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Abstract

This paper proposes a method to estimate leaf water content from reflectance
in four commercial vineyard varieties by estimating the local maxima of a
distance correlation function. First, it applies four different functional re-
gression models to the data and compares the models to test the viability
of estimating water content from reflectance. It then applies our method-
ology to select a small number of wavelengths (optimum wavelengths) from
the continuous spectrum, which simplifies the regression problem. Finally, it
compares the results to those obtained by means of two different methods:
a nonparametric kernel smoothing for variable selection in functional data
and a wavelet-based weighted LASSO functional linear regression. Our ap-
proach proved to have some advantages over these two testing approaches,
mainly mainly in terms of the computing time and the lack of assumption
of an underlying model. Finally the paper concludes that estimating water
content from a few wavelengths is almost equivalent to doing so using larger
wavelength intervals.
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1. Introduction

Water availability plays an important role in the production and quality
of agricultural plants, especially in multi-annual crops such as vines (Vitis
vinifera L.) [1]. One way to estimate vine water content is to measure leaf
water content [2]. Another is to use a pressure chamber to measure leaf
water potential. [3], but this method is tedious, time consuming and even
destructive [4, 5]. Plant water content can alternatively be assessed by re-
mote sensing technologies [6, 7]. Leaf reflectance, i.e., the ratio of incoming
radiance reflected from the leaves, may be used to estimate water content in
addition to other chemical properties such as chorophyll, carbon or nitrogen
content. Absorption of radiation by water in the leaf tends to decrease re-
flectance. The NIR region of the electromagnetic spectrum [730 - 2300] nm
contains several wavelengths strongly influenced by the presence of water,
and the state of water in the measured sample [8]. Several methods have
been proposed to estimate water content from leaf reflectance: vegetation
indices [9, 10, 11], multiple regression models [12, 13, 14] or inversion models
[15, 16].

When the reflectance is measured with devices of high radiometric res-
olution, the data can be considered as curves. This leads some authors to
propose the use of functional data regression techniques [17, 18]. However,
some people still find functional data analysis too complex and difficult to
interpret. They prefer methods that are less mathematically complex and
easier to interpret, such as vegetation indices or linear regression models with
a small number of covariates, even though the predictive results they pro-
vide are worse than those provided by more complex regression models. It
is therefore important to develop new methods to drastically reduce the di-
mension of the problem and thereby facilitate the application of simple and
readily interpretable models, which relate response and predictor variables
when only a few optimum wavelengths must be considered.

Methods based on linear finite dimensional projections such as Func-
tional Principal Component Regression (FPCR) or Functional Partial Least
Squares (FPLS) [19] have been proposed to reduce dimensionality. However,
one drawback of these kind of methods is that the output is not directly
interpretable in terms of the original variables. Hence the great interest in
variable selection methods, especially in those where the output only depends
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on the data, not on any underlying modeling [20]. A number of variable se-
lection methods have been proposed, among them the Elastic Net [21] or
Boosting approaches [22]. The problem of variable selection when the pre-
dictor variables are categorical has been addressed in [23]. In this particular
case, the effect of one variable can be determined not by one, but by several
coefficients. Authors in [24] tackled the problem of consistency in regression
models with high dimensionality and proposed a limit in the dimension of
the problem compared to the sample size for consistent variable selection. A
different solution was proposed in [25], using a wavelet-based LASSO proce-
dure [26]. The regression is performed in the wavelet domain and then, after
discarding small coefficients, the inverse wavelet transformation is applied to
return to the original domain. More recently, this approach was improved
by means of screening and penalty factor weighting schemes [27].

In this work we study the utility of distance correlation [28] as an intrinsic
method for variable selection. Neither projection nor transformation of the
variables is needed. Moreover, it is unnecessary to assume an a priori regres-
sion model; we just look for local maxima of the distance correlation func-
tion. The rest of the article is structured as follows: First, we provide a brief
summary of the functional parametric [29, 25] and nonparametric regression
models [30] used to estimate leaf water content from reflectance. Second, we
provide a brief explanation of the three methods used to determine optimum
wavelengths: one is based on a nonparametric kernel smoothing [31], an-
other is a wavelet-based weighted LASSO regression [27], and our proposal,
which is based on calculating local maxima on a distance correlation func-
tion. Third, we apply all the methods explained in the previous section to
simulated and real data. Then we analyze the results obtained and extract
a set of conclusions that summarize the whole work extracted.

2. Methodology

The following lines summarize the four different functional approaches
employed in this work to estimate leaf water content from reflectance. A
brief explanation of each model is given below, so we recommend consulting
the cited literature for each of the methods. Then, we explain the method
proposed to simplify the problem, reducing its dimension to a few dimensions
corresponding to a small number of optimum wavelengths. This method is
compared with another two approaches for variable selection in functional
data regression.
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2.1. Functional regression models

Consider a sample data {Xi, Yi}ni=1 whereXi = (Xi(t1), Xi(t2), . . . , Xi(tN))
and Yi ∈ R, n being the sample size and N the number of discrete obser-
vation points where the independent variable Xi is observed. In our study,
Xi represents the reflectance at wavelengths (t1, t2, . . . , tN) and Yi the water
content of each vine leaf. We can assume that both variables are related by
the model

Yi = r (Xi) + εi (1)

where r(·) is the regression function and εi is an error term with zero mean
that represents other sources of variability not accounted for in Xi.

When we have a fine grid of data Xi (t), such when a spectrometer is
used to register leaf reflectance, we may formulate the regression problem
within the context of functional data analysis [18]. In this case Xi = Xi(t)
can be considered a function of t ∈ [a, b]. In functional data analysis we as-
sume the underlying processes generating the data smooth and may therefore
be approximated by functions. Techniques commonly used in multivariate
statistics, such as principal component analysis, regression, clustering, clas-
sification or ANOVA, are also adapted to work with functions instead of
vectors. One of the advantages of FDA over classical multivariate statis-
tics is that it allows us to extract additional information contained in the
functions and their derivatives [32].

We applied the four functional regression models described in the next
section to estimate water content from reflectance.

2.1.1. Functional linear regression (FLR)

Let be Xi ∈ L2(T ) ∀t ∈ [a, b], and Yi ∈ R, a parametric functional linear
model, as formulated in [29], can be written following the model in (1) as
follows:

Yi = α +

∫
T

Xi(t)β(t)dt+ εi (2)

where α ∈ R and β (t) ∈ L2(T ) are the regression coefficients. In this
model Xi(t) and β(t) are approximated by means of decomposition in K
basis functions
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Xi(t) ≈
K∑
k=1

aikφk = a>i Φ and β(t) ≈
K∑
k=1

bkθk(t) = b>Θ

so ∫
T

Xi(t)β(t)dt ≈ ai
>ΦΘ>b

where ai and b are Kx1 vector of coefficients, and Φ and Θ are the basis
functions. The choice of the appropriate basis functions (and the number of
basis elements) becomes a crucial step [33]. They are usually polynomial,
exponential, B-splines, Fourier functions or wavelets.

The unknowns α and b are obtained by minimizing the penalized residual
sum of squares

n−1
n∑
i=1

[
Yi − α−

∫
T

Xi(t)β(t)dt

]2
+ λ

∫
T

[Dpβ(t)]2dt (3)

The second term is a regularization term that penalizes high local vari-
ations of the regression coefficients. λ is a positive constant that controls
the trade-off between roughness and fidelity to the data, and Dp(β) is the
derivative of order p. The second derivative is normally used, given that it
measures the size of the curvature.

2.1.2. Functional wavelet-based LASSO regression (FWLASSO)

LASSO (Least Absolute Shrinkage and Selection Operator) is a well
known technique for shrinkage and variable selection in multiple regression.
It basically consists in penalizing the magnitude of the regression coefficients
in order to reduce the influence of the small ones as compared with the large
ones. Its extension to functional regression leads to an expression similar to
Eq. (3), changing the regularization term as follows:

β̂(t) = arg min
β(t)∈L2(T )

(
n∑
i=1

[
Yi −

∫
T

Xi(t)β(t)dt

]2
+ λ

∫
T

|β(t)| dt

)
(4)

When the penalty parameter λ increases, the range of t values with β(t) =
0 also increases.
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As with FLR, the predictors Xi(t) and regression coefficients β(t) are
approximated using basis functions, such as B-splines [34] or wavelets. In
this work, we used wavelet-based LASSO in functional regression following
[25] and [27]. The problem is solved in the wavelet domain and then, after
selecting the non-null coefficients, these coefficients are mapped back to the
original domain. Among other advantages, a wavelet-based LASSO regres-
sion performs well when the coefficient function is spiky.
For a primary decomposition level j0, the wavelet decomposition of the pre-
dictors can be represented as

Xi(t) =
2j0−1∑
k=0

z′i,j0,kφj0,k(t) +
∞∑
j=j0

2j−1∑
k=0

zi,j,kψj,k(t)

where the wavelet coefficients are defined by

z′i,j0,k =

∫
T

Xi(t)φj0,k(t)dt, zi,j,k =

∫
T

Xi(t)ψj,k(t)dt

being
φj,k = 2j/2φ(2jt− k), ψj, k = 2j/2ψ(2jt− k)

the orthonormal scaling (father wavelet) and mother wavelet basis functions,
respectively.

A similar decomposition is performed for β(t) (see [25] for a more detailed
description of wavelet-based decomposition LASSO in functional regression,
and [27] for a variant of this method that includes different prescreening and
weighting schemes for the penalty term).

2.1.3. Functional principal components regression (FPCR)

We tested a functional regression model that uses functional principal
components (FRPCA) for a basis expansion. We selected the principal com-
ponents by means of AICc (bias-corrected Akaike Information criterion) [35].
PCA for functional data can be formulated as an eigenanalysis of the empir-
ical variance-covariance function [29]

υ (s, t) = (n− 1)−1
n−1∑
i=1

(
Xi(s)− X̄(s)

) (
Xi(t)− X̄(t)

)
where X̄(t) = n−1

∑n
i=1Xi(t).
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Given s, the following eigen decomposition problem is formulated∫
T

υ (s, t) ξ (t) dt = ρξ (s) (5)

where ρ is the eigenvalue and ξ the weight function (loadings in the PCA).
X(t) and ξ(s) can be expanded on basis functions as in the previous section

X(t) = Cφ and ξ(s) = φ>d (6)

where the coefficient matrix C is nxK and d is a Kx1 vector of coefficients.
Replacing (6) in (5), we obtain the eigenequation in matrix form

(n− 1)−1C>Cd = ρd (7)

assuming the basis functions are orthonormal. The resulting functional prin-
cipal components are used as basis functions to approximate the original
functions Xi(t) and solve the functional linear regression problem as in Sec-
tion 2.1.1.

2.1.4. Nonparametric functional regression (NPFR)

We used a nonparametric functional approach widely described in [30].
In this case, we use a kernel regression estimator to estimate the regression
function r in model (1). Specifically, for the Nadaraya-Watson estimator [31],
we obtain:

r̂ (X) =

∑n
i=1K (h−1d (X,Xi(t)))Yi∑n
i=1K (h−1d (X,Xi(t)))

(8)

K (·) is a kernel function, h is the smoothing parameter (bandwidth) and
d (·, ·) is a semi-metric that measures the proximity between functional ob-
jects.

Many kernels are possible, but the usual choices are Epanechnikov, Gaus-
sian, Quartic and Tricube, although the election of the kernel is an unimpor-
tant factor.

Regarding the metric for the distance between the covariates, we use the
L2 semi-metric to solve our specific problem

d (Xi, Xj) =

∫ b

a

(Xi(t)−Xj(t))
2 dt
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However, other metrics or semi-metrics such as L1 or Linf can be used
[30].

The bandwidth h is usually determined by cross-validation, although
other methods may be used [36].

2.2. Selection of the optimum wavelengths

The hypothesis underlying this procedure is that a few reflectance values
corresponding to particular wavelengths contain most of the information con-
cerning the response variable. If we are able to determine these wavelengths,
we will have simplified the solution of the problem significantly. Following
are three different approaches to determine optimum wavelengths are shown.

2.2.1. Nonparametric variable selection approach (NOVAS)

One of the main interest points in this research was to determine whether
solving the regression required considering the whole spectrum or specific
bands or wavelengths provided an equivalent response. Reducing the dimen-
sion of the problem is advisable for two main reasons: (i) it produces results
that are easier to interpret, (ii) it can reduce the computation time.

First, we used the method proposed by [37] to estimate the most predic-
tive design points (NOVAS), the design points were those of the model corre-
sponding to the wavelengths t1, . . . , tN where the reflectance was measured.
This is an iterative forward/backward method that consists in estimating a
subset t1, . . . , tr (r << N), of the measured wavelength spectrum with the
greatest predictive influence. This subset is determined by cross-validation
minimizing the CV score:

CV (t, h) =
1

n

i=n∑
i=1

{Yi − ĝh,−i (Xi)}2 (9)

where h = (h1, . . . , hr) represents bandwidths used to estimate the leave-one-
out local estimator ĝh,−i (x) of g (x) = E (Y | X = x), defined as:

ĝh,−i(x) = Y i(x, h) + γ̂>h,−i
{

x−X i(x, h)
}

(10)

The terms on the right, Y i(x, h) and X i(x, h) are calculated by means of
kernel smoothing

Y i(x, h) =

∑
j:j 6=i YjKj(x | h)∑
j:j 6=iKj(x | h)

, X i(x, h) =

∑
j:j 6=iXjKj(x | h)∑
j:j 6=iKj(x | h)

8
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and the parameter γ = γ̂h,−i minimizes∑
j:j 6=i

[Yj − Y i(x, h)− γ>
{
Xj −X i(x, h)

}
]2Kj(x | h)

being

Kj(x, h) = K

√√√√ r∑
k=1

(xk −Xjk)2

h2k


In each iteration s = 2, 3, ..., the forward addition algorithm looks for

(ts, hs) that maximize [CV (ts−1, hs−1)−CV (ts, hs)], being ts = (t̂1, ..., t̂s−1, ts)
and hs = (h1, ..., hs). The algorithm stops adding terms to ts when PCVs <

PCVs−1, being PCV = CV × (1 +
δ0

log n
) and δ0 a constant.

Similarly, in each iteration of the backward deletion a component t of ts
that minimizes [CV (ts+1[−t], hs)−CV (ts+1, hs+1)] is removed. The algorithm
stops when PCVs ≤ PCVs+1.

2.2.2. Wavelet-based LASSO approach

The variable selection in the wavelet-based LASSO for functional linear
regression model depends on the L1-type penalty parameter λ. When λ = 0,
the LASSO model is equivalent to an ordinary functional linear regression
model without regularization, which usually produces overfitting and an ir-
regular and wiggly regression coefficient function β(t) difficult to interpret.
When λ is very large, β(t) tends to be null for a wide range of t values, so the
final model is simple but inaccurate. Then, it is essential to find an adequate
value of λ to reach a trade-off between power of prediction and parsimony.
Cross-validation, is a common method for estimating λ.

Other parameters to consider are the type of wavelets and the primary
decompositon level j0, that controls the number of coefficients of the scaling
and wavelet coefficients: 2j0 and N − 2j0 , respectively. N is the number of
sample points tj along Xi(tj). In this work we used Daubechies wavelets,
while j0 was determined by k-fold cross-validation.

Daubechies wavelet [38] is a family of asymmetric and orthonormal wavelets.
Like the Haar wavelet (the fast ans simplest wavelet family), the Daubechies
wavelet conserves the energy of signals and redistributes this energy in a
more compact form. However, the scaling signals and wavelets of Daubechies
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wavelet have slightly longer supports, and they are more localized and smoother
than Haar wavelet.

2.2.3. Local maxima distance correlation approach (LMDC)

The two previous variable selection methods have some drawbacks that
we wish to avoid. For instance, NOVAS is quite expensive from a compu-
tational perspective, while wavelet-based LASSO requires transforming the
original variables and assuming a linear model. To avoid this inconveniences,
we propose a different method to determine the optimum wavelengths and
solve the regression problem. We are interested in a simple, fast and model-
free [39] method for variable selection with functional data. Our approach
consists in calculating the local maxima of the distance correlation along the
wavelength spectrum. Previously, the distance correlation curve is smoothed
to avoid non-relevant local maxima.
Distance correlation R(X, Y ) is an extension of the Pearson coefficient cor-
relation [40] for non-linear dependences. Being X ∈ Rp and Y ∈ Rq two
random vectors, the distance correlation is defined as

R2(X, Y ) =


V2(X,Y )√
V2(X)V2(Y )

, V2(X)V2(Y ) > 0

0, V2(X)V2(Y ) = 0
(11)

where

V2(X, Y ) = ||fX,Y − fXfY ||2 =
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

|t|1+p|s|1+q

is the distance covariance, a measure of the distance between fX,Y , the joint
characteristic function of random vectors X and Y , and the product fXfY of
the characteristics functions of X and Y ,respectively. cp and cq are constants
depending on the dimensions p and q, respectively.

One of the main advantages of distance correlation over the Pearson cor-
relation is that it defines R(X, Y ) in arbitrary finite dimensions of X and Y ,
and it characterises independence, i.e. R(X, Y ) = 0 ⇔ X, Y are indepen-
dent.

The correlation distance is a measure of the degree of correlation be-
tween two variables X, Y of arbitrary finite dimensions, so it is potentially a
good indicator of the linear or nonlinear correlations between functional and
multivariate variables. Accordingly, those variables with high values of the
distance correlation may be useful for designing a functional linear or non
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linear (or additive) model. Recently, [41] provided conditions for the appli-
cation of the distance correlation to functional spaces. Distance correlation
was also applied to choose the most relevant variables in curve classifica-
tion by ”hunting the local maxima” of the covariance function [20]. A local
maxima is a point tj with the highest value in the interval (tj−h, tj+h). The
choice of h depends on the nature of the data and the discretization pattern.
Using local maxima as covariates reduces the redundancy, given that highly
relevant points close to the local maxima are automatically excluded from
the model. We tested several models in which the optimal classification rule
depends on a small number of variables. These variables corresponded to
local maximum of the distance covariance function.

For an observed random sample (X,Y) = (Xk, Yk), k = 1, ....n, the em-
pirical distance covariance is a non-negative number defined by

V2
n(X,Y) =

1

n2

n∑
k,l=1

AklBkl (12)

where Akl = akl − āk. − ā.l + ā.. and Bkl = bkl − b̄k. − b̄.l + b̄... with akl =
‖Xk − Xl‖, bkl = ‖Yk − Yl‖, k, l = 1, . . . , n, and the subscript . denotes
that the mean is computed for the index it replaces.

Once we calculate the local maxima of the distance correlation has been
calculated (i.e., the optimum wavelengths), we check if we may estimate the
water content from the reflectance at those wavelengths using a regression
model. To this end, we apply a stepwise forward linear or nonlinear regression
technique to the data. The reflectance at those wavelengths are the predictors
and the leaf water content is the response variable. Then, we count the
number of times a wavelength appears in each model and propose the most
frequent as optimum wavelengths. The hypothesis underlying this procedure
is that the reflectance values corresponding to those particular wavelengths
contain most of the information concerning the response variable.

2.3. Algorithm
The algorithm to implement the LMDC approach for variable selection

with functional data can be written as follows:
Step 1: Calculate de distance correlation R(t) = {R(X(tj), Y )}Nj=1, us-

ing the expression in (11) from the data {Xi(tj), Yi}ni=1.
Step 2: In order to avoid non relevant local maxima, smooth the distance

correlation function. Particularly, in this work we fitted a nonparametric
regression model

11
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R(t) = m(t) + ε

where the function m was approximated using regression splines [42]

m(t) =
K∑
k=1

γkBk(t)

being γ1, . . . , γk unknown coefficients, and B1, . . . , BK are a set of K basis
functions of order p (e.g. p = 2 for a cubic spline).

Finally the smoothed correlations are obtained as

R̂(t) =
K∑
k=1

β̂kBk(t)

where β̂1, . . . , β̂k are the estimated coefficients obtained from the data.
Step 3: Calculate the local maxima of the smoothed correlation. Specif-

ically, we used the STEM (Smoothing and TEsting of Maxima) algorithm
proposed in [43]. Only the significant local maxima for a default level of sig-
nificance are selected. Denoting the arguments values (argvals) of the local
maxima a t̃1, t̃2, . . . , t̃Ñ (Ñ < N), we ordered them from highest to lowest
values of distance correlation, that is

R̂(t̃1) ≥ R̂(t̃2) > . . . ≥ R̂(t̃Ñ)

An adequate election of the number of basis K in Step2 is important in
determining of the local maxima. If k is too small, no local maxima will be
detected. On the other hand, if K is too big, too many local maxima will be
detected.

Step 4: Check if the relationship between the reponse and the predictor
variables is linear. That is, check the null hypothesis H0 : Y =

〈
X, β

〉
+ ε,

versus a general alternative. To this aim, we apply a test of linearity that
uses the Projected Cramer-von Mises statistic, [44]

Step 5: Fit a regression model to the response of interest Y using the
vector of covariates X(t̃) = {X(t̃1), . . . , X(t̃Ñ)}. This model will depend on
the results of the contrast carried out in Step 4. A linear model will be used
if the null hypothesis is not rejected and a nonparametric (e.g. generalized
additive model) model otherwise.
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Step 6: Once the type model has been selected, we propose to apply a
forward stepwise regression method to determine the significant covariates,
taking advantage of the fact that the local maxima have been ordered. This
means we start with a model with the first covariate (the one with the highest
value of distance correlation), and the rest of the ordered covariates are added
to the model in turn. This substantially reduces the computing time.

As a result, the final number of covariates ˜̃N will fulfil ˜̃N ≤ Ñ ≤ N . At
any rate, the LMDC approach can be combined with other methods with
variable selection such as FWLASSO or NOVAS (see next section).

3. Simulation study

We perform simulations to study the performance of our proposal as
compared to other approaches. Following [25], each simulated functional
predictor Xi(t), t ∈ (0, 1), is a Brownian bridge stochastic process with zero
mean and covariance cov(X(t), X(s)) = s(1 − t) for s < t, with X(0) =
X(1) = 0 (Figure 1). We specifically generate samples of size n = 100 for the
model Y =< X(t)l, β > +ε, with l = 1 (a linear model) and l = 2 (nonlinear
model). Two different functional regression coefficients β(t) were considered:
a bump function (β1), showing several sharp peaks, and a heavisine signal
(β2) (Figure 2).

To demonstrate the performance of the our method for different noise
levels, we set the variance of the error term σ2 using the signal-to-noise
ratio (SNR) of 5% and 50%. The covariates selected using the LMDC ap-
proach were also used as predictor variables to construct several different
vector regression models that were compared. Specifically these regression
models are: linear (LM), support vector machines (SVM), lasso (LASSO), K-
nearest neighbor (KNN) and generalized additive model (GAM). The results
were also compared with those obtained from different functional regression
models: a) functional regression with principal components (FPCR), b) non-
parametric functional regression (NPFR), c) nonparametric variable selec-
tion (NOVAS), d) functional wavelet-based weighted LASSO (FWLASSO).
Among these methods, the first two apply no variable selection. That is to
say they work with all the covariates from a functional perspective.

For each considered scenario we checked all the regression procedures
(variable selection and pure functional regression models) using a sample of
ntrain = 100 curves for estimation process and ntest = 50 curves for prediction.
The curves are discretized: (i) in N = 128 equi-spaced points in t ∈ [0, 1],
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Figure 1: Functional predictors Xi(t), i = 1, ..., n
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(ii) in N = 256. The performance of the methods was compared using the
root mean squared error evaluated in a ntest independent sample: RMSE =√

1
ntest

∑i=ntest

i=1 (Ŷi − Yi)2.
The algorithm was conducted with the following R packages or scripts:

fda.usc [45] for functional regression (FLR, FPCR, NPFR); fda.usc pack-
age for the test of linearity, mgcv package [46] for the GAM model; the NO-
VAS algorithm [37] is available at https://www.math.univ-toulouse.fr/

~ferraty/online-resources.html; the wavelet-based weighted LASSO for
functional regression algorithm (FWLASSO) is available at http://amstat.
tandfonline.com/doi/suppl/10.1080/10618600.2014.925458?scroll=top.

4. Case study

This work was conducted with four different varieties of grape (Cabernet
Sauvignon, Menca, Merlot and Tempranillo) in four vineyards in the village
of Cacabelos (León, Spain) that belong to the Bierzo Protected Designation
of Origin. All the vineyards shared the same characteristics: row spacing,
training system, rootstock and planting year. A total of 162 vines were
selected for leaf measurements (47 Cabernet Sauvignon, 45 Menćıa, 27 Merlot
and 43 Tempranillo vines). Field data collection was carried out on days
between berry set and veraison, the time recommended by [47].

We used a FieldSpec 4 portable spectroradiometer (Analytical Spectral
Devices, Inc., Boulder, CO, USA) to collect the leaf reflectance data. This
spectroradiometer captures spectral data at wavelengths in visible, near-
infrared and short-wavelength infrared (the wavelengths ranged from 860 nm
to 2500 nm). We also use a plant probe in order to minimize measurement
errors associated with stray light. This device consists of a grip to locate
the fibre optic cable input to the spectroradiometer, a quartz-halogen bulb,
and a quartz window to press the probe against the surface of the leaf [48].
Figure 3 shows how data collection was carried out with a spectroradiometer.
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Figure 3: Registering leaf reflectance with a spectroradiometer.

Three mature leaves per vine were measured. The upper face of the leaf
was measured three times at three different points (avoiding veins, holes
and leafspots) and the mean reflectance value for each leaf was saved. Each
measured leaf was cut off, immediately placed in a sealable plastic bag and
stored in an insulated cooler. Leaf water content was calculated by the
equivalent water thickness (EWT), i.e., the water weight (difference between
fresh and dry weight of the leaf) divided by the leaf area.

The spectral reflectance values were pre-processed after modeling, so we
actually use the Continuum Removal (CR) as the predictor instead of the
reflectance. CR is a transformation of the spectra data used to identify the
water absorption features in the leaf spectrum [49]. This transformation nor-
malizes reflectance values to a common baseline and allows us to compare
spectra that are either acquired by different instruments or under different
light conditions. Figure 4 shows the CR for the vineyard leaves that consti-
tute the sample data.
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Figure 4: Values of the continuum removal transformation applied to the reflectance mea-
surement for the Tempranillo variety. CR curves for the other varieties are not represented
because they overlap previous ones.

The functional regression models described Section 2.1 were applied to
a training data of ntrain = 200 samples, leaving the remaining ntest = 85
to test the models. The analysis was extended to the whole spectrum and
studied in four zones: Z1 = {t ∈ [860− 1065]}, Z2 = {t ∈ [1114− 1265]},
Z3 = {t ∈ [1265− 1668]} and Z4 = {t ∈ [1830− 2240]}, where reflectance is
supposed to be affected by water content. These zones are centered in 970,
1200, 1440 and 1950 nm. This corresponds to the approximate wavelengths
at which water has maxima absortion [50].
For each model, the goodness of fit was measured using of the root mean
square error.

5. Results

5.1. Simulated data

Table 1 shows the RMSE obtained for the different models tested. As
explained in Section 3, we consider two levels of noise (controlled by the
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SNR), as well as linear and nonlinear (quadratic) regression models. Num-
bers in bold correspond to the two best models for each column, that is,
those with minimum error. As may be seen, the best results were ob-
tained using the LMDC approach for variable selection and the wavelet-based
weighted LASSO regression for functional linear models (FWLASSO.mean,
FWLASSO.var, means that the penalty term is weighted by the average of
the absolute value of the wavelet coefficients or by the variance of these coeffi-
cients, respectively). The functional regression model using principal compo-
nents (FPCR), which implies no variable selection, also performs well. How-
ever, when we deal with the quadratic model, models such as LMDE+LM or
FWLASSO produce bad results as compared to other like LMDC+GAM or
LMDC+NOVAS. The NOVAS method also provides quite good results on
its own. Hence the importance of running the linearity test before selecting
the appropriate regression model. As expected, the effect of the SNR on
model performance presents and increase of the error with the SNR that is
especially significant for the linear models.

Table 2 shows the CPU time in seconds for the different regression mod-
els tested. As seen, the NOVAS procedure is considerably slower than the
rest, and the difference increases with the sample size n and the number of
discretization points N . These results correspond to the Heavisine function,
but similar results were obtained for the bump function.
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Table 1: RMSE for the different regression models compared using Heavisine beta param-
eter. We consider linear and nonlinear regression models, as well as different training-test
and signal to noise ratio (SNR). VS indicates whether the method includes variable selec-
tion. RMSE is multiplied by a factor 1e+ 4 for the Heavisine function and by 1e+ 8 for
the bump function.

Linear (l = 1) Non-Linear (l = 2)
SNR=0.1 SNR=0.5 SNR=0.1 SNR=0.5

Model VS N = 128 N = 256 N = 128 N = 256 N = 128 N = 256 N = 128 N = 256

Heavisine

LMDC+LM Y 187 204 725 755 569 598 797 766
LMDC+SVM Y 186 208 769 822 611 651 887 844
LMDC+LASSO Y 177 193 706 740 553 581 781 756
LMDC+kNN Y 263 261 830 832 199 207 426 413
LMDC+NOVAS Y 239 233 784 784 99 99 329 325
LMDC+GAM Y 195 214 746 769 91 89 331 316
FWLASSO.mean Y 178 173 762 759 561 576 783 767
FWLASSO.var Y 176 173 762 763 574 575 772 766
NOVAS Y 250 243 821 844 97 100 339 343
FPCR N 141 138 682 686 575 608 808 787
NPFR N 257 257 828 812 167 191 432 422

Bump

LMDC+LM Y 247 121 1088 447 612 256 927 329
LMDC+SVM Y 257 132 1171 507 661 279 1016 368
LMDC+LASSO Y 238 119 1066 442 597 252 909 331
LMDC+kNN Y 333 155 1195 505 194 97 493 179
LMDC+NOVAS Y 281 126 1115 466 98 45 356 137
LMDC+GAM Y 255 125 1118 462 88 43 350 134
FWLASSO.mean Y 251 93 1124 448 593 253 924 329
FWLASSO.var Y 253 92 1126 450 589 254 923 330
NOVAS Y 287 132 1190 500 91 49 364 157
FPCR N 249 94 1086 426 617 260 942 341
NPFR N 329 127 1187 479 166 80 489 176

Table 2: CPU time (mean, in seconds) for the different regression models compared using
Heavisine beta parameter. We consider linear an nonlinear regression models, as well as
different training-test and signal to noise ratio (SNR).

Linear (l = 1) Non-Linear (l = 2)
SNR=0.1 SNR=0.5 SNR=0.1 SNR=0.5

Model VS N = 128 N = 256 N = 128 N = 256 N = 128 N = 256 N = 128 N = 256

LMDC+LM Y 0.800 0.858 0.798 0.844 0.792 0.803 0.819 0.853
LMDC+SVM Y 1.036 1.160 0.999 1.091 0.914 0.945 0.944 0.983
LMDC+LASSO Y 0.834 0.883 0.828 0.872 0.826 0.828 0.850 0.886
LMDC+kNN Y 0.779 0.833 0.776 0.818 0.775 0.778 0.800 0.830
LMDC+NOVAS Y 1.434 1.491 1.439 1.494 1.476 1.519 1.434 1.496
LMDC+GAM Y 1.041 1.086 1.003 1.038 1.046 1.102 1.030 1.119

FWLASSO.mean Y 0.793 1.175 0.956 1.359 1.507 1.545 1.559 1.535
FWLASSO.var Y 0.782 1.169 0.933 1.354 1.484 1.504 1.547 1.522
NOVAS Y 4.100 7.634 3.922 7.260 4.628 8.438 3.928 7.436

FPCR N 0.730 1.088 0.741 1.076 0.739 1.073 0.738 1.082
NPFR N 0.474 0.624 0.472 0.621 0.478 0.639 0.469 0.625

5.2. Experimental data

5.2.1. Comparing wavelength intervals through distance correlation

Using distance correlation, we compared the information contained in
each of the four spectrum zones under study before carrying out the regres-
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sion analysis.. Previous works in distance correlation can be found in [51],
where the author proposes a variable selection algorithm to select an optimal
subset of covariates in a functional regression framework, and in [52], where
the Minimum Redundance Maximum Relevance (mRMR) procedure is ap-
plied to choose the most relevant design points in functional classification
setting.

Table 3 shows the distance correlation between the reflectance at different
wavelengths and the water content, for the whole spectrum (Z1−4) and for
the zones Zi, i = 1, ..., 4. We may see that the maximum value corresponds
to Z3. Moreover, R(Z2, Z3) = {0.85, 0.90, 0.77, 0.93} for Cabernet, Mencia,
Merlot and Tempranillo varieties, respectively. Then, we conclude that both
areas contain or share the same type of information. Consequently, from now
on we will compare the results corresponding to Z3 with those for the whole
wavelength interval Z1−4.

Table 3: Distance correlation R between response (water content) and predictor variables
(reflectance) for the different zones under study and four varieties.

Variety
Zone

Z1 Z2 Z3 Z4 Z1−4
Cabernet 0.18 0.22 0.29 0.18 0.26
Mencia 0.43 0.46 0.47 0.29 0.44
Merlot 0.44 0.35 0.52 0.30 0.47
Tempranillo 0.57 0.58 0.61 0.40 0.57

5.2.2. Functional regression

Two linear regression models, one using Fourier functions (FLR) and
the other using principal components (FPCR) as basis functions, as well as
the nonparametric functional model (NPFR) explained in Section 2.1.4 were
applied to the data as classical representatives of functional regression. Ta-
ble 4 shows the RMSE valued for the test sample, for each of the four grape
varieties. We may observe that similar results were obtained for the three
functional models evaluated. Zone Z3(t) t ∈ [1265, 1668] produced even bet-
ter results than those corresponding to the whole wavelength interval studied
Z1−4(t) t ∈ [865, 2500]. The dimension of the problem may be reduced by
approximately 1/4 (from 1635 wavelengths to 403). Obviously, this is impor-
tant because computing time is reduced and the problem is simplified.
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Table 4: RMSE x 105 values obtained applying the three functional regression models for
each of the varieties, for zones Z3 and for the whole spectrum Z1−4 to the test sample.

Variety Zone FLR FPCR NPFR
Cabernet Z1−4 253 251 252
Cabernet Z3 256 245 242
Mencia Z1−4 171 167 186
Mencia Z3 169 163 172
Merlot Z1−4 158 143 164
Merlot Z3 148 142 152
Tempranillo Z1−4 220 210 255
Tempranillo Z3 201 198 241

We generally obtained the minimum prediction errors for the model using
a PC basis rather than a Fourier basis. For the sake of simplicity we will
limit the analysis to these basis functions from now on.

Also, as shown in Table 4, in general the nonparametric regression model
produces worse results in terms of error than the linear models. This suggests
a possible linear relationship between water content and reflectance. Table 5
shows the results of the linearity test (step 4 of our algorithm). In all cases
the p-value> 0.05, so the null hypothesis of linearity cannot be rejected.

Table 5: p-values of the linearity test for each of the varieties, for zones Z3 and for the
whole spectrum Z1−4.

Variety
Zone

Z3 Z1−4
Cabernet 0.28 0.56
Mencia 0.38 0.40
Merlot 0.82 0.50
Tempranillo 0.22 0.68

5.3. Selection of the optimum wavelengths

The estimation of the design points, that is, the optimum wavelengths,
was carried out following the procedures described in Sections 2.3.1 and 2.3.2.
Table 6 shows the RMSE obtained using both methods, for each of the four
grape varieties analysed and for zones Z3 and Z1−4. Those RMSE values
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correspond to regression models that relate water content (response vari-
able) with the optimum wavelengths (predictor covariates). As may be seen,
LMDC has a better performance than NOVAS in determining the optimum
wavelength. Moreover, in LMDC is much faster than NOVAS mainly for two
reasons: 1) distances are calculated only once in LMDC, while distances are
calculated each time a predictor variable is included in the NOVAS proce-
dure, 2) in LMDC+LM, stepwise LM scheme estimates only Ñ regression

models to provide the final model with ˜̃N predictors ( ˜̃N ≤ Ñ << N), in

LMDC+NOVAS, Ñ , Ñ − 1,..., Ñ − ˜̃N regression models are adjusted, while
the NOVAS procedure requires adjusting many more models, specifically N ,

N − 1,..., N − ˜̃N . In addition, NOVAS requires performing cross-validation
in each step. FWLASSO has also a good performance, but errors are gener-
ally greater than those corresponding to the LMDC+LM approach, which,
in addition, is a method that is easy to interpret.

Table 6: RMSE x 105 of the regression models obtained limiting the covariates to the
optimum wavelengths obtained with the functional and distance correlation approaches.
Results correspond to the test sample.

Variety Zone
LMDC FWLASSO

NOVAS
LM LASSO NOVAS GAM mean var

Cabernet Z1−4 241 243 246 243 260 260 288
Cabernet Z3 243 246 242 245 245 245 272
Mencia Z1−4 172 170 172 173 175 185 180
Mencia Z3 169 164 169 171 171 181 175
Merlot Z1−4 145 149 168 152 174 174 179
Merlot Z3 130 138 146 130 163 163 150
Tempranillo Z1−4 212 211 246 217 197 197 265
Tempranillo Z3 222 209 226 224 190 190 243

As the optimum wavelengths are not always the same in each regression
model, the selection criteria was to retain those appearing in most models.
Figure 5 shows, at the top, the distance correlation for a set of 50 functions
obtained upon resampling the original dataset, for both Z1−4 and Z3 areas. A
histogram of frequencies reflecting the number of times a specific wavelength
appears in a regression model is shown at the bottom. The highest frequen-
cies, over 20, correspond to narrow bands around 1326 and 1515. Z1−4 also
presents a concentration of wavelengths around 2216 nm undiscovered using
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the NOVAS procedure. These wavelengths are close to those where water
absorption is maxima, according to [50].

Similar results were obtained applying the NOVAS procedure. This
means that we can limit our study to this small region of the wavelength
spectrum. In addition, more than half of the models only have two covari-
ates, so we conclude that an adequate prediction for leaf water content from
the reflectances may be obtained at just two optimal wavelengths.
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Figure 5: Distance correlation between response for all spectra Z1−4 (top left) and limited
to Z3 zone (top right), in nrep = 50 resamples. Histogram of design points selected using
LMDC for all spectra Z1−4(bottom left) and Z3 zone (bottom right). The information
corresponds to the Tempranillo variety.

Furthermore, if we represent the coefficients β(t) of the linear regression
model for the 50 samples (Figure 6), we can appreciate that these narrow
bands correspond to local maximum and minimum of β̂ that are significantly
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different from zero. Moreover, β̂ is null from 860 nm to a value around
1250 nm, which is in line with the fact that zone Z1 provide no significant
information regarding leaf water content.
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Figure 6: Functional linear regression coefficients for all spectrum under study Z1−4 (top)
and for Z3 zone (bottom).

6. Conclusions

Estimating leaf water content from reflectance by means of functional
regression has some advantages with respect to other methods that con-
sider reflectance a set of discrete points instead of functions. However, many
researchers prefer the latter type of methods, such as vegetation indices, be-
cause they consider no advantage in using complex mathematical techniques
or simply because they are unfamiliar with them. In this work we show that
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functional data analysis also provides interesting information that can be
useful for these researchers.

We study the utility of the distance correlation statistic in selecting op-
timum wavelengths to estimate water content from reflectance. First our
method (LMDC) was tested with simulated data and compared with other
methods, both for a linear and a nonlinear regression models. The results
showed that LMDC has some advantages over other methods, mainly be-
cause we assume no model and because it requires no transformation of the
original covariates. Second, the method was tested in a real dataset of four
vineyard varieties. The results obtained show us that, indeed, estimating
water content only requires the reflectance at few wavelengths. Particularly,
two narrow bands between 1326 nm and 1515 nm, respectively, contain most
of the information. Furthermore, when this method for detecting optimum
wavelengths was compared with two different functional approaches previ-
ously proposed by other authors, one based on a kernel smoothing and the
other on a wavelet-based weighted LASSO, we checked that distance correla-
tion produces better results, whether in terms of error estimation, simplicity
or computation time. In addition, our proposal does not need to assume any
type of regression model, any one may be used depending on the nature of
the problem.

In short, determining local maxima in the distance correlation function
is an efficient functional variable selection method that can help to construct
simple regression models for leaf water content estimation from reflectance.

Acknowledgments

This study was made possible with financial funding from: a) FC-15-
GRUPIN14-033 of the Fundación para el Fomento en Asturias de la Inves-
tigación Cient́ıfica Aplicada y la Tecnoloǵıa (FICYT) (Spain), with FEDER
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Pérez. Functional statistical techniques applied to vine leaf water
content determination. Mathematical and Computer Modelling, 52(7-
8):1116–1122, 2010.
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HIGHLIGHTS 

 
• We look for optimal wavelengths to estimate leaf water content from 

reflectance. 
 

• A new method called Local Maximum Distance Correlation (LMDC) is 
proposed. 

 
• A non-parametric functional approach (NOVAS) is also evaluated. 

 
• LMDC improved NOVAS results in the case study analyzed. 

 
 
 


