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Abstract  12 

Novel wastewater treatment plants (WWTPs), which are based on a partial nitritation-13 

anammox (PN-anammox) process, enable higher chemical oxygen demand (COD) 14 

recovery to produce biogas and lower treatment costs. In this study, rotating belt filters 15 

(RBFs) were examined in different configurations to identify the opportunities for RBFs 16 

to be included in novel WWTP configurations. RBFs enable recovery of 22-37% of the 17 

influent COD and removal of 34-56% of hydrophobic organic micropollutants (OMPs). 18 

However, the effluent was not suitable for treatment in a PN-anammox process due to 19 

its high COD. Chemically enhanced settling (CES) enabled these limitations to be 20 

overcome and caused an increase in OMP removal to 73-94%. However, a dose of 300 21 

mg/L of ferric chloride was required to produce a suitable effluent for a PN-anammox 22 

reactor. The combination of RBF and CES not only derived effluents suitable for 23 

treatment in PN-anammox units but also decreased the alkalinity consumption and the 24 

required chemical dose 3-fold to achieve comparable COD recovery and OMP removal. 25 

The methane yield of the combined sludges that were produced (184 L(N) CH4/kg 26 

CODinfluent) was 75% higher than that obtained in conventional wastewater treatment 27 

(105 L(N) CH4/kg CODinfluent), and the electricity requirements decreased from 0.54 to 28 

0.41 kWh/m3 of treated wastewater. The energetic calculations showed that a WWTP 29 

incorporating this combined treatment could attain energy autarky with 29% lower 30 

operational costs than that of conventional treatment (0.022 vs 0.031 €/m3) as long as a 31 

minimum alkalinity-to-ammonium ratio of 1-1.25 g IC to g NH4
+-N was ensured in the 32 

effluent of the combined treatment. 33 



 

Keywords: cellulosic sludge, chemically enhanced settling, energy self-sufficiency, 34 

organic matter recovery, organic micropollutants.  35 



 

Introduction  36 

The discovery of the autotrophic nitrogen removal process (anammox process)1, which 37 

does not require an organic carbon source for denitrification, introduces new 38 

possibilities for conceiving more energetically efficient wastewater treatment plants 39 

(WWTPs).2 Although anammox-based processes are already applied at full scale to treat 40 

the supernatants of anaerobic sludge mesophilic digesters, the implementation of this 41 

technology in the mainstream of WWTPs is currently under investigation since they 42 

operate at considerably lower temperatures (10-20ºC).3 43 

In the first stage of these novel WWTPs, pre-concentration technologies can recover 44 

most of the chemical oxygen demand (COD) from sewage to produce energy (methane), 45 

which enables WWTPs to gain energy self-sufficiency or even become energy-46 

producing facilities.4 Some studies have suggested that the energy contained in 47 

wastewater is nearly 5-fold the electrical energy that is used to drive conventional 48 

wastewater treatment.5 Therefore, as long as 20% of the total energy in domestic 49 

wastewater can be completely converted to electrical energy, WWTPs may be 50 

energetically self-sufficient.  51 

The energy contained in wastewater can be recovered either directly in an anaerobic 52 

reactor in moderate climates6 or indirectly in an organic matter pre-concentration step in 53 

the form of sludge, which is subsequently treated by anaerobic digestion. Several pre-54 

concentration alternatives exist: physical (e.g., sieving),7 chemical (e.g., precipitation),8 55 

biological (e.g., A-stage)9 or combinations of these alternatives.  56 

Fine mesh rotating belt filters (RBFs) offer a very low footprint solution for recovering 57 



 

COD. They have been successfully applied as a replacement for conventional primary 58 

treatment (CPT) in traditional WWTPs10,11 and achieve total suspended solids (TSS) 59 

removals that are similar to those reported for CPT (~50%).12,13 A maximum of 50% 60 

dry matter content of RBF sludge (also known as cellulosic sludge) can be achieved 61 

with a very high percentage of cellulose (maximum of 79% of TSS),7 which facilitates 62 

its use as a soil conditioner in agriculture, fuel in a biomass-based power plant, and feed 63 

stock in the fermentation industry for the production of biofuels6 or chemicals, such as 64 

volatile fatty acids (VFA).14 However, the most straightforward method for onsite 65 

valorisation is energy recovery by mesophilic AD.15  66 

RBFs for municipal wastewater are commonly employed with a mesh size of 350 67 

µm.7,16 Their effluents show important COD content, which is derived not only from 68 

soluble COD that remain unaffected in the RBFs but also from particulate COD that 69 

corresponds to small TSS that pass the RBFs. Therefore, the implementation of 70 

additional steps prior to autotrophic nitrogen removal treatment is required.17 71 

Chemically enhanced primary treatment (CEPT) or chemically enhanced settling (CES) 72 

is an alternative that overcomes the limitations of RBF. In CEPT processes, using some 73 

chemical additives (coagulants and/or flocculants), TSS and COD removal can 74 

eliminate a maximum of 90% and 70%, respectively, of TSS and COD, and an increase 75 

in the sedimentation rate decreases the size of the settling tank.18 Chemical coagulation 76 

has been shown to completely eliminate viruses from wastewater.19 However, these 77 

processes require a considerable amount of chemicals and generate large volumes of 78 

sludge, with subsequent excessive costs of reagents and sludge disposal.20  79 



 

Therefore, the combination of RBF and CEPT may have a synergistic effect that 80 

overcomes the limitations of separately applying both technologies. The first effect is 81 

the incapacity of RBF to achieve high COD removal efficiencies and generate suitable 82 

effluents for autotrophic nitrogen removal process, and the second effect is the large 83 

chemical doses that are required in CES processes to achieve this goal.21 84 

The objective of this study is to assess the potential of RBFs to recover COD in novel 85 

WWTP configurations via its combination with a CES. The system was technically, 86 

energetically and economically evaluated. Considering the different characteristics of 87 

RBF sludge that influence the interaction with OMPs, an additional goal is to assess 88 

their fate in RBFs and compare it with the removal in conventional and chemically 89 

enhanced primary treatment. 90 

Materials and methods 91 

RBF systems 92 

The technical performance of two RBF systems with a mesh size of 350 µm and located 93 

in the Blaricum WWTP (1,600 m3/h) and Aarle-Rixtel WWTP (2,600 m3/h) in The 94 

Netherlands was evaluated. Influent, effluent and sludge samples were collected and 95 

stored at 4 ºC in aluminium bottles prior to analysis. Wastewater samples were 96 

characterised in terms of total solids (TS, g TS/kg) and volatile solids (VS, g VS/kg), 97 

total suspended solids (TSS, g TSS/kg) and volatile suspended solids (VSS, g VSS/kg), 98 

total chemical oxygen demand (CODtot, g O2/L) and soluble chemical oxygen demand 99 

(CODsol, g O2/L), total Kjeldahl (TKN, g N-TKN/L), total ammonium nitrogen (g N-100 

TAN/L) and OMPs concentrations. Dewatered RBF sludge samples were collected in 101 



 

both WWTPs, whereas WWTP raw RBF sludge (the sludge generated in the RBF 102 

without the dewatering process) was sampled in the Aarle-Rixtel WWTP. The sludge 103 

samples were characterised in terms of TS, VS, CODtot, TKN and OMPs concentrations. 104 

Eighteen commonly employed OMPs with different physico-chemical properties were 105 

considered in this study: three musk fragrances, galaxolide (HHCB), tonalide (AHTN) 106 

and celestolide (ADBI); three anti-inflammatories, ibuprofen (IBP), naproxen (NPX) 107 

and diclofenac (DCF); four anti-biotics, sulfamethoxazole (SMX), trimethoprim (TMP), 108 

erythromycin (ERY) and roxithromycin (ROX); four neurodrugs, fluoxetine (FLX), 109 

carbamazepine (CBZ), diazepam (DZP) and citalopram (CTL); one endocrine 110 

disrupting compound, triclosan (TCS); and three hormones, estrone (E1), 17β-estradiol 111 

(E2) and 17α-ethinylestradiol (EE2). 112 

CES tests 113 

Chemically enhanced settling (CES) assays were carried out with both RBF influent and 114 

RBF effluent of the Aarle-Rixtel WWTP in a Jar-Test device with vessels that contain 1 115 

L of liquid volume following the protocol described by Carballa et al. 22, but without pH 116 

correction. The influence of the dose of ferric chloride (0-300 mg/L) on the removal of 117 

TSS, COD and OMPs was analysed at 25ºC. The test included an initial 3 min period of 118 

rapid stirring (150 rpm) after the addition of the coagulant, followed by 5 min of slow 119 

mixing (50 rpm) for emulsion breaking and floc formation and a 1 hour period without 120 

mixing for floc separation, after which 500 mL of supernatant were collected for the 121 

characterisation.  122 

Biomethane potential tests 123 



 

The biomethane potential (BMP) of the RBF sludge and of the sludges generated after 124 

RBF (settling without chemicals and chemically enhanced settling using 100 mg/L of 125 

ferric chloride) was carried out following a protocol that was described elsewhere.23 The 126 

inoculum was flocculant biomass (11.8 g VS/L) from the sludge anaerobic digester of a 127 

WWTP. 128 

The assays were conducted in 500 mL bottles (375 mL of working volume) by triplicate 129 

and were carried out with an inoculum-to-substrate ratio (ISR) in terms of VS of 2. 130 

Methane production of the blank (inoculum without substrate) was also determined by 131 

triplicate. The reactors were filled with macro- and micro-nutrient solutions, and the pH 132 

was adjusted to 7.2-7.5 with NaOH or HCl when necessary. After flushing the head 133 

space with nitrogen, the bottles were incubated at 37ºC. Accumulated methane 134 

production was monitored over time to determine the COD fraction that was converted 135 

into methane. The assays continued until the methane production during three 136 

consecutive days was less than 1% of the total production.23 Methane production by 137 

each sludge was calculated as the difference between the average production in the 138 

bottles with substrate and the average production in the blank. BMP was calculated as 139 

the experimental ultimate methane production, which was expressed in L(N)/kg VS fed, 140 

where N denotes the normal conditions (1 atm, 0ºC). Anaerobic biodegradability was 141 

expressed as the percentage of the initial COD of the substrate converted to methane.  142 

At the end of the test, bottles were opened and the pH and VFAs concentrations were 143 

measured to confirm that acidification did not occur. 144 

Solid-water distribution coefficient (Kd) tests 145 



 

A common approach to determining the fraction of OMPs sorbed onto sludge is the use 146 

of the solid–water distribution coefficient (Kd, L/kg). A spike of the 18 selected 147 

compounds was performed on raw RBF sludge at different concentrations in the three 148 

tests. Sodium azide (10 mg/L) was added to avoid biological activity. After 12 hours of 149 

mixing at room temperature to achieve equilibrium conditions, the samples were 150 

centrifuged and liquid and solid phases were separately analysed, as explained in the 151 

section analytical methods of this document. 152 

Analytical methods 153 

COD, pH, PA, TA, TSS, VSS, TS, VS, N-TKN and N-TAN were determined according 154 

to standard methods.24 Total inorganic carbon (IC) concentrations were measured with a 155 

Shimadzu analyser (TOC-5000). In BMP tests, biogas production was measured by a 156 

pressure transducer (Centrepoint Electronics) and its composition was determined by 157 

gas chromatography (HP 5890 Series II). VFAs were measured by gas chromatography 158 

with flame ionisation detection (FIC, HP 5890A).  159 

To determine the OMP concentrations in the wastewater samples, the latter were 160 

centrifuged, pre-filtered (AP4004705, Millipore) and filtered by 0.45 mm 161 

(HAWP04700, Millipore) before performing solid phase extraction (SPE) with 200 mg 162 

OASIS HLB cartridges (Waters, Milford, MA, USA), as described by  Fernandez-163 

Fontaina et al.25 The quantification of musk fragrances (HHCB, AHTN, ADBI), anti-164 

inflammatories (IBP, NPX, DCF) and endocrine disrupting compound TCS was 165 

accomplished using a gas chromatograph (Varian CP-3900) coupled with an ion trap 166 

spectrometer (Varian CG-2100). Antibiotics (ERY, ROX, SMX, TMP), neurodrugs 167 



 

(FLX, CBZ, DZP, CTL) and hormones (E1, E2, EE2) were quantified using an Agilent 168 

G1312A liquid chromatograph with a binary pump and automatic injector HTC-PAI 169 

(CTC Analytics) connected to a mass spectrometer API 4000 triple quadrupole (Applied 170 

Biosystems).26  171 

For influents and effluents, the sample volume that was analysed was 1 L, and the final 172 

volume of the extract was 3 mL, which generated an enrichment factor (concentration in 173 

the extract compared with the source) of 333 Lsupernatant/Lextract. For the liquid phase of 174 

RBF sludge, the analysed volume was 100 mL and the final volume of extract was 3 175 

mL, which yielded an enrichment factor of 33 Lsupernatant/Lextract. The limits of 176 

quantification for each case are shown in Table S1 in Supporting Information. 177 

The frozen solid phases of the influent and effluent of RBF and raw and dewatered SS 178 

were lyophilised to perform ultrasonic solvent extraction following a procedure based 179 

on the procedure described by  Alvarino et al.27 Three sequential extractions with 180 

methanol and two sequential extractions with acetone were performed on the freeze-181 

dried samples (0.5-1 g). In each extraction, samples were sonicated for 15 min and 182 

centrifuged at 1500 rpm for 5 min. The resulting supernatants were combined and 183 

filtered through glass wool. The resulting volume was evaporated to 1 mL (TurboVap 184 

LV, Biotage) flowing nitrogen (200 kPa, 30 ºC) and resuspended in 100 mL of Milli-Q 185 

water prior to SPE. SPE and OMPs quantification were performed as previously 186 

described for liquid samples. The enrichment factor was 166 gsludge/Lextract.  187 

Results and discussion 188 

Technical performance of RBF systems  189 



 

The physico-chemical characterisation of the influent and effluent of the two RBF 190 

sampled systems are shown in Table 1. Both influents showed similar average values of 191 

TSS (320 and 275 mg/L), VSS (300 and 255 mg /L), VS (600 and 570 mg/L), CODtot 192 

(680 and 600 mg O2/L), CODsol (230 and 260 mg O2/L) and TKN (87 and 75 mg TKN 193 

N/L), which is consistent with previously reported values for the Blaricum WWTP 7 and 194 

for other urban WWTPs in The Netherlands.28 Conversely, the TS concentration in the 195 

influent of the Blaricum WWTP (770 mg/L) was considerably lower than that measured 196 

in the influent of the Aarle-Rixtel WWTP (1,260 mg/L), which indicates a lower salts 197 

dissolved concentration. 198 

The removal efficiency of TSS (~50%), VSS (~50%), CODsol (~0%) and TKN (~10%) 199 

were similar in both RBF systems. Regarding CODtot, a higher removal efficiency 200 

(37%) was determined in the Blaricum WWTP than in the Aarle-Rixtel WWTP (22%), 201 

which is explained by its higher CODsol-to-CODtot ratio. The removal efficiencies 202 

determined in this study are similar to those reported by other authors regardless of the 203 

TKN,7,17 for which the removal efficiencies achieved in both scenarios were 204 

approximately 10%—a value that is slightly higher than the that reported elsewhere 205 

(~1%).7 206 

The physico-chemical properties of dewatered RBF sludge are shown in Table 2. TS 207 

(21.5-27.5%), VS (20.0-25.8%), CODtot (273-356 g O2/kg) and TKN/VS ratio (12-16 208 

mg N/g VS) are in accordance with the values reported for RBF sludge from the 209 

Blaricum WWTP 15. VS represents approximately 95% of the TS of the sludge, and the 210 

CODtot-to-VS ratio was approximately 1.3, which is in accordance with the mean values 211 



 

obtained by  Paulsrud et al.29 for 19 Norwegian WWTPs that apply RBF technology. 212 

Ghasimi et al.15 reported higher CODtot/VS ratios (1.6-1.8), which may be indicative of 213 

a lower cellulose concentration. 214 

Raw RBF sludge of the Aarle-Rixtel WWTP was ten times less concentrated than the 215 

dewatered RBF sludge, which shows similar physico-chemical characteristics (data not 216 

shown), as expected. 217 

Technical performance of CES  218 

The results of applying a CES to the influent of RBFs are shown in Figure 1. Ferric 219 

chloride was selected as a coagulant rather than aluminium salts, considering its lower 220 

price 18 and lower required doses. 22 Effluent quality that is comparable to that obtained 221 

in RBFs was obtained after conventional settling (CODtot removal and TSS removal of 222 

36-38% and 47-49%, respectively), without removal of CODsol. By the addition of 100 223 

mg/L of ferric chloride, the removal of CODtot and TSS increased to 66 and 86%, 224 

respectively. This decrease was primarily attributed to a large removal of suspended 225 

matter, considering that the maximum CODsol removal achieved did not exceed 25%.  226 

Heterotrophic denitrifiers may increase nitrogen removal efficiency in anammox 227 

reactors with low influent COD/N ratios;30 however, system failure was reported with 228 

COD/N ratios higher than 2 due to the growth of fast-growing heterotrophic denitrifiers, 229 

which compete with the slow-growing anammox bacteria for nitrite.31 To fulfil this 230 

condition, the required ferric chloride dose should be increased to 300 mg/L, which is 231 

similar to that reported by Carballa et al. 22 232 

Technical performance of combined RBF and CES technologies 233 



 

RBFs are suitable to partial removal of CODpart from wastewater but they are unable to 234 

remove CODsol. CES enables complete removal of CODpart and partial removal of 235 

CODsol with a requirement of high chemical doses. Thus, the combination of RBF and 236 

CES was analysed (Figure 2) to attempt to overcome the limitation of both technologies 237 

and compare with the CES system (Figure 1). 238 

The combination of RBF followed by settling without chemicals addition produced a 239 

removal of almost 100% of the CODpart of wastewater, whereas 50% of removal was 240 

achieved when the test was carried out for the RBF influent (Figure 1), which may 241 

indicate that the presence of cellulose in wastewater limits the settlement of other 242 

suspended solids due to its tendency to float. CODsol remained unaffected. When 100 243 

mg/L of ferric chloride were added, CODpart was totally removed, which generates an 244 

effluent with approximately 10 mg TSS/L, and more than 50% of CODsol was removed 245 

(Figure 2), which accounts for CODtot removal of 84%. To obtain comparable results 246 

without an RBF system, a considerably higher dose of FeCl3 (approximately 300 mg/L) 247 

was needed (Figure 1).  248 

Note that a side effect exists of the addition of the coagulant on the alkalinity, with a 249 

consumption of 22 mg IC for each 100 mg of FeCl3.
32

 Taking into account that the 250 

further PN-anammox step requires a minimum alkalinity-to-ammonium ratio of 1-1.25 251 

g IC per g NH4
+-N,33 the need for an external bicarbonate addition to avoid acidification 252 

in the PN-anammox unit, which considers an ammonium concentration of 67 mg NH4
+-253 

N/L (Table 1), would be much higher if the RBF system is not present.  254 

Biomethane potential of the sludges 255 



 

Figure 3 shows the results of the BMP tests of RBF sludge, which comprise the sludges 256 

generated after RBFs (settling without chemicals and settling with the addition of 100 257 

mg/L of ferric chloride). Three of the sludges showed similar methane production rates 258 

and needed 26 days to complete the test, following the criteria proposed by Holliger et 259 

al. 23 The neutral pH values (7.3-7.7) and the absence of VFA (<2.5 ppm acetic acid) at 260 

the end of the tests (data not shown) indicated that the performance of the tests was 261 

adequate and acidification did not occur. 262 

Dewatered RBF sludge showed the highest BMP value (386 L(N) CH4/kg VS), which is 263 

consistent with other results in the literature.29 However, the anaerobic biodegradability 264 

(80%) was higher than that the obtained by Ghasimi et al. 15 (64%), which is explained 265 

by its lower CODtot/VS ratio. 266 

The sludges generated during conventional settling and CES after RBF showed similar 267 

BMP values (327 L(N) CH4/kg VS and 310 L(N) CH4/kg VS, which corresponds to 268 

60% of anaerobic biodegradability and 58% of anaerobic biodegradability, 269 

respectively), but values lower than those for dewatered RBF sludge. These values are 270 

comparable to those reported for conventional primary sludge (259-325 L (N) CH4/kg 271 

VS).29 Thus, the installation of RBFs seems to not affect the BMP of sludge obtained by 272 

conventional settling, which may be explained by the low proportion of cellulose 273 

recovered in the latter system.7 The similar results obtained for both sludges do not 274 

agree with those obtained by Kooijman et al.,34 who reported an important increase in 275 

the BMP of the sludge generated during CES compared with conventional settling due 276 

to the higher readily degradable biomass removed by flocculation. However, Romero-277 



 

Güiza et al. 35 reported that Fe3+ reduction can limit the conversion of organics to 278 

methane as Fe3+ reduction is more thermodynamically favourable than methanogenesis. 279 

The data from the BMP test and the results of the CES tests enabled calculation of the 280 

methane production of each sludge in relation to the COD recovery in each treatment 281 

step. RBF enables a very limited energy recovery (62 L(N) CH4/kg CODinfluent), which 282 

is explained by lower CODtot recovery compared with that of other tested technologies 283 

(Figure 2).  284 

The system RBF followed by settlement without chemicals enabled an increase in the 285 

energy recovery to 85 L(N) CH4/kg CODinfluent). However, the highest energy recovery 286 

was achieved with the combination RBF and CES with 100 mg/L of ferric chloride, 287 

which boosted it to 122 L(N) CH4/kg CODinfluent due to the higher COD capture 288 

determined with the addition of chemicals (Figure 1). 289 

Fate of organic micropollutants in the RBF and CES systems 290 

The concentrations of the 18 selected OMPs in the influent of both RBF systems are 291 

reported in Table S2. The highest concentrations of OMPs in both WWTPs were 292 

observed for the anti-inflammatories IBP and NPX (3.47-4.89 µg/L), although DCF was 293 

not detected in either of the two WWTPs. These concentrations are consistent with other 294 

concentrations in the literature. 13,36,37 Musk fragrances (HHCB, AHTN and ADBI) and 295 

the endocrine-disrupting compound TCS were detected in the range 0.95-2.16 µg/L, in 296 

accordance with other authors.36,38,39 The four antibiotics (SMX, TMP, ERY, and ROX) 297 

and the four neurodrugs (FLX, CBZ, DZP and CTL) were detected in the influent of 298 

Blaricum WWTP, whereas SMX and ROX were not detected in the Aarle-Rixtel 299 



 

WWTP. In general, the measured concentrations (LOD-235 ng/L) were in the lower 300 

range of the literature. 36,37,39,40 This fact can be explained by the fact that the 301 

Netherlands has the lowest human antibiotic consumption rate of Europe.41 The 302 

concentrations of hormones ranged between LOQ and 57 ng/L, which is the same range 303 

of those reported in the literature).39 304 

The OMP removal efficiencies achieved in the different evaluated systems (RBF, CPT, 305 

and RBF+CES using 100 mg/L of ferric chloride and CES using 300 mg/L of ferric 306 

chloride) are shown in Figure 4. Only fragrances and TCS were removed in a significant 307 

percentage in the evaluated scenarios. In the RBFs of the Blaricum WWTP (WWTP 1), 308 

the removal efficiencies of HHCB, AHTN and ADBI were 39%, 46% and 34%, 309 

respectively, and 45% for TCS. In the RBFs of the Aarle-Rixtel WWTP, the determined 310 

removal efficiencies of HHCB, AHTN and ADBI were slightly higher (53%, 54% and 311 

44%, respectively). TCS was not detected in this WWTP. In conventional settling of the 312 

Aarle-Rixtel WWTP (WWTP 2), the elimination of HHCB, AHTN and ADBI were 313 

54%, 56% and 45%, respectively, compared with those obtained during CPT of hospital 314 

wastewater.42 Thus, no difference was found between RBF and CPT. These results can 315 

be explained by the similar removal efficiencies of TSS that are achieved in both 316 

systems and the similar affinity of these OMPs to the solid phase of conventional 317 

primary and RBF sludges, which is confirmed by the results of the solid-liquid 318 

distribution coefficients (Figure S1) and the comparable concentration of these OMPs in 319 

both sludges (in Supporting Information S3, a detailed discussion is included). In the 320 

Aarle-Rixtel WWTP (WWTP 2), the combination of RBF and CES enabled 321 



 

improvement in the removal efficiencies of HHCB and AHTN to 96% and 322 

improvement in the removal efficiency of ADBI to 75%, which is similar to those 323 

achieved in the CES. For the remaining OMPs, the elimination of different RBF 324 

systems ranged from -8 to 14% (Figure 3). The increase in concentration of some OMPs 325 

was likely attributed to the analytical deviation caused by the distinctive characteristics 326 

of the wastewaters. These results show agreement with the literature.13,42,43  327 

It seems to be a consensus in the literature that most OMPs are poorly removed during 328 

coagulation–flocculation processes, however, some exceptions such as musks, a few 329 

pharmaceuticals (e.g. DCF) and nonylphenol were found.39 Moreover, some authors 330 

reported that the different composition of wastewater can play a major role on OMPs 331 

removal during CES. For example, high fat content in wastewater was reported to 332 

improve the removal of hydrophobic compounds. 42 Dissolved humic acid could also 333 

enhance the elimination of some pharmaceutical compounds, such as DCF or IBP.44 On 334 

the contrary, the presence of CODsol, especially low-molecular-weight fractions, can 335 

possibly inhibit the OMPs removal due to the preferential removal of CODsol through 336 

coagulation. Negatively charged CODsol could react with positively charged coagulants, 337 

leading to a less amount of coagulant available for elimination of OMPs.45 338 

Although the system RBF+CES of the proposed alternative did not enable extra 339 

removal of hydrophilic compounds compared with conventional settling, it enabled an 340 

increase in the removal efficiency of hydrophobic compounds, which achieved results 341 

that were as good as those obtained in the CES with higher doses of ferric chloride.  342 

Energetic and economic assessment of the proposed WWTP configuration  343 



 

Among the evaluated alternatives, the combination of RBF and CES drove the 344 

maximum energy production with the lowest ferric chloride and alkalinity consumption 345 

and to the highest OMPs removal. Figure 5 shows a comparison of this alternative with 346 

the conventional WWTP scheme in terms of energy production/consumption. 347 

In conventional WWTPs, aeration usually consumes the largest energy fraction 348 

(maximum of 70%),4,46 which causes a total energy consumption of wastewater in the 349 

range 0.6-1.2 kWh/kg CODtot, with an average value of 0.9 kWh/kg CODtot.
47 350 

Therefore, the treatment of 0.54 kWh/m3 wastewater is needed, considering 0.6 kg 351 

CODtot/m
3 for the Aarle-Rixtel WWTP (Table 1), in accordance with other reported 352 

values in the literature.48 The potential energy in typical domestic wastewater has been 353 

estimated as 4.5 kWh/kg CODtot in the influent 5,49, and the CODtot transformed into 354 

methane usually does not exceed 30%, 50,51 of which a maximum of 35% is converted to 355 

electricity via its combustion.47 As approximately 0.47 kWh per kg of CODinfluent are 356 

commonly recovered, a maximum of 50% of self-produced energy can be achieved 357 

(Figure 5a). Considering an electricity cost of 0.12 €/kWh,52 a treatment cost of 0.031 358 

€/m3 for treated wastewater is estimated. 359 

In the proposed scenario (Figure 5b), the electricity demand of the PN-anammox unit 360 

was considered to be 60% of the nitrification-denitrification electricity demand, 361 

according to  Schaubroeck et al.,51 which yielded 0.23 kWh/m3 of treated wastewater. 362 

The maximum electricity consumption of RBF was reported to be approximately 0.04 363 

kWh/m3,54 and the costs due to pumping and sludge treatment were assumed to be 0.17 364 

kWh/m3, which is equivalent to those in conventional configurations 47. Thus, the 365 



 

electricity demand was 0.44 kWh/m3, which is 19% lower than that in the conventional 366 

configuration (0.54 kWh/m3). The combination of RBF followed by CEPT enabled 84% 367 

recovery of the CODtot of the influent as sludge (Figure 2). During AD, 52% of the 368 

influent COD was transformed into methane and yielded electricity generation of 0.82 369 

kWh per kg of CODinfluent (0.49 kWh/m3 of wastewater treated), which almost doubles 370 

the electricity generation in the conventional WWTP. This fact and the lower electrical 371 

requirements of this configuration enable an electrical self-production of 100-110%. 372 

To calculate the operational costs associated with chemical addition, the FeCl3 price 373 

was estimated at approximately 220 €/ton 18 and the sodium bicarbonate price was 374 

estimated at approximately 200 €/ton (1,400 €/ton IC). Two different scenarios were 375 

evaluated: in the first scenario, the alkalinity of wastewater was assumed to be 376 

sufficiently high bear the consumption produced in CES; thus, the influent to the PN-377 

anammox would have an appropriate alkalinity-to-ammonium ratio; in the second 378 

scenario, an external alkalinity addition as sodium bicarbonate was considered to 379 

compensate its consumption in the CES stage. The first scenario yielded a treatment 380 

cost that was 29% lower than the treatment cost in the conventional WWTP (0.022 381 

versus 0.031 €/m3). In the second scenario, the calculated treatment costs increased to 382 

0.053 €/m3; thus, it was distinctly uncompetitive compared with the conventional 383 

WWTP. 384 

Conclusion 385 

The implementation of rotating belt filters before chemically enhanced settling was 386 

proven effective for generating suitable effluents for a nutrient removal stage, 387 



 

maximising the energy recovery via the anaerobic digestion of the generated sludges, 388 

attaining 110% of the electrical autarky and achieving OMP removal that is as 389 

substantial as that obtained in chemically enhanced settling, and decreasing the required 390 

dose3-fold. However, a minimum alkalinity level in wastewaters was shown  mandatory 391 

to consider this WWTP configuration as more economically favourable with respect to 392 

the conventional WWTP configuration.  393 
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Table legends 483 

Table 1. Physicochemical characteristics of influent and effluent in rotating belt sieves 484 

from Blaricum and Aarle-Rixtel wastewater treatment plants (n=3). 485 

Table 2. Physicochemical characteristics of dewatered sieved sludge generated in 486 

rotating belt sieves of Blaricum and Aarle-Rixtel wastewater treatment plants (n=3). 487 

Table 3. Calculated electricity and chemical operational costs of the proposed WWTP 488 

configuration.  489 



 

Figures captions 490 

Fig. 1. Influence of ferric chloride dose on the removal of soluble ( ) and particulate 491 

( ) COD and TSS ( ) on raw wastewater of Aarle-Rixtel WWTP. 0 mg FeCl3/L refers 492 

to conventional settling without chemicals. 493 

 

Fig. 2. Influence of ferric chloride dose on the removal of soluble ( ) and particulate 494 

( ) COD and TSS ( ) on the RBF effluent of wastewater of Aarle-Rixtel WWTP. 0 mg 495 

FeCl3/L refers to conventional settling without chemicals. 496 

 

Fig. 3. Average BMP results of dewatered sieved sludge ( ), conventional settling 497 

sludge after RBF ( ) and chemically enhanced settling sludge after RBF ( ). 498 

 

Fig. 4. Removal efficiencies of the organic micropollutants in RBF system in WWTP 1 499 

( ), in RBF in WWTP 2 ( ), in CPT in WWTP 2 ( ), RBF + CES in WWTP 2 ( ), 500 

and CES in WWTP 2 ( ). 501 

 

Fig. 5. COD balance (in relation to 1 kg in the influent) and energy flows for the 502 

traditional WWTP configuration (adapted from Wan et al. 50) and the proposed WWTP 503 

configuration. * Represents the energy required for sludge management and pumping, 504 

 Refers to energy inputs for the wastewater treatment.  505 



 

Table 1 506 

 Blaricum WWTP WWTP Aarle-Rixtel 

 Influent Effluent Influent Effluent 

TS (mg/L) 770 ± 30 610 ± 20 1260 ± 0 1140 ± 10 

VS (mg/L) 600 ± 20 440 ± 20 570 ± 5 450 ± 20 

TSS (mg/L) 320 ± 10 160 ± 0 275 ± 5 145 ± 10 

VSS (mg/L) 300 ± 20 150 ± 0 255 ± 10 130 ± 5 

CODtot (mg O2/L) 680 ± 10 440 ± 10 600 ± 30 470 ± 10 

CODsol (mg O2/L) 230 ± 10 220 ± 10 260 ± 20 240 ± 10 

TKN-N (mg/L) 87 ± 2 75 ± 1  75 ± 4 69 ± 6 

TAN-N (mg/L) nd nd 67 ± 3 61 ± 4 

TS: total solids; VS: volatile solids; TSS: total suspended solids; VSS: volatile 507 

suspended solids; COD: chemical oxygen demand; TKN-N: total Kjeldahl nitrogen, 508 

TAN-N: total ammonium nitrogen, n.d.: not determined. 509 

  510 



 

Table 2 511 

 Blaricum WWTP Aarle-Rixtel WWTP 

TS (g/kg) 215 ± 10 279 ± 10 

VS (g/kg) 200 ± 10 261 ± 10 

CODtot (g/kg) 273 ± 18 350 ± 20 

TKN-N (g/kg) 3.3 ± 0.2 4.2 ± 0.1 

TS: total solids; VS: volatile solids; CODtot: total chemical oxygen demand; TKN: total 512 

Kjeldahl nitrogen. 513 



 

Table 3 514 

 Alkalinity supply No alkalinity supply 

Electricity requirements (kWh/m3) 0 0 

Ferric chloride dosage (kg/m3) 0.1 0.1 

Alkalinity supply (g IC/m3) 0.022 0 

Ferric chloride cost (€/m3) 0.022 0.022 

Sodium bicarbonate cost (€/m3) 0.031 0 

Operational costs (€/m3) 0.053 0.022 
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Figure 2 516 
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