
A Generalized Model to Estimate the Statistical Power in
Mitochondrial Disease Studies Involving 26k Tables
Jacobo Pardo-Seco1., Jorge Amigo1, Wenceslao González-Manteiga2, Antonio Salas1*.
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Abstract

Background: Mitochondrial DNA (mtDNA) variation (i.e. haplogroups) has been analyzed in regards to a number of
multifactorial diseases. The statistical power of a case-control study determines the a priori probability to reject the null
hypothesis of homogeneity between cases and controls.

Methods/Principal Findings: We critically review previous approaches to the estimation of the statistical power based on
the restricted scenario where the number of cases equals the number of controls, and propose a methodology that
broadens procedures to more general situations. We developed statistical procedures that consider different disease
scenarios, variable sample sizes in cases and controls, and variable number of haplogroups and effect sizes. The results
indicate that the statistical power of a particular study can improve substantially by increasing the number of controls with
respect to cases. In the opposite direction, the power decreases substantially when testing a growing number of
haplogroups. We developed mitPower (http://bioinformatics.cesga.es/mitpower/), a web-based interface that implements
the new statistical procedures and allows for the computation of the a priori statistical power in variable scenarios of case-
control study designs, or e.g. the number of controls needed to reach fixed effect sizes.

Conclusions/Significance: The present study provides with statistical procedures for the computation of statistical power in
common as well as complex case-control study designs involving 26k tables, with special application (but not exclusive) to
mtDNA studies. In order to reach a wide range of researchers, we also provide a friendly web-based tool – mitPower – that
can be used in both retrospective and prospective case-control disease studies.
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Introduction

The mitochondrion produces most of the ATP in the cell, an

energy source on which almost all physicochemical processes

depend. Each cell contains dozens or hundreds of mtDNA

genomes that are inherited as a single haplotypic block from the

mother to the offspring. Germ-line mutations accumulate on top

of existing haplotypes, and these haplotypes aggregate in human

populations according to their demographic histories. Due to the

particularities of the mtDNA molecule (i.e. matrilineal inheritance

and lack of recombination [1]), it is straightforward to reconstruct

phylogenetic relationships between human haplotypes [2–4].

Phylogenetically related haplotypes in the population are com-

monly grouped into clusters or haplogroups [5]. Thus, hap-

logroups represent branches of the mtDNA phylogeny, and the set

of diagnostic variants defining these clades are popularly known as

the sequence motif [6,7]. Screening for these variants in a given

mtDNA molecule can provide sufficient information to allocate a

particular mtDNA genome into a given haplogroup [8–10].

In the last few years, a huge number of studies have been

conducted addressing the presumable association of mtDNA

haplogroups with different complex diseases, including cancer

[11,12], Alzheimer [13,14], Parkinson [15–17], schizophrenia

[18–21], infectious diseases [22,23], diabetes [24], LHON [25],

etc. Most of these disease studies are population-based, that

means, the mtDNA variability is compared between cohorts of

cases and representative healthy control (case-control studies),

where the statistically significant over-representation of a given

variant in cases regarding controls might point to a biological

association of this variant with the disease.

Statistical procedures are important in order to understand the

presumable relationship between mtDNA haplogroups and

diseases. Estimating a priori statistical power is fundamental in

case-control association studies given that this is the way to

evaluate to what extent a positive finding is likely to be not at

random. However, case-control association studies targeting the

mtDNA variation [22] rarely compute power mainly due to the

lack of the statistical procedures that are necessarily different to
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those employed using autosomal DNA markers. To the best of our

knowledge, only Samuels et al. [26] investigated the issue of

statistical power in regards to cases-control mtDNA studies

involving 26k. These authors used a simulation-based permuta-

tion test (Monte-Carlo) in order to estimate power calculations for

prospective case-control studies. According to these authors, very

large cohorts are needed to reliably detect and association between

mtDNA haplogroups and complex diseases. This study however

only deals with the restricted scenario where the number of cases

equals the number of controls. The particular biological applica-

tion of Sánchez et al. [27] on a mtDNA case has to do specifically

with 263 tables, comparing a RFLP polymorphism (binary) and

the three genotypes derived from a biallelic albumin marker.

Several software packages and statistical procedures were

designed for the calculation of statistical power and sample size.

Most of the procedures developed to date can only deal with 262

tables (the great majority) or 263 tables [27] (Table S1). Thus,

most of the software packages have been designed for the

estimation of power or/and sample size in the most common

scenario involving allele frequencies deriving from autosomal

binary markers (SNPs), that is, involving allele or genotype

association tests. Only two software packages, namely G*Power 3

[28] and Pass 12 [29], are able to treat tables r6k; however, these

two packages only deal with scenarios where the number of cases

equals number of controls. Finally, osDesign [30] is based on

logistic regression, and although it can deal with r6k tables it does

not allow estimating samples sizes.

In the present study we consider more general case-control

disease scenarios involving any number of cases and controls and

26k tables. For instance, it is a common situation that only a

limited number of patients can be recruited in a particular study;

however, an increase in the number of controls could contribute to

reach a reasonable statistical power. The model elaborated in the

present study is based on simulations (Monte Carlo method) as a

way to estimate the statistical power in case-control studies where

there is interest in investigating the presumable relationship

between a certain disease and a number of mtDNA haplogroups

(or haplotypes or mtDNA SNPs [mtSNPs]). We consider the

frequency of the risky allele or haplogroup in controls (p0) and in

cases (p1), and the difference between these two parameters is

proportionally distributed to the frequencies of the remaining

allele or haplogroup categories in cases. In addition, a web-tool

named mitPower has been also developed to implement all the

statistical procedures developed in the present study.

Methods

Data simulation
We first build 26NH (in general, 26k) tables (10,000 simula-

tions), where NH denotes the number of haplogroups considered

(but could also be any number of haplotypes or mtSNPs). Two

multinomial samples are used to build the contingency tables,

taking as frequencies the estimated frequencies, and as size, the

number of controls and cases of our study. In the simulated tables

the row variable represents the status of case or control, while the

columns represent the allele variables or haplogroups into which

individuals are sorted. For the sake of simplicity, NH was set up to

11 (unless otherwise stated) but the method and mitPower has

been designed to accept any number of haplogroups. As done in

Samuels et al. [26], the following 11 haplogroup frequencies were

considered as example: H (41%), I (2%), J (11%), K (8%), M (1%),

T (13%), U (15%), V (13%), W (2%), X (2%) and a residual

haplogroup (2%).

The power values obtained using MitPower have been validated

with other tools (Table S1) in comparable scenarios that consider

262 tables and equal numbers of cases and controls. MitPower

was additionally validated for 263 tables with the procedure

shown by Sánchez et al. [27].

Statistical analysis
First, the computation of the probabilities of 262 contingency

tables is the best option to test the homogeneity of control and case

sample populations; however, the computational requirements

increase with the dimension of the contingency tables. A way to

overcome this problem is to implement a Fisher’s exact test that

estimates the probability of a contingency table using a Monte

Carlo simulation approach. On the other hand, the Chi-squared

statistic is computationally feasible for 26k tables being k any

entire positive number. Both tests yield very similar results

(Figure 1 and Figure S1) and both are implemented in Mit-

Power. From here onwards, we have used the Chi-square statistic,

which compares the values obtained in our contingency tables

against the values expected under the null hypothesis of

homogeneity.

First, we generate a number of tables 26NH under a given

hypothesis. A random number between 0 and 1 is generated using

the R function runif, and this number is used as the seed for

simulations. Power value estimators are obtained as the percentage

of simulated tables with P-value below a fixed significance level.

In order to obtain the P-value for each simulated table, the

distribution of our statistic has to be known. This distribution is

approached here using two alternative procedures: the asymptotic

and the permutation approach. The former approach is based on

the asymptotic distribution of the Chi-square statistics. Note that

some authors argued [31] that an increase of the false-positive rate

occurs when the Cochran’s rule is not verified; so the asymptotic

approximation should be considered acceptable when the

Cochran’s rule is verified [31]; that means that a contingency

table cannot contain expected values below one, and that no more

than 20% of the expected value can be below five. The

permutation method aims to overcome this problem. First, a

large number of permuted tables of our initial data (contingency

tables) are generated, with the only restriction that total sums by

rows and columns have to remain constant. For each of these

permutations, the Chi-square statistic is computed, and the P-

value is obtained as the proportion of permutations with a Chi-

square statistics higher than the statistics in the original data set

[32,33]. There are several ways to obtained permuted tables

[32,34,35], and we chosen the method provided by the function

chisq.test [36].

Theoretically, the asymptotic and the permutation approaches

should have similar values as the sample size increases [37]. Some

experiments have been done in this direction (Table 1, and see

text below) in order to corroborate this expectation. Along the

simulation experiments carried out in the present manuscript, the

permutation method was preferred given that it generally performs

better than the asymptotic one (see below).

All the computations were carried out in R (http://www.r-

project.org/), and using the functions chisq.test, fisher.test, and pchisq

of package stats.

mitPower: a web interface to estimate statistical power in
26k tables

mitPower is a web-based tool (http://bioinformatics.cesga.es/

mitpower/) that allows estimating the statistical power in case-

control association disease studies. Several other utilities are

available in mitPower such as the estimation of: (i) the a posteriori

Statistical Power in mtDNA Case-Control Studies
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statistical power, (ii) the sample size needed in order to reach a

given statistical power, and (iii) the minimum deviation from the

null hypothesis (of no association) detectable under a given

statistical power (expressed as OR and haplogroup frequency in

cases).

The software mitPower allows using two calibration methods:

the asymptotic and the permutation procedure. The permutation

procedure can be computationally demanding (see below) so the

asymptotic procedure might be more convenient for complex

scenarios.

Figure 1. Representation of power values for three haplogroups (H, J. and I) as a function of the number of cases and using the Chi-
square test (significance level a = 0.05). Colors indicate different deviations from the null hypothesis; thus, black represents a frequency in cases
100% higher than in controls, red represents an increment of 50%, and green an increment of 25% (with the difference distributed proportionally
between the remaining non-risky haplogroups). The different lines indicate different case-control odds. The continuous line denotes an odd control-
case of 1:1, the dotted line of 2:1, and the pointed line of 3:1. Frequencies in controls for each haplogroup are indicated above each plot. Note that
the results can be directly comparable with Samuels et al. [26] (see their Figure 1) when number of cases equals number of controls.
doi:10.1371/journal.pone.0073567.g001

Table 1. Estimates of statistical power (%) under the null hypothesis using the asymptotic distribution versus the permutation
procedure, and elapsed computational times (in seconds) under different simulation scenarios.

Numberof ST
Number
of cases

Asymptotic
distribution ElapsedTime Permutations(1,000) ElapsedTime Permutations(10,000)

Elapsed
Time

1,000 100 3.54 0.11 5.37 1.95 5.25 17.18

200 4.29 0.09 5.21 2.50 5.42 22.07

300 4.91 0.11 5.72 2.76 5.72 24.02

400 3.80 0.10 4.00 2.90 4.00 25.59

500 3.60 0.11 4.10 3.03 3.80 26.85

600 4.50 0.10 5.20 3.19 4.80 28.10

700 5.60 0.11 5.80 3.28 5.90 29.24

800 5.20 0.09 5.50 3.41 5.40 30.31

900 5.10 0.11 5.30 3.48 5.10 31.13

1000 4.10 0.10 4.20 3.77 4.10 32.21

10,000 100 3.25 0.93 4.92 20.28 4.78 175.74

200 4.00 1.13 4.78 33.21 4.81 280.80

300 4.72 1.00 5.20 28.14 5.10 273.57

400 4.72 1.32 4.68 30.00 4.74 290.17

500 4.75 1.26 5.08 49.77 5.06 314.36

600 4.73 1.03 4.98 32.15 4.93 312.73

700 5.04 1.33 5.26 33.69 5.30 334.70

800 5.27 1.23 5.57 50.14 5.41 330.14

900 4.95 1.34 5.04 35.72 5.18 349.69

1000 5.07 1.22 5.35 53.64 5.19 348.52

Estimates were computed for 1,000 and 10,000 simulated tables (ST), number of cases equal to number of controls, and level of significance a= 0.05 (therefore,
estimated power values should be close to 5%). Time estimates were obtained using an IntelH CoreTM I5 3.1 GHz. These values were averaged over ten simulations each.
doi:10.1371/journal.pone.0073567.t001
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The mitPower web interface is written in PHP, allowing users to

enter their inputs through an HTML form. All the mitPower

analyses are executed using R scripts (see above), which are called

from the interface through Rscript and run at the web server. Their

output is ultimately formatted for web display again by the PHP

interface. Results links are kept for 24 hours in the server.

The underlying R scripts in mitPower run on a web server

hosted by the Supercomputing Center of Galicia (CESGA; http://

www.cesga.es) located in Santiago de Compostela (Galicia, Spain).

Results and Discussion

Two procedures were followed to calibrate the distribution of

our statistic: the asymptotic and the permutation method. In order

to test which of the two approaches performs better, a simulation

experiment has been performed considering different sample sizes,

number of simulations, and permutations. The experiments

indicate that the permutation method performs better than the

asymptotic one given that power estimates approach closer to the

significant value under the null hypothesis for low sample sizes.

However, both approaches yield good estimates when considering

large sample sizes (Table 1). This is in agreement with theoretical

expectations given that for large samples, their statistical distribu-

tion should be equivalent, as the permutation distribution should

converge to the tabulated distribution [37].

The results indicate that (i) the permutation method tends to fit

better to the significance level than the asymptotic approach when

the null hypothesis is true (specially for low sample sizes), and (ii)

computational requirements using permutation can be an issue

when considering a large number of iterations (large sample sizes);

in such situations, the asymptotic calibration method might be

more convenient (Table 1).

As done in Samuels et al., we would assume that haplogroup

mtDNA frequencies in controls are known (note that there exist

hundred of human population studies carried out to a local,

regional or continental scale where these frequencies are available,

at least for the most common haplogroups). We then simulated

increases in the frequency of a risky haplogroup in cases, with the

differences distributed proportionally between the remaining

haplogroups (therefore, assuming there is no a priori assumption

of an association with any of the remaining haplogroups

considered) [26].

In agreement with Samuels et al.[26], we observed that power

strongly depends on sample sizes, haplogroup population frequen-

cies, and the deviation from the null hypothesis when using equal

numbers of cases and controls (see solid lines in Figure 1). We

next evaluate the situation where the number of cases differs from

the number of controls. As shown in Figure 1, statistical power

strongly depends on the case:control ratio when the other

parameters are fixed, but this dependence is not as simple. As

expected, power can increase very substantially as more controls

exist relative to the number of cases. For instance, the statistical

power to detect an association of haplogroup J increases from 60%

to 80% when doubling the number of controls respect to cases in

the example provided in Figure 1.

Samuels et al. [1] introduced the Nscaled parameter for the estimation

of the power. This parameter considers the difference between

haplogroup frequency for equal numbers of controls and cases:

Nscaled~
N(p1{p0)2

p0(1{p0)zp1(1{p1)
ð1Þ

,

being p0 the frequency of the risky haplogroup in controls, p1 the

frequency of the risky haplogroup in cases, and N the number of

cases and controls (the total sample size is 2N).

We further consider the more general situation where the

number of cases (Nca) can differ from the number of controls (Nco),

Nsc~
(p1{p0)2

p0(1{p0)

Nco
z

p1(1{p1)

Nca

ð2Þ

.

Nscaled and Nsc measures the squared standardized difference

between frequencies in cases and in controls for the risky

haplogroup. For 262 tables and a sample size large enough, the

Nscaled parameter follows a chi-square distribution with one degree

of freedom due to the asymptotic normality of the standardized

difference between frequencies [38].

As shown in Figure 2, there is a clear relationship between the

parameter Nsc and the power values. These values follow the

theoretical curve obtained for 262 tables and equal numbers of

cases and controls using the arcsin transformation [39]:

Zb~Z
1{a=2

{
ffiffiffiffiffiffiffi
2N
p

( arcsin
ffiffiffiffiffi
p0
p

{ arcsin
ffiffiffiffiffi
p1
p

) ð3Þ

Where p0 in the frequency in controls, p1is the frequency in

controls, N is the sample size for each arm and Zb and Z
1{a=2

are

normal quantile for b and 1{a=2.Simulations also indicate that

the statistical power decreases as more haplotypes are tested

(Figure 3). Samuels et al. introduced a parameter, NH (number of

different haplogroups), that raised to the power of 0.37 allows to fit

the statistical power to a single theoretical curve. According to

Samuels et al. Nscaled can be redefined as a function of the number

of haplogroups analyzed:

Nscaled~
N(p1{p0)2

½p0(1{p0)zp1(1{p1)�N0:37
H

ð4Þ

.

Note that the value 0.37 seems to have been obtained

empirically by Samuels et al, (no specific formulae or indications

were given in this regard). In the analysis shown in Figure 4 we

aimed to reproduce their findings. The simulations corroborate

the fact that 0.37 is the value that allows to better fit the data to the

theoretical curve for values of statistical power above 50%. Below

50% an exponent of 0.5 would perform better although it can

assume that values of statistical power below 50% might be not

relevant in association studies. Therefore, we observed that NH

raised to the power of 0.37 allows fitting the statistical power to

those scenarios where the number of cases differs from the number

of controls (Figure 3).

Finally, Nsc allows to relate all the parameters involved in the

computation of the statistical power:

Nsc~
(p1{p0)2

p0(1{p0)

Nco
z

p1(1{p1)

Nca

h i
N0:37

H

ð5Þ

Samuels et al. (see A1 in their Appendix A) propose to use Nscaled

to estimate directly the statistical power and to determine the

Statistical Power in mtDNA Case-Control Studies
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minimum number of controls and disease cases (NCmin) required for

a specific level of power (their formula (2)). However, this formula

applies when number of cases equals the number of controls. The

simulation method aims to overcome the limitation of this formula

allowing for different sample sizes in cases and controls.

We then adjusted the parameter NCmin for the more general

scenario involving unequal numbers of cases and controls. Two

Figure 2. On the left side are the power values (a = 0.05) as a function of the number of cases for different haplogroups (the circles
refer to haplogroup H, triangles to haplogroup J and crosses to haplogroup I). The intensity of the symbols indicate different odds ratio
control-case: the thinner symbols indicate odds 1:1, the medium symbols odds 2:1, while the bolded symbols odds 3:1. Colors indicate different
deviations from the null hypothesis; black: the frequency of the risky allele is 100% higher in cases than in controls, red: 50%; and green 25%. The
graph indicates that there is not a relationship between the number of cases and the statistical power value. On the right side are the power values as
a function of the statistic Nsc; in red is the theoretical curve for the statistical power for 262 tables when the number of controls is equal to the
number of cases.
doi:10.1371/journal.pone.0073567.g002

Figure 3. The left side shows power values (a = 0.05) as a function of Nsc without correction of number of haplogroups (NH) for
different number of haplogroups and when the number of cases equals the number of controls. The right side shows power corrected
according to NH, and the nonparametric estimated regression curve. Colored circles denote different number of haplogroups; black: 4 haplogroups;
red: 8 haplogroups; green: 12 haplogroups; dark blue: 16; and light blue: 20. Haplogroup frequencies were built using a vector of probabilities where
the risk allele takes values 0.30, 0.15 or 0.05 (other values led to the same results; data not shown). The risky haplogroup take relative frequency
differences in cases with respect to control of 100%, 50% and 25%. The number of cases takes values of 100, 250, 500, 750 and 1000, and control-case
odds of 1, 2 and 3. We noted that other values do not change the distribution. The red line indicates the theoretical curve for 262 tables and equal
numbers of cases and controls, while the black line is the non-parametric estimator of regression between Nsc parameter and the statistical power.
doi:10.1371/journal.pone.0073567.g003
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options are possible: (i) estimation of the sample size given a

control-case ratio; or (ii) estimation of the minimum number of

controls (cases) when the number of cases (controls) is fixed.

In the first situation, if N denotes the number of cases, a the

control-case ratio, and hN the number of controls, the minimum

number of cases needed to reach a power b with a significance

level a (Nab) can be estimated from (5) as follows:

Nab~
N0:37

H Nab
sc

p0(1{p0)

h zp1(1{p1)
� �

(p0{p1)2

2
4

3
5z1 ð6Þ

where Nab
sc denotes the Nsc value providing a desired power b and

a significance level a, while [?] denotes the integer part function.

The number of controls can be estimated as hNab. Note that a

value of h~1would reproduce the particular scenario considered

by Samuels et al. [26].

In the second situation, the minimum number of controls

(Nab
comin

) or the minimum number of cases (Nab
camin

) given a

significance level a and a powerb, can also be estimated when

the number of cases or the number of controls is fixed,

respectively:

Nab
comin

~
p0(1{p0)

(p1{p0)2

N
ab
sc N0:37

H

{
p1(1{p1)

Nca

2
664

3
775z1 if Ncaw

p1(1{p1)Nab
sc N0:37

H

(p1{p0)2
ð7Þ

Nab
camin

~
p1(1{p1)

(p1{p0)2

N
ab
sc N0:37

H

{
p0(1{p0)

Nco

2
664

3
775z1 if Ncow

po(1{p0)Nab
sc N0:37

H

(p1{p0)2
ð8Þ

where Nab
sc is the value providing the power desired a for a

significance level b, and [?] denotes the integer part function. This

allows estimating the number of controls (number of cases) needed

to reach a required power given a number of cases (number of

controls). Note that statistical power is limited by the restrictions in

equations (7) and (8); this is the reason of why power becomes

stationary when the number of controls increases in regards to the

number of cases (Figure 1).

It is also worthwhile to estimate the minimum deviation of the

null hypothesis that can be detected for a power value b and a

Figure 4. The simulations show that the parameter NH raised to the power of 0.37 is the one that empirically allows a better fit of
the data to the theoretical curve of statistical power even in scenarios where the number of cases differs from the number of
controls. See legend of Figure 3 for more information on the simulation.
doi:10.1371/journal.pone.0073567.g004
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significance level a (D
ab
min), assuming we know haplogroup

frequencies in controls and considering a given number of cases

and controls. We can express p1~pozD
ab
minp0 being D

ab
minw0 the

deviation of null hypothesis. Note that it must verify 0vp1v1. If

we calculate from (1), it results (for a risky haplogroup):

D
ab
min~

Nab
sc N0:37

H

(1{2p0)

Nca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{2p0

Nca
N

ab
sc N0:37

H

� �2

z4N
ab
sc N0:37

H (1{p0)po
1

Nca
z 1

Nco

� �
1z

N
ab
sc

Nca

� �s

2p0 1z
N

ab
sc N0:37

H
Nca

� � ð9Þ

This difference can be expressed in terms of odds ratio. Thus

If OR~

p1=(1{p1)
po=(1{p0)

then,

ORmin~1z
D

ab
min

1{(1zD
ab
min)p0

ð10Þ

Where ORmin denotes the minimum OR that can be detected for a

power value b and a significance level a.

The applications above require knowledge of the Nab
sc value

given a significance level a and a power b. This parameter can be

obtained by way of simulations and nonparametric regression

(Figure 3 [right] shows the scenario wherea~0:05). Note that

nonparametric regression seems to perform well for power values

above 60%. The package sm [40] implements local linear

estimation, window-selector cross validation and Gaussian kernel,

that allows to obtain Nsc values for different significance levels a
and power values. These values can be used in equations (6)–(10)

in order to estimate the desired parameters (as done in Table 2).

The same simulation methods proposed to compute a priori

statistical power can be applied for the estimation of the a posteriori

power. Note however, that we treat a posteriori power in a different

context as interpreted by others [41,42]. Our procedure involves

generating new data (tables) using the sample proportions and

sample sizes obtained from a particular study. Therefore, the null

hypothesis is tested by simulating new contingency tables. The

procedures are analogs to the ones used to compute the a priori

power.

Computation of the statistical power is essential to anticipate if

the positive findings obtained in case-control disease studies are

reliable. The present study has been motivated by the fact that the

only available procedures to date to compute statistical power in

mtDNA association studies [26] only allows to deal with scenarios

involving 262 tables (or 263 tables), or if 26k tables only study

designs considering equal numbers of cases and controls (which

does not represent the most common scenario in association

studies). In the present study, we also provide with a web interface

that implements the procedures developed in the present study

(mitPower).

Conclusions

During the last decade, a large number of mtDNA case-control

studies have been published in the literature, most of them

pointing to a number of haplogroups presumably associated with a

complex disease. The validity of many of these conclusions might

be questionable, given that most of them are underpowered. Most

of these studies did not estimate the a priori statistical power

because statistical tools were not available at the time.

The procedures developed in the present study allow the

computation of statistical power in common as well as complex case-

control study designs involving 26k. The results indicate that

underpowered studies could reach reasonable power by increasing

the number of controls and reducing the number of hypothesis testing

(i.e. haplogroups). In order to reach a wide range of researchers, we

provide a friendly web-based tool (mitPower) that implements all the

statistical procedures developed in the present study; this software can

be used in both retrospective and prospective case-control disease

studies. Note that the term retrospective is considered here as done

before: ‘‘the prospective power that can be obtained ignoring the fact that data have

been gathered and a hypothesis has been tested. In essence, it computes the prospective

power of the test as if: (a) the study and analyses had not yet been conducted and (b)

the sample effect size is the hypothesized population effect size’’ [43]. Further

developments of mitPower could involve the implementation of

multiple test corrections for the computation of the statistical power (in

the sense as it was suggested before in 262 tables [44]) and in two-stage

case-control designs [45]. Also challenging would be to explore the

phylogenetic relationship existing between different haplogroups (the

phylogenetic dependence) or mtSNPs and how this dependence could

influence the estimation of power. Finally, other statistical/computa-

tional approaches could find their place in 26k tables, such as the use of

Markov Chain Monte Carlo methods (MCMC), already explored for

26262 tables [46].

Supporting Information

Figure S1 Representation of power values for three
haplogroups (H, J. and I) as a function of the number of
cases and using the Fisher’s exact test instead of the Chi-
square test (Figure 1)(significance level of a = 0.05).
Colors indicate different deviations from the null hypothesis; thus,

black represents a frequency in cases 100% higher than in

controls, red represents an increment of 50%, and green an

increment of 25% (with the difference distributed proportionally

between the remaining non-risky haplogroups). The different lines

indicate different case-control odds. The continuous line denotes

an odd control-case of 1:1, the dotted line of 2:1, and the pointed

line of 3:1. Frequencies in controls for each haplogroup are

indicated above each plot.

(TIF)

Table 2. Nab
sc estimates for a significance level a and a power

value b using non-parametric regression.

b\a 10% 5% 1% 0.5% 0.1%

95% 11.61 13.79 18.68 19.84 21.33

90% 6.87 8.12 10.91 12.03 15.37

85% 5.97 7.07 9.47 10.64 13.77

80% 5.29 6.35 8.50 9.55 12.42

75% 4.59 5.80 8.05 8.86 11.42

70% 4.17 5.30 7.44 8.18 10.83

65% 3.72 4.68 6.82 7.84 10.15

60% 3.26 4.28 6.36 7.28 9.49

55% 2.96 3.88 5.96 6.75 9.79

50% 2.62 3.50 5.61 6.71 8.27

These values were averaged over ten simulations each. Note that these values
differ slightly from those obtained by Samuels et al. (see their Table 3) [26] due
to the simulation procedure implemented in both studies and because we
consider unequal number of cases and controls.
doi:10.1371/journal.pone.0073567.t002

Statistical Power in mtDNA Case-Control Studies

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e73567



Table S1 Comparison of different software packages
for the estimation of statistical power and sample size
estimation.
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8. Álvarez-Iglesias V, Mosquera-Miguel A, Cerezo M, Quintáns B, Zarrabeitia
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