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A game with optimistic aspirations specifies two values for each coalition of players: the first value is the worth that the players in
the coalition can guarantee for themselves in the event that they coordinate their actions, and the second value is the amount that
the players in the coalition aspire to get under reasonable but very optimistic assumptions about the demands of the players who are
not included in the coalition. In this paper, in addition to presenting this model and justifying its relevance, we introduce allocation
rules and extend the properties of efficiency, additivity, symmetry, and null player property to this setting. We demonstrate that
these four properties are insufficient to find a unique allocation rule and define three properties involving null players and nullifying
players that allow the identification of unique allocation rules. The allocation rules we identify are the Midpoint Shapley Value and
the Equal Division Rule.

1. Introduction

In this paper we introduce games with optimistic aspirations,
and we identify two allocation rules for such games—the
Midpoint Shapley Value and the Equal Division Rule.

A game with optimistic aspirations specifies two values
for each coalition of players: the first value is the worth that
the players in the coalition can guarantee for themselves
in the event that they coordinate their actions (where the
word guarantee implies a very conservative attitude), and
the second value is the amount that the players in the
coalition aspire to get under reasonable but very optimistic
assumptions about the demands of the players who are not
included in the coalition.

The two allocation rules that we define on the class
of games with optimistic aspirations in this paper, the
Midpoint Shapley Value and the Equal Division Rule, are
found by extending the axioms that were used in Shapley
[1] to define the Shapley Value and augmenting them with
stronger versions of the null player property—the strong
null player property, the nullifying player property, and the
destroyer player property.The strong null player property and

the destroyer player property lead to the Midpoint Shapley
Value, while the nullifying player property leads to the Equal
Division Rule.

This paper contributes to the field of cooperative game
theory. Games with optimistic aspirations are inspired much
in the same way in which von Neumann and Morgenstern
[2] already introduced cooperative games, namely, as descrip-
tions of situations that are devoid of a specific structure of
negotiations but that capture the potential of coalitions of
players when they cooperate. We add one element to the
description of cooperative transferable utility games, namely,
the optimistic aspirations of coalitions of players, to get a
richer description than that which results from traditional
cooperative games.

The resulting games with optimistic aspirations incorpo-
rate elements of the lower value approach, which associates
with each coalition 𝑆 the lower value of the zero-sum game
between coalition 𝑆 and its complement 𝑁 \ 𝑆 and which is
an adaptation of the classical approach by von Neumann and
Morgenstern [2] and was studied in more detail in Carpente
et al. [3].
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Games with optimistic aspirations bear similarity to
interval games as introduced in Carpente et al. [4], which
associate with every coalition of players 𝑆 the interval whose
extremes are, respectively, the lower value and the upper value
of the zero-sum game between coalition 𝑆 and coalition𝑁\𝑆.
However, as we will see in Section 3, neither the lower value
nor the upper value reflects the possible asymmetries that
may exist between the players and coalitions that are captured
by the optimistic aspirations that we define.

Games with optimistic aspirations also bear superficial
similarity to games with upper bounds as introduced in
Carpente et al. [5]. In a game with upper bounds, there
is some external bound on the maximum payoff that a
coalition can possibly get and any proposed allocation has
to respect these bounds. The difference between games with
optimistic aspirations and games with upper bounds is subtle
but important: in a game with upper bounds, there is some
external bound on the maximum payoff that a coalition can
possibly get, and any proposed allocation has to respect these
bounds. In a game with optimistic aspirations, however, the
optimistic aspirations model goals that coalitions have in
mind and use in negotiations, but they do not constitute
bounds on possible agreements that can be reached in the
grand coalition.

Games with optimistic aspirations can be used to shed
light on many situations. We name just a few for illustration:
inminimal cost spanning tree situations the optimistic values
identified in Bergantiños and Vidal-Puga [6] can be incor-
porated into a cooperative game with optimistic aspirations,
while in queueing problems the optimistic estimates of the
costs of coalitions identified inManiquet [7] can be taken into
account as optimistic aspirations. For more potential areas of
application of games with optimistic aspirations, we refer the
reader to Fiestras-Janeiro et al. [8].

The paper is organized as follows. In Section 2 we recall
definitions and results from the literature that we will use
later on in this paper. In Section 3 we introduce games
with optimistic aspirations and provide the motivation for
the introduction of this class of games. In this section we
also identify two ways to decompose games with optimistic
aspirations into basic games that are inspired by unanimity
games and canonical games. In Section 4 we introduce
allocation rules and extend the properties efficiency, addi-
tivity, symmetry, and null player property to the setting
of games with optimistic aspirations. We demonstrate that
the four properties obtained are insufficient to identify a
unique allocation rule, and then we proceed by defining
three properties related to null players and nullifying players
that allow the identification of two allocation rules. We
conclude in Section 5 with a summarization of the crucial
thoughts and somepossible implications for the advancement
of cooperative game theory.

2. TU Games and Related Definitions

In this section we recall definitions and results from the
literature that we will use later on in this paper.

Let 𝑁 be a finite set of players. We denote by 2
𝑁

= {𝑆 |

𝑆 ⊆ 𝑁} the set of all subsets of𝑁, which are called coalitions.

We adopt the common notation of denoting the cardinality
of the player set 𝑁 by 𝑛 and the cardinality of a coalition 𝑆

by 𝑠. A cooperative game with transferable utility (or a TU-
game) is a pair (𝑁, V) consisting of the set of players 𝑁 and
a characteristic function V : 2

𝑁
→ R that assigns to each

coalition 𝑆 of players a value V(𝑆), with V(0) = 0. It is common
to identify a cooperative game (𝑁, V) with its characteristic
function V, because the player set 𝑁 can be reconstructed
from the domain of the characteristic function.We denote by
𝐺(𝑁) = {V : 2

𝑁
→ R | V(0) = 0} the class of TU games with

set of players 𝑁, and we denote by 𝐺 the class of TU games
with a finite set of players. A special game is the so-called zero
game in which each coalition’s value equals 0, and this game
is denoted by the symbol 0.

The class 𝐺(𝑁) forms a vector space of dimension 2
𝑛
− 1.

We will use two different widely known bases of 𝐺(𝑁), the
unanimity games basis and the canonical games basis. The
unanimity games basis of 𝐺(𝑁) consists of the unanimity
games 𝑢𝑆 ∈ 𝐺(𝑁), 𝑆 ∈ 2

𝑁
\ {0}, which are defined by 𝑢𝑆(𝑇) =

1 if 𝑇 ⊆ 𝑁 with 𝑆 ⊆ 𝑇 and 𝑢
𝑆
(𝑇) = 0 if 𝑇 ⊆ 𝑁 with 𝑆 ̸⊆ 𝑇.

Every V ∈ 𝐺(𝑁) can be written as a linear combination of
unanimity games, V = ∑

𝑆∈2
𝑁
\{0}

𝑎
V
𝑆
𝑢
𝑆, with unique unanimity

coefficients 𝑎
V
𝑆

∈ R for each 𝑆. The canonical games basis
of 𝐺(𝑁) consists of the canonical games 𝑒

𝑆
∈ 𝐺(𝑁), 𝑆 ∈

2
𝑁

\ {0}, which are defined by 𝑒
𝑆
(𝑇) = 1 if 𝑇 = 𝑆 and

𝑒
𝑆
(𝑇) = 0 if 𝑇 ̸= 𝑆. Every V ∈ 𝐺(𝑁) can uniquely be written

as a linear combination of canonical games as follows: V =

∑
𝑆∈2
𝑁
\{0}

V(𝑆)𝑒𝑆.
An allocation rule for TU games is a map that associates

a vector 𝜓(V) ∈ R𝑁 with every game (𝑁, V) ∈ 𝐺(𝑁). The
Shapley Value is one such allocation rule, and in Shapley
[1] this rule was found as the unique allocation rule for TU
games that satisfies the four properties efficiency, additivity,
symmetry, and the null player property (a more widely
available source for this material isWinter [9]). An allocation
rule 𝜓 for TU games satisfies efficiency if ∑

𝑖∈𝑁
𝜓
𝑖
(V) = V(𝑁)

for all (𝑁, V) ∈ 𝐺(𝑁), it satisfies additivity if 𝜓(V + V) =

𝜓(V) + 𝜓(V) for any two TU games (𝑁, V), (𝑁, V) ∈ 𝐺(𝑁), it
satisfies symmetry if 𝜓

𝑖
(V) = 𝜓

𝑗
(V) for any (𝑁, V) ∈ 𝐺(𝑁) and

players 𝑖, 𝑗 ∈ 𝑁 such that V(𝑆 ∪ {𝑖}) = V(𝑆 ∪ {𝑗}) for every
coalition 𝑆 ⊆ 𝑁 \ {𝑖, 𝑗}, and, finally, an allocation rule 𝜓 for
TU games satisfies the null player property if𝜓

𝑖
(V) = 0 for any

(𝑁, V) ∈ 𝐺(𝑁) and player 𝑖 ∈ 𝑁 such that V(𝑆 ∪ {𝑖}) = V(𝑆) for
every coalition 𝑆 ⊂ 𝑁.There are several equivalent definitions
of the Shapley Value, which is usually denoted by 𝜙, and
the definition that is closest to Shapley’s [1] work is given by
𝜙
𝑖
(V) = ∑

𝑆⊆𝑁:𝑖∈𝑆
(𝑎

V
𝑆
/𝑠) for any TU-game (𝑁, V) ∈ 𝐺(𝑁) and

any player 𝑖 ∈ 𝑁 (remember that 𝑎V
𝑆
, 𝑆 ∈ 2

𝑁
\ {0}, denote the

unique unanimity coefficients).
A player 𝑖 ∈ 𝑁 such that V(𝑆 ∪ {𝑖}) = V(𝑆) for every

coalition 𝑆 ⊂ 𝑁 does not ever change the worth of a coalition
of players by joining or deserting it and is called a null player
in the TU-game (𝑁, V). In contrast, a nullifying player (as
introduced by van den Brink [10]) is one whose presence in
a coalition causes the worth of the coalition to be equal to
zero; that is, player 𝑖 ∈ 𝑁 is a nullifying player if V(𝑆) = 0

for every coalition 𝑆 ⊂ 𝑁 with 𝑖 ∈ 𝑆. Van den Brink shows
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that an axiom that requires nullifying players in TU games to
get a payoff 0, in conjunction with efficiency, additivity, and
symmetry, leads to the Equal Division allocation rule that for
every TU-game (𝑁, V) ∈ 𝐺(𝑁) divides V(𝑁) equally among
all the players in𝑁.

3. Games with Optimistic Aspirations

In this section we introduce the definition of games with
optimistic aspirations, and we provide the motivation for
the introduction of this class of games. Also, we establish
that every game with optimistic aspirations can be written
as a linear combination of certain basic games with limited
aspirations.

A game with optimistic aspirations and set of players
𝑁 is a pair of TU games (𝑝, 𝑜) ∈ 𝐺(𝑁) × 𝐺(𝑁) with
𝑝(𝑁) = 𝑜(𝑁) and 𝑝(𝑆) ≤ 𝑜(𝑆) for all 𝑆 ∈ 2

𝑁
\ {0,𝑁}.

We denote the set of games with optimistic aspirations and
set of players 𝑁 by 𝑂(𝑁) = {(𝑝, 𝑜) | 𝑝, 𝑜 ∈ 𝐺(𝑁), 𝑝(𝑆) ≤

𝑜(𝑆) ∀𝑆 ⊂ 𝑁, and 𝑝(𝑁) = 𝑜(𝑁)}, and we denote by 𝑂

the class of games with optimistic aspirations and a finite
set of players. For every coalition 𝑆 ⊆ 𝑁, the pessimistic
worth 𝑝(𝑆) is the worth that the players in the coalition
can guarantee themselves through appropriately chosen coor-
dinated actions (where the word guarantee implies a very
conservative attitude) and independent of the actions chosen
by the players not in 𝑆, while the optimistic worth 𝑜(𝑆)

denotes theworth that the players in the coalition aspire to get
under reasonable but very optimistic assumptions about the
demands of the players who are not included in the coalition.

We explain games with optimistic aspirations as well as
our motivation for introducing such games by means of a
simple example. Consider an interactive situation that can be
described by the following 2-player strategic-form game:

1, 1 0, 0

0, 0 10, 1
. (1)

Suppose that the two players involved recognize that they
can benefit from cooperation and both play their second
action (i.e., row 2 and column 2), so that their joint payoffs
are 11—much higher than for any other pair of strategies that
the players can choose. However, the players have to figure
out what side payments would be reasonable to use in order
to give both of them the correct incentives to cooperate with
each other. One approach to this question is the pessimistic
approach that considers the TU-game (𝑁, V) in which each
coalition 𝑆 is assigned the lower value of the zero-sum game
between coalition 𝑆 and coalition 𝑁 \ 𝑆 and applies some
allocation rule, for example, the Shapley Value, to obtain an
allocation of the payoffs in this game. We refer the reader to
Carpente et al. [3] formore extensive explanation as well as an
axiomatization of the lower-value approach and suffice here
by saying that this procedure applied to the situation in our
example leads to the game ({1, 2}, V) with V(1) = V(2) = 0 and
V(𝑁) = 11.

A more optimistic perspective is to consider for each
coalition 𝑆 the upper value (V) of the zero-sum game between
coalition 𝑆 and coalition𝑁\𝑆.This upper value assigns to each

coalition the value that it can obtain under circumstances
where it reacts optimally to the strategies played by the
players outside the coalition under the assumption that
those players are choosing their strategies with the purpose
of holding the coalition members’ payoffs down. In our
example, doing so would result in the game ({1, 2}, V) with
V(1) = V(2) = 1 and V(𝑁) = 11 (please see Carpente
et al. [4] for a more extensive explanation of the upper
value).

However, as we clearly see in our example, neither the
lower value nor the upper value reflects the clear asymmetries
that exist between the two players in our simple example.
In order to incorporate those, we consider the optimistic
aspirations of coalitions—the value that the players in the
coalition aspire to get under reasonable but very optimistic
assumptions about the demands of the players who are not
included in the coalition.We define the optimistic aspirations
of coalitions in our example as 𝑜(1) = 10, 𝑜(2) = 1, and
𝑜(𝑁) = 11, because these values are the maximum values
that each of the coalitions can obtain in any reasonable play
of the game (note that player 1 can obtain 10 without any
negative effect on player 2’s payoff). Clearly, these optimistic
aspirations reflect the asymmetry that exists between the two
players in our example.

We think it is desirable to consider a model that takes
this sort of optimistic information into account, while at the
same time recognizing that the players have no strategies
that guarantee them these optimistic payoffs. To this end, we
introduce games with optimistic aspirations, which consist of
a TU-game 𝑝 (for “pessimistic”) that gives for each coalition
the value that the players in the coalition can guarantee
themselves through the use of some appropriate coordinated
strategy and aTU-game 𝑜 (for “optimistic”) that gives for each
coalition its optimistic aspiration—the value that the players
in 𝑆 could use as an aim in negotiations over payoffs in the
grand coalition.

In our proofs later in this paper, we will use that we can
decompose every game with optimistic aspirations (𝑝, 𝑜) ∈

𝑂(𝑁) into certain basic games. Since we have seen in
Section 2 that the unanimity games 𝑢𝑆 ∈ 𝐺(𝑁), 𝑆 ∈ 2

𝑁
\ {0},

form a basis of 𝐺(𝑁), it is tempting to use {(𝑢
𝑆
, 0) | 𝑆 ∈

2
𝑁

\ 0} ∪ {(0, 𝑢
𝑆
) | 𝑆 ∈ 2

𝑁
\ 0} as a basis for 𝑂(𝑁), which

is after all a subset of𝐺(𝑁)×𝐺(𝑁). However, (𝑢𝑆, 0) ∉ 𝑂(𝑁),
because it violates the condition 𝑢

𝑆
(𝑇) ≤ 0(𝑇) = 0 for all

𝑇 ⊆ 𝑁 that we have imposed on games with optimistic
aspirations (𝑝, 𝑜) ∈ 𝑂(𝑁). In fact, 𝑂(𝑁) is not a vector
space because the condition 𝑝(𝑆) ≤ 𝑜(𝑆) for all 𝑆 ⊆ 𝑁

implies that if (𝑝, 𝑜) ∈ 𝑂(𝑁) such that 𝑝 ̸= 𝑜, then −(𝑝, 𝑜) ∉

𝑂(𝑁).
In the following theorem we identify a basis of 𝑂(𝑁) by

establishing that every game (𝑝, 𝑜) ∈ 𝑂(𝑁) can be written
as a linear combination of games with optimistic aspirations
(𝑢
𝑆
, 𝑢
𝑆
) and (𝑢

𝑁
, 𝑢
𝑆
) in a unique way.

Theorem 1. Every game with optimistic aspirations can be
written as a linear combination of games in the family
{(𝑢
𝑆
, 𝑢
𝑆
) | 𝑆 ∈ 2

𝑁
\ 0} ∪ {(𝑢

𝑁
, 𝑢
𝑆
) | 𝑆 ∈ 2

𝑁
\ 0} ⊂ 𝑂(𝑁)

in a unique way.
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Proof. Let (𝑝, 𝑜) ∈ 𝑂(𝑁). We use that every V ∈ 𝐺(𝑁)

can be written as V = ∑
𝑆∈2
𝑁
\0
𝑎
V
𝑆
𝑢
𝑆 with unique unanimity

coefficients 𝑎V
𝑆
∈ R, 𝑆 ∈ 2

𝑁
\ {0}. From this we derive that

(𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\0

𝑎
𝑝

𝑆
(𝑢
𝑆
, 0) + ∑

𝑆∈2
𝑁
\0

𝑎
𝑜

𝑆
(0, 𝑢
𝑆
)

= ∑

𝑆∈2
𝑁
\0

𝑎
𝑝

𝑆
(𝑢
𝑆
, 𝑢
𝑆
) + ∑

𝑆∈2
𝑁
\0

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) (0, 𝑢

𝑆
) .

(2)

Notice that (0, 𝑢𝑆) is not in 𝑂(𝑁) for any 𝑆 ∈ 2
𝑁
\ 0 (because

𝑢
𝑆
(𝑁) = 1 ̸= 0 = 0(𝑁)). However, in expression (2) we can

replace the game 0 by the game 𝑢𝑁, as we demonstrate in the
following.

If 𝑇 ⊂ 𝑁, 𝑇 ̸=𝑁, then 𝑢
𝑁
(𝑇) = 0, so that

∑

𝑆∈2
𝑁
\0

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) 𝑢
𝑁
(𝑇) = 0. (3)

If 𝑇 = 𝑁, then

∑

𝑆∈2
𝑁
\0

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) 𝑢
𝑁
(𝑇) = ∑

𝑆∈2
𝑁
\0

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
)

= ∑

𝑆∈2
𝑁
\0

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) 𝑢
𝑆
(𝑁)

= 𝑜 (𝑁) − 𝑝 (𝑁) = 0.

(4)

Using (3) and (4) in (2), we derive

(𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\0

𝑎
𝑝

𝑆
(𝑢
𝑆
, 𝑢
𝑆
)

+ ∑

𝑆∈2
𝑁
\0

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) (𝑢
𝑁
, 𝑢
𝑆
)

= ∑

𝑆∈2
𝑁
\{0,𝑁}

𝑎
𝑝

𝑆
(𝑢
𝑆
, 𝑢
𝑆
)

+ ∑

𝑆∈2
𝑁
\{0,𝑁}

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) (𝑢
𝑁
, 𝑢
𝑆
)

+ 𝑎
𝑜

𝑁
(𝑢
𝑁
, 𝑢
𝑁
) ,

(5)

where we take the term (𝑢
𝑁
, 𝑢
𝑁
) outside the summation

signs because it appears in both the first and the second
summation.

We now turn to demonstrating that the decomposition in
(5) is unique. Let 𝛼

𝑆
, 𝑆 ∈ 2

𝑁
\ {0,𝑁}, 𝛽

𝑆
, 𝑆 ∈ 2

𝑁
\ {0,𝑁}, and

𝛾
𝑁
be generic coefficients such that

(𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\{0,𝑁}

𝛼
𝑆
(𝑢
𝑆
, 𝑢
𝑆
)

+ ∑

𝑆∈2
𝑁
\{0,𝑁}

𝛽
𝑆
(𝑢
𝑁
, 𝑢
𝑆
) + 𝛾
𝑁
(𝑢
𝑁
, 𝑢
𝑁
) .

(6)

Then, obviously,

𝑝 = ∑

𝑆∈2
𝑁
\{0,𝑁}

𝛼
𝑆
𝑢
𝑆
+ ∑

𝑆∈2
𝑁
\{0,𝑁}

𝛽
𝑆
𝑢
𝑁
+ 𝛾
𝑁
𝑢
𝑁

= ∑

𝑆∈2
𝑁
\{0,𝑁}

𝛼
𝑆
𝑢
𝑆
+ ( ∑

𝑆∈2
𝑁
\{0,𝑁}

𝛽
𝑆
+ 𝛾
𝑁
)𝑢
𝑁
,

(7)

𝑜 = ∑

𝑆∈2
𝑁
\{0,𝑁}

(𝛼
𝑆
+ 𝛽
𝑆
) 𝑢
𝑆
+ 𝛾
𝑁
𝑢
𝑁
. (8)

It thus follows from (7) and the uniqueness of the unanimity
coefficients 𝑎𝑝

𝑆
that

𝛼
𝑆
= 𝑎
𝑝

𝑆
, ∀𝑆 ∈ 2

𝑁
\ {0,𝑁} , (9)

∑

𝑆∈2
𝑁
\{0,𝑁}

𝛽
𝑆
+ 𝛾
𝑁

= 𝑎
𝑝

𝑁
, (10)

and it follows from (8) and the uniqueness of the unanimity
coefficients 𝑎𝑜

𝑆
that

𝛼
𝑆
+ 𝛽
𝑆
= 𝑎
𝑜

𝑆
∀ 𝑆 ∈ 2

𝑁
\ {0,𝑁} , (11)

𝛾
𝑁

= 𝑎
𝑜

𝑁
. (12)

Combining (11) and (9), we obtain

𝛽
𝑆
= 𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
∀ 𝑆 ∈ 2

𝑁
\ {0,𝑁} . (13)

Equalities (9), (12), and (13) demonstrate that the decompo-
sition in (6) is necessarily the same as that in (5) (note that
(10), (12), and (13) are mutually consistent, as is demonstrated
in the sequence of equalities 𝑎

𝑝

𝑁
= ∑
𝑆∈2
𝑁
\{0,𝑁}

𝛽
𝑆
+ 𝛾
𝑁

=

∑
𝑆∈2
𝑁
\{0,𝑁}

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) + 𝑎
𝑜

𝑁
= 𝑜(𝑁) − 𝑝(𝑁) + 𝑎

𝑝

𝑁
= 𝑎
𝑝

𝑁
).

We can also identify a basis of𝑂(𝑁) consisting of canon-
ical games. We demonstrate this in the following theorem.

Theorem 2. Every game with optimistic aspirations can be
written as a linear combination of games in the family {(𝑒𝑆, 𝑒𝑆) |
𝑆 ∈ 2
𝑁
\ 0} ∪ {(0, 𝑒

𝑆
) | 𝑆 ∈ 2

𝑁
\ 0} ⊂ 𝑂(𝑁) in a unique way.

Proof. Let (𝑝, 𝑜) ∈ 𝑂(𝑁). We use that every V ∈ 𝐺(𝑁) can be
written as V = ∑

𝑆∈2
𝑁
\0
V(𝑆)𝑒𝑆 in terms of the canonical basis

of 𝐺(𝑁). We easily derive that

(𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\0

𝑝 (𝑆) (𝑒
𝑆
, 0) + ∑

𝑆∈2
𝑁
\0

𝑜 (𝑆) (0, 𝑒
𝑆
)

= ∑

𝑆∈2
𝑁
\0

𝑝 (𝑆) (𝑒
𝑆
, 𝑒
𝑆
)

+ ∑

𝑆∈2
𝑁
\0

(𝑜 (𝑆) − 𝑝 (𝑆)) (0, 𝑒
𝑆
) .

(14)

Unlike with the unanimity games (seeTheorem 1), there is no
problemwith any of the games in (14) not being in𝑂(𝑁).This
holds because 𝑜(𝑆)−𝑝(𝑆) ≥ 0 for all 𝑆 ⊂ 𝑁 and 𝑜(𝑁)−𝑝(𝑁) =

0.
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4. Allocation Rules and Properties

The objective of this paper is to find reasonable allocation
rules for the class of games with optimistic aspirations 𝑂.

Definition 3. An allocation rule 𝜓 on 𝑂 is a map that
associates a vector 𝜓(𝑝, 𝑜) ∈ R𝑁 with every (𝑝, 𝑜) ∈ 𝑂(𝑁) ⊂

𝑂.

We have in mind to find an extension of the Shapley
Value, and therefore, we start by looking for allocation rules
that satisfy axioms similar to those that axiomatize the
Shapley Value on the class of games 𝐺. In the following, we
extend these properties, which we explained in Section 2, to
allocation rules for games with optimistic aspirations.
Efficiency (EFF). Allocation rule 𝜓 satisfies EFF if for all
(𝑝, 𝑜) ∈ 𝑂(𝑁)

∑

𝑖∈𝑁

𝜓
𝑖
(𝑝, 𝑜) = 𝑝 (𝑁) (= 𝑜 (𝑁)) . (15)

Additivity (ADD).Allocation rule𝜓 satisfies ADD if for every
(𝑝, 𝑜), (𝑝, 𝑜) ∈ 𝑂(𝑁)

𝜓 ((𝑝, 𝑜) + (𝑝, 𝑜)) = 𝜓 (𝑝, 𝑜) + 𝜓 (𝑝, 𝑜) . (16)

Two players 𝑖, 𝑗 ∈ 𝑁 are said to be symmetric in (𝑝, 𝑜) if
𝑝(𝑆 ∪ {𝑖}) = 𝑝(𝑆 ∪ {𝑗}) and 𝑜(𝑆 ∪ {𝑖}) = 𝑜(𝑆 ∪ {𝑗}) for every
coalition 𝑆 ⊂ 𝑁 \ {𝑖, 𝑗}.
Symmetry (SYM). Allocation rule 𝜓 satisfies SYM if for every
(𝑝, 𝑜) ∈ 𝑂(𝑁) and players 𝑖, 𝑗 ∈ 𝑁 who are symmetric in
(𝑝, 𝑜)

𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑗
(𝑝, 𝑜) . (17)

A player 𝑖 ∈ 𝑁 is said to be a null player in (𝑝, 𝑜) if 𝑝(𝑆 ∪

{𝑖}) = 𝑝(𝑆) and 𝑜(𝑆 ∪ {𝑖}) = 𝑜(𝑆) for every coalition 𝑆 ⊂ 𝑁.
Null Player Property (NPP). Allocation rule 𝜓 satisfies NPP if
for every (𝑝, 𝑜) ∈ 𝑂(𝑁) and player 𝑖 ∈ 𝑁 who is a null player
in (𝑝, 𝑜)

𝜓
𝑖
(𝑝, 𝑜) = 0. (18)

In the following example, we demonstrate that the four
properties defined previously do not determine a unique
allocation rule for games with optimistic aspirations.

Example 4. We consider convex combinations of the Shapley
Values 𝜙(𝑝) and 𝜙(𝑜). For each 𝜆 ∈ [0, 1], we define an
allocation rule 𝜙𝜆 by

𝜙
𝜆
(𝑝, 𝑜) = 𝜆𝜙 (𝑝) + (1 − 𝜆) 𝜙 (𝑜) . (19)

It follows easily from the fact that the Shapley Value on 𝐺(𝑁)

satisfies the appropriate efficiency, additivity, symmetry, and
null player properties (as explained in Section 2) that 𝜙

𝜆

satisfies EFF, ADD, SYM, and NPP for each 𝜆 ∈ [0, 1].
However, varying 𝜆 leads to different allocations for games
with optimistic aspirations (𝑝, 𝑜) in which 𝜙(𝑝) ̸= 𝜙(𝑜). For

an example of such a game, consider the player set𝑁 = {1, 2},
and define the game with optimistic aspirations (𝑝, 𝑜) by
𝑝(2) = 1, 𝑝(1) = 𝑝(𝑁) = 2, and 𝑜(1) = 𝑜(2) = 𝑜(𝑁) = 2.
Then 𝜙(𝑝) = (3/2, 1/2) and 𝜙(𝑜) = (1, 1).

It is clear from Example 4 that we need to augment the
set of axioms in order to pinpoint a unique allocation rule
for games with optimistic aspirations. We will identify three
different alternatives to the null player property, and we will
show that each of these three, when used in conjunction with
EFF, ADD, and SYM, leads to a unique allocation for each
game (𝑝, 𝑜) ∈ 𝑂(𝑁). We discuss each of the three alternative
axioms in turn.

4.1. The Strong Null Player Property. The strong null player
property is a direct strengthening of NPP.
Strong Null Player Property (SNPP).Allocation rule𝜓 satisfies
SNPP if for every (𝑝, 𝑜) ∈ 𝑂(𝑁) and 𝑖 ∈ 𝑁 it holds that (a) if
𝑖 is a null player in 𝑝, then 𝜓

𝑖
(𝑝, 𝑜) = (1/2)𝜓

𝑖
(𝑜, 𝑜) and (b) if 𝑖

is a null player in 𝑜, then 𝜓
𝑖
(𝑝, 𝑜) = (1/2)𝜓

𝑖
(𝑝, 𝑝).

The SNPP implies the NPP. To see this, consider a game
with optimistic aspirations (𝑝, 𝑜) and a player 𝑖 who is a null
player in both 𝑝 and 𝑜. Because 𝑖 is a null player in 𝑜, it follows
from application of SNPP of 𝜓 to the game with optimistic
aspirations (𝑜, 𝑜) that 𝜓

𝑖
(𝑜, 𝑜) = (1/2)𝜓

𝑖
(𝑜, 𝑜). From this it

follows that 𝜓
𝑖
(𝑜, 𝑜) = 0 has to hold. Now, we can derive from

SNPP and the fact that 𝑖 is a null player in 𝑝 that 𝜓
𝑖
(𝑝, 𝑜) =

(1/2)𝜓
𝑖
(𝑜, 𝑜) = 0.

We show in the following theorem that the SNPP leads
us to the allocation rule 𝜙

𝜆 with 𝜆 = 1/2, as defined in
Example 4. We give this allocation rule the name Midpoint
Shapley Value.

Definition 5. The Midpoint Shapley Value is the allocation
rule 𝜙

1/2 on 𝑂 that associates with every (𝑝, 𝑜) ∈ 𝑂(𝑁) the
payoff vector 𝜙1/2(𝑝, 𝑜) = (1/2)𝜙(𝑝) + (1/2)𝜙(𝑜).

Theorem 6. The Midpoint Shapley Value 𝜙
1/2 is the unique

allocation rule on 𝑂 satisfying EFF, ADD, SYM, and SNPP.

Proof. It follows easily from the fact that the Shapley Value
satisfies the appropriate efficiency, additivity, symmetry, and
null player properties, that 𝜙

1/2 satisfies EFF, ADD, SYM,
and SNPP. Let 𝜓 be an allocation rule on 𝑂 that satisfies the
four properties. It suffices to demonstrate that 𝜓 is uniquely
determined.

The fact that𝑂(𝑁) is not a vector space necessitates some
caution when subtracting games. Suppose that (𝑝, 𝑜) and
(𝑝, 𝑜) are two games in𝑂(𝑁) such that (𝑝, 𝑜) − (𝑝, 𝑜) ∈ 𝑂(𝑁)

as well. Then ADD of 𝜓 implies that

𝜓 (𝑝, 𝑜) = 𝜓 ((𝑝, 𝑜) − (𝑝, 𝑜) + (𝑝, 𝑜))

= 𝜓 ((𝑝, 𝑜) − (𝑝, 𝑜)) + 𝜓 (𝑝, 𝑜) ,

(20)

so that

𝜓 ((𝑝, 𝑜) − (𝑝, 𝑜)) = 𝜓 (𝑝, 𝑜) − 𝜓 (𝑝, 𝑜) . (21)
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Now, let (𝑝, 𝑜) ∈ 𝑂(𝑁). We demonstrated in Theorem 1
(see (5)) that

(𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\{0,𝑁}

𝑎
𝑝

𝑆
(𝑢
𝑆
, 𝑢
𝑆
)

+ ∑

𝑆∈2
𝑁
\{0,𝑁}

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) (𝑢
𝑁
, 𝑢
𝑆
)

+ 𝑎
𝑜

𝑁
(𝑢
𝑁
, 𝑢
𝑁
) ,

(22)

which we rewrite as

(𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\{0,𝑁}

𝑎
𝑝

𝑆
(𝑢
𝑆
, 𝑢
𝑆
) + 𝑎
𝑜

𝑁
(𝑢
𝑁
, 𝑢
𝑁
)

+ ∑

𝑆∈2
𝑁
\{0,𝑁}|(𝑎𝑜𝑆−𝑎

𝑝

𝑆 )≥0

(𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) (𝑢
𝑁
, 𝑢
𝑆
)

− ∑

𝑆∈2
𝑁
\{0,𝑁}|(𝑎𝑜𝑆−𝑎

𝑝

𝑆 )<0

(𝑎
𝑝

𝑆
− 𝑎
𝑜

𝑆
) (𝑢
𝑁
, 𝑢
𝑆
) .

(23)

It is easy to show that by first one-by-one adding the games
in the first two lines of this expression and then one-by-one
subtracting the games in the last line, we can obtain (𝑝, 𝑜)

through a chain of games that all are in 𝑂(𝑁) (the details are
available from the authors on request).Thus, we can use ADD
and (21) to derive from (23) that

𝜓 (𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\{0,𝑁}

𝜓 (𝑎
𝑝

𝑆
(𝑢
𝑆
, 𝑢
𝑆
)) + 𝜓 (𝑎

𝑜

𝑁
(𝑢
𝑁
, 𝑢
𝑁
))

+ ∑

𝑆∈2
𝑁
\{0,𝑁}|(𝑎𝑜𝑆−𝑎

𝑝

𝑆 )≥0

𝜓 ((𝑎
𝑜

𝑆
− 𝑎
𝑝

𝑆
) (𝑢
𝑁
, 𝑢
𝑆
))

− ∑

𝑆∈2
𝑁
\{0,𝑁}|(𝑎𝑜𝑆−𝑎

𝑝

𝑆 )<0

𝜓 ((𝑎
𝑝

𝑆
− 𝑎
𝑜

𝑆
) (𝑢
𝑁
, 𝑢
𝑆
)) .

(24)

Thus, it remains to prove that 𝜓 is uniquely determined on
games with optimistic aspirations of the form appearing in
(24).
Case 1. Let 𝑆 ∈ 2

𝑁
\ {0} and 𝑎 ∈ R. Consider the game

(𝑝, 𝑜) := 𝑎(𝑢
𝑆
, 𝑢
𝑆
). Clearly, all players in𝑁\ 𝑆 are null players

in (𝑝, 𝑜) and thus by NPP (note that we can use NPP because
it is implied by SNPP)𝜓

𝑖
(𝑝, 𝑜) = 0 for all 𝑖 ∈ 𝑁\𝑆. In addition,

by EFF it must hold that∑
𝑖∈𝑁

𝜓
𝑖
(𝑝, 𝑜) = 𝑝(𝑁) = 𝑎, so that we

obtain ∑
𝑖∈𝑆

𝜓
𝑖
(𝑝, 𝑜) = 𝑎. Since all players in 𝑆 are symmetric

in (𝑝, 𝑜), it follows from SYM that 𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑗
(𝑝, 𝑜) for all

𝑖, 𝑗 ∈ 𝑆, so that we find that 𝜓
𝑖
(𝑝, 𝑜) = 𝑎/𝑠 for all 𝑖 ∈ 𝑆 must

hold.
Case 2. Let 𝑆 ∈ 2

𝑁
\ {0,𝑁} and 𝑎 ∈ R, 𝑎 ≥ 0. Consider

the game (𝑝, 𝑜) := 𝑎(𝑢
𝑁
, 𝑢
𝑆
). All players in 𝑁 \ 𝑆 are null

players in 𝑜 = 𝑎𝑢
𝑆, so that it follows fromSNPP that𝜓

𝑖
(𝑝, 𝑜) =

(1/2)𝜓
𝑖
(𝑝, 𝑝) for all 𝑖 ∈ 𝑁 \ 𝑆. It follows from the Case 1

aforementioned that 𝜓
𝑖
(𝑝, 𝑝) = 𝑎/𝑛 for all 𝑖 ∈ 𝑁. By EFF

it must hold that∑
𝑖∈𝑁

𝜓
𝑖
(𝑝, 𝑜) = 𝑝(𝑁) = 𝑎, so that we obtain

∑
𝑖∈𝑆

𝜓
𝑖
(𝑝, 𝑜) = 𝑎 − ∑

𝑖∈𝑁\𝑆
𝜓
𝑖
(𝑝, 𝑜) = 𝑎(1 − ((𝑛 − 𝑠)/2𝑛)) =

(𝑎/2)(1 + (𝑠/𝑛)). Since all players in 𝑆 are symmetric in (𝑝, 𝑜),

it follows from SYM that 𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑗
(𝑝, 𝑜) for all 𝑖, 𝑗 ∈ 𝑆,

so that we find that 𝜓
𝑖
(𝑝, 𝑜) = (𝑎/2𝑠) (1 + (𝑠/𝑛)) = (𝑎/2𝑠) +

(𝑎/2𝑛) for all 𝑖 ∈ 𝑆must hold.
The Cases 1 and 2 aforementioned demonstrate that 𝜓 is

uniquely determined (and equal to 𝜙
1/2) for all games with

optimistic aspirations that appear in (24).

In principle, we can change the weights 1/2 on 𝜓(𝑝, 𝑝)

and 𝜓(𝑜, 𝑜) in the strong null player property. If, for some
𝜆 ∈ (0, 1), we change these weights to 𝜆 and 1 − 𝜆,
respectively, then we would obtain the convex combination
𝜙
𝜆 of the Shapley Values of 𝑝 and 𝑜 as the allocation

rule satisfying EFF, ADD, SYM, and SNPP (this is easily
verified by going through the proof ofTheorem 6 andmaking
the appropriate adjustments in Case 2, which is the only
place where adjustments are needed). However, we see no
motivation to treat the games 𝑝 and 𝑜 differently, and thus
we use the weights 1/2.

Another option one may consider is to take the point of
view that if a player 𝑖 is a null player in the game 𝑜, then
𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑖
(𝑝, 𝑝), the motivation for which could be that

if player 𝑖 has no influence on the optimistic aspirations of
coalitions, then player 𝑖’s allocation should be determined by
his influence in 𝑝 solely. However, such a property, combined
with ADD, EFF, SYM, and NPP, leads to the conclusion that
𝜓(𝑝, 𝑜) = 𝜓(𝑝, 𝑝) for all games with optimistic aspirations
(𝑝, 𝑜) ∈ 𝑂(𝑁), and thus the optimistic aspirations are not
taken into account for any game (a proof is available from the
authors upon request).

4.2. The Nullifying Player Property. Instead of concentrating
on null players, we can also concentrate on nullifying players.
Since a nullifying player’s presence prevents others from
obtaining a positive worth, the other players may argue that
such a player deserves no positive payoff. On the other hand,
the nullifying player himself can argue that he deserves no
negative payoff either since he can guarantee himself zero
by not joining any others. The nullifying player property
states that a nullifying player gets a payoff 0. We extend
the nullifying player property to the setting of games with
optimistic aspirations and investigate if replacing NPP with
the new property determines an allocation rule.

A player 𝑖 ∈ 𝑁 is said to be a nullifying player in (𝑝, 𝑜) if
𝑝(𝑆) = 𝑜(𝑆) = 0 for every coalition 𝑆 ⊆ 𝑁 with 𝑖 ∈ 𝑆.
Nullifying Player Property (NFPP). Allocation rule 𝜓 satisfies
NFPP if for every (𝑝, 𝑜) ∈ 𝑂(𝑁) and player 𝑖 ∈ 𝑁 who is a
nullifying player in (𝑝, 𝑜)

𝜓
𝑖
(𝑝, 𝑜) = 0. (25)

We show in the following theorem that the NFPP leads us
to the Equal Division allocation rule.

Definition 7. The Equal Division Rule is the allocation rule
𝐸𝐷 on 𝑂 that associates with every (𝑝, 𝑜) ∈ 𝑂(𝑁) and player
𝑖 ∈ 𝑁 the payoff vector defined by 𝐸𝐷

𝑖
(𝑝, 𝑜) = 𝑝(𝑁)/𝑛.

Theorem 8. The Equal Division Rule 𝐸𝐷 is the unique
allocation rule on 𝑂 satisfying EFF, ADD, SYM, and NFPP.
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Proof. It follows easily and straightforwardly that𝐸𝐷 satisfies
EFF, ADD, SYM, and NFPP. Let 𝜓 be an allocation rule on
𝑂 that satisfies the four properties. It suffices to demonstrate
that 𝜓 is uniquely determined. To do so, we use the canonical
basis of 𝐺(𝑁), which consists of the games 𝑒𝑆 ∈ 𝐺(𝑁), 𝑆 ⊂

𝑁, defined by 𝑒
𝑆
(𝑇) = 1 if 𝑇 = 𝑆 and 𝑒

𝑆
(𝑇) = 0 if 𝑇 ̸=𝑁.

Every V ∈ 𝐺(𝑁) can uniquely be written as a combination of
canonical games as follows: V = ∑

𝑆∈2
𝑁
\0
V(𝑆)𝑒𝑆.

Now, let (𝑝, 𝑜) ∈ 𝑂(𝑁). We demonstrated in Theorem 2
(see (14)) that

(𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\0

𝑝 (𝑆) (𝑒
𝑆
, 𝑒
𝑆
)

+ ∑

𝑆∈2
𝑁
\0

(𝑜 (𝑆) − 𝑝 (𝑆)) (0, 𝑒
𝑆
) .

(26)

Like we did in the proof of Theorem 6, we can thus use ADD
to derive that

𝜓 (𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\0

𝜓 (𝑝 (𝑆) (𝑒
𝑆
, 𝑒
𝑆
))

+ ∑

𝑆∈2
𝑁
\0

𝜓 ((𝑜 (𝑆) − 𝑝 (𝑆)) (0, 𝑒
𝑆
)) .

(27)

Thus, it remains to prove that 𝜓 is uniquely determined on
games with optimistic aspirations of the form appearing in
(27).
Case 1. Let 𝑆 ∈ 2

𝑁
\ {0,𝑁} and 𝑎, 𝑏 ∈ R, 𝑏 ≥ 0. Consider

the games (𝑝, 𝑜) := 𝑎(𝑒
𝑆
, 𝑒
𝑆
) and (𝑝, 𝑜) := 𝑏(0, 𝑒

𝑆
). Clearly, all

players in𝑁\𝑆 are nullifying players in (𝑝, 𝑜) and also in (𝑝, 𝑜)

and thus by NFPP 𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑖
(𝑝, 𝑜) = 0 for all 𝑖 ∈ 𝑁 \ 𝑆.

In addition, by EFF it must hold that ∑
𝑖∈𝑁

𝜓
𝑖
(𝑝, 𝑜) = 𝑝(𝑁) =

0 = 𝑝(𝑁) = ∑
𝑖∈𝑁

𝜓
𝑖
(𝑝, 𝑜), so that we obtain ∑

𝑖∈𝑆
𝜓
𝑖
(𝑝, 𝑜) =

∑
𝑖∈𝑆

𝜓
𝑖
(𝑝, 𝑜) = 0. Since all players in 𝑆 are symmetric in (𝑝, 𝑜)

and also in (𝑝, 𝑜), it follows from SYM that𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑗
(𝑝, 𝑜)

and 𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑗
(𝑝, 𝑜) for all 𝑖, 𝑗 ∈ 𝑆, so that we find that

𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑖
(𝑝, 𝑜) = 0/𝑠 = 0 for all 𝑖 ∈ 𝑆must hold.

Case 2. Let 𝑎 ∈ R, and consider the game (𝑝, 𝑜) := 𝑎(𝑒
𝑁
, 𝑒
𝑁
).

By EFF it must hold that ∑
𝑖∈𝑁

𝜓
𝑖
(𝑝, 𝑜) = 𝑝(𝑁) = 𝑎. Since

all players in 𝑆 are symmetric in (𝑝, 𝑜), it follows from SYM
that 𝜓

𝑖
(𝑝, 𝑜) = 𝜓

𝑗
(𝑝, 𝑜) for all 𝑖, 𝑗 ∈ 𝑁, so that we find that

𝜓
𝑖
(𝑝, 𝑜) = 𝑎/𝑛 for all 𝑖 ∈ 𝑁must hold.
Remember that 𝑜(𝑁) − 𝑝(𝑁) = 0, so that we do not have

to consider the game (0, 𝑒𝑁). Thus, Cases 1 and 2 mentioned
previously demonstrate that 𝜓 is uniquely determined (and
equal to 𝐸𝐷) for all games with optimistic aspirations that
appear in (27).

4.3. The Destroyer Player Property. Instead of concentrating
on the worths of coalitions that include a nullifying player,
we can also concentrate on what happens to the worths of
coalitions when a nullifying player joins it. Hence, instead
of concentrating on the fact that a nullifying player causes
the worth of any coalition he is a member of to be 0, we
look at the change in worth that he causes when he joins
various coalitions. To reflect this change of focus, we give an
alternative (but equivalent) description of nullifying players.

A player 𝑖 ∈ 𝑁 is said to be a nullifying player in (𝑝, 𝑜) if
𝑝(𝑆 ∪ {𝑖}) = 𝑜(𝑆 ∪ {𝑖}) = 0 for every coalition 𝑆 ⊂ 𝑁.

When a nullifying player joins a coalition 𝑆 of players, he
destroys the worth 𝑝(𝑆) that coalition 𝑆 could guarantee itself
and also causes the optimistic aspiration to change from 𝑜(𝑆)

to 0. The destroyer player property (see the following) states
that a nullifying player should get a payoff that is equal to the
value that he destroys in expectation by joining a coalition,
assuming that first the cardinality of a coalition is selected
at random (from the range 0 to 𝑛 − 1), then a coalition of
that size is selected at random, and, finally, a random choice
determines whether we consider the effect on 𝑝 or 𝑜.
Destroyer Player Property (DPP). Allocation rule 𝜓 satisfies
DPP if for every (𝑝, 𝑜) ∈ 𝑂(𝑁) and player 𝑖 ∈ 𝑁 who is a
nullifying player in (𝑝, 𝑜)

𝜓
𝑖
(𝑝, 𝑜) = − ∑

𝑆⊂𝑁\{𝑖}

1

2𝑛 ( 𝑛−1
𝑠
)
𝑝 (𝑆)

− ∑

𝑆⊂𝑁\{𝑖}

1

2𝑛 ( 𝑛−1
𝑠
)
𝑜 (𝑆) .

(28)

It turns out that DPP together with EFF, ADD, and
SYM determines a unique allocation rule and that it is the
Midpoint Shapley Value 𝜙1/2, which we already encountered
inTheorem 6.

Theorem 9. The Midpoint Shapley Value 𝜙
1/2 is the unique

allocation rule on 𝑂 satisfying EFF, ADD, SYM, and DPP.

Proof. With regard to existence, it remains to demonstrate
that 𝜙1/2 satisfies DPP. Let (𝑝, 𝑜) ∈ 𝑂(𝑁) be a game with
optimistic aspirations with a nullifying player 𝑖 ∈ 𝑁. Then

𝜙
1/2

𝑖
(𝑝, 𝑜) =

1

2
𝜙
𝑖
(𝑝) +

1

2
𝜙
𝑖 (𝑜)

=
1

2
∑

𝑆⊂𝑁\{𝑖}

𝑠! (𝑛 − 𝑠 − 1)!

𝑛!
(𝑝 (𝑆 ∪ {𝑖}) − 𝑝 (𝑆))

+
1

2
∑

𝑆⊂𝑁\{𝑖}

𝑠! (𝑛 − 𝑠 − 1)!

𝑛!
(𝑜 (𝑆 ∪ {𝑖}) − 𝑜 (𝑆))

= − ∑

𝑆⊂𝑁\{𝑖}

1

2𝑛 ( 𝑛−1
𝑠
)
𝑝 (𝑆)

− ∑

𝑆⊂𝑁\{𝑖}

1

2𝑛 ( 𝑛−1
𝑠
)
𝑜 (𝑆) ,

(29)

where the second equality uses the definition of the Shapley
Value and the third equality uses the fact that player 𝑖 is
nullifying in (𝑝, 𝑜).

To prove uniqueness, let 𝜓 be an allocation rule on𝑂 that
satisfies EFF, ADD, SYM, and DPP. It suffices to demonstrate
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that 𝜓 is uniquely determined. As in the proof of Theorem 8,
we derive using ADD of 𝜓 that

𝜓 (𝑝, 𝑜) = ∑

𝑆∈2
𝑁
\0

𝜓 (𝑝 (𝑆) (𝑒
𝑆
, 𝑒
𝑆
))

+ ∑

𝑆∈2
𝑁
\0

𝜓 ((𝑜 (𝑆) − 𝑝 (𝑆)) (0, 𝑒
𝑆
)) .

(30)

Remember that 𝑜(𝑁) − 𝑝(𝑁) = 0, so that we do not have
to consider the game (0, 𝑒𝑁). For games (𝑝, 𝑜) defined either
by (𝑝, 𝑜) = 𝑎(𝑒

𝑆
, 𝑒
𝑆
) for some 𝑆 ∈ 2

𝑁
\ {0} and 𝑎 ∈ R, or by

(𝑝, 𝑜) = 𝑎(0, 𝑒
𝑆
) for some 𝑆 ∈ 2

𝑁
\ {0,𝑁} and 𝑎 ∈ R with

𝑎 ≥ 0, the following reasoning holds: all players in 𝑁 \ 𝑆 are
nullifying players in (𝑝, 𝑜) and thus by DPP

𝜓
𝑖
(𝑝, 𝑜) = − ∑

𝑆⊂𝑁\{𝑖}

1

2𝑛 ( 𝑛−1
𝑠
)
𝑝 (𝑆) − ∑

𝑆⊂𝑁\{𝑖}

1

2𝑛 ( 𝑛−1
𝑠
)
𝑜 (𝑆)

(31)

for all 𝑖 ∈ 𝑁 \ 𝑆, which means that these values are
uniquely determined. In addition, by EFF it must hold that
∑
𝑖∈𝑁

𝜓
𝑖
(𝑝, 𝑜) = 𝑝(𝑁), so that we obtain ∑

𝑖∈𝑆
𝜓
𝑖
(𝑝, 𝑜) =

𝑝(𝑁)−∑
𝑖∈𝑁\𝑆

𝜓
𝑖
(𝑝, 𝑜). Since all players in 𝑆 are symmetric in

(𝑝, 𝑜), it follows from SYM that𝜓
𝑖
(𝑝, 𝑜) = 𝜓

𝑗
(𝑝, 𝑜) for all 𝑖, 𝑗 ∈

𝑆, and thuswe find that𝜓
𝑖
(𝑝, 𝑜) = ((𝑝(𝑁)−∑

𝑖∈𝑁\𝑆
𝜓
𝑖
(𝑝, 𝑜))/𝑠)

for all 𝑖 ∈ 𝑆 must hold. This uniquely determines 𝜓
𝑖
(𝑝, 𝑜) for

all 𝑖 ∈ 𝑆.

5. Conclusions

In this paper we introduced games with optimistic aspira-
tions in order to be able to capture more of the possible
asymmetries between participants in various situations than
is possible using existing cooperative game formulations. We
also identified two allocation rules for games with optimistic
aspirations by first extending the axioms efficiency, additivity,
symmetry, and the null player property to the setting of
games with optimistic aspirations and, after having shown
that the four axioms EFF, ADD, SYM, and NPP do not
identify a unique allocation rule, considering three possible
alternatives of NPP, namely, the strong null player property,
the nullifying player property, and the destroyer player
property. We demonstrated that replacing the NPP with the
SNPP or DPP leads to the Midpoint Shapley Value, while
replacing it with the NFPP leads to the Equal Division Rule.

Thus, we now have a richer way of modeling situations in
which there are deeper asymmetries between the participants
in a cooperative framework, and we have two methods of
allocating the gains from cooperation in such situations that
have been identified on the basis of appealing properties. We
anticipate that this new methodology will be very useful to
obtain new insights into all sorts of cost allocation problems
and intend to address specific applications in future research.
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