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Abstract

Although mean regression achieved its greatest diffusion in the twen-

tieth century, it is very surprising to observe that the ideas of quantile

regression appeared earlier. While the beginning of the least-squares re-

gression can be dated in the year 1805 by the work of Legendre, in the

mid-eighteenth century Boscovich already adjusted data on the ellipticity

of the Earth using concepts of quantile regression.

Quantile regression is employed when the aim of the study is cen-

tred on the estimation of the different positions (quantiles). This kind of

regression allows a more detailed description of the behaviour of the re-

sponse variable, adapts to situations under more general conditions of the

error distribution and enjoys robustness properties. For all that, quantile

regression is a very useful statistical technology for a large diversity of

disciplines. In this paper a review on quantile regression methods will be

presented.

Keywords: Quantile regression, Estimation, Lack-of-fit tests, Robust-

ness, Sparsity.
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1. Introduction

Given a random variable X, for each 0 < τ < 1 its τ-th quantile, that will

be denoted by cτ, is defined as the value that verifies

P
X
(X ≤ cτ) ≥ τ and P

X
(X ≥ cτ) ≥ 1− τ.
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Then, the quantile function of a probability distribution is given by the

inverse of the cumulative distribution function. More formally, the quantile

function is defined as follows

F−1
X

(τ) = inf {x ∈ R : τ ≤ F
X
(x)} ,

where inf{A} represents the infimum of a subset A. The infimum is a criterion

used to choose a simple quantile when the definition in terms of the probability

function provides more than one solution.

Quantiles can be computed as the result of an optimization problem. First,

let us call quantile loss function to the following piecewise linear function:

ρτ(u) = u
(
τ− I(u < 0)

)
=

{
u τ if u ≥ 0,

u (τ− 1) if u < 0,

where I represents the indicator function of an event. Figure 1 shows the repre-

sentation of the quantile loss function for different values of the τ-th quantile of

interest. Note that the quantile loss function is not differentiable so that stan-

dard numerical algorithms cannot be directly applied. Because of this reason,

most of the theory developed for mean estimation can not be applied in this

context.
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(a) Quantile τ = 0.25
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(c) Quantile τ = 0.75

Figure 1: Representation of the quantile loss function for three different values
of the τ-th quantile of interest: τ = 0.25 (Part a), τ = 0.50 (Part b) and τ = 0.75
(Part c).
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Thereupon, for each τ ∈ (0, 1), the τ-th quantile that has been denoted by

cτ can be written as

cτ = argmin
x

E

[
ρτ(X − x)

]
.

In practice, the cumulative distribution function F is replaced by the empirical

distribution function. So, given {X1, . . . , Xn} a random sample of the variable

X, the sample quantiles can be computed as

ĉτ = argmin
c

∫
ρτ(x− c) dFn(x) = argmin

c

1

n

n∑

i=1

ρτ(Xi − c) (1.1)

for each τ ∈ (0, 1).

The problem of finding the τ-th sample quantile may be reformulated as a

linear problem. A more complete explanation about this optimization problem

can be found in Section 1.1.2 of [12]. In practice, there exists several methods in

order to compute sample quantiles, and a clear review about these possibilities

in R language is detailed in [24].

The asymptotic distribution of ĉτ can be derived as a consequence of Linde-

berg’s central limit theorem. This result is gathered in Theorem 1.1 and its proof

is detailed in several classical works on Statistical Inference, see for instance [6].

Theorem 1.1. Given a random variable X with associated cumulative distri-

bution function F
X

that is absolutely continuous in a neighbourhood of the τ-th

quantile of interest, cτ, with fX
(cτ) > 0. Then, the asymptotic distribution of

the sample quantile, ĉτ, is given by

√
n (ĉτ − cτ)

d−→ N(0, ω2),

where ω2 = τ(1− τ)/f2
X
(cτ), N(0, ω2) represents the Gaussian distribution with

zero mean and variance ω2, and
d−→ denotes convergence in distribution.

According to the asymptotic distribution of ĉτ, the inverse of the density

evaluated in the quantile, that is known in this context as sparsity, will play a

crucial role in this context. A complete description of the sparsity function will

be presented in Section 4.

It is well-known the major robustness of quantile methods versus classical

least squares estimation. To show that, we are going to focus on the influence

function, introduced by [20]. The influence function describes the effect of an

anomalous sample point over a certain estimator. More formally, the influence

function can be defined by

IF (y, γ̂, F ) = lim
t→0

γ̂(Ft)− γ̂(F )

t
,
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where γ̂(F ) represents an estimator that depends on a distribution F and Ft =

(1− t)F + tδy where δy denotes the distribution function that assigns mass 1 to

the contaminated point y.

So, the influence function associated with mean estimator (denoted by µ̂)

will be given by

IF (y, µ̂, F ) = lim
t→0

µ̂(Ft)− µ̂(F )

t
= y − µ̂(F ),

while the influence function of median estimator (denoted by ĉ0.5) will be given

by

IF (y, ĉ0.5, F ) = lim
t→0

ĉ0.5(Ft)− ĉ0.5(F )

t
=

0.5 sgn(y − ĉ0.5(F ))

f(ĉ0.5(F ))
,

where sgn represents the sign function.

There is a fundamental difference between the two influence functions. While

the influence function of the mean, is simply proportional to y, the influence of

contamination at y on the median is bounded by the sparsity at the median.

Figure 2 shows the comparison of the influence functions of mean and median

estimators associated with a standard Gaussian distribution F . Let us observe

the fragility of the mean and the robustness of the median in withstanding the

contamination of outlying observations. Much of what has already been said

extends immediately to the quantiles generally for any τ, and from them to

quantile regression.
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Figure 2: Influence function associated with mean and median estimators, where
F is a standard Gaussian distribution.

Taking into account the good properties of sample quantiles, we are going

to extend these ideas to a regression context with a parametric (see Section 2)

and a nonparametric (see Section 3) perspective. In Section 4 we have estab-
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lished different sparsity estimators because of its fundamental role in quantile

regression context. In Section 5 an introduction to lack-of-fit tests for quantile

regression is presented. Finally, in Section 6 some conclusions are presented.

2. Parametric quantile regression

Now, our main goal will be to extend the theory developed in the previ-

ous section to the regression context. Then, for simplicity, let us consider the

following linear regression model:

Yi = θ′
τ
Pi + εi, (2.1)

where Pi = (1, Xi) and {(X1, Y1), · · · , (Xn, Yn)} represents a random sample of

the response variable (denoted by Y ∈ R) and the explanatory variable (denoted

by X ∈ R
d). Moreover, the errors εi should verify that P(εi ≤ 0 | X = Xi) = τ,

that is, its conditional τ-th quantile is zero. Note that it is analogous to assume

that E(εi|X = Xi) = 0 in the classical least squares context.

If the conditional quantile function is defined by qτ(x) = θ′
τ
(1, x), in view of

(1.1), it is reasonable to consider the estimator θ̂τ obtained as the solution of

the following optimization problem:

θ̂τ = arg min
θ∈Rd+1

n∑

i=1

ρτ(Yi − θ′Pi). (2.2)

This idea has been introduced by [26] and subsequently [14] demonstrated the

consistency of the quantile regression estimator.

Following the ideas described in Section 1, the parameter θ̂τ can be obtained

as the solution of the following linear optimization problem:

min
(θ,u,v)∈Rd+1×R

2n
+

{
τ1′nu+ (1− τ)1′nv : Xθ + u− v = Y

}
, (2.3)

where X denotes the regression design matrix that is a n× (d+1) matrix whose

j−th row is given by (1, Xj)
′ and 1n represents a n-dimensional vector of ones.

The residual vector Y − Xθ has been split into its positive and negative parts

(u and v respectively).

The calculus of the quantile regression parameter as a linear optimization

problem is crucial because it gives place to different methods in order to compute

θ̂τ. In this line, [3] proposed a modified version of the Simplex method in order

to solve the optimization problem associated with τ = 0.5 in which case the

quantile loss function is the absolute value. It is important to emphasize that

[3]’s proposal manages to reduce substantially the computational time needed

to compute the estimator θ̂τ for τ = 0.5 compared with the original Simplex
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algorithm. Later, [27] extended this development to each quantile 0 < τ < 1.

Since quantile regression estimators do not have explicit expression, it would

be necessary to resort to asymptotic expressions such as Bahadur’s representa-

tion. If we assume that ψτ(r) = τI(r > 0) + (τ − 1)I(r < 0), [2] established

that

√
n

(
θ̂τ − θτ

)
= D−1

1 n−1/2
n∑

i=1

Pi ψτ(Yi − θ′
τ
Pi) +Op

(
n−1/4

√
log n

)
,

under certain regularity conditions.

Differently from least squares estimator, the quantile estimator distribution

is not generally known even under error normality. [25] showed the following

result about the asymptotic distribution of quantile regression estimators.

Theorem 2.1. Let us consider a linear model as given in (2.1). Under the

following conditions:

Condition A1. The conditional distribution functions Fi (Yi conditioned to

Xi) are absolutely continuous with continuous density functions fi uni-

formly bounded away from 0 and ∞ at the conditional quantiles ci(τ).

Condition A2. There exist positive definite matrices D0 and D1(τ) such that

1. limn→∞
1
n

∑n
i=1 Pi P

′
i = D0,

2. limn→∞
1
n

∑n
i=1 fi(ci(τ))Pi P

′
i = D1(τ),

3. maxi=1,...,n ‖Xi‖/
√
n→ 0,

it follows that

√
n

(
θ̂τ − θτ

)
d−→ N

(
0, τ(1− τ)D1(τ)

−1D0D1(τ)
−1

)
.

Again, in view of Theorem 2.1, it is clear that the sparsity function will play

an important role. Furthermore, in a regression context, the quantile methods

still enjoys properties of robustness. [11] (page 106) showed that the influence

function associated with the least squares estimator (denoted by θ̂LS) is given

by

IF ((x, y), θ̂LS , F ) = E(XX′)−1(1, x)(y − θ̂LS(F )
′(1, x)),

where F represents the distribution function of the random vector (X,Y ) and

the pair (x, y) denotes a new observation. In this case, the influence function

can be split into two factors

IP (x, θ̂LS , FX) = E(XX′)−1(1, x),

IR(r, θ̂LS , Fε) = r = y − θ̂LS(F )
′(1, x),
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where FX represents the marginal distribution of the explanatory variable, Fε

denotes the error distribution and r = y − θ̂LS(F )
′(1, x) represents the residual

associated with a pair (x, y).

In this sense, the factor IP represents the influence of the new observation

x. This is closely related to the well-known leverage problem in the regression

context. In addition, the factor IR contains the influence of the residual, that

is, the effect of a deviation of the response variable y.

Considering now the quantile regression estimator (see equation (2.2)), the

influence function can be split into the following two parts:

IP (x, θ̂τ, FX) = E(XX′)−1(1, x),

IR(r, θ̂τ, Fε) = sgn(r) = sgn
(
y − θ̂τ(F )

′(1, x)
)
.

Then, the influence due to the new observation x matches with the least squared

estimator while the influence due to the residual coincides with the influence of

the quantile estimator without covariates.

It can then be established that quantile regression can correct robustness

problems due to vertical deviations (that is, related to the response variable),

but not those caused by horizontal deviations (that is, related to the explana-

tory variables). Furthermore, in order to control both factors of the influence

function, it should be necessary to introduce generalized M-estimators that

were studied by [31]. Moreover, other kinds of robust estimators have been con-

sidered such as least median of squares regression proposed by [34] or regression

depth proposed by [35].

We have focused on linear quantile regression but all the ideas presented in

this section can be extended to non linear context. Let us consider the following

regression scenario:

Yi = qτ(Xi, θτ) + εi,

where the function qτ is known apart from the parameter θτ and {(X1, Y1), . . . ,

(Xn, Yn)} represents a random sample of the variables (X,Y ) ∈ R
d+1. More-

over, the conditional τ-quantile of the errors is zero. In this context, we can

considerer the following estimator

θ̂τ = arg min
θ∈Rq

n∑

i=1

ρτ(Yi − qτ(Xi, θ)). (2.4)

In Section 4.5 of [25], the asymptotic behaviour of estimator (2.4) is presented.

This result is an extension of Theorem 2.1. Moreover, in some situations, in

order to get more flexible approaches, it will be necessary to introduce nonpara-

metric techniques that will be introduced in the Section 3.
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3. Nonparametric quantile regression

All the methodology developed along the previous section can be extended

to a nonparametric context. In this line, [7] and [8] can be considered as seminal

works. In this section we are going to focus on local linear smoothing techniques.

Let us consider a regression scenario as

Y = qτ(X) + ε,

where the conditional τ-quantile of the error given the covariate is zero. Given

a random sample of independent observations {(X1, Y1), . . . , (Xn, Yn)} of the

pair (X,Y ) ∈ R
2, a nonparametric estimator of the conditional quantile can be

defined as q̂τ,hτ
(x) = â, where â and b̂ are the minimizers of

n∑

i=1

ρτ (Yi − a− b(Xi − x))K

(
Xi − x

hτ

)
,

where K is a kernel function (usually a symmetric density) and hτ represents a

bandwidth parameter. This is the local linear estimator of the quantile regres-

sion function.

As it happens for any smoothing method, bandwidth hτ exhibits a strong

influence on the resulting estimate. Several authors have addressed the problem

of bandwidth selection, see [43], [1], [44] or [18].

One of the main approaches to bandwidth selection is the plug-in technique

which consists of minimizing the dominant terms of the mean integrated squared

error (MISE) of the estimator. [17] established the asymptotic MISE for the

local linear quantile regression when n → ∞, hτ = hτ(n) → 0 and nhτ → ∞,

that is given by

MISE (q̂τ,hτ
) ∼= 1

4
h4
τ
µ2(K)2

∫
q(2)
τ

(x)2g(x) dx

+
R(K)τ(1− τ)

nhτ

∫
1

f(qτ(x)|X = x)2
dx, (3.1)

where g is the density of X, f(qτ(x)|X = x) is the conditional density of Y at

qτ(x) given X = x, q
(i)
τ (x) = ∂iqτ(x)/∂x

i, µi(K) =
∫
uiK(u) du and R(K) =∫

K2(u) du.

Moreover, in view of (3.1), an asymptotically optimal bandwidth can be

derived as

hAMISE,τ =

[
R(K) τ(1− τ)

n µ2(K)2
∫
q
(2)
τ (x)2 g(x) dx

∫
1

f(qτ(x)|X = x)2
dx

]1/5

. (3.2)
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Note that µ2(K) and R(K) are obtained from the kernel function, while the

two integrals in (3.2) are unknown and have to be estimated. Expression (3.2)

is quite similar to the plug-in rule for mean regression but again the sparsity

function will play an important role. Because of these similarities with mean

regression, [43] proposed to use [36] bandwidth selector with some simple trans-

formations based on the assumptions of homoscedasticity (it is useful to have

the same curvature for any τ as in mean regression) and error normality (it

allows to estimate the sparsity from the conditional variance). As a result, Yu

and Jones (1998) plug-in rule proposal is derived

ĥτ,YJ =
5

√
τ(1− τ)

φ(Φ−1(τ))2
ĥRSW, (3.3)

where ĥRSW is selected by the plug-in rule proposed by [36].

On the other hand, [1] suggested a modification of classical cross-validation

function that consisted of replacing the squared loss criterion by the quantile

loss function. Bearing this idea in mind, a cross-validation procedure can be

applied to select the bandwidth parameter associated with a kernel quantile

regression, as follows

ĥτ,CV = argmin
h

CV(h) = argmin
h

n∑

i=1

ρτ

(
Yi − q̂−i

τ,h(Xi)

)
,

where q̂−i
τ,h(Xi) is the estimator of the τ-th quantile function obtained from a

sample without the i-th individual, that is, the classical leave-one-out estimator,

evaluated with bandwidth h.

More recently, [9] provided a plug-in bandwidth for local linear quantile

regression based on expression (3.2) without imposing restrictions on the condi-

tional variability and the error distribution. Instead, nonparametric estimations

of the curvature at the given quantile τ will be used, as well as nonparametric

estimations of the sparsity. Moreover, they prove the convergence of their plug-

in estimator to the optimal bandwidth and the convergence rate is the same

that in the classical mean regression context.

The aforementioned methods can be extended to the case of a multi-dimen-

sional covariate. For instance, [44] extends the ideas of [43] to nonparametric

additive models. Again, the goal is to reduce the problem to a mean regression

context under assumptions of homoscedasticity and error normality and then

use the selector presented by [32].

Finally, during this section, we focus on kernel smoothing techniques, al-

though spline methods have been widely studied by several authors as [29] or

[28]. For instance, [29] proposed to estimate the function qτ by solving the
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following optimization problem

min

[
n∑

i=1

ρτ

(
Yi − qτ(Xi)

)
+ λV(∇qτ)

]
, (3.4)

whereV(∇qτ) denotes the total variation of the derivative of qτ and λ represents

the well-know smoothing parameter in this context. Moreover, [29] showed that

the solution to (3.4) is a linear spline with nodes at the points Xi where i =

1, . . . , n. Hence, a quantile smoothing spline model can be fitted using l1−type

linear programming techniques. They also proposed to adapt the information

criterion of [37] for the choice of the smoothing parameter λ involved in problem

(3.4).

4. The sparsity function

In view of the asymptotic behaviour of the univariate, parametric and non-

parametric quantile regression estimators, it will be necessary to estimate the

inverse of the density function evaluated at the quantile of interest. In the re-

gression setup, this function plays an analogous role to the standard deviation

of the errors in least squares estimation of the mean regression model.

It is perfectly natural that the precision of quantile estimates should depend

on the inverse of the density because it reflects the density of observations near

the quantile of interest. If the data are very sparse at the quantile of interest,

this quantile will be difficult to estimate. On the other hand, when the sparsity

is low and the density is high, the quantile is more precisely estimated.

We are going to start studying the sparsity function associated with a uni-

variate variable, without considering covariates or a regression scenario. Let us

consider a random variable Y with associated distribution and density function

denoted by F
Y

and f
Y
, respectively. [40] named sparsity function to the

inverse of the density function evaluated at the quantile, that is given by

s(τ) =
1

f
Y
(F−1

Y
(τ))

.

Let us observe that the sparsity function is simply the derivative of the quantile

function, that is,
∂

∂t
F−1

Y
(t) =

1

f
Y
(F−1

Y
(t))

= s(t).

Given Y = {Y1, · · · , Yn} a random sample of the variable Y , [38] proposed

to estimate the sparsity by a simple difference quotient of the empirical quantile
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function, that is,

ŝ(t) =
F̂−1
n (t+ h)− F̂−1

n (t− h)

2h
=
Y[n(τ+h)] − Y[n(τ−h)]

2h
, (4.1)

where F̂−1
n is the empirical quantile function and h is a bandwidth that tends

to zero as the sample size tends to infinity, as well, Y[z] are order statistics.

Moreover, [n(τ± h)] are neighbouring orders to τ where [a] denotes the integer

part of a. Later, [4] showed that the value of the smoothing parameter that

minimizes the asymptotic mean squared error of (4.1) is of order n−1/5.

[5] proposed a bandwidth selector in order to compute the nonparametric

estimator of the sparsity. In addition, the author proved that the bandwidth

hB = 5

√
4.5s(τ)2

s(2)(τ)2
n−1/5

is optimal from the standpoint of minimizing the mean squared error, where

s(2)(τ) = ∂2

∂τ2 s(τ).

On the other hand, [19] examined the effect that the selection of the smooth-

ing parameter has on the empirical level of tests or confidence intervals coverage

based on Studentized quantiles. In this line, they showed that if we would like

to minimize this error, the bandwidth should be of smaller order than that re-

quired by squared error theory, such as [5]’s proposal. Bearing this idea in mind,

[19] proposed the following smoothing parameter:

hHS = z
2/3
α/2

3

√
1.5Sd,n

|Vh,n|
n−1/3,

where

Sd,n =
n

2d

(
Y[t+d] − Y[t−d]

)
,

Vh,n = 0.5

(
n

h

)3

(Y[r+2h] − 2Y[r+h] + 2Y[r−h] − Y[r−2h]),

t = [nτ] + 1, d = 0.5n4/5, r = [0.5n] + 1, h = 0.25n8/9 and zα/2 satisfies that

Φ(zα/2) = 1 − α/2 with α = 0.05 where Φ represents the standard Gaussian

distribution.

Now, we are going to move to a regression scenario. Let us consider (X1, Y1),

· · · , (Xn, Yn) a random sample of two variables (X,Y ) ∈ R
d+1 drawn from a

linear quantile regression model such as (2.1). In this situation, [22] proposed
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to estimate the density of the response variable Y given X = Xi as follows

f̂i =
2hHS

(θ̂
τ
+ − θ̂

τ
−)′Pi

,

where hHS represents a smoothing parameter associated with sparsity estimation

for Y (without regression) as that given by [19] and θ̂
τ
+ and θ̂

τ
− represent the

estimated coefficients of the linear model for neighbouring quantiles

τ
+ =

[nτ] + nhHS + 1

n
and τ

− =
[nτ]− nhHS + 1

n
.

In finite samples, [22] proposed the following modified estimator to combat

possible crossing quantiles estimations:

f̂i = max




0,

2hHS(
θ̂
τ
+ − θ̂

τ
−

)′

Pi − δ




,

where δ is a small positive constant included in order to avoid zero denominator.

[22]’s proposal is based on supposing a global linear model, and intended to

make inference about its coefficients. To this end the sparsity was estimated by
1

f̂i
using information of neighbouring quantiles. This procedure will properly

work only when the relation between X and Y could be fitted by a linear model

for different values of the τ.

The study of the sparsity function in a general regression context has not

been thoroughly analysed in the literature. [9] presented the first nonparametric

sparsity estimator for regression context. Since the sparsity results to be the

derivative of the quantile regression function, qτ(x), with respect to τ, they

propose an estimate of this kind

ŝτ,ds,hs
(x) =

q̂τ+ds,hs
(x)− q̂τ−ds,hs

(x)

2 ds
, (4.2)

where q̂τ+ds,hs
and q̂τ−ds,hs

are local linear quantile regression estimates at

the quantile orders (τ + ds) and (τ − ds), respectively, and hs denotes their

bandwidth.

Note that two pilot bandwidths, ds and hs, are needed to use estimator

(4.2). The bandwidth ds is placed in the Y -axis and plays a similar role to that

of the bandwidth dj in the rule of thumb. The bandwidth hs is necessary to

compute the nonparametric estimations of the regression functions. In order to

select these smoothing parameters, it can be use the plug-in technique which

consists of minimizing the dominant terms of the mean integrated squared error

(MISE) of the estimator given in (4.2). [9] presented the mean squared error of
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this sparsity estimator to obtain optimal bandwidths ds and hs.

5. Lack-of-fit tests for quantile regression

The lack-of-fit (or in opposite terms, goodness-of-fit) of a statistical model

describes how well it fits a set of observations. At the beginning of the twentieth

century, Pearson introduced the term goodness-of-fit which main goal is to mea-

sure the discrepancy between observed values and the values expected under a

specific model. Along this section we are going to present a brief introduction

to lack-of-fit tests for quantile regression models.

Let us consider a regression model associated with a quantile of interest

τ ∈ (0, 1),

Y = qτ(X) + ε,

where ε is the unknown model error of the model that should verify that P(ε ≤
0|X) = τ. In this new scenario, the main goal will be to carry out the following

lack-of-fit test:

{
H0 : qτ ∈ Qθ =

{
qτ(·, θ) : θ ∈ Θ ⊂ R

q
}

Null hypothesis

Ha : qτ /∈ Qθ Alternative hypothesis

that is equivalent to

H0 : E [I(Y ≤ qτ(X, θτ)) | X] = τ,

for some θτ ∈ Θ ⊂ R
q.

Then, given {(X1, Y1), · · · , (Xn, Yn)} a random sample of the variables (X,Y )

∈ R
d+1, we are going to review different goodness-of-fit tests in the quantile re-

gression context available from the literature.

Lack-of-fit tests based on smoothing ideas

Regarding the lack-of-fit tests for quantile regression based on smoothing

ideas, we should highlight the work developed by [46] that extends the well-

known test proposed by [45] to the quantile regression setup. In this case, the

test statistic is given by

T Z

n =
nhd/2

σ̂

1

n(n− 1)

∑

i 6=j

1

hd
K

(
Xi −Xj

h

)[
I
(
Yi ≤ qτ(Xi, θ̂τ)

)
− τ

]

×
[
I
(
Yj ≤ qτ(Xj , θ̂τ)

)
− τ

]
, (5.1)
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where K is the kernel function, h is the smoothing parameter and

σ̂2 = 2τ2(1− τ)2
1

n(n− 1)

∑

i 6=j

1

hd
K2

(
Xi −Xj

h

)
.

The statistic (5.1) converges to a Gaussian distribution. It should be noted

the well-known problem associated with the selection of the smoothing param-

eter, h.

Following the idea of [46], [13] proposed a lack-of-fit test for additive quantile

models based on smoothing ideas. In this context, the following test could be

raised:

H0 : qτ(X) = qτ(X
(1), · · · , X(d)) =

d∑

i=1

qτ,i

(
X(i)

)
+ c(τ),

where X = (X(1), · · · , X(d)) ∈ R
d denotes the explanatory variable.

Given a random sample of the variables (X,Y ) ∈ R
d+1, [13] proposed the

following test statistic:

TDGN

n =
1

n(n− 1)hd

n∑

i=1

n∑

j 6=i

K

(
Xi −Xj

h

)
R̂i R̂j ,

where K represents the kernel function, h is the smoothing parameter and

R̂i = I(Yi ≤ q̂−i
τ
(Xi))− τ,

where q̂−i
τ
(Xi) denotes an additive estimation of the quantile regression function

without considering the i-th observation. Despite having obtained the asymp-

totic convergence to a Gaussian distribution, it is more recommended to use a

bootstrap procedure in order to calibrate this test.

Lack-of-fit tests based on empirical regression processes

Extending the work developed by [39] to the quantile regression setting, [21]

proposed an omnibus lack-of-fit test for parametric quantile regression based on

a cumulative sum process of the gradient vector. That is, [21] based their test

on the process

RHZ

n = n−1/2
n∑

i=1

ψτ

(
Yi − qτ(Xi, θ̂τ)

)
q(1)
τ

(Xi, θ̂τ) I(Xi ≤ t), (5.2)
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where ψτ(r) = τI(r > 0) + (τ− 1)I(r < 0), q
(1)
τ (x, θ) = ∂

∂θ qτ(x, θ), and θ̂τ is an

estimator of θτ. The test statistic proposed by [21] is then defined as

THZ

n = largest eigenvalue of n−1
n∑

i=1

RHZ

n (Xi) R
HZ

n (Xi)
′.

[21] proved that the empirical process (5.2) converges to a Gaussian process
with mean 0 and covariance function

W (t1, t2) = τ(1− τ) E

(

q
(1)
τ

(X, θτ) q
(1)
τ

(X, θτ)
′

I(X ≤ min(t1, t2))− S(t1)S
−1

S(t2)

)

,

where

S = E

[
q(1)
τ

(X, θ̂τ) q
(1)
τ

(X, θ̂τ)
′
]
,

S(t) = E

[
q(1)
τ

(X, θ̂τ) q
(1)
τ

(X, θ̂τ)
′
I(X ≤ t)

]
.

Given that simulating the Gaussian process is not easy, [21] proposed a

multiplier bootstrap in order to calibrate their test.

Lack-of-fit tests design for avoiding the curse of dimensionality

It is well-known that a high (or even moderate) dimension of the covariate

may affect the performance of the specification tests. In this line, [42] used a He

and Zhu type test and defined some ranks over the covariate in order to test a

linear quantile regression model. He considered the following empirical process:

RW

n (t) = n−1/2
n∑

i=1

ψτ(ri)Pi I(Fk ≤ t),

where ri = Yi − θ̂′
τ
Pi represents the residuals and Fi = maxUij where Uij

represents the ranks of the n values of the j−th column of the design matrix,

represented by X
1 for each j = 2, · · · , d+1. Consequently, the test statistic will

be

TW

n = largest eigenvalue of

∫
RW

n (t)[RW

n (t)]′dFn,W (t),

where Fn,W is the empirical distribution function of the variables Fi.

The proposal of [42] has the virtue of simplicity but does not provide an

omnibus test, i.e., it is not consistent for all alternatives. To solve this problem

[10] presented an omnibus lack-of-fit test for quantile regression models, that

is suitable even with high-dimensional covariates. This test is based on the

cumulative sum of residuals with respect to unidimensional linear projections

1The design matrix is a n × (d + 1) matrix which j−th row is given by (1, Xj)
′ where

{X1, · · · , Xn} is a random sample of the explanatory variable X.
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of the covariates following the ideas of [15] for mean regression context. Their

test statistic is defined as

TCSG

n = largest eigenvalue of

∫

Π

RCSG

n (β, u)[RCSG

n (β, u)]′Fn,β(du)dβ,

where

RCSG

n (β, u) = n−1/2
n∑

i=1

ψτ (Yi − qτ(Xi, θτ)) q
(1)
τ

(Xi, θτ) I (β′Xi ≤ u) ,

Π = Sd × [−∞,+∞], Sd is the unit sphere on R
d, and Fn,β is the empirical

distribution of the projected covariates β′X1, . . . , β
′Xn.

On the other hand, [30] adapted the ideas of [46] to a multivariate sce-

nario. The main difference between both tests is that [30]’s work only involves

unidimensional kernel smoothing, so that the rate at which it detects local al-

ternatives does not depend on the dimension of covariate. This lack-of-fit test

is based on the following test statistic:

TMLP

n =
nh1/2

σ̂

1

n(n− 1)

∑

i 6=j

1

h
K

(
Wi −Wj

h

)
ψ(Zi − Zj)

×
[
I
(
Yi ≤ qτ(Xi, θ̂τ)

)
− τ

][
I
(
Yj ≤ qτ(Xj , θ̂τ)

)
− τ

]
,

where

σ̂2 =
2τ2(1− τ)2

n(n− 1)

∑

i 6=j

1

h
K

(
Wi −Wj

h

)2

ψ(Zi − Zj)
2,

K and ψ are bounded, even, integrable functions with (almost everywhere)

positive, and h represent the univariate smoothing parameter. Note that they

assumed that the covariate can be written as X = (W,Z) ∈ R
d where W is a

unidimensional continuous random variable while Z may include both continu-

ous and discrete variables.

We have mentioned some examples, but other specification tests for quan-

tile regression models can be found in the literature as well as [23] whose goal

was to test if the conditional median function is linear against a nonparametric

alternative with unknown smoothness; [41] considered an empirical likelihood

method to estimate the parameters of the quantile regression models and to

construct confidence regions; [33] considered two empirical likelihood-based es-

timation, inference, and specification testing methods for quantile regression

models; or [16] introduced a nonparametric test for the correct specification of

a linear conditional quantile function over a continuum of quantile levels.
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6. Conclusions

Although mean regression is still a traditional benchmark in regression stud-

ies, the quantile approach is receiving increasing attention, because it allows a

more complete description of the conditional distribution of the response given

the covariate, and it is more robust to deviations from error normality. That is,

while classical regression gives only information on the conditional expectation,

quantile regression extends the viewpoint on the whole conditional distribution

of the response variable.

Along this work an introduction to quantile regression methods is presented.

Parametric and nonparametric methods have been introduced and the main

advantages of these procedures were mentioned. Finally, some lack-of-fit tests

for quantile regression have been shown.
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