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Abstract In the framework of quantile regression, local linear smoothing tech-
niques have been studied by several authors, particularly by Yu and Jones (Jour-
nal of the American Statistical Association, 93, 1998). The problem of bandwidth
selection was addressed in the literature by the usual approaches, such as cross-
validation or plug-in methods. Most of the plug-in methods rely on restrictive
assumptions on the quantile regression model in relation to the mean regression,
or on parametric assumptions. Here we present a plug-in bandwidth selector for
nonparametric quantile regression, that is defined from a completely nonparamet-
ric approach. To this end, the curvature of the quantile regression function and
the integrated squared sparsity (inverse of the conditional density) are both non-
parametrically estimated. The new bandwidth selector is shown to work well in
different simulated scenarios, particularly when the conditions commonly assumed
in the literature are not satisfied. A real data application is also given.

Keywords Quantile regression · Bandwidth · Nonparametric regression

1 Introduction

Although mean regression is still a traditional benchmark in regression studies, the
quantile approach is receiving increasing attention, because it allows a more com-
plete description of the conditional distribution of the response given the covariate,
and it is more robust to deviations from error normality.
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The quantile regression model could be stated as

Y = qτ(X) + ε

where Y is the response variable of interest, X is the covariate, qτ is the quantile
regression function of order τ and ε represents the error. Then, the conditional
τ-quantile of ε given X will be zero, that is, P(ε ≤ 0|X) = τ almost surely.

Estimation of the quantile regression model exploits the fact that the condi-
tional quantile, qτ(x), is the value a that minimizes the expectation

E[ρτ(Y − a)|X = x],

where ρτ(u) = u(τ−I(u < 0)) and I(·) is the indicator function of an event. Koenker
and Bassett (1978) can be considered a seminal work in estimating conditional
quantiles in a parametric setup following this idea.

Along this work, we will focus on the univariate regression context, that is, the
covariate X is assumed to be one-dimensional. Yu and Jones (1998) studied a local
linear estimator of the quantile regression in a nonparametric framework. To this
end, a random sample of independent observations (X1, Y1), . . . , (Xn, Yn) of the
pair (X,Y ) is supposed to be available. Then, the estimator will be q̂τ,h(x) = â,

where â and b̂ are the minimizers of

n∑
i=1

ρτ (Yi − a− b(Xi − x))K

(
Xi − x
hτ

)
,

where K is a kernel function and hτ is a bandwidth parameter.
Several authors have addressed the problem of bandwidth selection as Yu and

Jones (1998), Abberger (1998), Yu and Lu (2004), Ghouch and Genton (2012) or
Abberger (2002). In this work a plug-in rule is designed to choose the bandwidth
parameter, hτ. The plug-in technique consists of minimizing the dominant terms
of the mean integrated squared error (MISE) of the estimator. For the local linear
quantile regression, it can be written as (see Fan et al. (1994) and Yu and Jones
(1998))

MISE (q̂τ,hτ
) = E

∫ (
q̂τ,hτ

(x)− qτ(x)
)2
g(x) dx

∼=
1

4
h4τµ2(K)2

∫
q
(2)
τ (x)2g(x) dx+

R(K)τ(1− τ)

nhτ

∫
1

f(qτ(x)|x)2
dx

(1)

where g is the density of X, f(qτ(x)|x) is the conditional density of Y at qτ(x)

given X = x, q
(2)
τ is the second derivative of qτ, µ2(K) =

∫
u2K(u) du and R(K) =∫

K2(u) du.
An asymptotically optimal bandwidth can be derived as

hAMISE,τ =

[
R(K) τ(1− τ)

n µ2(K)2
∫
q
(2)
τ (x)2 g(x) dx

∫
1

f(qτ(x)|x)2
dx

]1/5
(2)

Note that µ2(K) and R(K) are obtained from the kernel function, while the two
integrals in (2) are unknown and have to be estimated. Expression (2) is quite
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similar to the plug-in rule for mean regression. The curvature (integrated squared
second derivative) is now calculated for the quantile regression function instead
of the mean regression, while the integrated squared sparsity (where “sparsity”
means the inverse of the conditional density) replaces the integrated conditional
variance that appeared in mean regression. See Ruppert et al. (1995) where a
plug-in rule is given for local linear mean regression.

Because of these similarities with mean regression, Yu and Jones (1998) pro-
posed to use Ruppert et al. (1995) bandwidth with some simple transformations
based on the assumptions of homoscedasticity and error normality. Homoscedas-
ticity is useful to have the same curvature for any τ as in mean regression, while
normality allows to estimate the sparsity from the conditional variance.

The purpose of this work is to provide a plug-in bandwidth for local linear
quantile regression without imposing restrictions on the conditional variability
and the error distribution. Instead, nonparametric estimations of the curvature
at the given quantile τ will be used, as well as nonparametric estimations of the
sparsity.

Other proposals in literature for bandwidth selection in nonparametric quantile
regression were given, based on cross-validation techniques. In particular, Abberger
(1998) proposed to minimize in h the cross-validation function given by:

CV (h) =
n∑
i=1

ρτ

(
Yi − q̂−iτ,h(Xi)

)
(3)

where q̂−i
τ,h(Xi) is the estimator of the τ-quantile function obtained from a sample

without the i-th individual.
In Section 2 a preliminary rule of thumb is obtained, and afterwards the pro-

posed plug-in rule is derived. In Section 3 a simulation study is given to explore the
virtues of the new bandwidth selectors in comparison with Yu and Jones (1998)
and Abberger (1998) proposals. Section 4 contains the main conclusions. In Ap-
pendix A mean squared errors of curvature and sparsity estimators are derived,
while Appendix B describes an R package developed to implement the new band-
width selectors. This package is available from the authors on request.

2 Proposed selectors

As any plug-in rule, the crucial ingredients of our proposed selectors will be the
estimators of unknown quantities, which in our case are the curvature and the
sparsity. Our first proposal will consist of a rule of thumb, where the estimators
are defined on a simple partition of the sample in blocks.

2.1 Rule of thumb

Following the ideas in Ruppert et al. (1995), a rule of thumb can be constructed
by doing the next steps:

1. Partition the range of X into N blocks with the same number of observations.
The original sample {(X1, Y1), · · · , (Xn, Yn)} is subsequently split into the N
blocks. A polynomial of order 4 is adjusted at each block, then providing N



4 M. Conde-Amboage, C. Sánchez-Sellero

polynomials that will be denoted by q̂τ,j with j = 1, . . . , N . The number of

blocks will be chosen as N̂ following the Mallows’s Cp criterion (see Mallows
(1973)) adapted to the quantile frameworks, that is, N̂ will minimize

Cp(N) =
RSQ(N)

RSQ(Nmax)/(n− 5Nmax)
− (n− 10N)

where RSQ(N) is the residual sum of quantile losses given by ρτ and summed
over each blocked quartic fit, when the number of blocks is N , Nmax =
max{min([n/20], N∗), 1} and N∗ = 5. Here [·] denotes the integer part of a
number.

Remark 1 Following the ideas of Ruppert et al. (1995) in mean regression, we
have considered polynomials of order 4 because it is the lowest degree that

a polynomial admits estimates of the quantity ϑ24 =
∫
q
(2)
τ (x) q

(4)
τ (x) g(x) dx

other than zero. This integral ϑ24 will be involved in the mean squared error
of curvature estimator, see equation (4) below.

2. Estimate the curvature as:

ϑ̂B =
1

n

n∑
i=1

N̂∑
j=1

q̂
(2)
τ,j (Xi)

2 I (Xi ∈ Block j).

Observe that we are using the notation ϑ =
∫
q
(2)
τ (x)2 g(x) dx.

3. Estimate the sparsity at each block j by means of

ŝj(τ) =
r[τ+dj ] − r[τ−dj ]

2 dj

where r[τ−dj ] and r[τ+dj ] are the sample quantiles of orders (τ−dj) and (τ+dj),
respectively, of the residuals from the quartic fit at block j. This type of sparsity
estimator was suggested by Siddiqui (1960) and studied by Bloch and Gast-
wirth (1968). For the parameter dj , the selector proposed by Bofinger (1975)
will be used here. Finally, the integrated squared sparsity will be estimated by

ŝ2B =
N̂∑
j=1

ŝ2j lj

where lj denotes the length of block j.
4. Finally, the selector from the rule of thumb will be obtained as:

ĥτ,RT =

(
R(K) τ(1− τ) ŝ2B

n µ2(K)2 ϑ̂B

)1/5

.
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2.2 Plug-in rule

The plug-in rule will come from a more elaborated estimation of the curvature and
the sparsity.

Curvature estimation

Now the second derivative of the regression will be nonparametrically estimated
at each sample observation. In order to do this, a local polynomial of order 3 will

be adjusted. Let us call q̃
(2)
τ,hc

(Xi) to its second derivative at Xi, for i = 1, . . . , n.
Then, we can consider the following curvature estimator:

ϑ̂hc
=

1

n

n∑
i=1

q̃
(2)
τ,hc

(Xi)
2

At this point, a pilot bandwidth hc for curvature estimation should be selected.
The criterion for selecting hc will be the mean squared error of the curvature
estimator. As in the case of classical mean regression, see Ruppert et al. (1995),
the asymptotic mean squared error coincides, up to terms not depending on the
bandwidth and negligible terms, with the asymptotic squared bias, which is given
by

MSE
(
ϑ̂hc

)
∼=
[
δ1 h

2
c

∫
q
(2)
τ (x)q

(4)
τ (x)g(x)dx

+δ2 τ(1− τ)
1

nh5c

∫
1

f(qτ(x)|x)2
dx

]2 (4)

where

δ1 =
1

6
(α31µ4(K) + α33µ6(K))

δ2 = 4

(
α2
31

∫
K2(v)dv + α2

33

∫
v4K2(v)dv + 2α31α33

∫
v2K2(v)dv

)
µi(K) =

∫
viK(v)dv

α31 =
−µ2(K)2µ6(K) + µ2(K)µ4(K)2

µ2(K)µ4(K)µ6(K)− µ4(K)3 − µ2(K)3µ6(K) + µ2(K)2µ4(K)2

α33 =
µ2(K)µ6(K)− µ4(K)2

µ2(K)µ4(K)µ6(K)− µ4(K)3 − µ2(K)3µ6(K) + µ2(K)2µ4(K)2

Minimizing the last expression, the asymptotically optimal pilot bandwidth
will be

h̃c = C(K)

(
τ(1− τ)

∫
1/f(qτ(x)|x)2dx

|
∫
q
(2)
τ (x)q

(4)
τ (x)g(x)dx| n

)1/7

where

C(K) =

C
I =

(
5δ2
2δ1

)1/7
if
∫
q
(2)
τ (x)q

(4)
τ (x)g(x)dx > 0

CII =
(
δ2
δ1

)1/7
if
∫
q
(2)
τ (x)q

(4)
τ (x)dx < 0
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To compute this pilot bandwidth, preliminary estimations of the integrated

squared sparsity and the integral ϑ24 =
∫
q
(2)
τ (x)q

(4)
τ (x)g(x)dx are required. They

will be obtained from blocked estimators as those considered for the rule of thumb.
They can be denoted by ŝ2B and ϑ̂24,B. The resulting estimated pilot bandwidth
will be

ĥc = C(K)

(
τ(1− τ) ŝ2B

|ϑ̂24,B| n

)1/7

.

Finally, the curvature estimator will be given by

ϑ̂α
ĥc

=
1

n

n∑
i=1

q̃
(2)

τ,ĥc
(Xi)

2 I ((1− α)a+ αb < Xi < αa+ (1− α)b)

where the sample was trimmed at each border a and b, by a small proportion
α ∈ [0, 1], assuming that the covariate is supported in the interval [a, b]. This
strategy was already used by Ruppert et al. (1995) in their estimation of similar
quantities for mean regression. It is intended to prevent from the variability of local
polynomial kernel estimates of high derivatives near the boundaries. Following
their suggestion, we will take α = 0.05.

Sparsity estimation

Since the sparsity, denoted by sτ(x), is the derivative of the quantile regression
function, qτ(x), with respect to τ, we propose an estimate of this kind:

ŝτ,ds,hs
(x) =

q̂τ+ds,hs
(x)− q̂τ−ds,hs

(x)

2 ds

where q̂τ+ds,hs
and q̂τ−ds,hs

are local linear quantile regression estimates at the
quantile orders (τ+ds) and (τ−ds), respectively, and hs denotes their bandwidth.

Note that we need two pilot bandwidths, ds and hs. The bandwidth ds is placed
in the Y -axis and plays a similar role to that of the bandwidth dj in the rule of
thumb. The bandwidth hs is necessary to compute the nonparametric estimations
of the regression functions.

The choice of the two pilot bandwidths will be based on the asymptotic mean
squared error, which comes from the asymptotic squared bias and variance:

MSE

(∫
ŝ2τ,ds,hs

(x) dx

)
∼=
[

1

ndshs

∫
a(x) dx+ d2s

∫
b(x) dx+ h2s

∫
c(x) dx

]2
+

1

nds

∫
d(x) dx+

1

n2d2shs

∫
e(x) dx (5)

where

a(x) =
1

2

R(K) sτ(x)2

g(x)

b(x) =
1

3
sτ(x) s

(2,τ)
τ (x)

c(x) = µ2(K) sτ(x)
∂q

(2)
τ (x)

∂τ

d(x) = 2
sτ(x)4

g(x)

e(x) =

(
1

2
R(K ∗K)−R(K)

)
sτ(x)4

g(x)2

(6)

where ∗ represents the convolution and s
(2,τ)
τ (x) = ∂2

∂τ2 sτ(x).
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Minimization with respect to ds and hs can be carried out by means of op-
timization algorithms as Newton-Raphson or Nelder and Mead (1965)’s method.
Estimation of the six integrals in expression (5) is done by blocks. The resulting
pilot bandwidths will be denoted by d̂s and ĥs, and the estimation of the inte-
grated squared sparsity by ŝ2

τ,d̂s,ĥs
. Now details are given on how to estimate the

unknown integrals.

– Estimation of
∫

a(x) dx. Note that a(x) = (1/2)R(K) sτ(x)2 (g(x))−1. We will
make use of the sparsity estimation at each block, ŝj , together with a simple
estimation of covariate density at that block, that could be given by nj/(nlj),
where nj is the number of observations at block j. Then, this integral can be
estimated by:

̂∫
a(x) dx =

1

2
R(K)

N̂∑
j=1

ŝ2j

(
n lj
nj

)
lj .

– Estimation of
∫

b(x) dx. Recall that b(x) = (1/3) sτ(x) s
(2,τ)
τ (x), where

s
(2,τ)
τ (x) is the second derivative of sτ(x) with respect to τ. The problem of esti-

mating the second derivative of the sparsity without covariates was considered
by Bofinger (1975). We apply her proposal to the residuals at each block

ŝ
(2,τ)
j =

1

2δ3
(
r([nτ]+2m) − 2 r([nτ]+m) + 2 r([nτ]−m) − r([nτ]−2m)

)
where the value of m is taken as m = [nδ] = [cn8/9] with c = 0.25, following
Sheather and Maritz (1983) proposal. Then, the considered integral is esti-
mated as

̂∫
b(x) dx =

1

3

N̂∑
j=1

ŝj ŝ
(2,τ)
j lj .

– Estimation of
∫

c(x) dx. The novel ingredient in c(x) is ∂q
(2)
τ (x)/∂τ. Since this

is a derivative with respect to τ, it can be estimated by

̂
∂q

(2)
τ (x)

∂τ
=
q
(2)
τ+dc

(x)− q(2)
τ−dc(x)

2dc

In order to choose the pilot bandwidth dc, a location and scale model, given
by Y = qτ(X) + σ(X)ε, is assumed. Here, ε is assumed independent of X and
with a zero τ-th quantile. Note that under this model, for each τ1, τ2 ∈ (0, 1),
qτ2(x)− qτ1(x) = σ(x)(cτ2 − cτ1), where cτ1 and cτ2 are τ1 and τ2 quantiles of
ε, respectively. Thus,

∂q
(2)
τ (x)

∂τ
= σ(2)(x)sτ(x).

This expression leads to consider for dc the same selector proposed by Bofinger
(1975) to estimate the sparsity without covariates. This selector will also be
based on the assumption of normality for ε. Finally, we arrive at the following
estimator at block j

̂(
∂q

(2)
τ

∂τ

)
j

=
1

nj

n∑
i=1

q̂
(2)

τ+d̂c,j
(Xi)− q̂

(2)

τ−d̂c,j
(Xi)

2 d̂c
I (Xi ∈ Block j),
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and the subsequent estimation of the integral

̂∫
c(x) dx = µ2(K)

N̂∑
j=1

ŝj

̂(
∂q

(2)
τ

∂τ

)
j

lj

– Estimation of
∫

d(x) dx and
∫

e(x) dx. Note that d(x) = 2 sτ(x)4 (g(x))−1

and e(x) = (0.5R(K ∗K)−R(K)) sτ(x)4 g(x)−2. Similarly to the previous in-
tegrals, these integrals can be estimated by

̂∫
d(x) dx = 2

N̂∑
j=1

ŝ4j

(
n lj
nj

)
lj

̂∫
e(x) dx =

(
1

2
R(K ∗K)−R(K)

) N̂∑
j=1

ŝ4j

(
n lj
nj

)2

lj .

Finally, the plug-in bandwidth selector is obtained as

ĥτ,PI =

(
R(K) τ(1− τ) ŝ2

τ,d̂s,ĥs

n µ2(K)2 ϑ̂
ĥc

)1/5

.

Remark 2 In the framework of local linear smoothing quantile regression, Yu and
Jones (1998) presented a different approach based on inverting a local linear con-
ditional distribution estimator, that is called double-kernel estimator. Later, Jones
and Yu (2007) proposed an improvement of their previous double-kernel estima-
tor. Both estimators need bandwidth selectors. The choice of the main bandwidth
(h1 in their notation) could be done by the plug-in rule proposed here. A small
experiment is given at the end of the simulation study to show the performance
of the new plug-in rule in double-kernel estimators.

2.3 Theoretical performance

The selector from the rule of thumb includes inconsistent estimators of curvature
and sparsity. Thus, consistency properties can’t be derived for this selector. Mean-
while, convergence of the plug-in bandwidth selector to the optimal bandwidth
relies on the asymptotic properties of curvature and sparsity estimators, ϑ̂

ĥc
and

ŝ2
τ,d̂s,ĥs

, respectively. The same arguments given in Ruppert et al. (1995) in the

case of local linear mean regression can be followed here. The main difference comes
from the sparsity estimator, which replaces the conditional variance in AMISE

representation.
From expression (5), it can be obtained that for sequences of pilot bandwidths

ds = Dsn
−1/5 and hs = Hsn

−1/5, where Ds > 0 and Hs > 0 are constants,
ŝ2τ,ds,hs

−
∫
s2τ(x) dx = OP (n−2/5). Even though this rate of convergence is slower

than root-n, it is enough to achieve that the relative rate of the plug-in bandwidth
selector is dominated by curvature estimation, that is,

(ĥτ,PI − hMISE)/hMISE = −1

5
(ϑ̂hc

− ϑ)/ϑ+OP (n−2/5)
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where ϑ =
∫
q
(2)
τ (x)g(x) dx is the true curvature.

Now, from expression (4), and for a sequence of pilot bandwidths hc = Hcn
−1/7,

with Hc > 0 a certain constant, we have that, conditionally on X1, . . . , Xn,

(ĥτ,PI − hMISE)/hMISE
p−→ L (7)

where L = −1
5ϑ
−1
{
δ1
∫
q
(2)
τ (x)q

(4)
τ (x)g(x)dx H2

c + δ2 τ(1− τ)
∫
s2τ(x) dx H−5

c

}
.

A detailed proof of (7) would follow the steps given in Sánchez-Sellero et
al. (1999). Expression (7) shows that the relative rate of convergence of ĥτ,PI

is Op(n
−2/7) for any choice of Hc. Observe now that the asymptotically optimal

pilot bandwidth h̃c allows to make L equal to zero, thanks to an ideal choice of
Hc. This pilot bandwidth would lead to an improved Op(n

−5/14) relative rate of
convergence for the plug-in bandwidth selector. To obtain this in practice, con-
sistent estimators of the unknown quantities in h̃c would be needed, which could
be quite complicated. Our proposed estimated pilot bandwidth, ĥc, is based on
rule-of-thumb estimates of the unknown quantities, which are simple to implement
although they do not guarantee consistency, neither improved rate of convergence.
The theoretical performance of the plug-in bandwidth selector is then similar to
that of Ruppert et al. (1995) bandwidth selector for mean regression. The only
difference was found in the sparsity estimation, which replaces the conditional
variance estimation. We can conclude that the slower rate of convergence of the
sparsity estimation does not have an effect on the rate of convergence of the plug-in
selector.

3 Simulation study

In this section a simulation study is presented to analyse the behaviour of the new
bandwidth selectors in comparison with already existing selectors. The natural
competitors would be Yu and Jones (1998)’s bandwidth and Abberger (1998)’s
cross-validation bandwidth. As regards Yu and Jones (1998)’s bandwidth, some
theoretical considerations are useful as an orientation to a meaningful comparison.
Recall the expression given in (2) for the asymptotically optimal bandwidth

hAMISE,τ =

[
R(K) τ(1− τ)

n µ2(K)2
∫
q
(2)
τ (x)2 g(x) dx

∫
1

f(qτ(x)|x)2
dx

]1/5
.

Observing that the same type of bandwidth for mean regression is given by

hAMISE,MEAN =

[
R(K)

n µ2(K)2
∫
m(2)(x)2 g(x) dx

∫
σ2(x) dx

]1/5
,

where m is the mean regression and σ2 is the conditional variance, Yu and Jones
(1998) proposed to use the following selector:

ĥYJ,τ = ĥRSW

[
τ(1− τ)

φ(Φ−1(τ))2

]1/5
where ĥRSW is the Ruppert et al. (1995)’s plug-in selector for local linear mean
regression, and the last factor is a correction for quantile regression. Yu and Jones
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(1998)’s selector is based on assuming that quantile and mean regression have the
same curvature and the error distribution is normal. The last factor then relates
the conditional sparsity with the conditional variance under normality.

Since ĥRSW converges to hAMISE,MEAN, ĥYJ converges to

hAMISE,YJ,τ = hAMISE,MEAN

[
τ(1− τ)

φ(Φ−1(τ))2

]1/5
which is generally different from the asymptotically optimal bandwidth for quan-
tile regression, hAMISE,τ. Meanwhile, the proposed plug-in selector ĥNP converges to
hAMISE,τ. Then, for a sample size large enough, the new bandwidth is expected to
outperform Yu and Jones (1998)’s selector, the latter selector being generally in-
consistent. This simulation study will help to assess the consequences of these facts
from smaller to larger sample sizes, and in models where the difference between
hAMISE,YJ,τ and hAMISE,τ can be controlled.

In particular, for any homoscedastic quantile regression model Y = qτ(X) + ε,
where the model error ε has τ-quantile zero and is assumed independent of X,
the curvatures of mean and quantile regression coincide, and then the quotient
between hAMISE,YJ,τ and hAMISE,τ will be

Ratio =
hAMISE,YJ,τ

hAMISE,τ
= 5

√
σ2 fε(F

−1
ε (τ))2

φ(Φ−1(τ))2
(8)

where fε and Fε are the density and distribution functions of ε, and σ2 denotes the
variance of ε. Then, the ratio between both AMISE bandwidths only depends on
the error distribution for any homoscedastic regression model. Some calculations
lead to the following ratio between asymptotic mean integrated squared errors of
the two bandwidths:

AMISE(hAMISE, YJ,τ)

AMISE(hAMISE,τ)
=

1

5
Ratio4 +

4

5
Ratio−1 (9)

where Ratio is defined in (8). Note that, by construction, the ratio between
AMISEs is always larger or equal to one. Part (a) of Figure 1 shows the val-
ues taken by the ratio defined in (8) as a function of the quantile order τ and for
three error distributions: exponential with expectation one, uniform on the inter-
val (0, 1) and beta with parameters 5 and 1. Part (b) of Figure 1 shows the values
taken by the ratio defined in (9) as a function of τ and for the same three error
distributions.

As shown in Figure 1, we observe that the differences between both AMISE
bandwidths will be bigger as long as the error distribution differs from the Gaussian
distribution. Furthermore, if we fix an error distribution, the compared behaviour
of both optimal bandwidths will depend on the quantile of interest.

Our first simulated model is given by

Model 1: Y = 10(X4 +X2 −X) + ε,

where X follows a uniform distribution on the interval (0, 1) and ε is the unknown
error, which is drawn independently of X. Note that in this case, qτ(X) = 10(X4+
X2 − X) + cτ where cτ represents the τ-quantile of the error distribution. This
notation is common for all the homoscedastic models that will be considered. In
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Fig. 1 Representations of the ratios between the AMISE bandwidths (detailed in (8)) and
the MISE values (detailed in (9)) as a function of the quantile order τ and for three error
distributions. The dashed line (−−) represents the uniform distribution, the dotted line (· · · )
represents the beta distribution and the dashed and dotted line (− · −) represents the expo-
nential distribution.
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Fig. 2 Scatterplots of a sample of size 200, together with five quantile regression functions:
τ = 0.1 (dotted line), τ = 0.25 (dashed line), τ = 0.5 (solid line), τ = 0.75 (dashed line) and
τ = 0.9 (dotted line), corresponding to Model 1 in (a) and Model 2 in (b).

this model the error follows an exponential distribution with expectation 1, which
is one of the distributions represented in Figure 1. Part (a) of Figure 2 shows a
scatterplot of one sample of size 200 drawn from this model, together with three
quantile functions, for τ = 0.1, 0.25, 0.5.

Figure 3 represents the boxplots corresponding to the four bandwidth selectors:
the plug-in selector proposed by Yu and Jones (1998), the selector based on the
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new rule of thumb, the new plug-in selector and the cross-validation selector. They
are denoted by YJ, RT, NP and CV, respectively. The boxplots were obtained from
1000 replications of Model 1 for different values of τ, and sample sizes n = 100, 500.
Three horizontal lines are added to the plots, representing the optimal bandwidths
with three criteria: MISE (dashed line), Yu and Jones (1998)’s AMISE (dotted
line) and AMISE (dashed and dotted line). The best of these bandwidths would
be the one optimizing the MISE, so the performance of each selector is related to
its approximation to this bandwidth. The AMISE bandwidth is an approximation
to the MISE bandwidth. In fact both lines approaches to each other for increasing
sample size. Meanwhile, Yu and Jones (1998)’s AMISE (YJ-AMISE) bandwidth
do not approximate to MISE bandwidth even for a very large sample size. This
is the cause for inconsistency of Yu and Jones (1998)’s selector. However, for a
small sample size, the errors of approximation between the three bandwidths can
be confounded. As regards the value of τ, Figure 3 shows that for τ = 0.5 the three
bandwidths are quite similar, while for τ = 0.1 they are far apart.

Yu and Jones (1998)’s selector estimates YJ-AMISE bandwidth, while the
new selectors estimate AMISE bandwidth. For sample size n = 500, this leads
to a clearer better performance of the new bandwidths, while for small sample
size n = 100, the errors between optimal bandwidths are still confounded. The
cross-validation bandwidth is generally centred to the MISE bandwidth, but its
variability is clearly larger.

Now we are going to evaluate the performance of each selector in terms of
the observed integrated squared error (OISE) in one thousand simulated samples.
Following Jones (1991), for each sample the OISE will be computed for the local
linear fit with the considered bandwidth selectors, that is,

OISE(ĥτ) =
1

n

n∑
i=1

(
q̂
τ,ĥτ

(Xi)− qτ(Xi)
)2
,

where ĥτ plays the role of some bandwidth selector. Then, the sample means of
the OISEs (denoted by SMISE) over the simulated samples will be employed for
comparison.

To complete the presentation, a new model is included, again homoscedastic
but with a larger curvature:

Model 2: Y = 1− 48X + 218X2 − 315X3 + 145X4 + ε,

where X follows a uniform distribution on the interval (0, 1), and ε follows an
exponential distribution with expectation 1, and is drawn independently of X.
Part (b) of Figure 2 shows a scatterplot and three quantile functions, for τ =
0.1, 0.25, 0.5, corresponding to Model 2.

Table 1 contains the sample mean of the integrated squared error for the consid-
ered bandwidth selectors for several samples sizes and values of τ. We can observe
that the new plug-in rule shows a better performance in terms of SMISE than the
plug-in selector proposed by Yu and Jones (1998), for almost all sample sizes for
τ = 0.10 and 0.25. For τ = 0.50, the SMISE associated with both plug-in rules are
quite similar. Note that in this case the ratio described in (8) is near to 1 as we
can see in Figure 2. That is, for τ = 0.5 the two AMISE bandwidths are almost
equal.
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Fig. 3 Boxplot representations of Yu and Jones (1998)’s selector (YJ), the new rule of thumb
(RT), the new plug-in selector (NP) and the cross-validation selector (CV), from 1000 repli-
cations of Model 1 for different values of τ and the sample size, n. The dashed line (−−)
represents the MISE bandwidth, the dotted line (· · · ) represents the Yu and Jones (1998)’s
AMISE bandwidth and the dashed and dotted line (− · −) represents the AMISE bandwidth.



14 M. Conde-Amboage, C. Sánchez-Sellero

Table 1 Sample mean of the integrated squared error (given values were multiplied by 103)
associated with the considered bandwidth selectors, from 1000 replications of Model 1 and
Model 2, with several sample sizes n and values of τ.

Model 1 Model 2

τ n YJ RT NP CV YJ RT NP CV

0.10 100 29.51 32.41 29.69 28.67 32.21 48.65 31.79 31.44

500 6.93 4.71 4.65 5.48 7.16 5.99 5.49 6.26

1000 4.01 2.41 2.39 2.78 4.50 3.06 2.95 3.34

0.25 100 48.81 45.82 43.49 52.64 51.66 59.66 50.58 56.84

500 11.23 9.31 9.43 11.65 12.42 11.61 11.12 13.54

1000 6.28 5.02 5.09 6.02 7.57 6.39 6.28 7.36

0.50 100 94.01 88.23 89.12 103.71 107.46 109.01 99.69 116.28

500 21.97 21.61 21.98 26.62 26.23 26.35 26.36 31.56

1000 12.04 11.80 12.03 14.23 14.98 14.86 14.99 17.41

0.75 100 220.00 243.79 226.03 241.79 264.25 286.24 248.07 264.26

500 50.84 54.21 52.19 63.58 63.07 66.13 62.61 76.70

1000 28.24 29.58 28.56 34.76 35.35 36.46 35.28 42.77

0.90 100 528.90 853.22 768.06 558.42 647.76 776.51 791.56 586.72

500 132.19 227.02 168.36 153.09 161.88 235.36 180.48 181.56

1000 71.18 114.67 83.08 85.45 89.12 120.62 91.86 103.66

On the other hand, the results associated with quantiles τ = 0.75 and 0.90
are better for the selector presented by Yu and Jones (1998). These results are
consequence of the proximity of the ratio (9) to 1 (see Figure 1) and a low density
of the error distribution at these high quantiles. A ratio (9) close to 1 means that
inconsistency of Yu and Jones (1998)’s selector has not a severe effect for small
sample sizes. A low density of the error distribution at the considered quantile
makes curvature and sparsity estimation more difficult. In a sense, we are in ideal
conditions for Yu and Jones (1998)’s selector versus the new plug-in selector: being
curvature and sparsity similar to their analogues in mean regression, and easier to
estimate in mean regression.

In any case, it should observed that due to inconsistency of Yu and Jones
(1998)’s selector, for a sample size large enough SMISE will be better for the plug-
in selector proposed here. Table 2 shows this behaviour. Table 2 does not include
results for the cross-validation selector because of its computational cost for large
sample sizes.

It is interesting to emphasize the good behaviour of the rule of thumb, despite
its simplicity. For a fair interpretation, we should note that the considered models
are homoscedastic and contain polynomial quantile regression functions of order 4,
these being ideal conditions for the rule of thumb. The cross-validation bandwidth
shows a generally worst SMISE in the considered scenarios.

Now, we will analyse how the performance of the considered bandwidth selec-
tors depends on the error distribution. To do this, we will generate samples from
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Table 2 Sample mean of the integrated squared error (given values were multiplied by 104)
associated with the considered bandwidth selectors, from 1000 replications of Model 1 and
Model 2, with several sample sizes n and values of τ.

Model 1 Model 2

τ n YJ RT NP YJ RT NP

0.10 5000 12.79 5.56 5.57 15.57 7.19 7.13

10000 8.07 3.17 3.18 10.10 4.05 4.06

0.25 5000 16.66 12.63 12.63 22.12 16.36 16.39

10000 9.84 7.27 7.30 13.40 9.43 9.52

0.50 5000 30.60 30.00 30.16 39.75 38.69 38.89

10000 17.73 17.38 17.46 23.31 22.53 22.70

0.75 5000 75.04 75.98 74.81 94.17 95.01 94.19

10000 41.33 41.63 41.11 53.25 53.74 53.50

0.90 5000 19.00 25.92 19.54 23.79 23.07 23.78

10000 10.75 13.23 10.44 13.51 14.85 13.13

these two models:

Model 3: Y = 1− 48X + 218X2 − 315X3 + 145X4 + ε

Model 4: Y = sin(5πX) + ε

where X follows a uniform distribution on the interval (0, 1), and ε is independent
of X and follows one of these distributions: standard normal, uniform on the
interval (−3, 3), Student’s t with two degrees of freedom and standard log-normal.
Quantile function in Model 3 coincides with that of Model 2, while the error
distribution now takes different shapes. Model 4 is represented in Part (a) of
Figure 4, with a standard normal distribution.

Table 3 shows the sample mean of the integrated squared errors for the com-
pared bandwidth selectors, under Model 3 and Model 4. In all cases, the quantile
function is estimated for τ = 0.5. The new plug-in rule outperforms the other
three selectors. Yu and Jones (1998)’s selector shows a good performance for the
standard normal error distribution, where its assumptions are completely satisfied.
However, the new plug-in rule has similar results to Yu and Jones (1998)’s selector,
even under these conditions, which shows that in this case quantile estimations
of curvature and sparsity are not much less efficient than its estimations under
mean regression. For distributions far from normality, as Student’s t distribution
or log-normal, the new plug-in rule shows a clearly better behaviour. All these re-
sults are to be attributed to sparsity estimation, which is inconsistently biased in
Yu and Jones (1998)’s method. Note that the simulated models are homoscedastic
and then quantile curvature coincides with mean curvature.

The rule of thumb is slightly worse than the plug-in rule, although the difference
is moderate in many cases. In particular, rule of thumb results are better under
Model 3 than under Model 4, because the quantile function under Model 3 is
better suited for blocked polynomial estimations carried out in the rule of thumb
method. The cross-validation selector is generally worse than plug-in methods, and
particularly worse than the new plug-in rule.
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Fig. 4 Scatterplots of a sample of size 200 drawn from Model 4 and Model 5, where the error
follows a standard normal distribution. The lines are quantile functions for τ = 0.25 (dashed
line), τ = 0.5 (solid line) and τ = 0.75 (dashed and dotted line).

Table 3 Sample mean of the integrated squared error (given values were multiplied by 102)
associated with the considered bandwidth selectors, from 1000 replications of Model 3 and
Model 4 with τ = 0.5, and several error distributions and sample sizes.

Model 3 Model 4

ε n YJ RT NP CV YJ RT NP CV

N(0, 1) 100 13.33 13.85 13.01 14.88 15.18 18.11 15.29 16.73

500 3.47 3.54 3.46 4.25 3.92 4.25 3.95 4.74

1000 1.98 2.02 1.99 2.37 2.23 2.35 2.24 2.59

U(−3, 3) 100 52.17 52.33 51.08 56.68 59.27 63.07 57.64 62.01

500 14.61 14.95 14.26 17.36 16.31 18.48 16.24 19.43

1000 8.49 8.57 8.25 10.04 9.36 10.39 9.31 11.19

t2 100 23.78 20.81 19.78 21.49 29.63 31.03 26.16 24.43

500 4.88 4.56 4.49 5.34 6.64 5.57 5.41 6.05

1000 2.93 2.54 2.51 2.99 3.77 3.01 2.95 3.28

log N(0,1) 100 22.11 20.17 18.43 21.37 28.37 28.01 21.56 23.74

500 4.32 4.02 3.98 4.82 4.82 4.57 4.36 5.17

1000 2.49 2.18 2.19 2.58 2.76 2.44 2.34 2.72

Moreover, we are going to consider the following heteroscedastic quantile re-
gression model:

Model 5: Y = sin(5πX) + (sin(5πX) + 2)ε

where X follows a uniform distribution on the interval (0, 1) and ε is independent of
X. Note that in this case qτ(X) = sin(5πX)+(sin(5πX)+2)cτ where cτ denotes the
τ-quantile of the error distribution. Firstly, ε is drawn from the standard normal
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Table 4 Sample mean of the integrated squared error (given values were multiplied by 102)
associated with the compared bandwidth selectors, from 1000 replications of Model 5 and for
several values of τ and the sample size n.

Standard Gaussian Student t with 3 degrees of freedom

τ n YJ RT NP CV YJ RT NP CV

0.25 100 61.15 54.01 50.75 50.07 107.41 99.51 84.74 66.21

500 14.05 12.93 11.54 13.27 19.29 16.23 15.21 16.65

1000 7.96 7.76 6.73 7.85 10.42 8.73 8.14 9.30

0.50 100 60.04 64.32 56.88 63.08 79.28 74.23 69.68 78.93

500 14.44 16.61 14.53 17.89 18.11 20.22 18.48 21.09

1000 8.27 9.28 8.31 1.01 9.86 10.77 10.56 11.92

0.75 100 89.13 10.27 83.48 90.10 154.98 208.38 148.07 145.09

500 21.16 23.88 20.06 24.89 37.37 37.25 30.64 38.01

1000 12.40 13.42 11.57 14.47 20.11 19.21 16.46 20.71

distribution. Then, the main deviation of Model 5 from Yu and Jones (1998)’s
assumptions is the fact that curvature depends on the quantile order, τ, and then
it is not equal to the curvature of mean regression function. Part (b) of Figure
4 shows a representation of Model 5. A scatterplot together with three quantile
functions (for τ = 0.25, 0.5, 0.75) are shown. It can be seen how heteroscedasticity
leads to different curvatures of the quantile regression function for different values
of τ. Secondly, we will suppose that the error follows a Student t distribution
with three degrees of freedom. In this second situation, neither of the assumptions
considered by Yu and Jones (1998) are verified.

In Table 4 the sample mean of the integrated squared error from each of the
bandwidth selectors is given for several samples sizes and values of τ. The new
plug-in method provides better results than its competitors. Note that for τ = 0.5
and Gaussian error distribution quantile regression coincides with mean regression,
so this setup would be quite favourable for Yu and Jones (1998)’s selector. In this
case, both plug-in selectors shows similar results. For quantile orders far from the
median, advantages of the new plug-in rule are more noticeable. Furthermore, the
differences between the sample mean of the integrated squared error associated
with both plug-in methods are bigger when we suppose that the error follows a
Student t distribution, as it was expected.

Now, we are going to check the robustness of the new method to deviations
from some smoothness conditions assumed for the quantile regression model. In
particular, we are going to generate values from a model that is not differentiable:

Model 6: Y = 5|X|+ σ(X) ε

where X follows a uniform distribution on the interval (−1, 1) and ε is independent
of X. Two possible error distributions will be considered: a χ-squared distribution
with two degrees of freedom and a Student’s t distribution with two degrees of free-
dom. Note that in this case qτ(X) = 5|X|+σ(X) cτ where cτ denotes the τ-quantile
of the error distribution. Two different options will be considered for the function
σ(X): σ(X) = 1 (homoscedastic model) and σ(X) = (|X| + 2) (heteroscedastic
model). Figure 5 shows a representation of Model 6.
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Fig. 5 Scatterplots of samples of size 200 drawn from Model 6, where the error follows a
χ-squared distribution with two degrees of freedom. The lines represent the median regression
function.

Table 5 Sample mean of the integrated squared error (given values were multiplied by 102)
associated with the compared bandwidth selectors, from 1000 replications of Model 6 and for
several sample sizes, n.

σ(x) = 1 σ(x) = |x|+ 2

ε n YJ RT NP CV YJ RT NP CV

χ2
2 100 31.03 27.22 27.53 31.85 185.15 158.15 160.94 175.17

500 6.95 6.95 6.88 7.84 37.04 36.63 36.24 42.42

1000 3.85 3.76 3.88 4.24 19.86 19.50 19.44 22.37

t2 100 20.08 15.22 16.34 17.13 120.74 84.10 84.48 86.37

500 4.29 3.74 4.02 4.15 19.11 18.27 18.62 21.08

1000 2.51 2.12 2.41 2.26 10.28 9.67 10.09 11.02

Table 5 shows the sample mean of the integrated squared error when estimating
the median regression with each of the bandwidth selectors. The new rule-of-thumb
and plug-in methods provide better results than the other selectors in most of the
considered scenarios. No relevant anomalies were observed in the performance of
the selectors when smoothness conditions are not satisfied.

In a last experiment, we carried out some simulations to show the usefulness of
the new plug-in selector for double-kernel methodology. In each of the two double-
kernel estimators, one proposed by Yu and Jones (1998) and the other proposed by
Jones and Yu (2007), two bandwidths are required. One of these bandwidths (h1
in their notation) plays a more relevant role and behaves as a classical bandwidth
for local linear quantile regression. In both works, the authors proposed to use the
selector proposed by Yu and Jones (1998) for this main bandwidth. Then, we are
going to compare the plug-in rule and Yu and Jones (1998)’s rule, when applied
to the selection of this bandwidth h1 for double-kernel estimators. The second and
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Table 6 Sample mean of the integrated squared error (given values were multiplied by 102)
associated with the considered estimators: ordinary local linear estimator, double-kernel esti-
mator presented by Yu and Jones (1998) (DK YJ ) and double-kernel estimator presented by
Jones and Yu (2007) (DK JY ), from 1000 replications of Model 3, for two error distributions,
three values of τ and two sample sizes. Four bandwidth selectors were considered: the plug-in
selector proposed by Yu and Jones (1998) (YJ ), the selector based on the new rule of thumb
(RT), the new plug-in selector (denoted by NP) and the cross-validation selector (CV).

Ordinary Local linear DK YJ DK JY

ε τ n YJ RT NP CV YJ NP YJ NP

t2 0.25 100 69.80 115.17 41.77 42.24 76.89 53.35 66.26 45.92

500 7.36 7.94 7.08 8.51 7.82 7.21 7.09 7.88

0.50 100 25.61 24.16 23.31 25.40 26.36 24.09 23.56 20.95

500 4.88 4.56 4.49 5.34 5.16 4.79 4.51 4.54

0.75 100 62.75 231.53 63.83 38.18 57.95 247.97 60.78 132.50

500 8.0 7.73 7.29 9.06 10.49 9.27 8.58 7.86

logN(0,1) 0.25 100 10.88 9.26 7.19 8.59 114.19 8.08 9.88 7.29

500 2.11 1.60 1.53 1.84 2.08 1.63 1.96 1.61

0.50 100 25.98 20.47 18.81 21.76 27.68 20.37 24.35 18.54

500 4.30 3.98 3.94 4.77 5.55 4.90 4.61 4.16

0.75 100 86.09 101.81 76.23 66.36 92.00 85.60 79.93 76.87

500 14.13 13.29 12.13 16.30 16.16 16.05 13.16 13.07

less relevant bandwidth will be chosen following the authors’ advices. Data will be
drawn from Model 3 used previously, that is given by

Model 3: Y = 1− 48X + 218X2 − 315X3 + 145X4 + ε

where X follows an uniform distribution on the interval (0, 1), and ε is independent
of X and follows one of these two distributions: Student’s t with two degrees of
freedom and standard log-normal.

Table 6 contains the sample mean of the integrated squared error (SMISE)
obtained from 1000 Monte Carlo replications, for different estimators: ordinary
local linear estimator, double-kernel estimator proposed by Yu and Jones (1998)
(denoted by DK YJ) and double-kernel estimator proposed by Jones and Yu (2007)
(denoted by DK JY). Furthermore, the different bandwidth selectors used along this
simulation study will be considered: YJ, RT, NP and CV. To simplify the comparison,
for double-kernel estimator only YJ and NP selectors will be considered.

According to the results shown in Table 6, we can conclude that the new plug-
in rule improves the performance of both double-kernel estimators. Only for a
Student’s t distribution with two degrees of freedom, τ = 0.75 and n = 100, Yu and
Jones (1998)’ bandwidth leads to a better performance. Note also that ordinary
local linear estimator and the double-kernel estimator presented by Jones and Yu
(2007) behave similarly when the new plug in selector is used.
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4 Real data application

The dataset Mammals, included in the R-package quantreg, contains 107 obser-
vations on the maximal running speed of mammal species and their body mass.
Figure 6 represents the scatterplot of these two variables, together with local lin-
ear quantile fits for τ = 0.25, 0.5 and 0.75. Koenker (2005) uses this dataset to
illustrate how sensitive the least-squares fitting procedure is to outlying observa-
tions (see pages 232 to 234). Here, we only consider local linear quantile fits, and
we will compare bandwidth selectors. Note that the proposed plug-in bandwidth
selector is based on quantile techniques, while Yu and Jones (1998)’s selector is
based on classical estimates of curvature and conditional variance, and then could
be sensitive to outliers. It can also be observed that the chosen dataset shows
asymmetry of the response (the maximal running speed) conditionally to the ex-
planatory variable (the body weight), with more conditional density around high
quantiles and lower density around low quantiles.

Solid lines in Figure 6 represent local linear quantile fits with the new plug-in
bandwidth selector, while dotted lines are obtained with Yu and Jones (1998)’s
rule. For τ = 0.5, both fits are quite similar. In this case, the proposed plug-in
bandwidth takes the value 1.36, while Yu and Jones (1998)’s bandwidth takes the
value 1.16. As a consequence, the dotted line seems slightly more wiggly, maybe
due to the effect of outliers on curvature and conditional variance estimation.
For τ = 0.25, the bandwidths are 1.59 for the new rule and 1.20 for Yu and
Jones (1998)’s rule. Then, the dotted line is even more wiggly than the solid line,
showing spurious fluctuation. Note that the density of the response around the
0.25 conditional quantile is low. This fact is taken into account by the new plug-
rule, but not by Yu and Jones (1998)’s rule. On the contrary, the density of the
response around the 0.75 conditional quantile is high. The selected bandwidths
are 0.97 for the new rule and 1.20 for Yu and Jones (1998)’s rule. Thus, the dotted
line is over-smoothed and hides relevant features in the data. In particular, the
change in slope around 1 Kg of weight is not detected by the dotted line. It can
also be observed that Yu and Jones (1998)’s rule selects the same bandwidth for
0.25 and 0.75 quantiles. This is a general behaviour of this rule, that takes the
same value for τ and (1 − τ) conditional quantiles, as a consequence of assuming
that the conditional distribution of the response is Gaussian. Then, it does not
take into account possible asymmetries in the conditional distribution, as it is the
case in this real data situation.

5 Conclusions and extensions

We have proposed a new plug-in bandwidth selector for local linear quantile regres-
sion based on a nonparametric approach. This new method involves nonparametric
estimation of the curvature of the quantile regression function and the integrated
squared sparsity. Convergence of the new rule to the optimal bandwidth is shown,
with the same rate as for mean regression selectors.

Thanks to a Monte Carlo simulation study, we have shown that the new pro-
posal shows a good behaviour in terms of the sample mean of the integrated
squared error compared with its natural competitors both in homoscedastic and
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(c) τ = 0.75

Fig. 6 Local linear quantile regression fits for Mammals dataset with τ = 0.25, 0.5 and 0.75.
Solid lines are obtained with bandwidths selected by the new plug-in rule. Dotted lines result
from bandwidths selected by Yu and Jones (1998)’s rule.

heteroscedastic scenarios. Moreover, we have presented a simple rule of thumb that
shows a quite good performance on a wide range of situations.

An R package called BwQuant has been developed to enable any user to apply
the techniques proposed in this paper: rule of thumb and plug-in rule. The natural
competitors, cross-validation and Yu and Jones (1998)’s bandwidths, were also
implemented. Moreover, we have included a function that estimates the quantile
regression function using local linear kernel regression.

The developed methodology can be used in the double-kernel estimator pro-
posed by Yu and Jones (1998) and Jones and Yu (2007), as it was illustrated in a
last experiment at the end of the simulation study. Moreover, the proposed tech-
niques can be extended to the case of a multi-dimensional covariate, particularly
to nonparametric additive models in a quantile regression context as those consid-
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ered by Yu and Lu (2004). Similarly to Yu and Jones (1998), Yu and Lu (2004)
proposed a heuristic rule for selecting the smoothing parameter, using Opsomer
and Ruppert (1998)’s bandwidth for mean regression with some transformation
based on assumptions such as homoscedasticity and error normality. A plug-in rule
specifically designed for additive quantile regression would be more appropriate
when these assumptions are not satisfied. This plug-in rule would benefit from the
ideas given in this paper.

Appendix A: Mean squared error of curvature and sparsity estimators

Here expressions (4) and (5) are derived. They give approximations to the mean
squared error of curvature and sparsity estimators, respectively. A complete devel-
opment of these expressions can be seen in Chapter 3 of Conde-Amboage (2017).

Derivation of (4)

In order to derive the asymptotic mean integrated squared error of the curva-
ture estimator, the following assumptions will be needed:

C1: The density function of the explanatory variable X, denoted by g, is differen-
tiable and its first derivative is a bounded function.

C2: The kernel function K is symmetric, non negative and has a bounded support
and verifies that

∫
K(u) du = 1, µ6(K) =

∫
u6K(u) du < ∞ and

∫
K2(u) du <

∞. Moreover, it is assumed that the bandwidth parameter hc verifies that
hc → 0 and nh5c →∞ when n→∞.

C3: The conditional distribution function F (y|X = x) of the response variable
is three times derivable in x for each y and its first derivative verifies that
F (1)(qτ(x)|X = x) = f(qτ(x)|X = x) 6= 0. Moreover, there exist positive con-
stants c1 and c2 and a positive function Bound(y|X = x) such that

sup
|xn−x|<c1

f(y|X = xn) ≤ Bound(y|x)

and ∫
|ψτ(y − qτ(x))|2+δ Bound(y|X = x) dy <∞

∫
(ρτ(y − t)− ρτ(y)− ψτ(y)t)2 Bound(y|X = x) dy = o(t2), as t→ 0

where ψτ(r) = τI(r > 0) + (τ− 1)I(r < 0).

C4: The function qτ1(x) has a continuous fourth derivative with respect to x for

any τ1 in a neighbourhood of τ. These derivatives will be denoted by q
(i)
τ

with i ∈ {1, 2, 3, 4}. Moreover, all these derivatives are bounded functions in a
neighbourhood of τ.
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Applying the arguments of the proof of Theorem 3 in Fan et al. (1994) to a local
polynomial of order 3, the estimator of the second derivative can be approximated
by

q̃
(2)
τ,hc

(x) ∼= q
(2)
τ (x) + 2h−2

c
1

f(qτ(x)|x)g(x)
Vn,τ(x)

where

Vn,τ(x) =
1

nhc

n∑
i=1

ψτ

(
Y

(3)
i

)(
α31 + α33

(
Xi − x
hc

)2
)
K

(
x−Xi
hc

)
,

where Y
(3)
i = Yi−qτ(x)−q(1)τ (x)(Xi−x)−(1/2)q

(2)
τ (x)(Xi−x)2−(1/6)q

(3)
τ (x)(Xi−

x)3 and ψτ(z) = τ− I(z < 0). Note that assumptions C1-C4 were used here.

Now, expectation and variance of q̃
(2)
τ,hc

(x) can be obtained by some algebraic
calculations:

E
(
q̃
(2)
τ,hc

(x)
)
∼= q

(2)
τ (x) +

1

2
δ1q

(4)
τ (x)h2c

Var
(
q̃
(2)
τ,hc

(x)
)
∼= δ2

1

nh5c

τ(1− τ)

f(qτ(x)|x)2g(x)

where δ1 and δ2 were defined in expression (4). Recall that the curvature estimator
is given by

ϑ̂hc
=

1

n

n∑
i=1

q̃
(2)
τ,hc

(Xi)
2.

Then, combining expectation and variance of q̃
(2)
τ,hc

(Xi) conditionally to Xi, and
taking expectation with respect to Xi, we obtain

E
(
ϑ̂hc

)
∼= ϑ+ δ1 h

2
c

∫
q
(2)
τ (x)q

(4)
τ (x)g(x) dx

+ δ2 τ(1− τ)
1

nh5c

∫
1

f(qτ(x)|x)2
dx

Additional calculations, that can be found in Conde-Amboage (2017), show that
the dominant terms in the variance of ϑ̂hc

are of orders n−1 and n−2 h−9
c . The term

of order n−1 does not depend on hc, while the term of order n−2 h−9
c is negligible

with respect to the asymptotic squared bias. Because of this, the asymptotically
optimal bandwidth can be obtained by minimizing the asymptotic squared bias.

This fact, together with last expression for E
(
ϑ̂hc

)
, leads to expression (4).

Derivation of (5)

The following conditions will be assumed in order to derive the asymptotic
mean integrated squared error of the sparsity estimator:

S1: The conditional density function f(y|X = x) of the response variable is twice
derivable in x for each y and f (i)(qτ(x)|X = x) 6= 0 with i = 0, 1, 2. Moreover,
there exists positive constants c1 and c2 and a positive function Bound(y|X =
x) such that

sup
|xn−x|<c1

f(y|X = xn) ≤ Bound(y|X = x)
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and ∫
|ψτ(y − qτ(x))|2+δ Bound(y|X = x) dy <∞

∫
(ρτ(y − t)− ρτ(y)− ψτ(y)t)2 Bound(y|X = x) dy = o(t2), as t→ 0

where ψτ(r) = τI(r > 0) + (τ− 1)I(r < 0).

S2: The function qτ1 has a continuous second derivative for any τ1 in a neigh-

bourhood of τ as a function of x. These derivatives will be denoted by q
(i)
τ .

Moreover, all these functions are bounded functions in a neighbourhood of τ.

S3: The density function of the explanatory variable X, denoted by g, is differen-
tiable and this first derivative is a bounded function.

S4: The kernel K is symmetric, non negative, has a bounded support and verifies
that

∫
K(u) du < ∞,

∫
K(u)2 du < ∞ and µ2(K) < ∞. Moreover, the band-

width parameters verify that ds → 0, hs → 0 and ndshs →∞ when n→∞.

S5: The function qτ1 has a continuous and bounded forth derivative with respect

to τ1 for any τ1 in a neighbourhood of τ. Moreover, q
(2)
τ1

has a continuous and
bounded second derivative with respect to τ1 for any τ1 in a neighbourhood
of τ.

Recall the definition of the proposed sparsity estimator

ŝτ,ds,hs
(x) =

q̂τ+ds,hs
(x)− q̂τ−ds,hs

(x)

2 ds

where q̂τ+ds,hs
and q̂τ−ds,hs

are local linear quantile regression estimates at the
quantile orders (τ+ds) and (τ−ds), respectively, and hs denotes their bandwidth.
Applying Fan et al. (1994)’s results, we have

q̂τ+ds,hs
(x) ∼= qτ+ds(x) +

1

f(qτ+ds(x)|x)g(x)
Uτ+ds,hs

(x)

where

Uτ+ds,hs
(x) =

1

nhs

n∑
i=1

ψτ+ds

(
Y

(1)
i

)
K

(
x−Xi
hs

)
, (10)

and Y
(1)
i = Yi − qτ+ds(x)− q(1)

τ+ds
(x)(Xi − x). Analogously for q̂τ−ds,hs

(x).
Substituting these expressions in the definition of ŝτ,ds,hs

(x), we have

ŝτ,ds,hs
(x) = A(x) +B(x) (11)

with

A(x) =
qτ+ds(x)− qτ−ds(x)

2 ds
, B(x) =

1

g(x)

(
Uτ+ds,hs

(x)

f(qτ+ds(x)|x)
−

Uτ−ds,hs
(x)

f(qτ−ds(x)|x)

)
.

Note that A(x) is not random and can be approximated by a Taylor expansion as

A(x) ∼= sτ(x) +
1

6
s
(2,τ)
τ (x)d2s
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if S2 follows. Moreover, based on arguments developed in Lemma 2 of Fan et al.
(1994), the expectation and variance of B(x) can be approximated by

E(B(x)) ∼=
1

2
µ2(K)

∂q
(2)
τ (x)

∂τ
h2s

Var(B(x)) ∼=
1

2ndshs

∫
K2(u) du

f(qτ(x)|x)g(x)

if assumptions S1-S5 follow.

From these results, the asymptotic bias of the estimated squared sparsity is
given by

Bias

(∫
ŝ2τ,ds,hs

(x) dx

)
∼=
[

1

ndshs

∫
a(x) dx+ d2s

∫
b(x) dx+ h2s

∫
c(x) dx

]2
where a(x), b(x) and c(x) are given in (6).

In view of expression (11), the asymptotic variance of sparsity estimator can
be decomposed as follows

Var

[∫
ŝτ,ds,hs

(x)2 dx

]
∼= Var

[∫ (
A(x)2 +B(x)2 + 2A(x)B(x)

)
dx

]
= Var

[∫
B(x)2 dx

]
+ 4 Var

[∫
A(x)B(x) dx

]
+ 4 Cov

[∫
B(x)2 dx,

∫
A(x)B(x) dx

]
.

Each of the previous terms can be expressed as covariances of U-expressions
like that given in (10) evaluated at different points x and quantiles τ + ds and
τ−ds. These covariances can be computed (under assumptions S1, S2, S4 and S5)
using similar arguments to those employed by Fan et al. (1994), adapting their
ϕ function (given in equation (2.1) on page 435) to each covariance. Then, the
asymptotic variance of sparsity estimator can be approximated as follows

Var

[∫
ŝτ,ds,hs

(x)2 dx

]
∼=

1

nds

∫
d(x) dx+

1

n2d2shs

∫
e(x) dx

where d(x) and e(x) are given in (6). Then, in view of the computed asymptotic
bias and variance, expression (5) can be derived.
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