial volume assumption (2), we

are able to approximate µ(B(S, r)) from a random sample Xn = {X1, . . . , Xn} for different

values of r, then we can consistently estimate the coefficients θ = (θ0, . . . , θd).

Theorem 1. Let S ⊂ Rd be a compact set fulfilling the polynomial volume assumption intro-

duced in Definition 1. Given an interval [a, b] ⊂ (0, R), let V (r) = V (r, θ) = µ(B(S, r)), as

defined in (2), where θ = (θ0, . . . , θd) and r ∈ [a, b]. Let Sn(r) = ∪ni=1B(Xi, r) be the “offset”

estimator of B(S, r) based on a sample X1, . . . , Xn drawn from a distribution P with support

S. Denote also Vn(r) = µ(Sn(r)).

Then,

(a)

‖Vn − V ‖∞ := sup
r∈[a,b]

|Vn(r)− V (r)| → 0, almost surely, as n→∞. (7)

(b) The minimum-distance estimator of θ, given by

θ̂ = argminτ∈Rd+1‖Vn(·)− V (·, τ)‖∞ (8)

is uniquely defined and (componentwise) almost surely consistent for θ, that is

θ̂ → θ, almost surely, as n→∞. (9)

(c) An analogous strong consistency result holds if the estimator θ̂ is replaced with the esti-

mator θ̃, obtained as indicated in (8), but with the supremum norm ‖ · ‖∞ replaced with

the Lp norm ‖f‖p =
(∫ b

a |f |
p
)1/p

, for any p > 1.

Proof. (a) From Lemma 1, Vn(r)→ V (r) a.s. for all r ∈ [a, b], since dH(Xn, S)→ 0, a.s. Now,

observe that Vn and V are continuous increasing functions. Therefore, given ε > 0 there is a

partition a = r0 < . . . < rk+1 = b such that V (ri+1) − V (ri) < ε for all i = 0, . . . , k. Then,
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the uniform convergence (7) follows directly from an elementary ε, n-argument involving the

a.s. pointwise convergence Vn(ri)→ V (ri) and the monotonicity of the Vn.

(b) From (a), given ε > 0 we may ensure that, with probability one,

‖Vn − V ‖∞ < ε, for n large enough, say n ≥ n0. (10)

On the other hand, from the classical Chebyshev’s Theorem in approximation theory [see, e.g.,

DeVore (1986, Ths. 2.1 and 2.2)], since Vn is a continuous function on [a, b] there is a unique

best approximation Pn for Vn in [a, b] within the space Πd of polynomials of degree at most

d. Note that, by construction, since Pn is unique, we must have Pn(r) = V (r, θ̂), for r ∈ [a, b],

where θ̂ is given by (8). Since, by assumption, V ∈ Πd we must have, with probability one

that for n ≥ n0 the best approximant Pn of Vn in Πd must fulfill ‖Pn−Vn‖∞ ≤ ‖Vn−V ‖∞ < ε

a.s. for n > n0. As a consequence, ‖Pn − V ‖∞ → 0, a.s.

Now observe that Πd is a finite dimensional vector space. Hence, all norms defined on Πd

are equivalent. In particular, the norm in Πd defined (for each polynomial) as the maximum

of the absolute values of the polynomial coefficients is equivalent to the norm defined as the

restriction of the supremum norm to Πd.

Therefore, since Pn, V ∈ Πd, the consistency (9) follows directly from ‖Pn−V ‖∞ → 0 a.s.,

in view of the equivalence of the two norms mentioned above.

(c) The proof is almost identical to that for the case ‖·‖∞. We will need to use the fact that

for the Lp-norm, with 1 < p < ∞, we also have that there is a unique Lp-best approximant

for V since the unit ball in Lp is strictly convex; see DeVore (1986, Th. 1.2 and subsequent

remarks). Now, we get ‖Pn − Vn‖p → 0 a.s. and the proof goes along the same lines as in (b)

since ‖Vn − V ‖∞ → 0, a.s. on [a, b] also implies ‖Vn − V ‖p → 0, a.s.

4 Numerical experiments

The goal of this section is to show the practical performance of the method based on the

polynomial volume assumption (2), combined with the L2-based minimum distance estimates

presented in Subsection 3.2; see part (c) of Theorem 1. An alternative version of the method,

somewhat simpler computationally, will be also considered in Subsection 4.3. As a simple

strategy to evaluate the results, we will compare them with those obtained with the plug-in
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estimators based on other stronger shape assumptions. For example, if we assume that S is

convex (resp. α-convex), we can estimate µ(S) and L(S) by µ(Sn) and L(Sn) where Sn is the

convex hull (resp. Sn ≡ Sn,α is the α-convex hull) of the sample data. Note, however, that

these plug-in approaches can be either very risky (for example, convexity is a very restrictive

condition) or difficult to implement (to our knowledge, there is no available algorithm to

calculate µ(Sn,α) and L(Sn,α) when Sn,α is the α-convex hull of the sample in dimension

larger than 2). By contrast, the polynomial volume assumption is reasonably easy to handle,

especially for small values of d.

4.1 Some two-dimensional examples: the disk and the annulus

We first consider the closed unit disk S = B(0, 1) in R2. Note that S satisfies (2) for all

r ∈ R. For different sample sizes, we generate B = 500 samples from the uniform distribution

on S. For each sample, we calculate Vn(r) for 50 equally spaced values of r ∈ [1, 2]. The

estimators θ̃i, i = 0, 1, 2 are then obtained as indicated in part (c) of Theorem 1 with the

L2 norm. Table 1 shows the mean value and standard deviation of |θ̃i − θi|/θi over the B

repeats. Taking into account that θ0 = µ(S) and θ1 = L(S), we can compare the results in

Table 1 with those obtained if we estimate θ0 and θ1 with θ̂0 = µ(Sn) and θ̂1 = L(Sn), Sn

being the convex hull of the sample and µ(Sn) and L(Sn) its area and perimeter, respectively.

Results are summarized in Table 2, case (a). For convex support estimation, the convex

hull of the sample is asymptotically optimal in minimax sense; see Korostelëv and Tsybakov

(1993). This is not, however, the case if we consider the volume of the convex hull of the

sample as an estimator of the volume of a convex support. Baldin and Reiss (2016) propose a

minimax optimal estimator for the volume of a convex set, based on a Poisson point process

model; see also Ripley and Rasson (1977) and Moore (1984). Such estimator coincides with

the volume of a dilation of the convex hull of the sample from its barycentre. Therefore,

this dilated hull could be considered as estimator, Sn, for the set S itself and θ̂0 = µ(Sn)

and θ̂1 = L(Sn) as estimators for the area and perimeter of S, respectively. Some simulation

results are summarized in Table 2, case (b).
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|θ̃0 − θ0|/θ0 |θ̃1 − θ1|/θ1 |θ̃2 − θ2|/θ2
Sample size Mean SD Mean SD Mean SD

n = 500 0.06698 0.00817 0.01537 0.00320 0.00201 0.00036

n = 1000 0.04259 0.00483 0.00967 0.00187 0.00128 0.00020

n = 5000 0.01466 0.00131 0.00331 0.00048 0.00044 0.00005

Table 1: Mean value and standard deviation of |θ̃i − θi|/θi over B = 500 repeats for S = B(0, 1), where θ̃i,

i = 0, 1, 2, are obtained as indicated in Theorem 1 (c) for p = 2. For each sample, we calculate Vn(r) for 50

equally spaced values of r ∈ [1, 2].

|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1
Sample size Sn Mean SD Mean SD

n = 500 (a) 0.05262 0.00735 0.01999 0.00314

(b) 0.00790 0.00578 0.00735 0.00390

n = 1000 (a) 0.03337 0.00437 0.01263 0.00185

(b) 0.00451 0.00366 0.00456 0.00227

n = 5000 (a) 0.01149 0.00116 0.00433 0.00048

(b) 0.00122 0.00092 0.00149 0.00065

Table 2: Mean value and standard deviation of |θ̂i − θi|/θi over B = 500 repeats for S = B(0, 1), i = 0, 1. Now

θ̂0 = µ(Sn) and θ̂1 = L(Sn), where Sn is (a) the convex hull of the sample and (b) the dilation of the convex

hull of the sample from its barycentre, as proposed in Baldin and Reiss (2016).

Next, we consider a non-convex set, the annulus S = B(0, 5) \ int(B(0, 4)). Note that S

satisfies the polynomial volume assumption introduced in Definition 1 for r < 4. Moreover,

the highest order coefficient of the polynomial in (2) is θ2 = 0 (the Euler characteristic of S is

zero). Again, for each sample size, we generate B = 500 samples from the uniform distribution

on S. For each sample, we calculate Vn(r) for 50 equally spaced values of r ∈ [2, 3.5]. The

results are summarized in Table 3. These results slightly improve when the Euler characteristic

is assumed to be known, see Table 4.
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|θ̃0 − θ0|/θ0 |θ̃1 − θ1|/θ1 |θ̃2 − θ2|
Sample size Mean SD Mean SD Mean SD

n = 500 0.19841 0.01469 0.01904 0.00285 0.15253 0.02006

n = 1000 0.12501 0.00886 0.01183 0.00160 0.09470 0.01111

n = 5000 0.04251 0.00218 0.00400 0.00041 0.03229 0.00274

Table 3: Mean value and standard deviation of |θ̃i − θi|/θi over B = 500 repeats for S = B(0, 5) \ int(B(0, 4)),

where θ̃i, i = 0, 1, 2, are obtained as indicated in Theorem 1 (c) for p = 2 (since θ2 = 0, we report the mean

value and standard deviation of |θ̃2 − θ2|). For each sample, we calculate Vn(r) for 50 equally spaced values of

r ∈ [2, 3.5].

|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1
Sample size Mean SD Mean SD

n = 500 0.15867 0.01235 0.00421 0.00134

n = 1000 0.10033 0.00736 0.00262 0.00077

n = 5000 0.03410 0.00187 0.00086 0.00021

Table 4: Mean value and standard deviation of |θ̃i − θi|/θi over B = 500 repeats for S = B(0, 5) \ int(B(0, 4)),

i = 0, 1 (assumming θ2 = 0 known). The estimations θ̃i are obtained as indicated in Theorem 1 (c) for p = 2.

For each sample, we calculate Vn(r) for 50 equally spaced values of r ∈ [2, 3.5].

In order to compare the results in Tables 3 and 4 with those obtained with other procedures

based on a more specific information on the set of interest, we use that S is α-convex for α = 4.

Then, we can estimate θ0 and θ1 with θ̂0 = µ(Sn,r) and θ̂1 = L(Sn,r), being Sn,r the r-convex

hull of the sample and µ(Sn,r) and L(Sn,r) its area and perimeter, respectively. The outputs

are summarized in Table 5 for two different values of r (the value r = 4 corresponds to the

case when α is assumed to be known and r is chosen accordingly, whereas r = 2 corresponds

to a more conservative estimation of S for the case when α is assumed to be unknown).

Estimation by the interpolation method

In view of Lemma 1, another natural way of estimating the coefficients θi, i = 0, . . . , d under

the polynomial volume assumption (2) would be just to choose some values rj ∈ [a, b] ⊂ (0, R)

13



r = 4 r = 2

|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1 |θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1
Sample size Mean SD Mean SD Mean SD Mean SD

n = 500 0.10708 0.01083 0.00310 0.00096 0.18060 0.01320 0.00915 0.00169

n = 1000 0.06692 0.00626 0.00209 0.00054 0.11392 0.00794 0.00568 0.00095

n = 5000 0.02223 0.00157 0.00080 0.00014 0.03872 0.00197 0.00190 0.00025

Table 5: Mean value and standard deviation of |θ̂i − θi|/θi over B = 500 repeats for S = B(0, 5) \ int(B(0, 4)),

i = 0, 1. Now θ̂0 = µ(Sn,r) and θ̂1 = L(Sn,r), Sn,r being the r-convex hull of the sample with r = 4 and r = 2.

for j = 1, . . . , d+ 1 and solve in θ = (θ0, . . . , θd) the system of equations

Vn(rj) = V (rj), j = 1, . . . , d+ 1, (11)

(we keep the notations as in Theorem 1).

In principle, this “interpolation method” looks a bit reminiscent of the classical method

of moments in parametric estimation. It could be also considered as a sort of surrogate of

the “minimum distance method” whose consistency is proved in Theorem 1. Hence, one

could perhaps expect a slightly worse performance for these “interpolation estimators”, when

compared with those obtained by minimum distance between Vn and V . The reason would

be very much the same why the maximum likelihood estimators are generally preferable to

those obtained by the methods of moments: they make a more extensive use of the available

information. However, the limited experimental results we show in the paper suggest in fact

that both estimators are very close in performance. See for example, the outputs in Tables 1

and 4 compared with those, obtained by (11), shown in Tables 6 and 7. This is an interesting

practical conclusion as the interpolation methodology in (11) is computationally faster (it only

requires to compute Vn(r) for d+ 1 values of r).

Moreover, in some simple cases (11) could lead to explicit expressions for the estimators.

Let us assume, for instance, that S ⊂ R2 is a compact set with r0 = reach(S) > 0 such that

the Euler characteristic of S is one (so θ2 = π). Then,

V (r) = πr2 + L(S)r + µ(S), for 0 ≤ r < r0,

so that L(S) and µ(S) can be estimated as the solutions of the system Vn(rj) = V (r) for

j = 1, 2 which can easily expressed in a explicit way in terms of the values Vn(rj).
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|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1 |θ̂2 − θ2|/θ2
Sample size Mean SD Mean SD Mean SD

n = 500 0.06673 0.00825 0.01544 0.00336 0.00203 0.00076

n = 1000 0.04242 0.00494 0.00972 0.00194 0.00129 0.00046

n = 5000 0.01460 0.00135 0.00333 0.00052 0.00044 0.00015

Table 6: Mean value and standard deviation of |θ̂i−θi|/θi over B = 500 repeats for S = B(0, 1), i = 0, 1, 2. For

each sample, the estimations θ̂i are obtained using the interpolation method from Vn(r1), Vn(r2) and Vn(r3),

where r1, r2 and r3 are randomly selected in the interval [1, 2].

|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1
Sample size Mean SD Mean SD

n = 500 0.15705 0.01577 0.00411 0.00206

n = 1000 0.09960 0.00903 0.00262 0.00122

n = 5000 0.03385 0.00257 0.00086 0.00040

Table 7: Mean value and standard deviation of |θ̂i − θi|/θi over B = 500 repeats for S = B(0, 5) \ int(B(0, 4)),

i = 0, 1 (assumming θ2 = 0 known). For each sample, the estimations θ̂i are obtained using the interpolation

method from Vn(r1) and Vn(r2), where r1 and r2 are randomly selected in the interval [2, 3.5].

4.2 Some three-dimensional examples: the ball and the torus

We now show the practical performance of our method in the three-dimensional Euclidean

space. We have considered two different sets S ⊂ R3, that satisfy the polynomial volume

assumption (2). The estimations of the coefficients θi, i = 0, . . . , 3, were obtained using the

interpolation method described in (11) since, as commented before, it is computationally faster

and the results obtained in the bidimensional case with this methodology were comparable to

those obtained with the methodology of Theorem 1.

Thus, let us first consider the unit ball S = B(0, 1) in R3. Note that S satisfies (2) for all

r ∈ R. In Table 8 we show, for different sample sizes, the mean value and standard deviation

of |θ̂i − θi|/θi over B = 500 samples from the uniform distribution on S, i = 0, . . . , 3. The
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estimations θ̂i are obtained by solving the system of equations in (11) where rj , j = 1, . . . , 4,

are randomly selected in the interval [10, 15]. We can compare the results in Table 8 with

those obtained if we estimate θ0 and θ1 with θ̂0 = µ(Sn) and θ̂1 = L(Sn), where Sn is the

convex hull of the sample and µ(Sn) and L(Sn) its volume and surface area, respectively, see

Figure 2. Results are summarized in Table 9.

Figure 2: Left, S = B(0, 1) in R3. Middle, uniform sample of size n = 100 in S and convex hull of the

sample in green. Right, in red, Sn(r) for a given value of r.

|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1 |θ̂2 − θ2|/θ2 |θ̂3 − θ3|/θ3
Sample size Mean SD Mean SD Mean SD Mean SD

n = 2000 0.13073 0.00505 0.05617 0.00264 0.02290 0.00119 0.00000 0.00000

n = 5000 0.08381 0.00264 0.03578 0.00133 0.01453 0.00060 0.00000 0.00000

n = 10000 0.05974 0.00153 0.02537 0.00078 0.01027 0.00034 0.00000 0.00000

Table 8: Mean value and standard deviation of |θ̂i − θi|/θi over B = 500 repeats for S = B(0, 1) in R3,

i = 0, . . . , 3. For each sample, the estimations θ̂i are obtained using the interpolation method from Vn(rj), with

j = 1, . . . , 4, where rj are randomly selected in the interval [10, 15].

As an example of non-convex set in R3, we consider a torus S with major radius 5 and

minor radius 1, see Figure 3. In Table 10, we show the mean value and standard deviation of

|θ̂i − θi|/θi over B = 500 repeats for S (for simplicity we only show the results corresponding
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|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1
Sample size Mean SD Mean SD

n = 2000 0.09688 0.00426 0.05642 0.00264

n = 5000 0.06213 0.00218 0.03594 0.00133

n = 10000 0.04422 0.00129 0.02549 0.00078

Table 9: Mean value and standard deviation of |θ̂i− θi|/θi over B = 500 repeats for S = B(0, 1) in R3, i = 0, 1.

Now θ̂0 = µ(Sn) and θ̂1 = L(Sn), where Sn stands for the convex hull of the sample and µ(Sn) and L(Sn)

denote its volume and surface area, respectively.

to θ̂0 and θ̂1). Again, the estimations θ̂i are obtained by solving the system of equations in

(11) where now rj are randomly selected in the interval [3, 4]. It is important to note that,

unlike the two-dimensional non-convex case, we cannot compare our results in Table 10 to any

other procedure based on a more specific information on the set of interest (we are not aware

of any implementation that supports the computation of the α-convex hull of the sample for

d = 3).

Figure 3: Left, torus S with major radius 5 and minor radius 1. Middle, uniform sample of size n = 100

in S. Right, in red, Sn(r) for a given valur of r.

4.3 Possible extensions of the method

Lemma 1 establishes that the Hausdorff convergence of Sn to S entails the convergence in

measure for the corresponding parallel sets. Since Sn = Xn is dH -consistent, our proposal is
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|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1
Sample size Mean SD Mean SD

n = 2000 0.48674 3.49394 0.14970 1.41482

n = 5000 0.21870 0.19926 0.06006 0.09791

n = 10000 0.14743 0.03044 0.03932 0.01578

Table 10: Mean value and standard deviation of |θ̂i − θi|/θi over B = 500 repeats for a torus S with major

radius 5 and minor radius 1, i = 0, 1. For each sample, the estimations θ̂i are obtained using the interpolation

method from Vn(rj), with j = 1, . . . , 4, where rj are randomly selected in the interval [3, 4].

to estimate V (r) using this very simple estimator. But of course, the volume of the parallel set

might be also approximated using more sophisticated estimators Sn. For example, if we assume

in advance that S is convex (or α-convex), this information can be incorporated by estimating

the “true” polynomial function V (r) of the target set S in terms of the volume functions

of the sample convex hull (or the sample α-convex hull). These estimators of V (r) should

be, in principle, more accurate, as they carry additional information on the set S. However,

the computation of the parallel volumes for such sets is far from simple, even in dimension

d = 2, and especially for the α-convex hull, whose structure is considerably involved. So, in

those cases the direct plug-in estimators considered in Tables 2 and 9 look as a quite natural

alternative.

If no shape restriction is assumed, one could also think of estimating S by using Sn =

B(Xn, εn), where εn is a sequence of smoothing parameters, see Devroye and Wise (1980). In

that case, V (r) might be estimated from Vn(r) = µ(B(Xn, εn + r)). To illustrate these ideas,

we consider a regular polytope. Let S = [0, 1]2 be the unit square in R2. For different sample

sizes, we generate B = 500 samples from the uniform distribution on S. For each sample,

we applied the “interpolation method” described in Subsection 4.1 with Vn(rj) computed

as µ(B(Sn, rj)), where Sn is (a) the sample Xn, (b) the convex hull of the sample and (c)

the Devroye-Wise estimator B(Xn, εn) for different values of the smoothing parameter εn.

Results are summarized in Table 11. The best results are obtained using the Devroye-Wise

estimator, for which the corresponding calculations can be made quite efficiently (at least for

dimensions 2 and 3). Note that, however, the results in case (c) depend largely on an adequate

choice of the smoothing parameter εn. The dilated convex hull (b) slightly outperforms our
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proposal (as a drawback, it is harder to compute in higher dimensions). The overall conclusions

suggest a good performance of our estimator, in terms of both, economy of assumptions and

computational simplicity. The results of the comparison of (a) and (c) in the unit cube

S = [0, 1]3 ⊂ R3 can be found in the Supplementary material document. We also include in

the Supplementary material a brief simulation study with non uniform samples.

|θ̂0 − θ0|/θ0 |θ̂1 − θ1|/θ1 |θ̂2 − θ2|/θ2
Sample size Mean SD Mean SD Mean SD

n = 500 (a) 0.05758 0.00782 0.04363 0.01136 0.00085 0.00032

(b) 0.03197 0.00872 0.04704 0.01112 0.00016 0.00042

(c) εn = 0.005 0.03833 0.00794 0.03580 0.01136 0.00085 0.00031

εn = 0.01 0.01892 0.00805 0.02799 0.01132 0.00084 0.00031

εn = 0.04 0.10083 0.00889 0.01949 0.01050 0.00080 0.00029

n = 1000 (a) 0.03612 0.00485 0.03123 0.00786 0.00057 0.00019

(b) 0.01842 0.00669 0.03356 0.00811 0.00020 0.00081

(c) εn = 0.005 0.01664 0.00493 0.02339 0.00786 0.00057 0.00019

εn = 0.01 0.00472 0.00344 0.01563 0.00771 0.00056 0.00019

εn = 0.04 0.12414 0.00558 0.03148 0.00786 0.00053 0.00018

n = 5000 (a) 0.01219 0.00133 0.01436 0.00347 0.00021 0.00007

(b) 0.00506 0.00449 0.01539 0.00380 0.00018 0.00006

(c) εn = 0.005 0.00761 0.00136 0.00655 0.00341 0.00021 0.00006

εn = 0.01 0.02757 0.00139 0.00306 0.00212 0.00021 0.00006

εn = 0.04 0.15062 0.00165 0.04843 0.00347 0.00020 0.00006

Table 11: Mean value and standard deviation of |θ̂i−θi|/θi over B = 500 repeats for S = [0, 1]2, i = 0, 1, 2. For

each sample, the estimations θ̂i are obtained using the interpolation method from Vn(r1), Vn(r2) and Vn(r3),

where r1, r2 and r3 are randomly selected in the interval [1, 2]. Vn(rj) is computed as µ(B(Sn, rj)), where Sn

is (a) the sample Xn, (b) the convex hull of the sample and (c) the Devroye-Wise estimator B(Xn, εn), for

different values of εn.
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4.4 Some technical details

All computations were carried out in R, (R Core Team (2017)). In the computation of the

volume of the union of a family of 3D balls, we have used the Structural Bioinformatics Library

(SBL), a C++/Python API by Cazals and Dreyfus (2016). The convex hull of the sample in

R3, as well as its volume and surface area is computed using the R-package geometry by Habel

et al. (2015). For the dilated convex hull in R2 we used the R-package polyclip by Johnson

and Baddeley (2017).

5 Discussion

The assumption of polynomial volume, as stated in Definition 1 is reasonably general for

practical purposes, including applications in image analysis. As discussed above, condition

(2) not only applies to the broad class of sets with positive reach but also covers other sets

with inward non-smooth peaks in their boundaries.

Unlike other methods for boundary measure estimation (see Cuevas et al. (2007), Jiménez

and Yukich (2011), among others) the polynomial volume (PV) method outlined here only

requires a sample inside the set S ⊂ Rd: no external sample points are needed. Also, no

auxiliary set estimator Sn of S is required, except for the sample itself. Likewise, the PV

method can perform the simultaneous estimation of µ(S) and L(S) and we do not require

uniformity over S for the distribution of the sample points.

The role of the parameter R in our PV method is worth of some comments. Such param-

eter concerns the set S, that is, the target of the estimation. Hence it should be seen as a

regularity parameter (or a smoothness parameter) very much in the same way as the number

of derivatives or the Hölder exponent that we assume in an underlying density function to

be estimated. Therefore R should not be confused with the tuning or smoothing parameters

commonly found in nonparametrics (e.g. in density estimation). The crucial difference lies

in the fact that such smoothing or tuning parameters appear only in the expressions of the

estimators: they usually measure the extent at which such estimators are “close” to the data

and are typically chosen to asymptotically achieve efficiency in the estimation. Note that

in our case we must also fix the interval [a, b] ⊂ (0, R) where the minimum distance will be

performed but a and b are not properly smoothing parameters to be chosen in an optimal way.
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R

Figure 4: For the set in gray in the left, (2) holds for [0, R). For the set in gray in the right (2) only

holds for a small interval [0, R/6), where R/6 is radius of the small indentations in the boundary.

If R is large enough, any choice of b close to R and a “not too close” to 0 will do the job.

However, it should be noted that the value of R in assumption (2) is relevant. If R is

too small, the PV method will not work in practice, unless extremely large sample sizes are

considered. This is quite intuitive, see Figure 4: if (2) only holds for a small interval [0, R)

then, S will be relatively irregular and, consequently, µ(S) and L(S) will be harder to estimate.

The PV method is flexible enough to incorporate additional geometric information on the

target set S, whenever such information can be translated in terms of the coefficients of V (r).

This is the case, of the Euler Poincaré characteristic of S which, as explained in Section 2, is

directly related to the higher order coefficient θd. In the numerical experiments of Section 4 we

have shown the effect of incorporating the knowledge of this coefficient to the PV estimation

process.

In general, the empirical results shown in Section 4 suggest that the method is competitive,

even if we compare it with other procedures based on a more specific information on the set

S. Again, we should stress the ease of implementation even for case S ⊂ R3 which is very

difficult to address with other approaches.

The main theoretical open problem connected to the PV method is the study of the

asymptotic distribution and convergence rates of the estimates θ̂j . This is a non-trivial issue

which could be perhaps tackled with techniques similar to those employed in the study of

minimum distance estimators.
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Supplementary material. Supplementary material file includes some additional numerical

experiments with data in R3 and non-uniform samples.
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