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Abstract Quantile regression methods are evaluated for computing predictions
and prediction intervals of NOx concentrations measured in the vicinity of the
power plant in As Pontes (Spain). For these data, smaller prediction errors were
obtained using methods based on median regression compared with mean regres-
sion. A new method to construct prediction intervals involving median regression
and bootstrapping the prediction error is proposed. This new method provides
better coverage for NOx data compared with classical and bootstrap prediction
intervals based on mean regression, as well as simpler prediction intervals based
on quantile regression. A simulation study illustrates the features of this proposed
method that lead to a better performance for obtaining prediction intervals for
these particular NOx concentration data, as well as for any other environmental
dataset that do not meet assumptions of homoscedasticity and normality of the
error distribution.

Keywords quantile regression; NOx concentration; prediction errors; prediction
intervals; bootstrapping; median regression.

1 Introduction

The power plant at As Pontes (A Coruña, Spain) is an important facility of Endesa
Generación S.A. Figure 1 shows a picture of the power plant, and its geograph-
ical location within Europe. The plant comprises a thermal power station and a
combined cycle power station. Its activity releases NOx in quantities that need to
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Fig. 1 Picture of the As Pontes power plant and its geographical location within Europe.

be monitored for both legal and ecological reasons. European legislation imposes
threshold levels on ambient NOx concentrations to protect human and environ-
mental health. In addition, the location of the power plant near to natural enclaves
of high ecological value requires special care to be exercised to mitigate pollution of
the local environment. As a consequence, the power plant possesses several systems
of pollution control. In particular, it has a ’Network of Vigilance of Atmospheric
Quality’, comprising seven automatic analyzers for sulfur dioxide (SO2), oxides
of nitrogen (NOx), particles in suspension, temperature, and oxygen, located in
several positions around the power plant. A meteorological station also provides
information to help assess and predict contamination. Predictions of 30 minute in
advance are necessary, because it takes about 30 minute for countermeasures to
be implemented at the power plant, and to arrange for other contributors to the
national power grid to compensate these effects on energy production.

Throughout the years, several methods have been proposed to predict future
pollution in the surrounding areas of the power plant at As Pontes. Garćıa-Jurado
et al. (1995) proposed a semiparametric prediction system for a time series that
generalizes the Box–Jenkins model. Prada-Sánchez and Febrero-Bande (1997) in-
troduced the concept of a historical matrix, which summarizes the information on
past pollution events in a semiparametric model. Prada-Sánchez et al. (2000) con-
sidered partially linear models within an environmental context, which allowed the
user to introduce additional information as meteorological variables. Fernández-
Castro et al. (2003) used neural network models to predict the evolution of cer-
tain pollutant elements. Fernández-Castro et al. (2005) and Fernández-Castro and
González-Manteiga (2008) employed several functional techniques for predicting
sulfur dioxide levels. Roca-Pardiñas et al. (2004) and Roca-Pardiñas et al. (2005)
used a generalized additive model with an unknown link function to predict the
binary time series defined using a SO2 concentration threshold. Along similar lines,
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a study of correlations between various contaminants around four coal-fired power
plants in Greece was provided by Nanos et al. (2015) and regression modeling of
atmospheric NOx concentration in urban London can be found in Shi and Harrison
(1997).

Clearly, most works rely on least squares methods and prediction of mean pol-
lutant levels. In contrast, the purpose of our work is to provide prediction methods
for NOx concentration using quantile regression models. Quantile regression mod-
els were introduced by Koenker and Bassett (1978), with the purpose of estimating
certain quantiles of a response variable conditional to values of its predictors. In
this way, a more complete description of the conditional distribution can be given,
where the central and best known quantile is the median, but lower or upper
quantiles are also taken into account. Thus, these models describe the effects of
the predictors not only on the central values of the response variable, but also on
its lower or upper range of values. Moreover, quantile regression is estimated in a
more robust manner than common mean regression models, and does not require
stringent assumptions to be satisfied, such as homoscedasticity and normality of
the error distribution. A thorough description of quantile regression methods can
be found in Koenker (2005).

Quantile regression was successfully applied to environmental data by several
authors in recent years. Sousa et al. (2009) made use of quantile regression to pre-
dict ozone concentrations in Oporto, Northern Portugal. Salama (2005) showed
that median regression analysis is more useful for detecting relationships between
environmental performance and corporate financial performance than ordinary
least squares regression. A hierarchical Bayesian spatial quantile regression model
was proposed by Fontanella et al. (2015) to analyze indoor radon concentrations.
Cade and Noon (2003) provide a nice review of applications of quantile regression.
Quantile regression has also proven to be very useful for obtaining prediction inter-
vals. Meinshausen (2006) and Mayr et al. (2012) made use of estimated quantiles
to define the endpoints of prediction intervals, while Zhou and Portnoy (1996)
proposed a relatively simple correction to prediction intervals to improve their
coverage.

In this paper, quantile regression is shown to be more accurate than similar
ones based on least squares methods for estimating prediction errors for NOx con-
centrations. Thus, a new method for computing prediction intervals is proposed
here, based on quantile regression estimation and bootstrap approximation of the
prediction error. Its performance is evaluated using real data. In addition, simu-
lations are provided to illustrate features of this model that make it suitable for
other environmental datasets.

2 Data and Methods

Most of the previous work on pollution around As Pontes power plant was focused
on SO2 levels, because this was the main pollutant from the power plant during its
first years of operation, when combustion of local coal was the main power source.
Lately, local coal has been replaced by imported coal to reduce SO2 emissions.
This change in source material, together with a new combined cycle generator,
have resulted in NOx pollution becoming more relevant. For this reason, we focus
our attention on NOx levels in this study.
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The concentration of NOx is measured every minute, and recorded by an auto-
matic monitoring system. Simultaneously, the local meteorological station records
temperature, wind speed and wind direction every minute. Our purpose is to pre-
dict the concentration of NOx at a time (t + 30) based on available information
at time t, where t and (t+ 30) are measured in minutes. Thus, a regression model
of the following type was considered:

Yt = β0 + β1Xt + β2Xt,grad + β3Z1t + β4Z2t + β5Z3t + εt (1)

where Xt is the NOx concentration at time t; Xt,grad = Xt −Xt−5 represents
the gradient of NOx concentration over the last 5- minute interval; Z1t, Z2t and
Z3t are the mean values of temperature, wind speed and wind direction for the
interval covering the last 6 minutes (from (t − 5) to t); Yt = Xt+30 is the NOx
concentration at time (t + 30), taken as the response variable; and εt represents
the error. In this way, measurements for the latest 6-minute interval are used to
predict Yt = Xt+30. Wind direction is treated as a scalar variable because we
measure the absolute value of the deviation angle from true north.

We included all five predictors in our model because they are usually consid-
ered to affect local pollution around this power plant (see Prada-Sánchez et al.
(2000)). In particular, the NOx concentration at time t, Xt, is expected to have a
positive effect on the same concentration at time t + 30, Yt. Then, a linear effect
with expected positive coefficient seems to be adequate for this predictor us, a lin-
ear effect, with a positive coefficient was selected for this predictor. The remaining
four predictors, having a smaller effect on the response variable, but can also be
modeled with linear terms; more complex effects are not expected to play a role.
In particular, given that low ambient temperature facilitates the dispersion of pol-
lutants, then higher temperatures would promote higher pollutant concentrations
local to the power plant. Similarly, high wind speed is associated with pollutant
dispersion, resulting in lower pollutant concentrations near to the power plant.
Pollutant gradients and wind direction had least association with the response
variable, but are included for the purposes of comparison with the literature. In
Section 3, a test of linearity is applied to check the validity of our linear model.

Our model (1) is fitted using observations covering a period of 10 days; these
are defined as the training sample. The subsequent 10-day period is used as the
evaluation sample to assess the performance of our predictions and prediction in-
tervals. Given that our model includes observations from the last 6 minutes of
measurements as predictors, while the response value is scheduled for 30 minutes
later, then these data are divided into blocks of 36 observations, with no predictors
or response values for two of these blocks. This circumvents any possible autocorre-
lation issues. In Section 3, autocorrelation tests are applied to validate our model.
Thus, after removing some missing data from the training sample, we had a sample
size of 338 blocks, with corresponding observations (Xt−5, . . . , Xt, Z1t, Z2t, Z3t, Yt).
Likewise, the evaluation sample comprises another 338 blocks.

2.1 Least squares versus quantile methods

The regression model given in (1) can be interpreted as a mean regression model,
if we assume that the error has an expectation of zero, that is, E(εt) = 0. In this
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case, the model can be estimated by minimizing the sum of squared residuals

β̂LS = arg min
β

∑
t

(
Yt − β′Pt

)2
where β = (β0, β1, β2, β3, β4, β5)′ is the vector of coefficients to be estimated, Pt =
(1, Xt, Xt,grad, Z1t, Z2t, Z3t)

′ is the vector of predictors, and β̂LS is the least squares
estimator.

For the same expression (1), instead of assuming E(εt) = 0, one can surmise
that the error has a τ-quantile equal to zero, i.e., P (εt ≤ 0) = τ with τ ∈ (0, 1).
This implies that the proportion of negative (non-positive) errors is expected to
be τ, which is equivalent to the proportion of observations below the regression
function equal to τ. In this way, the regression function is no longer the conditional
expectation, but rather the conditional τ-quantile of the response variable given
the predictors.

To estimate the coefficients β(τ) for a certain τ, we observed that while mean
regression minimizes the sum of squared residuals, the τ-quantile minimizes the
sum of weighted absolute values of the residuals. Thus, the estimator β̂(τ) is given
by

β̂(τ) = arg min
β

∑
t

ρτ
(
Yt − β′Pt

)
for each τ ∈ (0, 1), where ρτ is the quantile loss function:

ρτ(z) =

{
(1− τ) · |z| if z ≤ 0

τ · |z| if z > 0

Here, ρτ produces a weighting effect on the residuals. Positive residuals, which
correspond to observations above the regression function, are weighted by the
factor τ. Negative residuals receive the weighting factor (1− τ).

Because different regression models will be compared, validation of these mod-
els is critical. We applied well-known procedures to check whether the residuals
satisfy the assumptions of homoscedasticity and normality. More details are given
in Section 3, where our model is applied to the example atmospheric data. However,
the validation of quantile regression models is not well addressed in the literature.
One reason is that quantile regression does not require any stringent assump-
tions about the error distribution. The linearity of the quantile model, which is
the most critical assumption, can be checked using the lack-of-test developed by
Conde-Amboage et al. (2015). This test evaluates the fit of a parametric quantile
regression model with many predictors (in our case, a linear quantile model with
five predictors) versus any other possible model, i.e., a nonparametric alternative.
The test is based on the cumulative sum of residuals with respect to unidimensional
linear projections of the covariates. Moreover, a wild bootstrap mechanism is used
to approximate the critical values of the test (Conde-Amboage et al. (2015)). In
Section 3, p-values for this test are provided to assess the linear quantile regression
model for different values of τ.
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2.2 Assessment of prediction methods

The pointwise prediction for a value of Yt0 at a future time t0 using Pt0 =
(1, Xt0 , Xt0,grad, Z1t0 , Z2t0 , Z3t0)′ as predictors, can be obtained from the mean

regression model by means of Ŷt0,LS = β̂′LSPt0 . An alternative prediction can be

obtained from the median regression model in a similar way, where Ŷt0,τ=0.5 =

β̂(τ = 0.5)′Pt0 .
To compare the performance of these two prediction methods, we use two

criteria: the mean absolute error (MAE) and the mean squared error (MSE), given
by

MAE = n−1
0

∑
t0

∣∣∣Yt0 − Ŷt0,m∣∣∣ MSE = n−1
0

∑
t0

(
Yt0 − Ŷt0,m

)2
where m represents the prediction method, either a least squares regression (LS)
or median regression (τ = 0.5); the times t0 in the summation are those of the
evaluation sample; and n0 is the evaluation sample size. Note that the estimations
β̂LS and β̂(τ = 0.5) are calculated from the training sample.

2.3 Prediction intervals: conditional and unconditional coverage

A prediction interval for a value Yt0 is an interval that is expected to contain
the true value Yt0 with a (presumably) high probability (1 − α), usually called
the confidence level. Let us denote a prediction interval as (Lt0 , Ut0), where the
endpoints Lt0 and Ut0 are obtained as functions of the training sample, and the
values of the predictors Pt0 at time t0. It would be expected that

P (Yt0 ∈ (Lt0 , Ut0)) = 1− α.

In this expression, the probability is defined for all possible training samples
and new observations. We call this unconditional coverage. However, because the
value of the predictors for new observation, Pt0 , is known, it is reasonable to define
the above probability as conditional to these predictors, that is,

P (Yt0 ∈ (Lt0 , Ut0)|Pt0 = pt0) .

We call this probability the conditional coverage. The unconditional coverage
can be obtained as an average of the conditional coverage, with respect to the
predictors distributions. A sample analogue for the unconditional coverage would
be the proportion of prediction intervals that contain the new observation in the
entire evaluation sample, while the conditional coverage is the same proportion,
but with evaluation samples taken at a certain value of the predictor Pt0 . Mayr et
al. (2012) provides further explanation of these concepts.

The immediate consequence of these definitions is that: if the conditional cov-
erage respects the nominal level (1−α), then the unconditional coverage will also
respect it. The reverse is not necessarily true. Retaining a conditional coverage at
the nominal level (1 − α) is therefore a more stringent condition, requiring more
detailed use of the information gathered by the predictor Pt0 .
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Below, we outline a number of known methods for obtaining prediction inter-
vals, together with our new proposed method. Each method is valid for a certain
set of restrictive assumptions on the error distribution or on the conditional vari-
ability. They fail to provide unconditional or conditional coverage, when these
assumptions are not satisfied. In particular, misspecification of the error distribu-
tion affects the unconditional coverage, while misspecification of the conditional
variability affects the conditional coverage. The goal of our proposed method is to
provide a prediction interval with appropriate conditional and unconditional cov-
erage based on a quantile regression estimation and a bootstrapping procedure. We
found that quantile methods were particularly useful because of their robustness
and flexibility under more general conditions.

2.4 Methods for obtaining prediction intervals

Here, we consider four published methods for obtaining prediction intervals: two
based on mean regression, and two based on quantile regression. In addition, a
new method is proposed here, based on quantile regression estimation and a boot-
strapping method.

M1 A prediction interval for Yt0 with level (1 − α) is traditionally obtained from
mean regression by(
Ŷt0,LS − tn−6,α/2 σ̂

√
1 + P ′t0(X ′X)−1Pt0 ,

Ŷt0,LS + tn−6,α/2 σ̂
√

1 + P ′t0(X ′X)−1Pt0

)
,

where tn−6,α/2 is the (1 − α/2) quantile of the Student’s t-distribution with

(n − 6) degrees of freedom; σ̂2 = (n − 6)−1∑
t(Yt − β̂

′
LSPt)

2 is the error vari-
ance estimate based on the training sample; and X is the design matrix of the
training sample. This type of interval was used from the very beginning for es-
timating prediction intervals (see Seber (1977)) and it is still the most common
method used to obtain prediction intervals using linear regression models (see
Fahrmeir et al. (2013)). The main drawback of this method is that it heavily
depends on the assumptions of homoscedasticity and error normality.

M2 Stine (1985) proposed a bootstrapping method to circumvent the error nor-
mality condition involved in constructing a prediction interval using mean re-
gression. Homoscedasticity is still be required for this method.

Q1 A prediction interval for Yt0 of level (1 − α) can be obtained from quantile
regression models as (

Ŷt0,τ=α/2, Ŷt0,τ=1−α/2

)
,

where the endpoints are estimations of the α/2 and (1− α/2) quantiles of Yt0
conditional to the values of the predictors Pt0 . Intervals of this kind were used
by several authors, including Meinshausen (2006) and Mayr et al. (2012), that
outline the construction of these prediction intervals and their main advan-
tages. Such intervals do not require homoscedasticity and adapt to any error
distribution. Their drawback is that a parametric (commonly linear) model is
assumed at extreme quantiles, which effects estimation, leading to an empirical
coverage that is smaller than the nominal one.
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Q2 This method is similar to the previous one, but has a small correction to
account for its effects on estimation. This prediction interval is defined as(

Ŷt0,τ=α/2−δ, Ŷt0,τ=1−α/2+δ

)
,

where δ = 0.5(z1−α/2/n), z1−α/2 is the (1 − α/2)-quantile of the standard
normal distribution, and n is the training sample size. The factor 0.5 comes
from the expression

√
τ(1− τ), where τ is the quantile to be estimated (here

τ = 0.5). This modification was proposed by Zhou and Portnoy (1996). There
are other more elaborate procedures to improve the empirical coverage of this
kind of prediction intervals, involving extremal quantile regression methods,
such as those of Chernozhukov (2005).

Q3 This is a new method, proposed here, where the prediction interval is computed
as (

Ŷt0,τ=0.5 +G?−1(α/2), Ŷt0,τ=0.5 +G?−1(1− α/2)
)
,

where G?−1 represents the quantile function associated with the bootstrap
distribution of the prediction error, denoted by G?. Here, G?−1(α/2) and
G?−1(1−α/2) denote α/2 and (1−α/2) quantiles of the bootstrap distribution
G?, respectively. These quantities are obtained as follows:
Step 1 Bootstrap replicates of the training sample and the new observation

are determined from

Y ?t = β̂(τ = 0.5)′Pt + ε?t t ∈ {1, . . . , n}

Y ?t0 = β̂(τ = 0.5)′Pt0 + ε?t0

ŵhereβ(τ = 0.5) is an estimate of the coefficients in the median regression
equation obtained from the training sample. The bootstrap errors are ε?t =
wt|rt|, where | · | denotes the absolute value and rt = Yt− β̂(τ = 0.5)′Pt gives
the residuals in the original training sample. The weights wt are drawn from
the discrete distribution at values of 1 and -1, with equal probability 0.5.
This distribution was proposed by Feng et al. (2011) in the context of wild
bootstrap for quantile regression.
The bootstrap error for the new observation is given by ε?t0 = wt0 |rt0 |,
where wt0 follows the same two-point distribution as wt, while the residual
rt0 is drawn from the following estimate of the conditional distribution of
the error for the value of the predictor Pt0 :

F̂ (r|Pt0) =
n∑
t=1

I(rt ≤ r)Wt,Pt0

where I(rt ≤ r) is the indicator function with value 1, if the condition rt ≤ r
is satisfied, else value 0; and

Wt,Pt0
=

K((β̂(τ = 0.5)′Pt − β̂(τ = 0.5)′Pt0)/h)∑n
s=1K((β̂(τ = 0.5)′Ps − β̂(τ = 0.5)′Pt0)/h)

are nonparametric smoothing weights. The smoothing parameter was cho-
sen as h = cn−1/5, where c is a constant that depends on several unknown



Predicting trace gas concentrations using quantile regression models 9

quantities, and n−1/5 is the conventional rate for this type of Nadaraya–
Watson non parametric estimator. See Hall et al. (1999) for more detail on
this type of estimator and an outline of the bootstrapping method used to
select the value of h. Here, we propose simpler rules to those given by Li
and Racine (2007), where a rule-of-thumb is used, taking the constant c to
be the standard deviation of the covariate, i.e., the variable β̂(τ = 0.5)′Pt
in our framework. In our empirical evaluation, an even simpler rule, taking
c = 1, was used with satisfactory results.

Step 2 Based on the bootstrap training sample, a bootstrap replicate of the
coefficient estimate can be obtained. Let us denote it as β̂?(τ = 0.5). Thus,
bootstrap prediction errors are computed as

D? = Y ?t0 − β̂
?(τ = 0.5)′Pt0 .

Step 3 Steps 1 and 2 are repeated B times to compute a sample of differences
D?1 , . . . , D

?
B . The empirical distribution of this sample is a Monte Carlo

approximation of the distribution function G?, from which the quantiles
G?−1(α/2) and G?−1(1− α/2) are determined.

2.5 Theoretical discussion

Here, we discuss the expected properties of these various prediction methods,
with particular emphasis on the newly proposed method Q3 as it compares to
published methods. The expected properties are determined based on empirical
outcomes of predicting NOx concentrations using real or simulated atmospheric
data, as outlined in Sections 3 and 4. Convergence results for the new method are
also provided.

Methods M1, M2, and the new method Q3 have in common that they are
based on the estimation of a central quantity of the conditional distribution, i.e.,
the conditional mean in methods M1 and M2, and the conditional median in
method Q3, as well as estimation of the prediction error distribution. Estimating
a mean regression, as in methods M1 and M2, is very efficient under normality,
but is inefficient and lacks robustness for more general error distributions. This is
one of the main reasons why we proposed a median regression estimation for our
method Q3. To estimate the prediction error distribution, the classical method
M1 applies a simple rule based on stringent assumptions of homoscedasticity and
error normality. This is the best method under these assumptions, but it yields a
poor coverage approximation, when these assumptions are not satisfied. Method
M2 makes use of a bootstrapping method to estimate the error distribution, but
still assumes homoscedasticity. The proposed method Q3 applies a bootstrapping
method adapted for quantile regression and a heteroscedastic setup. Hence, this
new method is applicable under very general conditions, and overcomes the limi-
tations of the stringent assumptions in methods M1 and M2.

Methods Q1 and Q2 are not based on estimating any central quantity of the
conditional distribution, but directly obtain the lower and upper endpoints of the
prediction interval through quantile estimation. Method Q1 does not address the
problem of prediction error, while method Q2 applies a simple correction for this
problem. The main virtue of these two methods is that their quantile procedures
of estimation are very flexible with respect to the error distribution type; it is not
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required to be Gaussian or similar. However, estimating non-central quantities,
especially relatively extreme quantiles, has two main drawbacks: there may be
few data points available for estimating these extreme quantiles, causing what is
known as the problem of sparsity described in the literature dealing with quantile
regression; and estimation will usually require a model assumption (most com-
monly, linearity) that restricts its real world applications. Heteroscedasticity can
be considered for methods Q1 and Q2, but only under a specific model for the
conditional variability. In other words, methods Q1 and Q2 will work well under
linear heteroscedasticity, but will fail under a more general heteroscedastic pat-
tern. This means that estimating a complex model for extreme quantiles is often
unfeasible in practice. Because of these restrictions, we opted to estimate a central
quantile in Q3, i.e., the conditional median, and to use a bootstrap approximation
of the prediction error to account for general heteroscedasticity and general error
distributions.

The convergence properties of the proposed method Q3 are derived using simi-
lar arguments to those given in Stine (1985). Thus, the bootstrap prediction errors
can be expressed as:

D? = ε?t0 +
(
β̂(τ = 0.5)− β̂?(τ = 0.5)

)′
Pt0 .

Given that the summands on the right are generated independently, the bootstrap
distribution of the prediction error is the convolution of two distributions:

G? = F̂t0 ∗ Z
?

where F̂t0 is the distribution of ε?t0 and Z? is the distribution of the second sum-
mand, i.e., the bootstrap approximation of the parameter estimation error multi-
plied by the predictors. Feng et al. (2011) obtained the consistency of Z? under
the bootstrapping mechanism proposed here. Hall and Yao (2005) provided the
consistency of the estimator F̂ (r|Pt0), where smoothing is applied to projected
predictors, as performed here. Since F̂t0 is constructed from F̂ (r|Pt0) by including
the bootstrap multipliers given by Feng et al. (2011), bootstrap validity depends
on the consistency of F̂ (r|Pt0). Although Stine (1985) makes use of an empirical
distribution function of the residuals, a locally smoothed version of the residual dis-
tribution is used here. Thus, the asymptotic coverage is attained using a smoothed
version of Theorem 2 in Stine (1985).

3 Results

Model (1) is adjusted for mean regression and for regression with different quan-
tiles, using the training sample described in Section 2. The results for the mean
and the median regression are similar, in the sense that the most significant pre-
dictors are: Xt (the current concentration of NOx); and Z2t (the mean value of
wind speed). Higher values of the current concentration produce higher predictions
for the 30 minute future concentration, as would be expected. Higher wind speed
is associated with lower future concentrations. This is consistent with the premise
that wind carries NOx away from the power plant surroundings.

Quantile regression provides a more detailed interpretation of the predictors’
effects on each quantile of the future concentration. Figure 2 shows the estimated
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Fig. 2 Coefficients associated with each predictor as a function of the order τ of the quantile.
The solid line represents the coefficients, while the dotted lines represent the endpoints of
confidence intervals for the coefficients.

coefficients as a function of the quantile order, τ, together with their confidence
intervals. The confidence intervals for the estimated parameters have been calcu-
lated by inverting a rank test, as described in Koenker (1994). Clearly, the effect
of each predictor is different at each order τ. The most significant predictor, the
current NOx concentration (Xt), has a coefficient that is positive for all quan-
tiles, but is larger for larger τ (representing the upper range of the future NOx
concentration). The negative effect of wind speed is less dependent on a particu-
lar quantile. All coefficients show larger confidence intervals for upper quantiles,
related to the higher variability in the high-end range of NOx concentrations.

The validity of the mean regression model was determined to explore whether
its assumptions were satisfied for our case study. First, a scatter plot of the resid-
uals versus the fitted values from the model was produced (3). This plot shows
atypical observations. Clearly, more variability is found for higher-fitted values of
the response, having a heteroscedastic pattern. Second, a QQ-Plot was constructed
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Fig. 3 Validation of the mean regression model for our case study. Left side: Scatterplot of
residuals versus fitted values. Right side: Normal QQ-Plot of standardized residuals.

Table 1 p-values for the linearity test carried out for different quantiles.

τ 0.025 0.05 0.10 0.5 0.9 0.95 0.975

p-value 0.6702 0.2672 0.1454 0.1332 0.3596 0.3400 0.8322

(3) to detect deviations from normality. Deviations linked to extreme values, much
larger than expected from the normal distribution, are visible. A Shapiro–Wilk
test of normality showed a highly significant deviation from normality (p-value
smaller than 2.2× 10−6). Because the data in the training sample are obtained as
a time series, autocorrelation may occur. Hence, we applied a Durbin–Watson test
of one-lag autocorrelation, and a Ljung–Box test of two-lag autocorrelation. No
significant autocorrelation was found in either of the tests, with a p-value=0.1656
for the Durbin–Watson test, and a p-value=0.2702 for the Ljung–Box test.

The quantile regression model is flexible to more general conditions, with less
constraints on the error distribution and conditional variability. Thus, it is not
necessary to check homoscedasticity or error normality. The only assumption to
be tested is that of linearity, i.e., the assumption that the predictors effects can be
explained by the linear function given by (1). We evaluated this assumption using
the test proposed by Conde-Amboage et al. (2015). Table 1 contains the p-values
associated with this test, carried out for different quantiles. A linear model was
acceptable for all quantiles evaluated.

To evaluate different methods, we compared the mean regression models with
our median regression model by means of the prediction errors obtained for the
evaluation sample. Table 2 shows the MAE and the MSE for the median and the
mean regression models for each of the 10 days in the evaluation sample. The last
row of the table gives the average value. We observed that the median regression
model had smaller prediction errors, both in terms of MAE and MSE.

We computed prediction intervals using the five methods described in Section
2.4. Table 3 shows the empirical coverage of these prediction intervals, computed as



Predicting trace gas concentrations using quantile regression models 13

Table 2 Mean absolute error (MAE) and mean squared error (MSE) associated with predic-
tions obtained using median and mean regression models.

Mean Absolute Error Mean Squared Error

Median Mean Median Mean

Day 1 4.1008 5.0523 35.925 41.570

Day 2 3.1304 4.1902 19.488 33.362

Day 3 8.3023 8.7387 246.563 248.473

Day 4 8.4403 8.8304 151.346 151.759

Day 5 5.0827 6.2487 122.750 126.733

Day 6 2.3943 3.7248 8.982 19.069

Day 7 8.2810 8.5096 487.657 478.338

Day 8 2.9789 4.0173 27.353 31.836

Day 9 2.3820 4.8768 11.525 30.377

Day 10 3.3201 5.1076 42.249 64.301

Average 4.8413 5.9296 115.384 122.582

the percentage of times that the real value of NOx concentration in the evaluation
sample belonged to the prediction interval. This was done for two nominal levels:
90% and 95%. The nominal levels are compared with the actual conditional and
unconditional coverages. Our validation of these regression models indicated that
we are working in a heteroscedastic context. Thus, it is reasonable to expect that
the variability of the response variable (NOx concentration at time t) is not the
same for high and low concentrations. In this case, heteroscedasticity is related
to the value of the response. Therefore, conditional coverages were computed for
five intervals, I1 to I5, each with the same number of observations, defined by
evenly splitting the ordered Y -values. Because the evaluation sample size is 338,
we considered these intervals to have a reasonable number of elements (around 67)
in each interval. In addition, the variability of the response variable within each
interval is not large. The unconditional coverage is the average of the conditional
coverages in the five intervals.

Clearly, both conditional and unconditional coverages shown in Table 3 are
much larger than the nominal level for methods M1, M2, Q1 and Q2, while the
proposed method Q3 provides coverages quite close to the nominal level for each
interval and the overall average. The fact that assumptions of normality and ho-
moscedasticity are not satisfied, likely affected the behavior of methods M1, M2,
Q1 and Q2. These effects are discussed in more detail in Section 4.

4 Simulation study

We carried out a simulation study to show how deviations, such as those present
in our data, from the common assumptions of the classical linear models of mean
regression, lead to inadequate predictions and prediction intervals. In such sit-
uations, quantile regression is clearly a better option for prediction, while the
proposed method Q3 provides a good alternative for computing prediction inter-
vals.
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Table 3 Coverage (in percentage) of prediction intervals obtained using the five methods
described in Section 2.4, for nominal levels 90% and 95%. Intervals I1 to I5 are defined by
splitting the ordered Y -values by their empirical quantiles. M1 and M2 are based on mean
regression models, Q1 and Q2 are based on quantile regression, and Q3 is the median regression
model proposed herein.

Level = 90% Level = 95%

M1 M2 Q1 Q2 Q3 M1 M2 Q1 Q2 Q3

I1 100.00 97.05 88.23 88.23 91.17 100.00 100.00 94.11 97.05 97.05

I2 100.00 97.05 100.00 100.00 91.17 100.00 100.00 100.00 100.00 94.11

I3 100.00 97.05 100.00 100.00 94.11 100.00 100.00 100.00 100.00 94.11

I4 100.00 97.05 97.05 97.05 88.23 100.00 100.00 100.00 100.00 97.05

I5 100.00 88.23 94.11 94.11 85.29 100.00 100.00 97.05 100.00 91.17

Average 100.00 95.29 95.88 95.88 90.00 100.00 100.00 98.23 99.41 94.70

Our simulated model is a linear model, with five explanatory variables, as in
our case study,

Y = 1 +X1 +X2 +X3 +X4 +X5 + σ(X1, . . . , X5)ε,

where X1, . . . , X5 are independent and have an uniform distribution on the unit
interval (0, 1); σ(X1, . . . , X5) represents the effect of the predictors on the standard
deviation of the response variable; and ε is an random error variable, independent
of these predictors.

Three types of conditional standard deviations are considered:

Ho A homoscedastic model, where σ(X1, . . . , X5) = 1.
He1 A heteroscedastic model, where σ(X1, . . . , X5) = (1 + X1 + X2 + X3 + X4 +

X5)/2. Note that in this model, the conditional standard deviation is a linear
function of the predictors.

He2 A heteroscedastic model, where σ(X1, . . . , X5) = 1 + (X1 + X2 + X3 + X4 +
X5)4/100. Note that this conditional standard deviation is a non-linear function
of the predictors.

These three models explore the conditions that should be verified in all datasets
to achieve a good performance in estimating prediction intervals for each compu-
tation method. Given that methods M1 and M2 are designed under the assump-
tion of homoscedasticity, we would expect a relatively poor performance for het-
eroscedastic models, He1 and He2. Importantly, He1 and He2 differ in whether
their conditional standard deviation is a linear or non-linear function of the pre-
dictors, respectively. This creates a big difference in methods Q1 and Q2, because
they are based on linear estimations of lower and upper quantiles. Such methods
work well under linear heteroscedasticity, like that considered in model He1, but
may be misleading under a non-linearly heteroscedastic model like He2. Finally,
we would expect a good performance of method Q3 for all considered models, Ho1,
He1 and He2.

From all of these models, training samples of independent observations were
drawn of size n (different values will be considered for n) to provide estimates for
both quantile and mean regression models. For each training sample, an evalu-
ation sample was drawn of the same size to compute the empirical coverage of
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Table 4 Coverage (in percentage) of prediction intervals obtained using the five methods
described in Section 2.4, with homoscedastic model Ho. Values are for a nominal level of 90%,
as well as for different error distributions and sample sizes. M1 and M2 are based on mean
regression models, Q1 and Q2 are based on quantile regression, and Q3 is the median regression
model proposed herein.

n = 100 n = 1000

ε M1 M2 Q1 Q2 Q3 M1 M2 Q1 Q2 Q3

N(0,1) 90.01 88.41 84.47 85.76 88.50 90.02 89.49 89.47 89.64 89.50

Uniform(-1,1) 93.13 88.17 84.26 85.65 88.76 94.90 89.26 89.44 89.61 89.65

χ2
2 92.55 90.40 84.24 85.66 88.53 92.90 90.38 89.47 89.63 89.55

Cauchy(0,1) 95.95 92.08 83.56 85.09 88.18 98.76 92.98 89.43 89.60 89.46

the prediction intervals. One thousand training samples and their corresponding
evaluation samples were used to compute mean values of the prediction errors and
coverage errors. Moreover, five hundred bootstrap replicates were considered. For
reasons of brevity, prediction errors are omitted, and only coverages of prediction
intervals are presented and discussed below.

Table 4 contains the empirical coverages obtained for the homoscedastic model
(Ho), with a nominal level of 90%, and for different error distributions and sample
sizes. The error distributions investigated were standard normal, uniform on the
interval (−1, 1), chi-square with two degrees of freedom, and a standard Cauchy
distribution. The classical prediction intervals based on linear mean regression
show that method M1 provides very accurate results under the standard normal
error distribution, while the other three distributions provide empirical coverage
that is higher than the nominal level. Method M2 based on linear mean regression
with a bootstrap approximation of the prediction error provides accurate coverage
for all distributions (with better accuracy for larger sample size), with the only
exception being for the Cauchy distribution. The Cauchy distribution does not
have a mean, which makes the classical estimator of the linear mean regression
inconsistent. The two quantile-based methods, Q1 and Q2, show a coverage below
the nominal level for all distributions, although this under-estimation goes to zero,
with increasing sample size. Method Q2 performs marginally better than Q1. The
proposed method Q3 exhibits an accurate coverage for all four distributions, even
for small sample sizes.

Table 5 shows the empirical coverages under the first heteroscedastic model
(He1), for a nominal level of 90%, and two sample sizes. The error distribution
was a standard normal one. In this way, we could analyze the specific effect of
heteroscedasticity, without incorporating deviation from normality. Intervals I1 to
I5 are defined by means of the quantiles of equal probability of the distribution of
the linear function X1 +X2 +X3 +X4 +X5, because this is the underlying cause
of heteroscedasticity. Coverage for each interval is, in a sense, an indicator of con-
ditional coverage. Simulations show that methods M1 and M2 provide inaccurate
conditional coverage, where some intervals (I1 and I2) have under-coverage, and
others (I4 and I5) have over-coverage. This effect does not diminish with increasing
sample size. Observations for the first intervals have a smaller conditional standard
deviation (and are more likely contained within the prediction intervals), while the
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Table 5 Coverage (in percentage) of prediction intervals obtained by the five methods descri-
bed in Section 2.4, with heteroscedastic model He1. Values are for a nominal level of 90% and
two sample sizes. I1 to I5 represent five intervals of ordered expected values of the response
variable. M1 and M2 are based on mean regression models, Q1 and Q2 are based on quantile
regression, and Q3 is the median regression model proposed herein.

n = 100 n = 1000

M1 M2 Q1 Q2 Q3 M1 M2 Q1 Q2 Q3

I1 97.13 96.17 82.82 84.26 92.62 97.27 96.95 89.30 89.43 91.28

I2 93.43 91.95 84.29 85.76 90.10 93.64 93.12 89.44 89.63 90.15

I3 90.42 88.61 84.80 86.05 88.54 90.48 89.88 89.53 89.68 89.54

I4 87.03 85.15 84.89 86.38 87.06 87.11 86.50 89.47 89.63 89.02

I5 81.79 79.52 84.86 86.43 84.55 81.75 81.01 89.51 89.67 88.25

Average 89.96 88.28 84.33 85.78 88.57 90.05 89.49 89.45 89.61 89.65

last intervals have larger ones. This is a natural consequence of heteroscedasticity,
since methods M1 and M2 assume homoscedasticity. Coverage derived from meth-
ods Q1 and Q2 is somewhat smaller than the nominal level for small sample size,
but converges to the nominal level as sample size increases. This reflects the fact
that these two methods are based on estimating extreme quantiles using a linear
model, which is valid under the linear heteroscedasticity of model He1. Method
Q3 provides reasonably accurate coverage at any interval, with better performance
observed for larger sample sizes.

Table 6 presents empirical coverages for the second heteroscedastic model
(He2), with a nominal level of 90% and two sample sizes. The error distribu-
tion is a standard normal one, and the five intervals I1 to I5 are constructed, as
described for Table 5. The four methods M1, M2, Q1 and Q2 are unable to provide
accurate coverage in this case. Methods M1 and M2 show the same over-coverage
for the first intervals and under-coverage for the last ones, as observed under the
He1 model. Methods Q1 and Q2 show an overall under-coverage up to a sample
size of n = 1000; for larger sample sizes, the non-linearity of the heteroscedasticity
produces over-coverage in some intervals, I2 to I4, and under-coverage in others,
I1 and I5. Meanwhile, method Q3 is robust to heteroscedasticity of any form, and
even under this non-linear model, it provides accurate coverage, with better results
for larger sample sizes.

5 Conclusions

Quantile regression methods are evaluated as an alternative to mean regression for
prediction and calculation of prediction intervals of NOx concentrations around the
power plant in As Pontes, Spain. We show that for these data, median regression
provides smaller prediction errors than mean regression. Heteroscedasticity and a
non-normal error distribution were found to characterize these data, which deviate
from the assumptions for classical mean regression models and likely explain the
better performance of quantile methods for these data.

Although two known methods based on quantile regression were explored for
obtaining prediction intervals, because of the special features of our atmospheric
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Table 6 Coverage (in percentage) of prediction intervals obtained using the five methods
described in Section 2.4, with heteroscedastic model He2. Values are for a nominal level of
90% and two sample sizes. I1 to I5 represent five intervals of ordered expected values of the
response variable. M1 and M2 are based on mean regression models, Q1 and Q2 are based on
quantile regression, and Q3 is the median regression model proposed herein.

n = 100 n = 1000

M1 M2 Q1 Q2 Q3 M1 M2 Q1 Q2 Q3

I1 98.40 97.38 78.02 79.53 92.16 98.68 98.02 85.12 85.34 90.51

I2 96.75 95.20 86.95 88.08 91.44 97.22 96.26 92.38 92.52 90.73

I3 94.22 92.04 88.18 89.39 90.49 94.49 93.20 92.84 92.96 90.28

I4 88.92 86.27 87.35 88.76 87.67 89.24 87.47 91.60 91.75 89.34

I5 74.68 71.39 81.08 82.65 81.12 74.61 72.42 85.34 85.54 86.96

Average 90.59 88.46 84.32 85.68 88.58 90.85 89.47 89.46 89.62 89.56

data, we also proposed an additional method based on quantile regression estima-
tion and bootstrap approximation of the prediction error. Our new method gave a
markedly better performance than other methods evaluated here. In a simulation
study, we showed how deviations from the assumptions of homoscedasticity and
normality affected other methods for computing prediction intervals. The coverage
accuracy of our new method was shown for both real and simulated scenarios.
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ples and bootstrap for predicting sulfur dioxide levels. Technometrics 47: 212-222.
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and Cadarso-Suárez C. 2004. Predicting binary time series of SO2 using gener-
alized additive models with unknown link function. Environmetrics 15: 729-742.

Roca-Pardiñas J, Cadarso-Suárez C and González-Manteiga W. 2005. Testing for
interactions in generalized additive models. Application to SO2 pollution data.
Statistics and Computing 15: 289-299.

Salama A. 2005. A note on the impact of environmental performance on financial
performance. Structural Change and Economic Dynamics 16: 413-421.

Seber GAF. 1977. Linear Regression Analysis. Wiley.



Predicting trace gas concentrations using quantile regression models 19

Shi JP and Harrison RM. 1997. Regression modelling of hourly NOx and NO2

concentrations in urban air in London. Atmospheric Environment 31: 4081-4094.
Sousa SIV, Pires JCM, Martins FG, Pereira MC and Alvim-Ferraz MCM. 2009.

Potentialities of quantile regression to predict ozone concentrations. Environ-

metrics 20: 147-158.
Stine RA. 1985. Bootstrap prediction intervals for regression. Journal of the Amer-

ican Statistical Association 80: 1026-1031.
Zhou KQ and Portnoy SL. 1996. Direct use of regression quantiles to construct

confidence sets in linear models. The Annals of Statistics 24: 287-306.


	Portada_SERRA
	Version 2nd Revision - SERRA
	Introduction
	Data and Methods
	Results
	Simulation study
	Conclusions




