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Abstract. Recently there is growing interest in improving the level of knowledge of spatial and
spatio-temporal processes using spectral techniques. The properties of the estimator of the spectral
density, the periodogram, have been broadly studied under different asymptotic assumptions that im-
ply a valuable loss of information about the behavior of the underlying process that is often observed
on a grid of small size and with sparse data. In this scheme, neither increasing domain nor shrinking
asymptotics applies. The goal of this paper is to study the properties of the multidimensional peri-
odogram, under both cases of tapering and no tapering, and the assumption of finite dimensionality
of the regular lattice where the process is observed. We present some theoretical results regarding
the second order properties of the multidimensional periodogram. Furthermore, we show that, inde-
pendent of the tapering procedure, periodogram values present a dependence structure which is not
stationary and which particularly depends on weights which are proportional to the Bartlett kernel
or the chosen taper.
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1. Introduction. Characterizing space-time dependence is essential for a better
knowledge of random fields varying along space and time. Atmospheric pollutant concentra-
tions, precipitation fields, income distributions, and mortality fields are only a few examples
of attributes that characterize space-time uncertainty and need to be modeled through both
epistemic and ontologic approaches.

In the last few years, a growing number of authors have contributed to the study of
space-time dependence structures. A typical taxonomy can be identified by referring to
two main categories of contributions: the former is devoted to new parametric models of
spatial or space-time covariance functions, or equivalently new classes of spectral densities.
The latter regards a crucial problem, that of estimation of the spatio-temporal dependence
structure.

It is this latter aspect in which we are particularly interested in this paper. Estimation
of space-time dependence involves several open problems, as yet unsolved questions and
dilemmas of practical and theoretical nature. As far as the former are concerned, the duality
and perspective of the practical advantages of working in the spectral domain have been
emphasized in [13] and [10], where it is argued that the use of the Fast Fourier transform
algorithms for estimating spectral densities can be a good alternative if handling a huge
and sparse dataset. Spectral methods have been proposed and argued successfully in several
subfields of spatial and space-time statistics. In particular, it is worth citing [9], [10], and [7],
where spectral estimation techniques are implemented for both stationary and nonstationary
settings.
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As far as theoretical aspects are concerned, the study of spatial processes by working in
the spectral domain has been encouraged by a number of authors, on the base of rigorous
mathematical results. In his tour de force, Stein [16] emphasizes the importance of the Matérn
model for both spatial and spectral analysis, and justifies the effects of misspecification of
the spectral density, working in infilling asymptotics. On the other hand, [8] studies the
asymptotic properties of the periodogram via shrinking asymptotics, under the assumptions
of either stationarity or nonstationarity. Working on fixed-domain asymptotics, Stein [15]
showed that standard asymptotic results for the periodograms do not apply, and the use of
the raw data may yield misleading results, so that data tapers are needed. The periodogram
is an inconsistent estimator of the spectral density (its variance remains proportional to the
square of the spectral density at each frequency). This lack of consistency can be overcome
via smoothing techniques as in [14].

A number of proposals regarding estimation techniques and tests for spatial and space-
time independence are based on standard asymptotic theoretical results regarding the tapered
and untapered periodogram: that is, the periodogram is asymptotically unbiased and the
periodogram values are asymptotically independent. This allows the use of least squares
techniques for estimation or the implementation of several tests for independence of spatial
processes.

Nevertheless, in many applications (see [6] and [11]), although working on regular grids,
one only disposes of very few data. This key point motivated our research. In particular,
a natural question would be how to quantify the magnitude of the multidimensional peri-
odogram bias when working on regular and finite lattices. Another very important aspect
would be to assess the dependence between periodogram values when working on finite grids,
so as to establish if this dependence can be actually considered as negligible, as supported by
the asymptotic theory. Finally, it would be desirable to compare the finite properties of the
classic versus tapered periodogram. In this paper, we tackle these problems from a theoretical
perspective. To do this, we consider the multidimensional classic and tapered periodograms,
and multidimensional processes defined on a lattice, so that the temporal component can be
considered as an additional coordinate of a hypercube defined on Zd. This kind of setting
is justified by the fact that we are working with grids of finite dimensions, while for the
asymptotic theory one must be cautious as the spatial and the temporal component cannot
be considered with the same approach, as emphasized in [5]. This procedure allows us to
compare asymptotic with finite results, on the one hand, and finite results between them, on
the other hand.

Thus, the plan of the paper is the following. After necessary material about random
fields, their spectral representation, and multidimensional periodogram are shown in sec-
tion 2, in section 3 we focus on the theoretical results that allow us to reach some interesting
conclusions about the previously mentioned key points. Section 4 concludes the paper with
a critical discussion and opens new points of research for the future.

2. Background and setup. The present section is largely expository and includes
material about random fields, their spectral representation and multidimensional periodograms,
with and without taper.

For the remainder of the paper, we shall denote a real-valued weakly stationary random
field {Z(s), s ∈ Rd} with the condensed notation Z ∼ SRF(μ, C(·)), where μ is the mean of
the process, that is constant in the whole domain, and where C : Rd → R is the covariance
function defined as

C(u) = cov
(
Z(s), Z(s + u)

)
, u, s ∈ Rd,

and that depends only on the separation or lag vector u ∈ Rd.

Any weakly stationary process can be represented in the form of a Fourier–Stieltjes
integral (see [17]):

(1) Z(s) =

∫
Rd

eis′λ dY(λ),
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where Y is a random function with uncorrelated increments, and where s′λ denotes the
usual inner scalar product between s and λ. The celebrated Bochner’s theorem [1] estab-
lishes a one-to-one correspondence between the class of continuous covariance functions and
that of positive definite functions in Rd. Besides, the positive bounded symmetric measure
F : Rd → R+ defined by F (dλ) = E|Y(dλ)|2 provides the following representation for the
covariance of the process:

(2) C(u) =

∫
Rd

eiu′λ F (dλ).

Additionally, if F is absolutely continuous with respect to the Lebesgue measure, then repre-
sentation (2) can be rewritten in terms of the so-called spectral density f : Rd → R+, with
F (dλ) = f(λ) dλ. Therefore, the spectral density can be seen as the Fourier transform of the
covariance function:

f(λ) =
1

(2π)d

∫
Rd

C(u) e−iu′λ du, λ ∈ Πd = [−π, π]d.

Now, let us assume that Z is observed on a d-dimensional lattice of N =
∏d

j=1 nj points

D =
∏d

j=1{0, . . . , nj − 1} =
∏d

j=1 Dj . In this context, the classical nonparametric estimator
of the spectral density is the multidimensional periodogram, which is defined by

(3) IN (λ) =
1

(2π)dN

∣∣∣∣∑
s∈D

Z(s) e−is′λ
∣∣∣∣
2

.

The periodogram is usually evaluated at the set of Fourier frequencies λ = (λ1, . . . , λd),
where each component, for j = 1, . . . , d, is given by λj = 2πkjn

−1
j , with kj = 0,±1, . . . ,±mj ,

mj = [(nj − 1)/2].
It is important to stress that this setting allows us to treat equivalently spatial or space-

time random fields defined on a lattice, as, when working on grids of finite dimension, the
temporal component can be treated as a mere additional coordinate. We shall refer to this
setting for the subsequent theoretical results.

For what follows, it will be useful to recall that IN(λ) = d(λ) d(λ), where d(λ) denotes
the discrete Fourier transform (DFT) of the data, at a frequency λ ∈ Πd, namely,

d(λ) =
1

(2π)d/2
√

N

∑
s∈D

Z(s) e−is′λ,

and (·) denotes the complex conjugate.

Bias reduction via tapering. It should be stressed that, for a finite sample, the
periodogram presents biases due to leakage. This edge-effect bias can be reduced through the
use of data tapers [2] that are required to be measurable functions, bounded with bounded
support, L2-integrable, and Lipschitz continuous. Examples of one-dimensional data tapers
can be seen in [12]. Usually, multidimensional tapers are obtained as the tensor product of
one-dimensional tapers, that is,

h(s) =

d∏
j=1

hj(sj), s ∈ Rd, sj ∈ R,

where the one-dimensional tapers hj may be all equal or different. This is of practical interest
in the spatio-temporal context, where h is usually obtained as the tensor product of a spatial
taper, hS, and a temporal one, hT . Data tapers usually involve a maximum of 1 at the origin
and then decrease to 0 as ‖s‖ increases.

Consider r ∈ N and denote by Hr the series expansion

Hr(λ) =
∑
s∈D

hr(s) e−is′λ, λ ∈ Rd,
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which is well defined given that h is of bounded and compact support. By the Riemann–
Lebesgue theorem, Hr(λ) → 0 as ‖λ‖2 → ∞. Consider now the DFT of the tapered observed
values:

(4) dT (λ) =
1

(2π)d/2
√

H2(0)

∑
s∈D

h(s)Z(s) e−is′λ.

Then the multidimensional tapered periodogram is defined as

(5) IT
N(λ) = dT (λ) dT (λ) =

1

(2π)d H2(0)

∣∣∣∣∑
s∈D

h(s)Z(s) e−is′λ
∣∣∣∣
2

.

Besides, the DFT of the tapered values can be written as the convolution of the spectral
window H with the spectral random measure dY:

dT (λ) =

∫
Πd

H(λ − ω) dY(ω).

In practice, we wish dT (λ) not to be too different from dY(λ). Therefore, h should be
chosen so that H is a smooth weight function with most of its mass concentrated near the
origin. Some data tapers for spatial processes can be found in [2], and recently Fuentes [10]
proposed a rounded taper which gives more tapering to corner observations. This rounded
taper presents discontinuities when weighting the borders, which may result unnaturally.
Approximate large sample distributions for dT (λ) (and d(λ) as a particular case) have been
obtained in [3].

3. Main results. This section is devoted to some theoretical results concerning the
expectation and the covariance of the multidimensional periodogram.

Proposition 1. Let Z ∼ SRF (μ, C(·)) be observed on a regular grid D =
∏d

j=1 Dj

of size N =
∏d

j=1 nj. Let IN be the multidimensional periodogram with no taper as in (3).
Then

EIN (λ) =
1

(2π)dN

∫
Πd

d∏
j=1

(
sin(njλj)/2

sin λj/2

)2

f(ω) dω +
1

(2π)dN

d∏
j=1

(
sin(njλj)/2

sin λj/2

)2

μ2.

Proof. This statement is proved by just recalling that

E
(
d(λ) d(λ)

)
= cov

(
d(λ), d(λ)

)
+ E

(
d(λ)

)
Ed(λ)

and noting that the Bartlett kernel can be obtained from

∑
u∈U

d∏
j=1

(
1 − |uj |

nj

)
e−iu′λ =

1

N

d∏
j=1

(
sin(njλj)/2

sin λj/2

)2

,

where the index set U is given by U =
∏d

j=1 Uj , Uj = {1 − nj , . . . , nj − 1}.
Proposition 2. Let Z ∼ SRF (μ, C(·)) be observed on a regular grid D =

∏d
j=1 Dj of

size N =
∏d

j=1 nj. Let IT
N be the tapered multidimensional periodogram as in (5). Assume

that
∑

u∈U |C(u)| < ∞, with U =
∏d

j=1 Uj , where Uj = {1 − nj , . . . , nj − 1}. Then

EIT
N(λ) =

1

(2π)dH2(0)

∫
Πd

∣∣H(λ − ω)
∣∣2 f(ω) dω +

|H(λ)|2 μ2

(2π)dH2(0)
.

Proof. Considering the expression of the multidimensional tapered periodogram in terms
of the DFT of the tapered data (5), we have that

EIT
N(λ) =

1

(2π)dH2(0)

(
cov

(
dT (λ), dT (λ)

)
+ |EdT (λ)|2

)
.
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For the addend concerning the covariance operator, we obtain

1

(2π)dH2(0)
cov

(
dT (λ), dT (λ)

)
=

1

(2π)dH2(0)

∑
s∈D

∑
x∈D

h(s)h(x) e−i(s−x)′λC(s − x)

=
1

(2π)dH2(0)

∫
Πd

∑
s∈D

∑
x∈D

h(s) h(x) e−i(s−x)′(λ−ω)f(ω) dω

=
1

(2π)dH2(0)

∫
Πd

(∑
s∈D

h(s) e−is′(λ−ω)
∑
x∈D

h(x) eix′(λ−ω)

)
f(ω) dω

=
1

(2π)dH2(0)

∫
Πd

∣∣H(λ − ω)
∣∣2f(ω) dω.

For the second addend, it is immediate to see that it can be written as

1

(2π)dH2(0)

∣∣H(λ)
∣∣2μ2

which completes the proof.
Before introducing the results on the dependence structure of the multidimensional

periodogram, we will give some brief notes on cumulants, which provide a tool for proving
the next statements. More information on this topic can be found in [4], and a complete
description of cumulants for spatial series is given in [2].

In the same way that the generating function of a random variable provides its mo-
ments, the logarithm of the generating function generates a sequence of numbers called cu-
mulants. Cumulants are symmetric and multilinear in their arguments [4], and if any subset
of {X1, . . . , Xr} is statistically independent of the remaining set, then cum(X1, . . . , Xr) = 0.
From this property, cumulants may be used to measure the statistical dependence of vari-
ables.

For an r-variate random variable (X1, . . . , Xr) with E|Xj |r � ∞, j = 1, . . . , r (Xj real
or complex), the rth order joint cumulant cum(X1, . . . , Xr) of (X1, . . . , Xr) is defined as

cum(X1, . . . , Xr) =
∑

(−1)p−1(p − 1)!E

( ∏
j∈ν1

Xj

)
· · ·E

( ∏
j∈νp

Xj

)
,

where the sum and products extend over all partitions (ν1, . . . , νp), p = 1, . . . , r of (1, . . . , r).
Note that the cumulant of a single variable is its expectation and the covariance between X
and Y is the joint cumulant of (X, Y ). In general, for a stationary random process Z such
that its span of dependence satisfies∑

u∈Rd

∣∣cum(u1, . . . , uk−1)
∣∣ < ∞ for k = 2, 3, . . . ,

the cumulant spectra of order k is defined by

fk(λ1, . . . , λk−1) =
1

(2π)d(k−1)

∑
u∈Rd

cum(u1, . . . , uk−1) exp

{
− i

k−1∑
l=1

u′
lλl

}
,

where λl ∈ Rd.
In order to show the subsequent results, we need the following assumption.
Assumption (A1). Given a stationary process Z, there is an l � 0 such that∑

u∈Rd

(
1 + |u|l) ∣∣C(u)

∣∣ < ∞.

This assumption implies that the spectral density has bounded and uniformly continuous
derivatives of order less than or equal to l.
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Proposition 3. Let Z ∼ SRF (0, C(·)) be observed on a regular grid D =
∏d

j=1 Dj

of size N =
∏d

j=1 nj. Let IN be the multidimensional periodogram with no taper as in (3).
Suppose that the covariance C satisfies Assumption (A1). Then, the covariance structure
associated with the periodogram IN is given by

cov
(
IN(λ), IN(ω)

)
=

(
d∏

j=1

(
sin(nj(λj + ωj))/2

nj sin(λj + ωj)/2

)2

+
d∏

j=1

(
sin(nj(λj − ωj))/2

nj sin(λj − ωj)/2

)2
)

f2(λ) + O(N−1).

Proof. Consider the following cumulants-based equality:

cov
(
IN(λ), IN(ω)

)
= cum

(
d(λ) d(λ), d(ω) d(ω)

)
,

and, for simplicity, denote

Δ(λ) =
∑
s∈D

e−is′λ.

Since the cumulant of product variables can be expressed in terms of the sum of cumulants,
we have that

cov (IN(λ), IN(ω)) =
(
(2π)d)3 f4(λ,−λ, ω) + O(1)

+
(
Δ(λ) f1 + O(1)

)(
(2π)dΔ(−λ) f3(−λ, ω) + O(1)

)
+three similar terms

+
(
Δ(λ) f1 + O(1)

)(
Δ(ω) f1 + O(1)

)(
(2π)dΔ(−λ − ω) f2(−λ) + O(1)

)
+three similar terms

+
(
(2π)dΔ(λ + ω) f2(λ) + O(1)

)(
(2π)dΔ(−λ − ω) f2(−λ) + O(1)

)
+
(
(2π)dΔ(λ − ω) f2(λ) + O(1)

)(
(2π)dΔ(−λ + ω) f2(−λ) + O(1)

)
.

From the last two addends in the expression above, we obtain

(2π)2d
∣∣Δ(λ + ω)

∣∣2f2
2 (λ) + (2π)2d

∣∣Δ(λ − ω)
∣∣2 f2

2 (λ),

which is equal to

(
d∏

j=1

(
sin(nj(λj + ωj))/2

sin(λj + ωj)/2

)2

+
d∏

j=1

(
sin(nj(λj − ωj))/2

sin(λj − ωj)/2

)2
)

f2
2 (λ),

the leading term in (6). The O(N−1) comes from some computations on the first addend,
writing f4 in terms of cumulants. Besides, assuming that f1 = EZ(s) = 0, the other terms
in the sum vanish. Thus, the proof is completed.

Proposition 4. Let Z ∼ SRF (0, C(·)) be observed on a regular grid D =
∏d

j=1 Dj of

size N =
∏d

j=1 nj . Let IT
N be the tapered multidimensional periodogram as in (5). Suppose

that the covariance C satisfies Assumption (A1). Then the covariance structure associated
with the periodogram IT

N is given by

cov
(
IT

N(λ), IT
N(ω)

)
=
(|H2(λ − ω)|2 + |H2(λ + ω)|2) f2(λ)

|H2(0)|−2
+ O(N−1).
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Proof. For the complete expression of the tapered multidimensional periodogram, we must
consider the fractional factors, where H2(0) is involved. Thus,

cum
(
dT (λ), dT (λ)

)
=
(
(2π)d)3H4(0) f4(λ,−λ, ω) + O(1)

+
(
(2π)dH2(λ + ω) f2(λ) + O(1)

)(
(2π)dH2(−λ − ω) + O(1)

)
+
(
(2π)dH2(λ − ω) f2(λ) + O(1)

)(
(2π)dH2(−λ + ω) + O(1)

)
.

The expression of the covariance is obtained following arguments similar to those in the proof
of Proposition 3.

4. Conclusions and discussion. The goal of this work was to study the properties
of the spatial and spatio-temporal periodogram (in both cases of tapering and no tapering)
under the assumption of finite dimensionality of the regular grid where the process is ob-
served. The work was motivated by the fact that, even if asymptotic assumptions allow one
to work with periodograms meeting some nice features (independence, unbiasedness), on the
other hand important information is lost about the behavior of the process.

The obtained results highlight several important aspects involving the bias of the mul-
tidimensional periodogram and the dependence between the periodogram values. For both
cases, we argue that they are nonnegligible, despite what is shown by the asymptotic theory,
and thus one must be cautious when implementing tests for independence or weighted least
squares techniques if working on grids of small dimensions or with sparse data.

Another important aspect is that of separability in spatio-temporal processes. We
showed in Propositions 3 and 4 that the covariance depends on the factorization of the
weights, which are of the same type in the case of no tapering. If we consider the peri-
odogram as a process to be studied, as we did in this work, we obtain that the weights of
the squared spectral density always work in a separable way (in the sense of [5]), so we are
not able to see whether the covariance of the periodogram is separable or not. It is gen-
erally difficult to give a dependence characterization of the periodogram values in terms of
separability.
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