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Glossary

N: Set of natural numbers, that is, {1,2,... }.

Z: Set of integer numbers.

R: Set of real numbers.

R*: Set of positive real numbers.

R: Extended real line, that is R = [—00, 00].

C(I) = C(I,R): Space of continuous real functions defined on an interval I.

C™"(I) =C"(I,R), n € N: Space of n-times differentiable real functions defi-
ned on an interval I such that the j-th derivative is continuous for j = 0, ..., n.

C>°(I) = C>=(1I,R): Space of infinitely differentiable real functions defined on
an interval I.

C™"(R, R): Space of n-times differentiable real functions with real limits at 400,
that is,

C”(R,R):{f:]R—)R: flreC*(R,R), Eltliim FOM) eR, j :0,...,n}.
—>00

5;: Space of continuously n-differentiable p-extensions to infinity:

C=CoR.R) = {f € C"(R,R): I[ € C"(RR), f = ¢ lr}.

L*(I), 1 < a < oo: Space of the measurable functions f on the interval [
such that the Lebesgue integral of | f|* is finite.

| fllas 1 < @ < oot Norm of f in the space L*(I), that is,

11 = [ 1500 at)

Q|
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L>°(I): Space of the measurable functions f on the interval I such that are
essentially bounded.

|| flloo: Norm of f in the space L°°([I), that is,

[ flloo = sup {[f (1)), t € I}

AC(I): Space of absolutely continuous functions, that is,

AC(I):{u cC(I): IfeLNI), u(t) = u(to) + tf(s)ds, t, to € I}.

WHP(I), k,p € N: Sobolev space k — p on the set I, that is,

WhP(I) = {u eI w*D e Ac(l), u® e LP(I)} .

ay: Positive part of a : X — R, thatis, a4 (t) = max{a(t),0}.
a_: Negative part of @ : X — R, thatis, a_(t) = max{—a(t),0}.

a*: Conjugate of the real number o« > 1, that is, the real number such that
é + i = 1. If &« = 1 then @® = oo and vice-versa.

a>0:a€LYI)suchthata(t) > O0fora.e.t € [anda# Oon I.
Q: Closure of the set €.

0f): Boundary of the set 2.

ir (T, Q): Index of operator 7T relative to €2 in the cone K.

r(T): Spectral radius of operator 7.

w(T): Principal characteristic value of operator 7.
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Preface

Differential equations represent one of the strongest connections between Mat-
hematics and real life. This is due to the fact that almost all the physical phenomena,
as well as many other in economy, biology or chemistry, are modelled by differential
equations. This seems thus a good reason to dedicate our efforts to trying to solve
this kind of problem:s.

In particular, we will analyze the qualitative properties of the solutions of nonli-
near equations, focusing on the study of constant sign solutions on the whole domain
of definition or, at least, on some subset of it. The interest of this property is due to
the fact that many of the physical magnitudes which appear in differential problems
can not take negative values (typical examples would be pressure, power or tempera-
ture in Kelvin degrees). Moreover, in many problems in engineering, models study
the deviation of certain structures from their equilibrium point. In this context, if
we want to maintain the structure stable, the deformation must occur always in the
same direction, which, mathematically speaking, means that the solution must have
constant sign.

The most common techniques to ensure the existence of solution for these pro-
blems are based on the construction of an abstract formulation included into functio-
nal analysis, in which the solutions of the differential equations coincide with either
the fixed points or the critical ones of certain operators. In this Thesis, we will work
with the first method, constructing integral operators which will be determined by
some kernel related to the linear part of the equation. This kernel is the so-called
Green’s function.

In many of the cases, operators will be defined in subsets called cones, which will
let us transfer the properties of the Green’s function to the solutions of the considered
problem. This fact lets us intuit now the importance that the study of the properties of
linear problems (and, specially of Green’s functions) has on the research concerning
nonlinear ones.

The present Thesis is divided into two parts, which deal with differential pro-
blems on bounded and unbounded domains, respectively. It contains most of the
work developed by the author in the last years. All these discoveries appear in several

VII
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publications which the reader may consult, namely [22,23,27,31-34,102,103,131].

VIII



Summary

The present Thesis, compiled under the title “Nonlinear differential equations on
bounded and unbounded domains”, contains almost the whole work developed by
the author during the last years.

It is divided into two parts: the first of them, which comprises six chapters, co-
vers the study of boundary value problems defined on bounded intervals, as well as
the more general case of Hammerstein integral equations. The second part, which
comprises three chapters, is focused on the study of both differential and integral
problems defined on unbounded domains.

It should be noted that, although the title only mentions nonlinear differential
equations, the first chapters of the Thesis will be devoted to the study of linear boun-
dary value problems. This is due to the fact that the properties of these linear pro-
blems, and particularly those of the related Green’s function, will determine the best
way to approach the search for solutions of nonlinear problems.

We include now a brief summary of the main results given in each chapter.

Chapter 1: Preliminary Results

For the purpose of writing a self-contained work, this chapter compiles some
preliminary results which will be used throughout the remaining of this Thesis.

First, in Section 1.1, we introduce the definition and main properties of the Green’s
function. As we will see, this function is a very powerful tool to study both linear and
nonlinear differential problems. This is due to the fact that every differential problem
can be transformed into an equivalent integral one of which the kernel is, precisely,
the aforementioned Green’s function.

This way, the problem of finding solutions of differential problems will naturally
lead to the more general framework of finding fixed points of integral operators. It
is in this context where the results ensuring the existence of fixed points of arbitrary
compact operators defined in Banach spaces acquire great importance. Some of these
results are collected in Section 1.2, namely the very well-known Schauder’s Fixed
Point Theorem and the classical fixed point index theory (which, following the line
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of [64], is introduced for arbitrary open sets, which might be unbounded).

Finally, another important tool that we will use in this Thesis to study properties
of linear operators is spectral theory. In particular, this theory combined with the
fixed point index results, makes it possible to prove the existence of solutions of
certain integral problems. Basic results regarding spectral theory are compiled in
Section 1.3.

Chapter 2: Green’s Functions and Spectral Theory for Even
Order Linear BVPs

This chapter contains a fully detailed study of even order linear boundary value
problems. In particular, we study problems related to the following operator coupled
with various boundary conditions:

Lu(t) =ul™(t) + agn-1 () u®" 7D (@) +- - + a1 (t) /(1)
+ao(t)u(t), tel=][0,T],
where a, : I - R, ap € L¥(I), a > 1,k=0,...,2n — 1.
From this operator we will define two more, concretely
Lu(t) = u®(t) + agn_1 (&) w7 (t) + dgn_s(t) u®*~2(t)
+ -t ar (D) (t) + apt)u(t), teJ=][0,2T],
where ag is the even extension of agy, to the interval J and agg+1 1s the odd extension

of aggy1to J,fork =0,...,n—1,and

Lu(t) =u®(t) + b1 (£) u V() + fgn_o(t) u®=D(2)
+oan () /() + dolt)ult), te0,4T),

where gigk and éng are the even and odd extensions to the interval [0,4 T of aoy
and aoy41, respectively, fork =0,...,n — 1.

The main idea of this chapter consists of expressing the Green’s function of each
Neumann, Dirichlet and mixed problems related to operator L as a sum of Green’s
functions of periodic and antiperiodic problems related to L. This way, the following
equalities are proved:

GNIT|(t,s) = Gp2T)(t,s) + Gp2T)(2T — t,s), Y (t,s) el x1I,
GplT|(t,s) = Gp[2T](t,s) — Gp[2T|(2T —t,s), VY (t,s) el x]I,
G, [T)(t,8) = Ga[2T)(t,8) — Ga[2T)(2T — t,5), V(t,s) €l xI,
G [T)(t, s) = GA2T|(t, 8) + GART]2T — t,5), V(t,s) €l xI,




Summary

where GN[T], Gp[T], G, [T] and Gy, [T'] denote, respectively, the Green’s functi-
ons of Neumann, Dirichlet and mixed problems related to operator L. Analogously,
Gp[2T] and G 4[2T] denote the Green’s functions of periodic and antiperiodic pro-

blems related to L.
Something similar can be done to decompose all the previous Green’s functions

as a linear combination of the one related to the periodic problem associated to L
evaluated in different points.

Since the Green’s function is a fundamental tool for studying both linear and
nonlinear problems, being able to relate different Green’s functions will let us relate
also the spectra and the solutions of the different problems.

First, the previous expressions provide a direct relation between the spectra of
the considered problems. In particular, we deduce various decompositions of some
spectra as the union of others. Moreover, we also obtain a certain order relation
between the first eigenvalues of each problem.

On the other hand, we are also able to deduce that the constant sign of one Green’s
function implies the same constant sign of another one. This can be seen in the
following result.

Corollary 1 (Corollary 2.4.1). The following properties hold for any coefficients
ag,...,Qa9n—1 € Ll(I).'

1. IfGp2T] < 0on J x J, then GN[T] <0on I x I.
IfGp2T] > 0on J x J, then GN[T] > 0on I x I.
IfGN[2T) <0onJ x J, then GN[T] <0on I x I.
IfGN[2T) > 0on J x J, then GN[T] > 0on I x I.
IfGp[2T] <0on J x J, then Gy, [T] <0on I x I.

S

IfGp[2T] > 0on J x J, then Gy, [T] > 0on I x 1.

With respect to previous corollary, it must be pointed out that it can be improved
for order n = 1, something that will be done in Chapter 3. On the other hand, it is
proved in this chapter that the converse of Assertions 1 and 2 holds when all of the
coefficients ag, . . ., a0, 1 are constants, whereas the converse of the other assertions
does not hold, not even in the constant case, for n > 1. Moreover, a counterexample
is given to show that the converse of Assertion 2 is not true in general for n > 1.
Finally, it remains as an open problem to see if Assertion 1 is an equivalence or not
when n > 1.

Finally, in Section 2.5, under the assumption of constant sign of some Green’s
function, we obtain some point by point inequalities between two different Green’s
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functions. This lets us deduce that the solution of the problem under certain boundary
conditions is smaller at every point than the solution of another problem with the
same operator but different boundary conditions.

The results in this chapter are compiled in [31].

Chapter 3: Second Order Equation

This chapter considers the problem studied in Chapter 2 in the particular case of
the second order equation (that is, we will take n = 1).

The reason why this case is studied independently from the general one is the
fact that, when working with second order differential equations, it is possible to use
Sturm-Liouville’s theory. This theory, which does not hold for differential equati-
ons of higher order, provides some properties of oscillation of the solutions of the
equations. This will let us obtain stronger results than in previous chapter.

In this chapter, two different problems are considered. First, in Section 3.2, we
study the problem related to Hill’s operator

Lu(t) =u"(t) +a(t)u(t), tel.

This will be a particular case of operator L given in Chapter 3 for n = 1 and a; = 0.
We note that the fact of considering a; = 0 is not an important loss of generality in
the results as every second order differential equation written in the form

u”(t) + a1 (t) W' (t) + ap(t) u(t) = 0,

can be transformed into a Hill’s equation through a suitable change of variable, as
long as the coefficients ag and a; have enough regularity.

The results obtained in this section are more powerful than the corresponding
ones given in Chapter 3. An example which illustrates this is the following theorem
in which we relate the constant sign of different Green’s functions.

Theorem 2 (Theorem 3.2.22). For any a € L(I) the following properties hold:

1. Gp[2T] < 0on J x Jifand only if GN[T] < 0 on I x 1. This is equivalent
to GN[2T) < 0on J x J.

2. Gp[2T] > 001 (0,2T) x (0,2T) ifand only if Gx[T] > 0 on (0, T) x (0, T).
IfGN[2T] > 00n (0,2T) x (0,2T) then GN[T] > 00n (0,T) x (0,7).
IfGp2T] <0onJ x Jthen Gp[2T] < 0on (0,2T) x (0,27).

“nh W

IfGp[2T] >00n(0,2T) x (0,2T) then Gp[2T]) < 00n (0,2T) x (0,2T).
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6. If GN[T) (or, equivalently, Gp[2T)]) has constant sign on I x I, then Gp[T] < 0
on (0,T) x (0,T), Gu,[T] < 0o0n[0,T) x [0,T) and Gp,[T] < 0 on
(0,77 > (0, 7.

7. Gp[2T) < 00n(0,2T)x(0,2T) ifand only if Gpr,[T] < 00n (0,T] % (0, T.

8. Ifeither G, [T) < 0o0n (0,7] % (0,T] or Gpp [T] < 00n [0,T") x [0,T), then
GplT] <00n (0,T) x (0,7).

In the same way, the point by point inequalities between various Green’s functi-
ons are also more precise, which implies that we obtain more precision when it comes
to compare the solutions of different problems. Thus, while in the previous chapter
we were only able to ensure that the solution of a problem was smaller at every point
than the solution of another one, now we will ensure also that both solutions have
constant sign.

Moreover, whereas in the previous chapter we could only establish a certain order
relation between the first eigenvalues of each problem, we prove in this chapter an
alternation between all the eigenvalues of all the considered problems.

Finally, we consider some explicit criteria to ensure the constant sign of the
Green'’s function of the periodic problem and, using the relations between different
Green’s function, we will adapt them to the rest of the considered boundary value
problems.

On the other hand, Section 3.3 deals with the general second order equation given
in self-adjoint form, namely

(pu') (t) + a(t)u(t) = a(t), aetel,
withp > Oa.e. t € I, % € L*(I) and @ and & such thatép%, 6pa771 € L*(I), for
some « € [1, 00].

We prove in this section that the Green’s function of any boundary value problem
related to the previous equation can be expressed in terms of the Green’s function
related to the Hill’s operator coupled with the same boundary conditions. As a con-
sequence, all the results obtained in the previous section can be adapted to this more
general framework.

This chapter collects results from [22] and [23].

Chapter 4: Solutions for Even Order Nonlinear BVPs with
Constant Sign Green’s Functions

This chapters considers, for the first time in this Thesis, nonlinear boundary value
problems.
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In particular, we will consider nonlinear problems that fulfil the following scheme
Lu(t) = f(t,u(t)), tel, welX,

being L the 2n-th order general linear operator defined in Chapter 3.

On the other hand, we will consider X C W?2™!(I), a Banach space where the
boundary conditions are included and on which L is nonresonant.

Under these conditions, it occurs that the solutions of the previous boundary value
problem correspond to the fixed points in X of the following integral operator

T
L u(t) = / GIT)(t, 5) f(s,u(s)) ds,
0

begin G[T] the related Green’s function.

The technique that we use to ensure the existence of fixed points of this integral
operator is the lower and upper solutions method.

The main novelty of our approach with respect to previous works is the fact that
we are able to ensure the existence of solution of the problem using a pair of lower
and upper solutions of a different problem (composed by the same operator coupled
with different boundary conditions). This is possible thanks to the point by point
relations between Green’s functions which were proved in Chapters 2 and 3.

Moreover, it must be pointed out that one of the basic hypotheses for this chapter
is the constant sign of the Green’s functions.

Results in this chapter can be seen in [31].

Chapter 5: Positive Solutions for Nonlinear Second Order
BVPs with Sign-Changing Green’s Functions

This chapter is devoted to the study of the existence of constant sign solutions of
a boundary value problem of order two related to Hill’s operator in the case where,
contrary to what happened in the previous chapter, the Green’s function changes its
sign.

The basic idea behind the method developed in this chapter is based on the fact
that, even if the Green’s function changes sign, it is possible to ensure that the integral
of this function multiplied by the eigenfunction related to the first eigenvalue of the
problem is positive.

We will present the following reasoning in terms of the periodic problem, but we
note that it is equally valid for any other boundary condition.

Consider then the following periodic boundary value problem

{u”(t) +a(t)u(t) = f(t,u(t)), tel,
w(0) = u(T), u'(0) = u'(T),
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and let Gp and vp be the related Green’s function and the eigenfunction associated
to the first eigenvalue, respectively. Then it holds that

T
/ Gp(t,s)vp(s)ds >0 forallt e I,
0

which justifies that the following constant is well-defined

T
o = inf OTG;(t’ s)vp(s) ds
tel [ Gp(t,s)vp(s) ds

(>1).

Moreover, consider the following hypotheses:
(Hy) f:1x[0,00) — [0, 00) satisfies L' -Carathéodory conditions.
(H2) There exist two positive constants m and M such that
mop(t) < f(t,x) < Mop(t)

for every t € I and x > 0. Moreover, these constants satisfy that %

<.

(H3) There exists [¢,d] C I such that fcd Gp(t,s)dt > 0, for all s € I and
fcd Gp(t,s) dt > 0, forall s € [¢,d].

Then, if the previous conditions hold and the Green’s function changes its sign,
it is proved that there exists a solution in the cone

T
K:{UEC(I,R): uZOonI,/ u(s)dsEaHuH},
0

where
B n

max {Gp(t, )}

and

d
7 = min {/ Gp(t,s) dt} > 0.
s€le,d] c

Note that this solution is nonnegative.
All the results in this chapter are collected in [27].
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Chapter 6: Existence and Multiplicity Results for some Ge-
neralized Hammerstein Equations with a Parameter

This chapter considers integral problems, defined on Banach spacers, which are
called generalized Hammerstein equations.

In particular, we will study the existence and multiplicity of fixed points of the
following integral operator

T
Tu(t):)\/o k(t,s) f(s,u(s), W' (s),...,u™(s))ds, tel, (1)

where A > 0 is a positive parameter, k : I x I — R is a kernel function which satisfies
certain regularity conditions, m is a positive integer and f : I x R™T! — [0, +00)
is an L!'-Carathéodory function.

This chapter generalizes several results existing in the literature by weaken the
conditions that the kernel function must satisfy. Concretely, the kernel and some of its
derivatives (not necessarily all of them) will be required to be positive only on some
subintervals of I. These subintervals may in fact be degenerated, that is, reduced to a
single point.

On the other hand, we will look for kernels for which some derivatives (again,
not necessarily all of them) satisfy the following inequalities:

Ik
ngj(t’s) < ¢;(s) forallt € [¢cj,d;] and a.e. s € I,
and ,
Ik
%(t,s) > & pj(s) forallt € [aj,bj]and a.e. s € 1,

begin ¢; some integrable functions and {; some constants. It is worth mentioning
that the intervals [a;, b;] and [c;, d;] must have nonempty intersection but may be
different or, even, non comparable.

Under several hypotheses (see (H)—(H?7) in Section 6.2), we are able to prove
the existence of fixed points of the considered integral operator in the cone

uweC™I,R): uD(t)>0,temin, ie o

K= . ,
- Dy > MW 1. ieT
i u ) > & lulie; a0, 7 € N1
where
() — (4)
4y qy = e [u @)
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J={0,1,...,m}and J; C Jy C J, J; # . To the best of our knowledge this
type of cones is new in the literature.

Regarding the techniques used to prove the existence of fixed points, we use two
different ones. First, in Section 6.3, the existence of a fixed point is proved by means
of the fixed point index defined on arbitrary open sets (some of which are unbounded).
On the other hand, in Section 6.4, we give some results of existence and multiplicity
of solutions. These results are also based on the fixed point index, considered now
on open and bounded sets.

The main difference between both sections is that the hypotheses the nonlinearity
f must satisfy are not the same and, in fact, Section 6.5 shows some examples which
prove that both methods are not comparable.

Next, Section 6.6 presents an application of the previous results to guarantee the
existence of solution of Dirichlet problems of arbitrary even order

u®(1) = f (Ll u®00), refo)

This study generalizes the previous ones in the literature since in this type of pro-
blems a usual hypothesis is that the function f may depend only on the even order
derivatives, while in this chapter we admit the dependence on any derivative up to
order 2n — 1.

Finally, Section 6.7 considers the particular case of the following differential pro-
blem of third order

{ —uB® () = A f(t, u(t), W'(@t), u"(t)), telo1],
u(0) = '(0) =0, /(1) =au'(n),

where0 <n<landl < a< % are given constants.
Results in this chapter can be found in [32] and [102].

Chapter 7: On Multi-Point Resonant Problems on the Half
Line

In this chapter we will consider for the first time a problem defined on an un-
bounded domain.

Concretely, we will prove the existence of bounded solutions for the following
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multi-point boundary value problem

u'(t) = f(t,u(t), u'(t), t€][0,00),

m—1
u(0) =0, u/( Z a;u'(
=1
where o; > 0and 0 = &; < -+ < &1 < +o00. In particular, we will assume that

the coefficients «; satisfy the following condition

which implies that the problem is resonant.

To solve this problem we will consider a modified one (which we will construct
by adding new terms at both sides of the equation) which will be equivalent to the
first one and nonresonant. This modified problem will be transformed into an integral
one of which the fixed points will correspond to the solutions of the initial problem.
Concretely, the integral problem with which we will work is

_ / G(t, 5) (f (8 uls),4()) + k'(s) + Mu(s)) d s,
0
where G denotes the Green'’s function of the problem

u’(t) + ku'(t) + Mu(t) =0, te][0,00),

m—1
u(0) =0, v/(+00) = > /(&)
=1

and k and M are two positive constants satisfying certain conditions.

Moreover, the modified problem will satisfy another important problem: its rela-
ted Green’s function will belong to the space L1[0, 0c0) N L>°[0, 0o). This will imply
that the integral operator is compact if the nonlinearity f satisfies either L' or L>°-
Carathéodory conditions. Note that this fact makes it possible to ensure the existence
of solution for a bigger set of problems since, as we are working with an unbounded
domain, the spaces L![0, 00) and L>°[0, co) are not comparable.

Finally, to prove the existence of fixed points of the integral operator, we will use
the lower and upper solutions method. In particular, to show that the integral operator
is compact, we use the compactness criterion given in Theorem 1, which involves a
certain equiconvergence condition at infinity.

The results in this chapter are compiled in [103].
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Chapter 8: Existence of Solutions of Integral Equations with
Asymptotic Conditions

In this chapter we study the fixed points of an integral operator defined on the
real line.

In general, the main difficulty when trying to prove the existence of fixed points
of integral operators defined on unbounded intervals is being able to prove that the
considered operator is compact. These problems are due to the impossibility of ap-
plying Ascoli-Arzela’s Theorem to prove the compactness of the operator.

The most common way to solve this problem consists in using a certain compact-
ness criteria (which we have actually used in Chapter 7), which is given in Theorem 1
in page 181.

In this chapter we present an alternative method which will have a double benefit:
on the one hand, it will allow us to apply Ascoli-Arzela’s Theorem to prove the
compactness of the operator. On the other hand, it will warrant that the solutions of
the problem have a particular asymptotic behavior.

To do that, we will define a suitable Banach space including these asymptotic
properties. In particular, for n € N, consider the space of the real functions of class
n which have limit at -o0:

C"(R,R) := {f:R—>R: flr €C*(R,R), 3 lim fU)(t)eR,j:o,...,n},

being R = [~00, oc]. It holds that C"(R, R), n € N is a Banach space with the norm

[fllny == sup{Hf(k)Hoo : k:O,...,n}.

Then, for a given function ¢ € C"(R,R"), we define the space of continuously
n-differentiable (-extensions to infinity as follows:

Co=CiR.R) = {f € C"(R,R) : 3] C*R,R), f = ¢ ]lx}.

In particular, this is a Banach space with the induced norm
£l = Pl £ € G

from where it is deduced that the spaces C"(R, R) and (ZZ are isomorphic.

From the existence of this isomorphism it is inferred that, since Ascoli-Arzela’s
Theorem can be applied to the space C" (R, R) (since R is compact), then this theorem
is also applicable to 5;‘
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Then, we will look for fixed points of the integral operator

[e.e]

Tu(t) :=p(t) + / k(t,s)n(s) f(s,u(s))ds
—0o0

in the Banach space Cn, for a given function ¢ which will precisely represent the

asymptotic behavior of the solutions. In other words, the fact that the fixed points of

the operator belong to the space C;; will imply that such functions will asymptotically

behave in a similar way to .

Regarding the method employed to guarantee the existence of fixed points, we
consider two different approaches in this chapter: the first of them, developed in
Section 8.4, is based on the fixed point index in cones and presents quite restrictive
hypotheses for the non linearity f.

On the other hand, the second approach, considered in Section 8.5, is based on
the definition and spectral properties of several auxiliary linear operators. In particu-
lar, if the spectral radius of these operators together with some limits involving the
nonlinearity f satisfy some suitable properties, it will be possible to ensure the exis-
tence of fixed points. In this case, the restrictions on the function f are much weaker
than the ones imposed with the previous method, but at the expense of requiring the
kernel £ to satisfy some more restrictive conditions. As it is shown in the chapter
with some examples, the two methods are not comparable.

All these results are collected in [33] and [34].

Chapter 9: On Unbounded Solutions of Singular Initial Va-
lue Problems with ¢-Laplacian

In this last chapter we study a singular initial value problem with ¢-Laplacian,
with special attention to the existence of unbounded solutions.

In this case, since we are dealing with a singular problem, it is not possible to
construct an equivalent integral problem, as it was made in previous chapters. Con-
sequently, the techniques used in this chapter will totally differ from the ones consi-
dered up to this moment.

In particular, we will consider the following nonlinear problem:

{(P(t) ¢(' (1)) +p(t) f(d(u(t))) =0, t>0,
u(()) = U, u'(O) =0, ugé€ [LU,L]

We begin the chapter with the definition of three types of solutions that we may
find. This way, denoting

Usup = sup{u(t): t € [0,00)},
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we will say that
= A solution u of the problem is damped if ugy, < L.
= A solution u of the problem is homoclinic if g, = L.
= A solution u of the problem will be an escape solution if g, > L.

Since both damped and homoclinic solutions are bounded, unbounded solutions
will constitute a subset of the escape ones. This motivates the division of the chapter
in two parts:

1. Search of conditions to ensure the existence of escape solutions.

2. Search of necessary and sufficient conditions to guarantee that an escape solu-
tion is unbounded.

Moreover, for the investigation of conditions which assure the existence of escape
solutions, we will distinguish two differentiated cases: the first of them, in which both
f and ¢! are Lispchitz continuous, is quite simple since, under these conditions, we
can guarantee the uniqueness of solution of the problem.

On the contrary, the second case (with f and ¢! not necessarily Lispchitz conti-
nuous), presents several complications derived from the non uniqueness of solution.
To solve these problems, we consider the method of lower and upper solutions.

These two cases have another important difference in relation with the results
obtained: in the first one, we guarantee the existence of a sequence of escape solutions
with different initial values, whereas in the second one, it may occur that all the
solutions have the same initial value L.

Finally, the last section of the chapter compiles all of the obtained results. We give
there the explicit formulation of some sufficient conditions to assure the existence of
unbounded solutions of the problem. Several examples show that all these results are
not comparable.

All the results in this chapter are given in [131].
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Bounded Domains

The first part of this Thesis focuses on the study of linear and nonlinear boundary
value problems defined on bounded domains.

Our main goal will be the study of nonlinear differential equations. However,
when working with this kind of problems, the first step consists of studying their
related linear ones. To do this, the main tool will be the so-called Green’s function,
whose properties will clearly lead to the best way of dealing with nonlinear problems.

In particular, some of the main techniques applied in the recent literature to prove
the existence of solutions of nonlinear boundary value problems are, among others,
monotone iterative techniques (see [74, 96, 143]), the lower and upper solutions met-
hod (see [16,46]) or fixed points theorems (see [74, 142]). In all these cases, the
constant sign of the associated Green’s functions is usually fundamental to prove
such results.

All this clearly justifies the necessity of starting this Thesis by studying linear
boundary value problems, focusing our attention on the properties which characterize
the constant sign of Green’s functions.

This part is structured in six chapters as follows:

Chapter 1 is dedicated to show some preliminary results and concepts for the sake
of constructing a self-contained thesis. First, following [18], we define the Green’s
function related to a boundary value problem. Then, we summarize some results
which will be used throughout this Thesis to ensure the existence of fixed points of
various operators defined on Banach spaces. Finally, we include some definitions and
results of spectral theory.

Chapter 2 includes a fully-detailed study of even order linear boundary value
problems, focusing on finding relations between various Green’s functions. All the
results in this chapter are collected in [31].

Chapter 3 particularizes the study developed in Chapter 2 to the second order
equation. Since Sturm-Liouville and Oscillation theory is applicable to second order
problems, the results in this chapter are more powerful than those in the previous one.
This chapter compiles results included in [22] and [23].

Chapter 4 deals, for the first time, with nonlinear boundary value problems. In
particular, the results obtained in Chapters 2 and 3 will be shown to be of great
importance to ensure the existence of solutions of the nonlinear problems considered
in this chapter. A basic assumption will be the constant sign of the considered Green’s
functions. Moreover, the tool used to prove the existence of solution will be the lower
and upper solutions method. This chapter is based on the last section of [31].

Chapter 5 is completely devoted to find solutions of nonlinear problems in the
case when, contrary to Chapter 4, the Green’s functions change sign. In particular,
we will deal with second order problems and prove the existence of solutions by
means of the fixed point index theory. This results are collected in [27].
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Finally, Chapter 6 considers an integral problem instead of a differential one. As
we will see, this is in fact a generalization since differential problems can be trans-
formed into integral ones whose kernel function is, precisely, the Green’s function.
In this chapter, we will define a new type of cones which makes it necessary to apply
the fixed point index theory in unbounded sets in order to find fixed points of the con-
sidered integral operators. Sections 6.1 to 6.6 of this chapter are included in [102],
while the particular case given in Section 6.7 is collected in [32].




Chapter 1
Preliminaries

In order to construct a self-contained work, we will dedicate this chapter to intro-
duce some definitions and previous results which will be used throughout the diffe-
rent chapters.

First of all, since the main tool to study linear problems is the so-called Green’s
function, Section 1.1 introduces this concept and establishes how the solutions of
linear problems can be explicitly calculated by means of the Green’s function.

Next, we will show in Section 1.2 how to transform a nonlinear differential pro-
blem into an equivalent integral one, in the sense that the solutions of the aforemen-
tioned differential problem correspond to fixed points of a certain integral operator.
Moreover, we will include in this section several theorems to prove the existence of
fixed points of compact operators defined on Banach spaces.

Finally, Section 1.3 compiles some basic results of spectral theory of linear ope-
rators.

1.1. Green’s Functions

In this section, following [18], we will summarize the definition and main pro-
perties of Green’s functions.
Consider the general two-point n-th order differential problem

{Ln u(t) = o(t), tel0,T],

(1.1.1)
Ui(u):(), izl,...,n,

where

Lo u(t) = u™ () + an_1(t) u™ V() 4+ - + a1 (t) v/ () + ao(t) u(t)

and
n_l . . . .
Uiw) =Y (a;. w9 (0) + B u(])(T)) L i=1,....n,
=0
where o and (3} are real constants for all i = 1,...,n, j = 0,...,n — 1 and

o, ar, € LY([0,7]) forall k = 1,...,n.
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We will denote I = [0, 7.
We can characterize the Green’s function for problem (1.1.1) as follows.

Definition 1.1.1. [I8, Definition 1.4.1] We say that G is a Green’s function for
problem (1.1.1) if it satisfies the following properties:

(G1) G is defined on the square I x I (except at the points witht = s if n = 1).

(G2) Fork =0,...,n — 2, the partial derivatives % exist and are continuous on
Ix1.
(G3) Both 2 — and 9" G oxist and are continuous on the triangles 0 < s < t < T
at t 8

and0§t<s§T

(G4) For each s € (0,T), the function G(-, s) is a solution of the differential equa-
tion L,y =0a.e on[0,s)U (s,T], that is,

oG o-ta 0G
G (1 8) Fan—1(t) Zommy (8 5) £t aa(t) 7 (t 5) +ao(t) Gt 5) =0,
forallt € I\ {s}.
(G5) Foreacht € (0,T) there exist the lateral limits
anfl G anfl G an—l G an—l G
—(t ,t) = ——— + A A -\ — tt ¢
gn—1 ( ’ ) 91n—1 (tvt ) and an—1 (tat ) o1n—1 ( ’ )
and, moreover,
8n—1 G n 8n—1 G 871,—1 G 8n—1 G N
- - — T -N_ - -1
e () = S (7,0 = S ) - S (1)

(G6) For each s € (0,T), the function G(-,s) satisfies the boundary conditions
Ui(G(-,8)) =0,i=1,...,n, that is,

e |
Z(]at] )—I_B] 8tJ(TS)>:O7 Zzl,..,7’n“

7=0

Remark 1.1.2. Note that the Green’s function depends on the homogeneous part of
problem (1.1.1), but not on the considered function o. Due to this fact, we will fre-
quently talk about the Green’s function related to the homogeneous problem, namely

{Ln u(t) =0, tel0,T],




1.1 Green’s Functions

We will consider the space
Wnl(1) = {u e 1) : w™ D e AC(I)} ,

where AC(I) denotes the set of absolutely continuous functions on /.
In particular, we will consider a subset X C W™!(I) defined in the following
way
X={ueW"(I): Uiu)=0,i=1,...,n}. (1.1.2)

It is easy to check that X is a Banach space with the usual norm
l|lul|lx = max{”u(i)H: i=0,...,n— 1}.
Now, we will introduce the following definition.

Definition 1.1.3. Given a Banach space X, operator L., is said to be nonresonant
on X if and only if the homogeneous equation

Lou(t)=0 a.e tel, ueclX,
has only the trivial solution.

The following result relates the uniqueness of solution of problem (1.1.1) with
the uniqueness of the Green’s function. This can be seen in [18, Corollary 1.2.4 and
Theorem 1.2.17].

Theorem 1.1.4. The following assertions are equivalent:
1. Operator Ly, is nonresonant on X given in (1.1.2).
2. There exists a unique Green’s function related to problem (1.1.1).
3. Problem (1.1.1) has a unique solution v, € W™ (I).

In such a case, the unique solution is given by the following expression
T
u(t) = / G(t,s)o(s) ds, Vtel. (1.1.3)
0

Furthermore, it is very well known (see [18, 40, 106]) that operator L,, is self-
adjoint on X if and only if the related Green’s function exists and is symmetrical
with respect to the diagonal of its square of definition, that is,

G(t,s) = G(s,t), Y(t,s)elxI.

We will also introduce the following important definitions. In them, we will use
the notation ~ > 0 to denote a function h € LY(I) such that h(t) > 0 fora.e. t € I
and h Z0Oon .
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Definition 1.1.5. Operator L,, is said to admit the maximum principle (MP) on X if
and only if every function w € X such that L, u > 0 on I satisfies that v < 0 on
(0,7).

Definition 1.1.6. Operator L,, is said to admit the antimaximum principle (AMP) on
X if and only if every function u € X such that L, v > 0 on I satisfies that v > 0
on (0,T).

It is immediate to verify that if L,, satisfies MP or AMP on X then it is nonreso-
nant on X.

Moreover, if L, is self-adjoint, the previously defined maximum and antimaxi-
mum principles can be related with the constant sign of the Green’s function. Next
result was first proved in [160, Theorem 4.1] for the second order equation and the
Green’s function related to the periodic problem. The proof for second order equation
and arbitrary boundary conditions can be found in [23, Lemma 10]. For the reader’s
convenience, we include now the proof for any arbitrary order.

Theorem 1.1.7. If L,, is a self-adjoint operator, then the following equivalences hold:

= Operator L,, satisfies MP on X if and only if the related Green’s function is
nonpositive on I x I.

= Operator L,, satisfies AMP on X if and only if the related Green’s function is
nonnegative on I x I.

Proof. First we will prove that if operator L,, satisfies one of the principles, then the
related Green’s function has constant sign.

Assume, on the contrary, that operator L,, satisfies either MP or AMP and sup-
pose that G changes sign on I x I. Arguing as in [16, Theorem 3.1], one can find
to € I and uq, ug € X such that L, uy > 0, Ly, ug > 0 on I and uq (t) us(tp) < 0.

First we will prove that there exist ty € (0,7"), s1, s2 € I such that G(tp,s1) > 0
and G(tg, s2) < 0. On the contrary, if G(¢,-) has constant sign for all ¢ € (0,7
then, due to the change of sign of G, there will exist some ¢; € (0,7") such that
G(t1,-) = 0. From symmetry, G(-,¢;) = 0, which contradicts the fact that

n—1 n—1
et )~ ) =1
Therefore the existence of such ¢ is ensured.

Then there is a neighbourhood of s1, A; C [0, 7], in which G(tp, ) is positive.
If we choose a function f; which is positive on A; and vanishes on [0,7] \ A1, we
have that there exists u; satisfying that L,, u; = f; > 0 and

'LL1(t0> = N G(to,S) fl(s)ds > 0.
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Analogously, there is a neighbourhood of s2, A2 C [0, 7], in which G(to, -) is
negative. Choosing now f such that it is positive on Ay and vanishes on [0, 7] \ As,
we have that there exists uo such that L, uo = fo > 0 and

UQ(to) = N G(to, S) fQ(S) ds < 0.

Therefore, we reach a contradiction.

We will see now the reciprocal, that is, we will prove that the constant sign of the
Green'’s function implies one of the principles.

First observe that inequality L,, u > 0 on I is equivalent to the existence of some
o € LY(I) such that ¢ = 0 on [, for which

Lyu(t)=0(t), tel.

Then, if the Green’s function does not change sign, we deduce the strict constant sign
of won (0,7) as a direct consequence of (1.1.3) and the fact that, as we have just
seen, it can not exist any ¢ € (0,7") for which G(¢,-) = 0. O]

To finish with this preliminary subsection, we will show two particular cases of
some more general spectral results given in [18, Lemmas 1.8.25 and 1.8.33]. For
these results we need to introduce a new differential operator.

Forany \ € R, consider operator L, [\] defined from operator L,, in the following
way

Lo u(t) = u™ () 4+an_1(6) u"" D)+ - +ay () @' (t)+(ao(t)+N) u(t), tel,

that is, L[\ u(t) = L, u(t) + A u(t).

To stress its dependence on A\, we will denote by G[\] the Green’s function related
to L[]

We have the following results.

Lemma 1.1.8. Suppose that operator L,, is nonresonant on a Banach space X, its
related Green’s function GG is nonpositive on I x I, and satisfies the following condi-
tion.

(Ny) There is a continuous function ¢(t) > 0 forall t € (0,T) and k1, ko € L*(I),
such that ki(s) < ka(s) < 0 fora.e. s € I, satisfying

o(t) k1(s) < G(t,s) < ¢(t) ka(s), fora.e (t,s) €l xI.

Then G[)] is nonpositive on I x I if and only if A € (—00, A1) or A € [—[1, \1),
with A1 > 0 the first eigenvalue of operator L, in X and i > 0 such that L, [—[i] is
nonresonant on X and the related nonpositive Green’s function G[—[] vanishes at
some point of the square I X I.
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Lemma 1.1.9. Suppose that operator L,, is nonresonant on a Banach space X, its
related Green’s function G is nonnegative on I x I, and satisfies the following con-
dition.

(P,) There is a continuous function ¢(t) > 0 for all t € (0,T) and k1, ke € L1(I),
such that 0 < ki(s) < ka(s) for a.e. s € I, satisfying

o(t) k1(s) < G(t,s) < ¢(t) ka(s), fora.e (t,s) €l x 1.

Then G[)] is nonnegative on I x I if and only if A € (A1,00) or A € (A1, 1],
with A\1 < 0 the first eigenvalue of operator Ly, in X and i > 0 such that L[]
is nonresonant on X and the related nonnegative Green’s function G|[i| vanishes at
some point of the square I x I.

It is obvious that if the Green’s function is strictly positive (respectively, strictly
negative) on / x [ then condition (P,) (respectively, (I, )) is trivially fulfilled.

1.2. Fixed Point Theorems

This section is devoted to present some sufficient conditions that ensure the exis-
tence of fixed points of operators defined in abstract spaces.

As it has been indicated before, Chapters 4 to 9 will be devoted to find conditions
to ensure the existence of solution of nonlinear problems. In this framework, as
we will show now, fixed point theorems will constitute a basic tool to deal with the
aforementioned problems.

Consider for instance the following nonlinear boundary value problem related to
problem (1.1.1)

Lyu(t) = f(t,u(t)), tel, uelX
Ui(u):O, izl,...,n,

with f: R x R — R satisfying some suitable regularity conditions (which, as we will
see, will actually vary depending on the problem).
It is a very well-known result that the solutions of previous problem coincide with
the fixed points of the following integral operator
T: X —X
ur— T u

where

T
T u(t) :/0 Gt s) f(s,u(s)) ds,

10
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with G the Green’s function related to problem (1.1.1).

It is now when results ensuring the existence of fixed points of operators in Ba-
nach spaces arise as the key to deal with nonlinear problems. We compile in this
section some of those results that will be used throughout this Thesis.

First, we will introduce the concept of compact operator as follows (note that in
some references these operators are named as completely continuous).

Definition 1.2.1 ([101, Definition 4.2.1]). Given two Banach spaces X and Y, we
say that an operatorT : X — Y is compact if and only if it satisfies the two following
properties:

s T is continuous.
s T maps bounded subsets of X into relatively compact subsets of Y.

A very useful tool to prove the compactness of an operator is the very well-known
Ascoli-Arzela’ s Theorem.

Theorem 1.2.2 (Ascoli-Arzela, [89, Chapter 7, Theorem 18]). Let X be a Hausdorff
compact topological space and Y a complete metric space, and consider C(X,Y)
with the topology of the uniform convergence. Then F' C C(X,Y) has compact
closure if and only if the two following properties hold:

» F(x) has compact closure for each x € X.
» F'is equicontinuous.
The following theorem was proved by Schauder in [132].

Theorem 1.2.3 (Schauder). Let S be a bounded, closed, nonempty, convex subset of
the normed space X. Let T be a compact operator such that T (S) C S. Then T has
a fixed point in S.

On the other hand, a very useful tool to ensure the existence of fixed points of
compact operators is the fixed point index theory in cones.

Definition 1.2.4. Given a Banach space X, we say that K C X is a cone if it is a
closed and convex subset of X satisfying the two following properties:

l. Ifr € K, then A\x € K forall A > 0.
2. Kn(-K) = {0}

A cone K induces a partial order in X in the following way: x < y if and only if
y—z e K.

11
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Definition 1.2.5. We say that K is a total cone if K — K = X.

We will compile now some classical results regarding the fixed point index. In
particular, we will follow the line of [64, Chapter 12]. There, this theory is develo-
ped in a more general framework, namely, for the so-called absolute neighbourhood
retracts. However, since throughout this Thesis we will work with Banach spaces
(and, as it is stated in [64, Chapter 11, Corollary 5.4], a Banach space is a particular
case of absolute neighbourhood retract), we will reformulate all the results in terms
of Banach spaces.

Therefore, from now on, we will assume that X is a Banach space, {2 C X an
arbitrary open subset and 7 a compact operator.

In [64, Chapter 12], the fixed point index is defined for compact maps which are
compactly fixed.

Definition 1.2.6. Let X be a space, ) C X open and T : U — X a continuous map.
We say that T is compactly fixed if the set of fixed points of T is compact.

We will denote by Fix(7) the set of fixed points of 7.

Next lemma compiles some classical results regarding the fixed point index for-
mulated in [64, Theorems 6.2, 7.3 and 7.11] in a more general framework.

In particular, given X a Banach space, K € X a cone and €2 C K an arbitrary
open subset, 0 €2 will denote the boundary of {2 in the relative topology in K, induced
by the topology of X.

Lemma 1.2.7. Let X be a Banach space, K C X a cone and ) C K an arbitrary
open subset with 0 € €. Assume that T : Q — K is a compact and compactly fixed
operator such that x # T x for all x € 0.

Then the fixed point index iy (T, 2) has the following properties:

1. Ifx # uTx forall x € 0K and for every < 1, then ix (T,) = 1.

2. If Q is bounded and there exists e € K \ {0} such that © # Tx + Xe for all
x€dQandall X >0, then ix(T,Q) = 0.

3. Ifig(T,Q) #0, then T has a fixed point in ).

4. If Q1 and Q9 are two open and disjoint sets such that Fix(T) C Q1 UQy C £,
then

Remark 1.2.8. Note that, in Item 2 in previous lemma, it is required that ) is boun-
ded. However, the other assertions hold for an arbitrary open set, which might be
unbounded.

12
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The following result gives more sufficient conditions to ensure that the index of
an arbitrary open subset is 1.

Corollary 1.2.9 ([64, Corollary 7.4]). Let X be a Banach space with the norm || - ||,
K C X a cone and Q) C K an arbitrary open subset with 0 € Q. Moreover, let
T:Q — K be a compact and compactly fixed operator without fixed points in 0 Q.
Assume that one of the following conditions holds for all x € 0):

(i) [Tzl < ||zl

(ii) | T[] < [lo = Tz||.

(iii) || Tx||* < [Jz]* + [l = T[>

(iv) (z, Tz) < (z, x), where (-, ) is a scalar product in X.
Then i (T, Q) = 1.

Moreover, using Items 1 and 2 in Lemma 1.2.7, it is possible to deduce the follo-
wing corollary. The proof would be analogous to that of [68, Theorem 2.3.3].

Corollary 1.2.10. Let X be a Banach space, K C X a cone and ) C K an open set
such that 0 € Q. Assume that T : Q2 — K is a compact and compactly fixed operator
such that x # T x for all x € Q). Then

L IfTx xforall x € 0Q thenig(T,) = 1.

2. IfQ is bounded and, moreover, T x A x for all x € 0, then i (T,Q) = 0.

1.3. Spectral Theory

Another important tool when working with linear operators is given by the spectral
theory.

As we will see, the existence of a positive eigenfunction will be a basic assump-
tion in some results in Chapters 2 and 3, and one of the most powerful results to
ensure this is the very well-known Krein-Rutman Theorem.

Moreover, as we will show in Chapter 8, it is also possible to prove the existence
of fixed points of nonlinear integral operators by studying spectral properties of some
related linear operators.

We will compile now some results regarding spectral theory of linear operators
defined on normed spaces, which we will use in the following chapters.

13
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Let (N1, || - |l1) and (Na, || - ||2) be two normed spaces. Let 7 : N3 — N be a
bounded linear operator, that is, such that its norm

7= sup 174l
0 llllz

is finite. We recall the following definitions.

Definition 1.3.1. We say that \ is an eigenvalue of a linear operator between normed
spaces T : (N1, || - |l1) = (Na, || - ||2), with corresponding eigenfunction ¢, if » # 0
and Ao =T ¢.

The reciprocals of nonzero eigenvalues are called characteristic values of T.

Definition 1.3.2. We will define the spectral radius of a bounded linear operator T
as

1
— 1 ny| e
r(T) = lim 7],
and its principal characteristic value as p(T) := % ifr(T) # 0.

For more properties of this generalized spectral value we refer the reader to [11,
164].
Now we will formulate the very well-known Krein-Rutman Theorem.

Theorem 1.3.3 (Krein-Rutman, [52, Theorem 1.1]). Let K C X be a total cone
and T : X — X a compact linear operator that maps K to K with positive spectral
radius v(T). Then r(T) is an eigenvalue with an eigenvector ¢ € K\{0}.

We will give now the sharper version of this theorem for strongly positive linear
operators.

Definition 1.3.4. Let K C X be a cone with nonempty interior and let T : X — X
be a compact linear operator. We will say that T is strongly positive if and only if

Tz eint(K), Vze K\{0},
where int(K') denotes the interior of the cone.

Theorem 1.3.5 ([4, Theorem 3.2]). Let K C X be a cone with nonempty interior
and T : X — X a strongly positive and compact linear operator that maps K to K.
Then, the following assertions hold:

» The spectral radius r(T) is positive.

w (7)) is a simple eigenvalue of T with a positive related eigenfunction and there
is no other eigenvalue with a positive eigenfunction.

14
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Finally, we recall some known results which will let us find some lower and upper
bounds for the spectral radius.

Theorem 1.3.6 ([148, Theorem 2.7]). Let T be a bounded linear operator in a Ba-
nach space X and let K be a cone in X such that T (K) C K. If there exists Ay > 0
and v € K \ {0} such that

Tv = Aow,

then r(T) > Ao.
Theorem 1.3.7 ([157, Theorem 1]). Let T be a linear and compact operator and

let K be a cone in X. Assume that K has non empty interior and that T (K) C K.
If there exists v, an interior element of the cone, for which the following inequality

holds
To = )\0 v,

then r(T) < Ao.
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Chapter 2

Green’s Functions and Spectral
Theory for Even Order Linear
Boundary Value Problems

In this chapter we will develop a fully-detailed study of even order linear boun-
dary value problems.

We have seen in the previous chapter that the solutions of a given boundary value
problem coincide with the fixed points of related integral operators which have as
kernel the associated Green’s function in each case. Thus, the Green’s function plays
a very important role in the study of boundary value problems.

Traditionally, the most studied boundary value problems have been the periodic
and the two-point ones. In this chapter we will take advantage of such studies by
finding some connections between the Green’s functions of various separated two
point boundary conditions and the Green’s functions of periodic problem. The key
idea is that the expression of the Green’s function related to each two points case can
be obtained as a linear combination of the Green’s function of periodic problems.

From these expressions relating the different Green’s functions, we will be able
to compare their constant sign.

These results will allow us to obtain some comparison principles which guarantee
that, under certain hypotheses, the solution of a boundary value problem under some
suitable conditions is bigger in every point than the solution of the same equation
under another type of boundary conditions.

We will also obtain a decomposition of the spectrum of some problems as a com-
bination of the other ones and some relations of order between the first eigenvalues
of the considered problems.

The chapter is organized as follows: Section 2.1 includes some preliminary re-
sults and proves a symmetry property which will be satisfied by some Green’s functi-
ons. In Section 2.2, we detail the aforementioned decomposition of Green’s functi-
ons. In Section 2.3, we relate both the spectra and the first eigenvalues of the con-
sidered problems. In Section 2.4, we prove some results relating the constant sign
of various Green’s functions. Finally, in Section 2.5, we show some point-by-point
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relations between different Green’s functions and also between solutions of the same
operator under several boundary conditions.

It must be pointed out that the study developed in Sections 2.3 to 2.5 will be par-
ticularized in Chapter 3 for the second order equation. As we will see, in such a case,
many results will be stronger than for the general even order problem. The reason
is that, for second order equations, Sturm-Liouville’s Theory is applicable, which
makes it possible to obtain more information regarding oscillation of the solutions,
Green’s functions and spectral theory.

All the results in this chapter are collected in [31].

2.1. Preliminary Results

In this section we will introduce three different operators. The first of them,
which will be called operator L, will be defined with arbitrary coefficients. On the

other hand, the coefficients of the other two operators (denoted by L and f) will be
defined as either even or odd extensions of the coefficients of the aforementioned
operator L. This way, while the original operator will be defined on the interval

[0, T, the two auxiliary operators L and L will be defined on [0,2 7] and [0,4 7],
respectively. Y

Furthermore, the symmetries in the coefficients of the operator L will induce also
some symmetries on the Green’s functions related to this operator. This property will
also be proved in this section.

Consider then the 2n-th order general linear operator

Lu(t) =u®) () + agn_1(t) u® V(&) + - + ay () ' (t) + ao(t) u(t), (2.1.1)

witht € Tandag : [ = R, ap € LY(I), a > 1,k=0,...,2n— 1.
We will introduce now the first auxiliary linear operator, whose coefficients will
be defined from those of operator L as follows:

Eu(t) = (21) (t) + agn—1(t) u(2n—1)(t) + Gop_a(t) u(2n—2)(t)
+oat) () +ao(t)ult), teJ=10,2T],

where agi, K = 0,...,n — 1, is the even extension of ag to J, that is,

N azk(t), te 0,17,
agk(t) =
aok (2T —t), te|[T,2T],
and aop4+1, k =0,...,n — 1, is the odd extension of asy41 to J, that is,
a (t) _ a2k+1(t)7 le [Oa T]a
2kt —age (2T — 1), t € (T,2T).

18
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Notation 2.1.1. As we have mentioned before, throughout this chapter we will work
with problems defined on different intervals. Because of this reason, we will use the
notation G[T|, G[2T| and G[4AT)| to indicate that we are working on the interval
[0,T7], [0,2T] or [0,4T), respectively. This way, we will stress the dependence of the
Green’s function on the considered interval.

We obtain the following symmetric property for Green’s functions related to ope-
rator L.

Lemma 2.1.2. Let X C W2™L(.J) be a Banach space such that operator L is non-
resonant on X. Moreover, suppose that if v € X and w € W?™'(.J) is such that
w(t) :=v(2T —t)forallt € J, then w € X. Then the following equality holds:

G[2T|(t,s) = GRT|(2T —t,2T —s), Y (t,s) € J x . (2.1.2)

Proof. Let & € L'(.J) be arbitrarily chosen and consider the problem

Lo(t)=a(t), ae.ted velX.

Since operator L is nonresonant on X, this problem has a unique solution v which
is given by
2T
v(t) = G[2T](t,s)a(s) ds.
0

On the other hand, taking into account the fact that as(t) = aox (27 — t) and
aop+1(t) = —agk4+1(2T —t), it is easy to verify that w(t) = v(271 —t) is the unique
solution of the problem

Lw(t)=6(2T —t), ae.teJ, weX.

Therefore,

2T
w(t) = /0 GR2T|(ts)5(2T — s) ds

and, making a suitable change of variable,
2T
w(t) :/ G[2T]|(t,2T —s)a(s) ds.
0

Now, since

2T
w(t) =v(2T —t) = G2T)2T —t,s)a(s) ds,
0

19



Green’s Functions and Spectral Theory for Even Order Linear BVPs

and & € L'(J) is arbitrary, we arrive at the following equality
G2T)(2T —t,s) = G2T]|(t,2T —s), V (t,s) € J X J,
or, which is the same,
G[2T)(t,s) = GR2T)2T —t,2T —s), VY (t,s) € J x J.
O

In addition, we will consider another auxiliary operator L which will be con-
structed from L in the same way than L has been constructed from L, that is:

~ ~ ~

Lu(t) =u () + don1 () u® D (1) + dgn_o(t) @2 (t)
o an(t) W (t) + ao(t)u(t), te 0,47,

where c:LQk and é2k+1, k = 0,...,n — 1, are the even and odd extensions to the
interval [0,4 T of ag, and aoy 1, respectively.

2.2. Decomposing Green’s Functions

In this section we will obtain the expression of the Green’s function of different
two point boundary value problems (Neumann, Dirichlet and Mixed problems) as a
sum of Green’s functions of other related problems.

This decomposition has been detailed in [22] for the particular case of n = 1 and
a1 = 0 and generalized in [31] for the general case with arbitrary n.

In particular, we will work with some problems related to operator L (and, con-
sequently, defined on the interval [0,77), some others related to operator L (and,

consequently, defined on [0, 2 7"]) and the periodic problem related to L (defined on
[0,4T7)). In the sequel, we describe the different problems and boundary conditions
we are dealing with:

= Neumann problem on the interval I:

Lu(t)=0(t), a.e tel, (N, T)
w1 (0) = uH)(T) =0, k=0,...,n— 1. ’
= Dirichlet problem on the interval I:
Lu(t)=0(t), a.e tel, (0. T)
u¥)(0) = u®)(T) =0, k=0,...,n—1. ’
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= Mixed problem 1 on the interval I:

{ Lu(t)=o0(t), ae tel,

My, T

= Mixed problem 2 on the interval I:

{ Lu(t)=o(t), ae tel,

My, T
U(Qk)(o) - U(2k+1)(T) = 07 k= 07 cee,— 1. ( ’ )

» Periodic problem on the interval J:

(P, 27T)

Lu(ty=a(t), a.e telJ
u®(0) =u®@2T), k=0,...,2n — 1.

= Antiperiodic problem on the interval .J:

{ L’U,(t) = &(t), a.e. teJ, (A, QT)

u®(0) = —u®(2T), k=0,...,2n— 1.
= Neumann problem on the interval J:

{M@): (t), ae telJ,

4 (N, 217)
u(2k+1)(0) — u(2k+1)(2T) =0,k=0,...,n—1.

= Dirichlet problem on the interval J:

{ Lu<t):6<t), a.e teJ, (D,QT)

uR(0) =uR(2T) =0, k=0,...,n— 1.
» Periodic problem on the interval [0,4 T

Lu(t)=0o(t), a.e te[0,4T],

(P, AT)
u®(0) =u®(A4T), k=0,...,2n - 1.
Now, we will show how to relate the expressions of different Green’s functions.
We will assume that all the considered operators are nonresonant on the corre-
sponding Banach space with suitable boundary conditions. Later, we will see in
Section 2.3 that the aforementioned nonresonant character of all the operators is, in
some sense, equivalent.
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2.2.1. Neumann Problem

To begin with, we will decompose the Green’s function related to problem (N, T')
as sum of the Green’s function related to (P, 2 T') evaluated in the same point and of
the same function evaluated in another point which satisfies a symmetric relation.

First, suppose that operator L is nonresonant on the space

Xnr = {u e W1y : D (0) = (1) =0, k=0,...,n— 1} ,

that is, problem (NN, T') has a unique solution in W2™%!([I) for all o € L(I).
Moreover, assume that L is nonresonant on

Xpaor = {u e W) : u®0) =u®2T), k=0,...,2n — 1} ,

that is, problem (P, 27T') has a unique solution in W?2™1(.J) for all & € L(.J).

Let u be the unique solution of problem (N, T"). Then, defining v as the even ex-
tension of u, it can be proved that v € W2™1(.J) satisfies the equation L v(t) = & (t)
for the particular case of taking & as the even extension of o. Indeed, for ¢ € [0, 7,
it holds that

Lo(t) = Lu(t) = o(t) = 5(t)

and, fort € [T,27T],

Lo(t) =0V (t) + agn_1(t) vV () + gy o (t) 0?72 (1)
+ ot ar(t) v (t) 4+ ao(t) v(t)
—uP (2T — ) — agn_1 () u® V2T — ) + aon_o(t) u® 22T — 1)
+oo—ar () (2T —t) +ap(t)u(2T —t)
=uP (2T =) + agn_1 (2T — ) u® DT — 1)
+ dgn_o(2T — ) u®2 (2T —t)
+oo+a2T —t)d' T —t) +ao(2T —t) u(2T — t)
=c(2T —t) =a(t).
Moreover, it is clear that v € X p o7 and thus v is a solution of problem (P, 27T").

Therefore, if we denote by G [T and Gp[2T] the Green’s functions related to
problems (N, T') and (P, 2T), respectively, we obtain the following equalities for
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tel:

T 2T
/O Gr[T)(t, ) o(s) ds —u(t) = v(t) = | Gp2T](ts)5(s) ds

. 0
:/O Gpl2T)(t,5) ols) d s
2T

+ Gp[2T](t,s)o(2T —s) ds
T

:/()T (Gp[2T](t,s) + Gp[2T](t,2T — s)) o(s) ds.

Now, since previous equality holds for every o € L!(I), we can deduce that
GN[T](t,s) = Gp[2T](t,s) + Gp[2T)(t,2T — s), V (t,s) eI x I,
or, which is the same, using Lemma 2.1.2,
Gn[T(t,s) = Gp[2T|(t,s) + Gp2T]|(2T — t,s), Y (t,s)elxI. (22.1)
The previous expression lets us obtain the exact value at every point of the Green’s

function of the Neumann problem by means of the values of the periodic one, as long
as both Green’s functions exist.

Analogously, assuming L is nonresonant on
Xyor = {u e W) : w®*D0) = P27 =0, k=0,...,n— 1} ,

it can be also seen that v € X 27, that is, v is a solution of problem (N, 27T). Thus,
denoting by G n[2 T the Green’s function related to (N, 27") and arguing as in the
previous case, it can be deduced that

Gn[T](t,s) = GN[2T](t,s) + GN[2T)(2T — t,s), VY (t,s) eI xI, (2.2.2)
or, using (2.2.1),

GNIT|(t,s) =GpAT|(t,s) + GpAT)(AT —t, 5)

(2.2.3)
+ Gp[4T](2T — t,s) + Gp[4T](2T + t,s),

forall (¢,s) € I x I.
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2.2.2. Dirichlet Problem

Now, we will do an analogous decomposition for the Green’s function related to
problem (D, T).
To this end, we will assume that operator L is nonresonant on

Xpr= {u e W2L(I) s R (0) = u®(T) =0, k=0,...,n— 1},

that is, problem (D, T') has a unique solution in W2™1(I) for all o € L'(I). Again,
we will also assume that L is nonresonant on X por.

Now, if u is the unique solution of (D, T") and we define v as its odg extension to
the interval .J, it can be seen that v € W?2™1(.J) satisfies the equation L v(t) = &(t)
for the particular case of taking & as the odd extension of o. Indeed, for ¢ € [0, 7], it
is obvious that B

Lu(t) = Lu(t) =o(t) =a(t),
and, for ¢t € [T, 2T,
Lo(t) =v®(t) + agn_1 (1) v V(@) + dgno(t) v® (1)
+ o4 ar () V' (t) + ao(t) v(t)
=—uP QT —t) + gn1 @) U VQRT — t) = Ggn_s(t) u® 22T —t)
+ota () (2T =t) —ap(t) u(2T — t)
= —uPQRT — 1) — G201 T — ) w2 T — ¢)
—Ggn_2(2T — ) u® 22T = t)
— o —a2T — ) (2T —t) —ap(2T — t)u(2T — t)
=—a(2T —1t)=0(t).

Moreover, v € X por and thus v is a solution of problem (P, 2T").
Therefore, denoting by Gp[T] the Green’s function related to (D, T') and reaso-
ning analogously to the previous case, we obtain the following equality:

Gp[T|(t,s) = Gp[2T](t,s) — Gp[2T](2T —t,s), V(t,s) el x1. (2.24)
On the other hand, assuming that L is nonresonant on
Xpor = {u e W) : u®(0) = u®P(2T) =0, k=0,...,n— 1} :

it can also be seen that v € X p o7, which implies that v is also a solution of (D, 2T').
Then, denoting by G p[2 T'] the Green’s function related to (D, 2T'), it can be dedu-
ced that

GplT|(t,s) = Gp[2T](t,s) — Gp[2T](2T — t,s), V(t,s) el x1I, (2.2.5)
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or, using (2.2.4),

GplT(t,s) =Gp[AT](t,s) — Gp[AT)(AT —t, 5)

(2.2.6)
—GpAT|2T —t,s)+ GpAT](2T +t,s),

forall (¢,s) € I x I.

2.2.3. Mixed Problems

The same arguments of the two previous subsections are applicable to problems
(M, T') and (Ma, T'), by assuming the nonresonant character of operator L on

X = {u € WHA(I) w0 (0) = u®(T) =0, k=0,...,n 1}
or
X = {u e WD)« w®P(0) = u®H)(T) =0, k=0,...,n— 1} :

respectively. However, these problems will not be related to periodic ones but to
the antiperiodic problem (A, 2T). Therefore, we will assume for both cases that
operator L is nonresonant on

Xaor = {u e w2(J): u®(0) = —uP(T), k=0,...,2n - 1}.

For (M, T'), considering the even extension of its solution and reasoning as in
the case of (N, T'), we arrive at the following decomposition:

Gy, [T(t,s) = Ga[2T)(t,s) — Ga2T)(2T —t,s), Y (t,s)elxI. (2.2.7)
As it occurred with Gn[T'], G, [T] can also be related to Gy [2 T
G [T)(t, s) = GN[2T(t, s) — GN2T)(2T —t,5), Y (t,s)elxI, (2.2.8)
or, using (2.2.1),

G [T)(t, s) = Gp[AT](t,s) + GpAT|AT — t, )

(2.2.9)
—GpAT|2T —t,s) — GpAT](2T + t,s),

forall (¢,s) € I x I.
Finally, for (M2, T'), the odd extension of its solution will be considered (as in
the case of (D, T')) and the following expression is deduced:

G [T)(t,8) = Ga[2T|(t,s) + GaART](2T —t,s), Y(t,s) €l xI. (2.2.10)
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In this case, Gz, [T] is also related to Gp[2 T in the following way
GanlT](t, s) = Gp[2T|(t, s) + Gp[2T)(2T — t,5), V(t,s) € Ix I, (2.2.11)
or, using (2.2.4),
Can[T)(t,s) = GplATI(ts) — GPATIAT — t,5) .
+Gp[AT|2T —t,s) — Gp[AT|(2T +t,s),

forall (¢,s) € I x I.

On the other hand, it is also possible to obtain a direct relation between the
Green’s functions of the two mixed problems.

Consider the following operator defined from L by taking the reflection of the
coefficients

2n—1
Lu(t) = u® () + 3 (~D)F an(T = ) ™) (1),
k=0

for all ¢ € I, and let Gy, [T'] be the Green’s function related to the Mixed problem 2
associated with I, namely,

{Lu(t) =a(t), tel,

(2.2.13)
u®(0) = uPHH(TY =0, k=0,...,n—1.

Now, let u be the unique solution of problem ({1, T'), given explicitly by

T
u(t) = /O G [T](#,5) o(s) d 5.

If we define v(t) = u(T — t), it is easy to check that v is a solution of problem
(2.2.13) for the particular case of taking 5(t) = o (71" — t). Therefore,

T
v(t) = / G [T)(t,s)o(T — s) ds
0
and, making a suitable change of variable,
T ~
o(t) = / CanlTI(ET — 5) o(s) d's.
0
On the other hand,

T
v(t):u(T—t):/O G [TI(T — £, 5) o (s) ds.
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Since previous equalities are valid for all o € L'(I), we deduce that
Gan [TN(T —t,8) = Gap[T](t, T —s), V(t,s)elxI
or, which is the same,
Gan [TUT —t,T — s) = Gap[T)(t,s), V(t,s)elxI. (2.2.14)

Analogously, if we denote by G a, [T] the Green’s function related to the Mixed
problem 1 associated with L, namely,

Lu(t)=¢5(t), tel,
(2.2.15)
w0y = P (T) =0, k=0,...,n—1,

and we repeat the previous reasoning, we reach to the following connecting expres-
sion

G, [T(T —t,T — s) = Gpy [T)(t,s), V(t,s)elxI. (2.2.16)

2.2.4. Connecting Relations Between Different Problems

On the other hand, assuming again the nonresonant character of all the conside-
red operators on the corresponding spaces, if we sum different combinations of the
previous equalities, we obtain more connecting expressions between the considered
Green’s functions. These expressions will be the basic tool for the spectra decompo-
sition to be developed in Section 2.3. The results are the following:

= From (2.2.1) and (2.2.4), it is deduced that

GP2T](t,5) = 5 (GNITI(t,5) + ColTI(1,5))
1 2.2.17)
Gp2T)2T —t,s) = 3 (GN[T](t,s) — GplT](t,s)),
forall (¢,s) € I x I.
= From (2.2.7) and (2.2.10), we have that
CAT(1,5) = 5 (Can [Tt ) + Can [T, 5)),
(2.2.18)

CARTIRT ~ t,5) = § (Gan [Tt ) ~ Gan [T](1,5))

forall (t,s) € I x I.
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= From (2.2.2) and (2.2.8), it follows that

GN[2T](t, s) = % (GNIT](t, s) + G, [T)(t, 9)),
2 (2.2.19)
GNRTIRT ~ t.5) = L (ONITI(1) — Gy [T](4.5)).
forall (¢,s) € I x I.
= From (2.2.5) and (2.2.11), it is obtained that
Gol2T](t,5) = 5 (Gan[T](t:5) + ColT(,5)),
(2.2.20)

GDRTIRT ~ t,5) = 3 (GalT](t.5) — GplTI(t,5)).

forall (¢,s) € I x I.

s From (2.2.3), (2.2.6), (2.2.9) and (2.2.12), it is concluded that
1
GpIAT(t, $)= 4 (GNITN(E )+ CplTI(E: 5)+ G, [T](15)+ Car [T)(E:9))

forall (¢,s) € I x I.

2.3. Decomposition of the Spectra

In this section we will show how the spectra of the considered problems can be
connected.

We will denote by An[T], Ap[T], Ans, [T], A [T], Ap[2T], Au[2T], ANn[2T],
Ap[2T] and Ap[4T)] the set of eigenvalues of problems (N, T'), (D, T), (M, T),
(M, T), (P, 2T), (A, 2T), (N, 2T), (D, 2T) and (P, 4T), respectively.

From equality (2.2.1) we have that if problem (P, 27) has a unique solution,
then problem (NN, T') has a solution given by

T
u(t) :/0 (Gp2T)(t,s) + Gp2T)(2T — t,s)) o(s) ds.

The uniqueness of this solution follows from the fact that the Neumann boundary
conditions are linearly independent (see [18, Lemma 1.2.21]).

Consequently we observe that if operator L is nonresonant on X p,2t, then ope-
rator L is nonresonant on Xy 7. In other words, the sequence of eigenvalues of
problem (NN, T') is contained into the sequence of eigenvalues of (P, 27T").
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The same argument is valid, by means of equality (2.2.4), to ensure that if pro-
blem (P, 2T') has a unique solution, then problem (D, T') has a unique solution too.

On the other hand, (2.2.17) implies that the uniqueness of solution of both pro-
blems (N, T') and (D, T') warrants the uniqueness of solution of (P, 2T").

Thus, we conclude that the spectrum of problem (P, 27') is the union of the
spectra of (N, T') and (D, T), that is,

An[T]UApD[T] = Ap[2T].
Using analogous arguments, from (2.2.2), (2.2.8) and (2.2.19), we deduce that
AN[T) U Ap, [T) = AN[2T7;
from (2.2.5), (2.2.11) and (2.2.20),
Ap[T]U A [T] = Ap[2T];
from (2.2.7), (2.2.10) and (2.2.18),
Ay [T U A, [T] = Aa[2T;
and from (2.2.3), (2.2.6), (2.2.9) and (2.2.12),
AN[TTUAp[T]U Apg, [T] U Apg, [T] = Ap[4T].

Finally, if we denote by Ay, [T] and Ay, [T7] the set of eigenvalues of problems
(2.2.13) and (2.2.15), respectively, from (2.2.14) and (2.2.16) we deduce that

Ay [T] = A, [T

and
AM2 [T] = AM1 [T] :

As an immediate consequence we have the following result.

Corollary 2.3.1. If ai(t) = (—1)*ap(T — t) forall k = 0,...,2n — 1, then the
spectra of the two mixed problems coincide, that is,

AMl [T] = AM2 [T]

Moreover, if we denote by A\ [T], AD[T], A" [T, N2[T], AJ[2T), A2 T,
MV[2T), AP[2T) and N4 T) the first eigenvalue of problems (N, T), (D, T),
(My, T), (M, T), (P, 2T), (A, 2T), (N, 2T), (D, 2T) and (P, 4T), respecti-
vely, from the connecting expressions proved in Section 2.2, we will deduce the rela-
tions below.
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Theorem 2.3.2. Assume that all the previously considered spectra are not empty,
the first eigenvalue of each problem (except for (A, 2T)) is simple and its related
eigenfunction has constant sign. Then, the following equalities are fulfilled for any
ag,...,0a9n—1 € L1<I).'

1 XY[T) = M0[2T) < AT

2. AT = A 2] < NPT
3N = \EaT.

4. NR[T = NPT < APIT).
50T < AT

6. \A[2T] = min {)\é”l (7], AN [T]}.

Proof. Assertion 1 is proved in the following way: as we have seen above, the
spectrum of (P, 2T") is decomposed as Ap[2T| = An[T] U Ap[T], which implies
that

A 12T = min N [T], AP[T]}

Consider now the even extension to J of the eigenfunction associated to A)Y[T).
This extension has constant sign on J and, moreover, it satisfies periodic boundary
conditions, so it is a constant sign eigenfunction of (P, 27). On the contrary, the
odd extension to .J of the eigenfunction associated to A\}[T7] is a sign changing ei-
genfunction of (P, 27T). Therefore, since we have assumed that the eigenfunction
related to the first eigenvalue of each problem has constant sign, we deduce that
MNVT = 2T) < AP [T

An analogous argument is valid to prove Assertion 2, by taking into account that
An[2T) = AN[T]U Apg [T7.

Assertion 3 is deduced from the two previous one. Indeed, Assertion 1 implies
that \)Y[2 T = A\['[4 T and, from Assertion 2, we deduce the equality.

Assertion 4 is proved analogously to Assertions 1 and 2, taking into account the
decomposition Ap[2T] = Ap[T| U Apg, [T].

Now Assertion 5 can be deduced from 1, 2 and 4. Indeed, Assertion 1 implies
that \)Y[2T] < AJ’[2T] and, using Assertions 2 and 4,

A T) = A [2T] < AF[2T] = A [T).
Finally, Assertion 6 is an immediate consequence of

AA[2 T] = AM1 [T] U AM2 [T]
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Remark 2.3.3. With respect to the hypothesis that all the considered spectra are not
empty note that, as a consequence of the relations proved at the beginning of this
section, if one of those spectra is not empty, we could ensure that some others are not
empty too.

On the other hand, there are several results which ensure that, under some suit-
able conditions, the first eigenvalue of a boundary value problem is simple and its
related eigenfunction has constant sign, for instance, Krein-Rutman Theorem.

Sufficient conditions to ensure that all the hypotheses required in previous theo-
rem are fulfilled can be found in [87].

First, we can deduce from Theorem 1 in such reference that if there exists some
A for which the Green’s function G|\, T| has constant sign and the spectrum of such
problem is not empty, then the eigenfunction related to the first eigenvalue has con-
stant sign.

Moreover, from Theorem 2 in [87] it is deduced that if there exists some \ for
which the Green’s function G|\, T| has strict constant sign on [0,T] x (0,T") then
the spectrum of such problem is not empty, the first eigenvalue is simple and its related
eigenfunction has strict constant sign on (0, T).

Finally, from Theorem 2’ in [87] we can ensure that if there exists some \ for
which G|\, T] has strict constant sign on (0, T) % (0,T') and there exists a continuous
function ¢, positive on (0,T), such that

G\ TI(t, 5)
¢(t)
is continuous on [0, T x [0, T] and positive on [0,T] x (0,T), then the spectrum of
such problem is not empty, the first eigenvalue is simple and its related eigenfunction
has strict constant sign on (0,T).

Analogously, if conditions given in Lemmas 1.1.8 or 1.1.9 hold for some )\, then
we are also able to deduce that the spectrum of such problem is not empty, the first
eigenvalue is simple and its related eigenfunction has constant sign. Details of this
can be seen in [18], where it is proved that Lemmas 1.1.8 or 1.1.9 imply that Krein-
Rutman Theorem holds.

Finally, we must note that, since the eigenfunctions of the considered problems
are related, the constant sign of the eigenfunction associated with the first eigenvalue
of a problem implies (in some cases) the constant sign of the eigenfunction of other
problems.

2.4. Constant Sign of Green’s Functions

From all the connecting expressions between different Green’s functions given in
Section 2.2, it is possible to deduce that the constant sign of one of them implies the
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constant sign of another one.
In particular, from (2.2.1), (2.2.2) and (2.2.11) we deduce the relations below.

Corollary 2.4.1. The following properties hold for any ag, . . ., azn_1 € L*(I):
1. IfGp2T] <0onJ x J, then GN[T) <0on I x I.
2. IfGp[2T) > 00n J x J, then GN[T] > 0on I x I.
3. IfGN[2T) < 00n J x J, then GN[T] < 0on I x I.
4. IfGN[2T] > 0o0n J x J, then GN[T] > 0on I x I.
5. If Gp2T] < 0on J x J, then Gy, [T] <0on I x I.
6. IfGp[2T] > 0on J x J, then Gy, [T] > 0on I x 1.

Remark 2.4.2. In the particular case of considering disconjugated operators, the
values of A for which some of the previously considered Green’s functions, related to
operator L[\, have constant sign have been characterized in [38, 39]. More specifi-
cally, the general boundary conditions considered in that reference include what we
have called Dirichlet and Mixed conditions, but do not cover neither Neumann nor
periodic and antiperiodic conditions.

The reciprocal of Assertions 1 and 2 in the previous corollary holds for constant
coefficients. This occurs as a consequence of the following property.

Lemma 2.4.3. [I8, Section 1.4] Let
Lou(t) = u™(t) + an_1(t) tun_1(t) + - - -+ a1 (&) ' (t) + ag(t) u(t), tel,

be a n-th order linear operator and let Gp[T'| denote the Green’s function related to
the periodic problem

Lyu(t)y=0, tel,
u®(0) =u®(T), k=0,...,n—1.
If the coefficients a, k = 0,...,n — 1, involved in the definition of operator
L, are constant on I, then the Green’s function is constant over the straight lines of
slope one, that is, it satisfies the following property
Gp[T](t - s,0), 0<s<t<T,

Gp[T](t,s) = { Gp|[T)(T +t — s,0), otherwise.

As a consequence, we arrive at the following result.
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Theorem 2.4.4. If all the coefficients ag, . .., as,_1 are constant, then the following
properties hold:

1. Gp[2T]<0onJ x Jifand only if GN[T] <0onI x I.
2. Gp2T)>0o0n J x Jifand only if GN[T] > 0on I x I.

Proof. From Corollary 2.4.1, the assertion is equivalent to prove that if Gp[2T]
changes sign, then G[7'] will also change sign. Indeed, assume that there exist
two pairs of values (¢1, s1) and (t2, s2) such that

Gp[QT](tl,Sl) <0 and GP[2T](t2,82) > 0.

As it is satisfied that Gp[2T|(t,s) = Gp[2T](s,t) for all (¢,s) € J x J, we may
assume, without loss of generality, that s; < ¢ and sy < £9.

Since all the coefficients aq, ..., a2, 1 are constant then, from Lemma 2.4.3, it
holds that
Gpl2T](t — s,0), 0<s<t<2T,
Gp2T](t,s) = .
Gp2T](2T +t — s,0), otherwise.

Therefore, it is fulfilled that
GP[Q T] (tl, 81) S GP[Q T] (tl — 81, O)

and
Gp2T|(t2, s2) = Gp[2T)(t2 — s2,0).

On the other hand, from equality (2.1.2) and the fact that the Green’s function
satisfies the periodic boundary conditions (see Definition 1.1.1), it holds that

Gp2T)(t1 — $1,0) = Gp[2T](2T — t1 + $1,2T) = Gp[2T)(2T — t1 + s1,0)
and
Gp2T)(ta — $2,0) = Gp[2T](2T —ta + $2,2T) = Gp[2T](2T — ta + s2,0).
Now, we will distinguish two possibilities:
m Ift; — sy < T, then

GN[T](tl — 81,0) = GP[QT](tl — 81,0) + GP[QTK?T — 1t + 81,0)
= QGP[QT](tl — 81,0) < 0.
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= Whent; — sy > T, we have

GN[TKQT — 1t + 81,0) = GP[QT](QT — 1t + 81,0) + Gp[?T](tl — 81,0)
= 2Gp[2T](t1 — 81,0) < 0.

Analogously, if to — s < T, then
GN[T](ta — $2,0) =2Gp[2T](t2 — $2,0) > 0
and, if o — s9 > T, then
GN[T)(2T — ta + $2,0) = 2Gp[2T)(t2 — s2,0) > 0.

It is clear that, in any of the cases, Gy [T'] changes its sign and the result holds. [

The following counterexample shows that the converse of Assertion 2 in Corol-
lary 2.4.1 is not true in general for nonconstant coefficients.

Example 2.4.5. Consider the Neumann problem on [0, T] = [0, 2] related to opera-
tor

Lu(t) =u™@®) + (t—2*+Nut), telo,2], (2.4.1)
and the periodic problem on [0,2T| = [0, 4] related to
Lu(t) =u® @) + (-2 + N u), telo,4]. (2.4.2)

By numerical approach, we find that G [T is nonpositive for A € ()\1, pYMlva ]),
where A1 ~ —2.26 and )Y [T] = A\ [2T) ~ —1.746. Moreover; it is nonnegative for
A e (AV[T), A2), with Ay ~ 4.11.

However, Gp[2T) is nonpositive for A € ()\1, A(J)D 2T ]) and nonnegative for
Ae (AF[2T1, As), with A3 ~ 5.95.

Despite this, we remark that the interval of values of \ for which G [T and
Gp[2T) are nonpositive is exactly the same.

Remark 2.4.6. It must be pointed out that the converse of Assertion 2 in Corol-
lary 2.4.1 also holds for several examples with non constant coefficients. However
we have not been able to prove the existence of any general condition under which
this assertion holds.

Furthermore, up to this moment, we have not been able to find a counterexam-
ple for the converse of Assertion 1. So, it remains as an open problem to know if
Assertion 1 is or not an equivalence for n > 2.
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The following counterexample shows that the converse of Assertions 3 and 4 in
Corollary 2.4.1 does not hold in general, not even in the constant case.

Example 2.4.7. Consider the following Neumann problem with constant coefficients
on [0,T] = [0, %] related to the following operator
— @ 3

and the Neumann problem on [0,2T] = [0, 3] related to

Lu(t) =u®(t) + Au(t), telo,3],

By numerical approach, it can be seen that in this case Gn|[T] is nonpositive
for X € (Mg, N)'[T)), with Ay ~ —6.1798 and N\)'[T] = 0, and nonnegative for
A e (AT, As), with A5 ~ 24.7192.

However, Gn[2T) is nonpositive for X € (Xg, ) [2T7), with A ~ —0.3862
and N/ [2T) = 0, and nonnegative for A € (N)'[2T], A7), with A7 ~ 1.5449.

So, the converse of Assertions 3 and 4 does not hold for these operators.

The following counterexample shows that the converse of Assertions 5 and 6 in
Corollary 2.4.1 is not true in general, not even in the constant case.

Example 2.4.8. Consider the Mixed problem 2 with constant coefficients on the in-
terval [0, T] = [0, 1] related to operator

Lu(t) = u® () + Au(t), telo,1],

and the Dirichlet problem on [0,2T| = [0, 2] related to

Lu(t)

u(t) + Au(t), telo,2].

In this case, it can be seen that G, [T is nonpositive for X\ € (s, )\8/12 [T7),
4

with \g ~ —31.2852 and \)2[T) = \D[2T] = —1g ~ —6.088. Moreover, it is
nonnegative for A € (A\)2[T], Xo), with \g ~ 389.6365.
However, Gp[2 T is nonpositive for A € ()\10, )\OD [2 T]), with Ao ~ —14.8576,

and nonnegative for \ € (/\é) [27], /\11), with A1 ~ 59.4303.

Finally, from the relations given in Theorem 2.3.2, together with the general cha-
racterization given in Lemmas 1.1.8 and 1.1.9, we can deduce the following corollary.
To establish the suitable conditions under which next result is valid, we need to
introduce some notation. This way, analogously to what we have done in Section 1.1,

35



Green’s Functions and Spectral Theory for Even Order Linear BVPs

consider the parametrized operators defined from L or L.In particular, we will denote
by L[\ u(t) = Lu(t) + Au(t). In this case, to stress also its dependence on \, we
will denote by G|\, T'] the Green’s function related to L[\], which will also have
the corresponding subscript when we refer to one particular problem. Analogous

notation can we used for L[A] and L[\], whose related Green’s functions will be
denoted by G[\, 2T and G|\, 4 T, respectively.

Corollary 2.4.9. Assume that we are in conditions to apply Lemmas 1.1.8 and 1.1.9,
that is, all the considered Green’s functions G|\, T'| (or G|\, 2T, G|\, 4 T), with the
suitable subscript for each case) are:

» nonpositive on I x I ifand only if X € (—oo, \1) or A € [—fi, A1), with Ay > 0

the first eigenvalue of operator L, coupled with the corresponding boundary
conditions and i > 0 such that L,[—[] is nonresonant on X and the related
nonpositive Green’s function G|—fi] vanishes at some point of the square I x I.

nonnegative on I x I if and only if X € (A\1,00) or X\ € (A1, ii], with A1 < 0
the first eigenvalue of operator Ly coupled with the corresponding boundary
conditions and [i > 0 such that Ly|fi] is nonresonant on X and the related
nonnegative Green’s function G|fi] vanishes at some point of the square I x I.

Then the following relations between the constant sign of Green’s functions are

valid for any ag, . .., as,_1 € L1(I):

If GN[T) is nonpositive on I x I, then Gp[T), G, [T] and G, [T either
change sign or are nonpositive on I x 1.

If GN[2T) is nonpositive on J x J, then GN[T), Gp[T], Gar, [T] and G, [T
either change sign or are nonpositive on 1 x I.

If Gp[2T) is nonpositive on J x J, then GN[T], Gp|T], Gar, [T] and G, [T
either change sign or are nonpositive on I x I.

If Gp[4T) is nonpositive on [0,4T) x [0,4T), then GN[T), Gp|T], G, [T
and G 1, [T either change sign or are nonpositive on I x 1.

If G 1, [T is nonpositive on I x 1, then Gp [T either changes sign or is non-
positiveon I x 1.

If Gp[2T) is nonpositive on J x J, then Gp|T| and G, [T either change
sign or are nonpositive on I X I.
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2.5. Comparison Principles

In this section we will use the connecting expressions for Green’s functions obtai-
ned in Section 2.2 to compare the values that several Green’s functions take point by
point.

First, from (2.2.17), under the hypothesis of the constant sign of Gp[2T], we
obtain the following comparison between Green’s functions of problems (N, 7") and
(D, T).

Corollary 2.5.1. If Gp[2T] > 0 on J x J, then

GN[T](t,s) > |Gp[T](t,s)|, V(t,s)elxI.
IfGp[2T] <0o0n J x J, then

GN[T](t, s) < =|Gp[T|(t,s)|, V(t,s)elxI.

As a consequence, we can compare the solutions of (N, T') and (D, T'), as fol-
lows.

Theorem 2.5.2. Let uy be the unique solution of problem (N, T') for o = o1 and
up the unique solution of problem (D, T') for o = o9. Then

1. IfGp[2T) > 0on J x J and |oa(t)] < o1(t) a.e. t € I, then |up(t)| < un(t)
forallt € I.

2. If Gp[2T)
and uy (t)

OonJx Jand0 < o9(t) < o1(t) a.e. t € I, then un(t) <0

<
<wup(t) forallt € I.

3. IfGp2T) < 0o0nJ x Jand o1(t) < 02(t) <0a.e. t € I, thenun(t) > 0
and up(t) < upn(t) forallt € I.

Proof. 1. Since Gp[2T] > 0 on J x J then, from Corollary 2.5.1, it holds that

T T
ruD<t>|—' / GpIT](t, 5) oa(s) d5| < / Gp[T|(t,9)] [os(5)] ds

T
S/o GnN[T](t,s)o1(s) ds =un(t).

2. Since Gp[2T] < 0on J x J then, from Corollary 2.5.1, since o1(s) > 0 a.e.
s € I, we have that

GnN[T|(t,s)o1(s) < —|Gp[T](t, s)|o1(s), V(t,s) el xI.
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Moreover, from o2(s) < o1(s) a.e. s € I, we deduce that
—(GpITI(t, $) o1(s) < —IGDITI(t ) oa(s), ¥ (t,s) € Tx .
Finally, since o2(s) > 0 a.e. s € I,
—|Gp[T](t,s)| o2(s) < Gp[T|(t,s)o2(s), ¥ (t,s) el xI.

Therefore, for all ¢ € I, we have
T T

upn(t) :/ GnN[T](t,s)o1(s) ds < / —|Gp[T)(t,s)| o1(s) ds
0 0

T T
S/o —|GplT](t,8)| o2(s) d s g/o Gp[T|(t,s)oa(s) ds =up(t).

Finally, the fact that uy < 0 on [ is a direct consequence from G x[T"] < 0 and
o1 > 0.

. Since Gp[2T] < 0on J x J then, from Corollary 2.5.1, it can be deduced that

GnN[T|(t,s) < Gp[T](t,s) and GN[T](t,s) <0, V(t,s)elxI
and so, since o3(s) < Oa.e. s € I,
GplT](t,s) o2(s) < GN[T](t,8) oa(s), V(t,s)elxI
and, from 01 (s) < o2(s) a.e. s € I, we deduce that
GN[T](t,s) o2(s) < GN[T](t,s) o1(s), V(t,s) el xI.

Therefore,
T T
up(t) = /0 Gp[T|(t,s)o2(s) ds < /0 GN[T|(t,s)oa(s) ds

T
< /0 GNITI(ts) o1(s) ds = un(t).

Finally, the fact that uy > 0 on I is a direct consequence from G x[T] < 0 and
01 S 0.
]
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2.5 Comparison Principles

The situation described in previous theorem is represented in Figures 2.5.1, 2.5.2
and 2.5.3.

Figure 2.5.2: Solutions of (N, T") and (D, T') in Case 2 in Theorem 2.5.2.

uN

up

Figure 2.5.3: Solutions of (N, T') and (D, T') in Case 3 in Theorem 2.5.2.

Analogously, from (2.2.19) and (2.2.20), the constant sign of either G [2T] or
Gp[2 T lets us deduce some point-by-point relation between various Green’s functi-
ons.

Corollary 2.5.3. 1. IfGN[2T] > 0on J x J, then
GNIT)(E ) > Ga [T](t,5)], ¥ (t,s) € 1 x L.
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2. IfGN[2T) <0on J x J, then

GNIT)(t,5) < —|Gan [T](t5)], V¥ (t,s) el x 1.

3. If Gp[2T| <0on J X J, then

G [T1(t s) < —|Gp[T](t,s)|, V(ts)elxl.

4. If Gp[2T] > 0on J x J, then
CrnlTI(t5) > |GIT)(t )], ¥(ts) € I x 1.

As a consequence of the previous corollary, we deduce the following comparison
principles between the solutions of the corresponding problems. The arguments are
similar to the ones used in the proof of Theorem 2.5.2.

Theorem 2.5.4. Let uy be the unique solution of problem (N, T') for o = o1 and
upg, the unique solution of problem (M, T') for o = o9. Then

1. IfGN[2T) > 0on JxJ and |oa(t)| < o1(t) a.e. t € I, then |up, ()] < un(t)
forallt € I

2. IfGN[2T) < 0o0nJ x Jand 0 < 09(t) < o1(t) a.e. t € I, then un(t) <0
and un (t) < upy, (t) forall t € 1.

3. IFGN2T) < 0onJ x Jand o1(t) < 02(t) < 0a.e. t € I, thenun(t) >0
and upy, (t) < un(t) forallt € 1.

Theorem 2.5.5. Let uyy, be the unique solution of problem (Ma, T') for o = o1 and
up the unique solution of problem (D, T') for o = o9. Then, it holds that

1. IfGp[2T] > 0on Jx J and |o2(t)| < o1(t) a.e. t € I, then |up(t)| < un, (t)
forallt € I

2.IfGp[2T] <0onJ x Jand 0 < o3(t) < o1(t) a.e. t € I, then upz,(t) <0
and upg, (t) < up(t) forallt € I.

3. IfGp2T] <0o0nJ x Jand o1(t) < oa(t) <0a.e. t €I, thenup,(t) > 0
and up(t) < upg, (t) forallt € 1.
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Chapter 3
Second Order Equation

In this chapter we will particularize the study developed in Chapter 2 for the
linear equation of order two, that is, we will consider n = 1 in previous chapter. The
reason to study this particular case is that, when working with differential equations
of order two, Sturm-Liouville’s Theory can be applied and this makes it possible to
obtain stronger results than in the general case for any arbitrary n.

Obviously, all the results obtained in Chapter 2 are valid in this case. Moreo-
ver, we will improve many of them, obtaining for instance stronger relations between
the constant sign of different Green’s functions and stronger comparison principles.
Finally, we will also include some results whose proofs will be based on Sturm-
Liouville theory and oscillation properties, and so they can not be extended to the
general case considered in Chapter 2. In many of those cases, we will give counterex-
amples to show that the results in this chapter are not true for higher order equations.

This chapter is divided in three sections. First, Section 3.1 compiles some classi-
cal results of Sturm-Liouville theory which will be used later.

In Section 3.2, we will particularize all the results of Chapter 2 in case thatn =1
and the coefficient a; is identically zero, that is, we will work with operator

Lu(t) =u"(t) + a(t) u(t), (3.0.1)

which is known as Hill’s operator. The reason why we have decided to assume that
a1 = 0 is the fact that every differential equation of order 2 written in the general
form

u”(t) + a1 (t) W' (t) + ao(t) u(t) = 0, (3.0.2)

such that the coefficients a; and ag have enough regularity, can be transformed into
one of the type of (3.0.1) by means of a suitable change of variable. The results in
this section can be found in [22].

Finally, Section 3.3 considers a more general equation of order 2, namely

(p')" (1) +alt) u(t) =0,

with p(t) > O a.e. t € I and }D € LY(I). Using a suitable change of variable, we
will prove that this problem is equivalent to Hill’s equation and, as a consequence,
we will be able to rewrite the results obtained for Hill’s equation in terms of this new
problem. The results in this section are compiled in [23, Section 3.5].
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3.1. Preliminaries: Oscillation and Spectral Theory
Consider the homogeneous linear differential equation of second order
' () +ar1(t)y (t) +ap(t)y(t) =0, aeteR (3.1.1)

with a1, ag € L*(R).

This equation is not necessarily solvable in terms of elementary functions. Ho-
wever, it is possible to establish some qualitative properties of its solutions.

First, the next theorem ensures that the zeros of two linearly independent soluti-
ons of (3.1.1) must alternate.

Theorem 3.1.1 (Sturm’s separation, [133, Section 24, Theorem A]). Let y1 and y2
be two linearly independent solutions of (3.1.1). Neither y1 and y2 nor y; and v},
can have any zero in common. Moreover, vy, vanishes exactly once between two
consecutive zeros of ya, and reciprocally.

Remark 3.1.2. The previous theorem, as it is formulated in [133, Section 24] does
not include the fact y and yb do not have any zero in common. However, this is an
immediate consequence of the proof which can be seen in [23, Theorem 6].

We will simplify now expression (3.1.1), seeing that every equation in this form,
in which a; and ag satisfy suitable regularity conditions, could be rewritten as a Hill’s
equation, also called the normal form of (3.1.1),

u'(t) +a(t)u(t) =0, ae teR. (3.1.2)

In order to write (3.1.1) in the normal form, we decompose y(t) = u(t) v(t), so that
y =uv + v vandy” = uv” + 24 v + " v. Substituting in (3.1.1), we obtain

v’ + (20 +av)u + (V' + a1 v +apv)u=0.
Making the coefficient of v’ equal to zero, we deduce that, for some ¢y € R,
o(t) = ¢ 2 Jig () ds

reduces (3.1.1) into the normal form (3.1.2), with

V(1) v'(#)

o) =T o(®)

+ aq (t)

+ ao(t).

Taking into account that
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3.1 Preliminaries: Oscillation and Spectral Theory

and
e S0+ o,

we obtain 1 ]
a(t) = ao(t) — 1 ai(t) — B ay (t).

We observe that, since v does not take the value zero, the transformation we have
just made does not affect neither to the zeros of the solutions nor to their oscillation
and sign.

Therefore, from now on we will focus our study on the Hill’s equation

u"(t) + (a(t) + N u(t) =0, tel. (3.1.3)

The following theorem describes the influence that the potential a has on the
speed of oscillation of the solutions.

Theorem 3.1.3 (Sturm’s comparison, [133, Section 25, Theorem B]). Let v and v be
nontrivial solutions of

u"(t) + q(t)u(t) =0, aeteR

and
V() +rt)v(t) =0, aeteR,

respectively, with q, 7 € L11,.(R) such that ¢ > r a.e. on R. Then u vanishes at
least once between two consecutive zeros of v.

On the other hand, the Oscillation Theorem establishes a certain relation of or-
der between the eigenvalues of the equation (3.1.3) coupled with periodic and an-
tiperiodic conditions. Before formulating it, we need to introduce two preliminary
definitions.

Definition 3.1.4. Hill’s equation (3.1.3) has two solutions, w1 and us, which are
uniquely determined by the following initial conditions:

u1(0) =1, u3(0) =0,
uz(0) = 0, uhH(0) = 1.

These solutions are known as normalized solutions. In order to emphasize its depen-
dence on the parameter \, sometimes we will denote them by uy (t, \) and us(t, \).

Definition 3.1.5. The function

is known as the discriminant of the Hill’s equation (3.1.3).
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Now we are in conditions to enunciate Oscillation Theorem.

Theorem 3.1.6 (Oscillation). [106, Chapter 2] There exist two increasing sequences
of real numbers

00
n=0"

W) and {XG(T1)
such that the equation (3.1.3) has a nontrivial T'-periodic solution if and only if
A= AP[T), n = 0,1, 2,..., and a nontrivial T-antiperiodic solution if and only
ifA=M[T,n=0,1,2,...

Moreover, \E'[T), n = 0, 1,..., are the roots of the equation A(\) = 2 and
MT], n=0,1,..., those of A(\) = —2.

The following inequalities hold
A1) < AT < MT) < M) < AT < A T] < M T < AT

and, moreover,

1
0, lim ——— =0.

lim Aim — fz‘ 7

n—vo0 \F[T] —

The trivial solution of (3.1.3) is stable if \ belongs to one of the following inter-
vals

(AGIT], A [TD), AT, AT, (ST, A T)), (AST), A [T)). -
On the other hand, if A belongs to one of the intervals
(=00, AG [T], (AT, M [T), (AIT], AS'[T), (A3 [T, A(TD), -
the trivial solution of (3.1.3) is unstable.
The trivial solution of (3.1.3) is stable for X = A, _|[T] or A = X, [T,
k=1,2,..., ifand only if \},_|[T| = A}, [T). Analogously, such solution is stable

fO}")\ = )\?k[T] or )\ = )\2Ak+1[T], k == 0, ]-7 RS l.fand Only lf‘)‘?k[T] = )\124k+1[T]

Graphically, the function A(\) would have an appearance similar to Figure 3.1.1
(Figure 2.4 in [23]).
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Ay MIT]L_ AT AT (7]

AN
[T]
0

[T AT AT AT AT AT

Figure 3.1.1: Graphic of A(\).

Finally, we will briefly summarize some spectral properties which will be used in
this chapter.

In [158, Chapter 4], it is proved a general result that includes the following Sturm-
Liouville equation:

—(pu') (t)+qt) u(t) = Aw(t)u(t), a.e. t € (a,b), =00 <a <b<oo, (3.1.4)
with p, ¢ and w real valued functions such that 1/p, ¢, w € L*((a,b)) and w > 0
a.e.on (a,b).

Moreover, the following two types of boundary conditions are considered: cou-
pled self-adjoint boundary conditions, namely

u(b) = k1 u(a) + k1o (pu')(a), (pu’)(b) = koy u(a) + koo (pu')(a), (3.1.5)

with
k11 koo — ko1 k12 = 1; (3.1.6)

and separated self-adjoint boundary conditions:
Aju(a) + Az (pu')(a) =0, Byu(b) + Ba (pu)(b) =0, (3.1.7)

with Ay, Ay, By, B € Rsatistying (A4, A2) # (0,0) and (B1, Bs) # (0,0).
Thus, in [158, Theorem 4.3.1] the following results are proved:

1. All the eigenvalues of problem (3.1.4) related to boundary conditions coupled
(3.1.5) or separated (3.1.7), are real, isolated with no finite accumulation point,
and there is an infinite but countable number of them.
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2. If p > 0 on (a,b) and the coupled boundary conditions (3.1.5) are fulfilled,
then the eigenvalues are bounded from below and can be ordered to satisfy

—00 < A <A < A <K A — 00, as k — oo (3.1.8)

Each eigenvalue may be simple or double but there cannot be two consecutive
equalities in (3.1.8) since, for any value of )\, equation (3.1.4) has exactly two
linearly independent solutions. Note that A is well defined for each £ > 0 but
there is some arbitrariness in the indexing of the eigenfunctions corresponding
to a double eigenvalue since every nontrivial solution of the equation for such
an eigenvalue is an eigenfunction. Given such an indexing scheme, let u be a
real-valued eigenfunction of Ay for the coupled conditions (3.1.5), k& > 0, then
the number of zeros of uy, in (a,b)isOor 1,if k =0,and k — lorkork + 1
ifk>1.

3. If p > 0 and the boundary conditions are the separated ones (3.1.7) then strict
inequality holds everywhere in (3.1.8). Furthermore, if u is an eigenfunction
of A\, then uy is unique up to constant multiples and has exactly k zeros in the
open interval (a, b).

It is important to point out that the coupled conditions (3.1.5) cover the periodic
boundary conditions (k11 = koo = 1, ko1 = k12 = 0). In this case, if a, b € R, Krein-
Rutman Theorem ensures that the least eigenvalue is simple with its corresponding
eigenfunction strictly positive on (a, b) and that the rest of the eigenfunctions change
its sign on (a, b).

Note also that coupled conditions (3.1.5) cover also the antiperiodic boundary
conditions (k11 = koo = —1, ko1 = k1o = 0). In this case, Krein-Rutman Theorem
is not applicable (because the corresponding Green’s function always changes its
sign).

On the other hand, the separated conditions (3.1.7) cover Neumann, Dirichlet and
mixed conditions.

3.2. Hill’s Equation

As we have said before, in this section we will particularize all the results obtai-
ned in Chapter 2 to the particular case of considering Hill’s operator defined in
(3.0.1). This will be done in Subsections 3.2.3 and 3.2.4.

Furthermore, in Subsection 3.2.5 we will complete the study of Hill’s operator
by proving that the eigenvalues related to problems (N, T'), (D, T), (M, T')) and
(Ma, T) satisfy a certain order relation.
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3.2 Hill’s Equation

Finally, in Subsection 3.2.6 we will use all the relations between different Green’s
functions to deduce some explicit criteria to ensure the constant sign of some Green’s
functions, as well as some upper bounds for the first eigenvalues.

All the results dealing with this particular case of considering Hill’s equation are
included in [22] and [23].

3.2.1. Historical Background and Applications

Hill’s equation (which is named after the pioneering work of the mathematical
astronomer George William Hill (1838-1914), see [76]) has numerous applications
in engineering and physics. Among them we can find some problems in mechanics,
astronomy, circuits, electric conductivity of metals and cyclotrons.

As a first example of the Hill’s equation we could consider a mass-spring system,
that is, a spring with a mass m hanging from it. It is very well-known that, denoting
by x(t) the position of the mass at the instant ¢ and assuming absence of friction, the
previous model can be expressed as

k
4
z'(t) + —x(t) =0,
(1) + = a(t)

with & > 0 the elastic constant of the string.

However, in a real physical system, there exists a friction force which opposes
the movement and is proportional to the object’s speed. In this case the situation can
be modelled by the equation

2" (t) + pa'(t) + %x(t) =0,

with u the so-called friction coefficient. The value of such coefficient is characteristic
of the environment where the object oscillates, and depends, among other variables,
on the density, temperature and pressure of the environment. However, it could be
considered a situation in which the spring moves between two different environments,
each one with its particular friction coefficient. Also, the environment could have
strong variations of density or temperature that could cause changes in the friction
coefficient depending on time. This could be modelled by substituting the friction
coefficient u for a not necessarily constant function p(t)

2" (t) + p(t) 2 () + %x(t) = 0.

Another possible situation would be that one in which there exists another ex-
ternal force acting periodically on the mass in such a way that it tends to move the
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mass back into its position of equilibrium, acting in proportion to the distance to that
position. Including this new variable in the previous model we have

a"(t) + p(t) 2/ (t) + (:; + F(t)) z(t) = 0.

In any of the two cases, we obtain an equation in the form (3.0.2) in which, if
(t) has enough regularity, we could do the following change of variable
k 1 <u(t)>21u’(t)
2

a(t) =~ +F(t) - ( -

and transform the equation into one in the form (3.0.1).

A second example studied in [42,98] is the inverted pendulum. A mathematical
pendulum consists of a particle of mass m connected to a base through a string (which
is supposed to be rigid and of despicable weight) in such a way that the mass moves in
a fixed vertical plane. If the particle moves by the force of gravity, then the movement
of the pendulum is given by the equation

0" (t) — % sin (0(¢)) = 0,

where g denotes the gravity, [ the length of the string and 6 represents the angle
between the string and the perpendicular line to the base.

In the surroundings of the equilibrium point # = 0, we can approximate sin 6 ~ 6,
so the equation of movement could be rewritten as

0" (t) — %0@) 820

Consider now the case in which the suspension point of the string vibrates ver-
tically with an acceleration a(t). Then, as it is proved in [42], the equation of mo-
vement would change into

0" () ~ 7 (g + al$) 6(1) =0,

which is of the form (3.0.1).
Other equations which fit into the framework of the Hill’s equation are the follo-
wing ones:

= Airy’s equation: (see [133])
u"(t) + tu(t) = 0.

This equation appears in the study of the diffraction of light, the diffraction of
radio waves around the Earth’s surface, in aerodynamics and in the swing of an
uniform vertical column which bounds under its own weight.
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3.2 Hill’s Equation

= Mathieu’s equation: (see [19,142,162])
u”"(t) + (¢ + b cost)u(t) = 0.

It is the result of the analysis of the phenomenon of parametric resonance as-
sociated with an oscillator whose parameters change with time. It appears in
problems related to periodic movements, as the trajectory of an electron in a
periodic arrange of atoms.

3.2.2. Preliminary Results

Hill’s operator properties have been described in several papers, where existence
and multiplicity results, comparison principles, Green’s functions and spectral analy-
sis were studied. Some of these results can be found in [20-22, 142, 161].

In particular, the periodic problem related to Hill’s equation, namely

{Lu(t) =0 aetel,
(P, T)

u(0) = u(T), u'(0) = /(T),

has been widely studied (see [19,21, 142,161, 162] and references therein).

Next we compile some properties which are satisfied by the Green’s function
related to problem (P, T'), Gp[T'], and which will be basic tools to prove some of our
results.

Notation 3.2.1. Note that, as in Chapter 2, we will use the notation G[T] to refer to
the Green’s function related to operator L.

Moreover, analogously to what we have doLze in Section 1.1, we will consider
the parametrized operators defined from L or L. In particular, we will denote by
LA u(t) = Lu(t) + Au(t). In this case, to stress also its dependence on \, we will
denote by G|\, T the Green’s function related to L[\]. Analogous notation will we
used for LI\ u(t) = Lu(t) + Au(t).

Lemma 3.2.2. [21, Lemma 2.2] Suppose that the Green’s function G p|T] does not
change sign on I x I and vanishes at some point (to, sg) € I X I, then ty = s,
(to, 80) = (0, T) or (to, So) = (T, 0).

Lemma 3.2.3. [2], Lemma 2.4] If Gp[T| < 0onI x I then Gp[T| <0onI x I.
Lemma 3.2.4. [161, Theorem 1.1] Suppose that a € LI(I ), then:
1. Gp[T) < 0onI x I ifand only if \!'[T] > 0.

2. Gp[T) > 0o0nI x Iifand only if \§'[T] < 0 < N[T].

49



Second Order Equation

By introducing the parametrized potentials a + A, with A € R, the previous result
could be rewritten as follows.

Lemma 3.2.5. [161, Theorem 1.2] Suppose that a € L' (I), then:
1. Gp[\,T) <0onI x I ifand only if \ < \F'[T].
2. Gp[\T)>00n1 x I ifand only if \'[T] < X\ < A\$[T].

To finish with these preliminary results, we include the following property which
is satisfied by Green’s functions related to Hill’s operator coupled with any of the
boundary conditions considered in this chapter.

Lemma 3.2.6. [21, Lemma 2.8] Let \1, A2 be such that the Green’s functions of
the corresponding problem, G[\1,T] and G[\a, T, have the same constant sign on
I x I If A\ > Ao then G\, T|(t,s) < G[A2, T|(t,s) forall (t,s) € I x I.

3.2.3. Constant Sign of Green’s Functions

In this subsection we will study the constant sign of the Green’s functions of vari-
ous of the boundary value problems which have been previously considered (namely,
Neumann, Dirichlet, mixed and periodic).

The results in this subsection complement those in Section 2.4 for the particular
case of Hill’s equation.

First, we will prove a necessary condition that must be satisfied by the Green’s
function of a self-adjoint operator. This result generalizes the one obtained for the
periodic case in Lemma 3.2.2 and it is valid for periodic, Neumann and Dirichlet
problems.

Proposition 3.2.7. [22, Proposition 3.1] Assume that operator L is nonresonant and
self-adjoint on a Banach space X. If the Green’s function G|T| does not change sign
on I x I and G[T] vanishes at some point (ty, so) € I X I, then either (to, so) belongs
to the diagonal of the square I x I or (to, so) is in the boundary of I x I, that is, at
least one of the three following properties hold:

1. tg=sg €1
2. to:oort():T.
3. so=00rsyg="1T.

Proof. Suppose, on the contrary, that G[T'](to, so) = 0 with (¢o, s9) € (0,7)x(0,T)
such that to # sg. Since G[T|(to, s0) = G[T](so, to), we may assume that ¢y > sg.
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By definition of the Green’s function, we know that
2(t) = GIT](t s0), teE

solves the equation

+

2'(t) +a(t)x(t) =0, ae. te(so,T],
x(to) J}/(to = 0.
Then, G[T](t, s9) = 0 for all ¢ € (sp, 7] and, in consequence, from the symme-
tric property, G[T(so,s) = 0 for all s € (sg, T].
Now, fix s € (so,T]. Since G[T] is nonnegative on I x I, we have that function

y(t) =G[T)(t,s), tel,

18 a solution of
{y”(t) +a(t)y(t) =0, ae. tel0,s),

y(s0) =y'(s0) = 0.

Once again, G[T(t,s) = 0forall s € (so, 7] and all ¢t € [0, s).

From symmetry, we deduce G[T'|(¢,s) = 0 forall t € (sg, 7] and s € [0, ). This
contradicts property (G3) in the definition of the Green’s function (Definition 1.1.1)
and so we deduce the result. O

Remark 3.2.8. Note that in the proof of previous proposition we use the uniqueness of
solution of the initial boundary value problem to conclude that a nontrivial solution of
a differential equation of order 2 can never have a zero of multiplicity two. Obviously,
this does not remain true for differential equations of order higher than two and this
is the reason why previous result is not applicable to the general case of the 2n-th
order operator.

Remark 3.2.9. If we consider the periodic case with a(t) = (%)2, using [24] we
obtain the following expression for the Green’s function

. m (t—s)
T Sln(?), 0<s<t<T,
GplT|(t,s) = 5=
2 sin(w), 0<t<s<T,

which is strictly positive on I x I except for the diagonal and the points (0,T) and
(T,0).
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On the other hand, when a(t) = k? < (%)2 and the Dirichlet boundary conditi-
ons are studied, we have that the Green’s function is given by the following expression

B 1 sin (ks) sin(k(t—1T)), 0<s<t<T,
ColT(t, ) = k sin (kT { sin(kt) sin(k(s—T)), 0<t<s<T.

We observe that Gp [T is strictly negative on (0,T) x (0,T') and vanishes on the
boundary of its square of definition.

In consequence, the previous result cannot be improved for general self-adjoint
Hill’s operators.

In particular, if Neumann boundary conditions are considered, we obtain a more
precise localization of the zeros of the related Green’s function.

Lemma 3.2.10. [22, Lemma 4.1] Suppose that the Green’s function Gn[T] is non-
negative on I x I and there is some (to, sg) € I X I for which Gn[T|(to, s0) = 0,
then either (to, so) = (0,0) or (to, so) = (T, T).

Proof. Suppose that G [T (to, so) = 0 for some (o, s9) € I x I. Since GN[T] >0
on I x I, as operator L is self-adjoint, Proposition 3.2.7 lets us conclude that (¢, so)
belongs either to the boundary of the square of definition or to its diagonal.

In the first case, suppose that tp € (0,7') and sg = 0. Then we have that
zo(t) = GN[T](t,0) satisfies the equation

o (t) + a(t) @o(t) = 0, t € (0,7],
.%'()(t()) = x{)(to) = 0,
which means that G x[T](¢,0) = 0 on (0, 7.
From the symmetry of G [T'], we have that Gx[T](0, s) = 0 for all s € (0, T7.
As a consequence, x5(t) = Gn[T](t, s) satisfies the equation
27 (t) +a(t)xs(t) =0, te€]0,s),
25(0) = 2/,(0) = 0,
which implies that G[T](t,s) = 0 for all t < s. Using again the symmetry of
Gn [T we have that it is identically zero on I x I and we reach a contradiction.
Previous argument is valid for all (¢g, sg) in the boundary of I x I except for
(0,0) and (T, T).
Assume now that G [T'](to, to) = 0 for some ¢y € (0,7). In this case, defining
x4, (t) as the even extension to J of Gn[T](t, to), we have that it satisfies the equation
2f (t) +a(t) () =0, te (to,2T —to),
Ttg (to) = Tty (2T - to) == 0,
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3.2 Hill’s Equation

where, as usual, a denotes the even extension of a to the interval J.
From Sturm’s comparison Theorem (Theorem 3.1.3), we have that for any A > 0
every nontrivial solution of the equation

y'(t)+ (a(t) + N y(t) =0, tel0,2T], (3.2.1)

has as least one zero on [tg, 27T — to].

Now, note that the even extension to J of the positive eigenfunction on (0, 7]
associated with AJ"2[T7] solves (3.2.1) but does not have any zero on [to, 2T — to].
Therefore we deduce that )\3/12 [T] < 0. Furthermore, note that the aforementioned
extension is positive on (0,2 7') and cancels both at 0 and at 2 7".

As a consequence, for any A € (A\32[T], 0] we have that yq, the even extension
to J of Gy [\, T)(t,0), has at least one zero on (0,2 7). Moreover, all the zeros of
yo are simple because otherwise G|\, T](t,0) = 0 on (0, 7], which cannot hap-
pen. Then necessarily yp changes its sign on (0,27") and, as it is an even function,
Gn[A, T](t, 0) changes its sign on (0, 7"). This contradicts the hypothesis that G [T
is nonnegative on I x [.

This way, we conclude that G [T] can only vanish at (0, 0) or (7', 7). O

Remark 3.2.11. Note that if Gn[T](0,0) = 0 we have that x:(t) = Gn[T|(t,0) is a
solution of

{x”(t) +a(t)z(t) =0, tel, 322
z(0) = 2/(T) = 0.
Moreover, when GN[T|(T,T) =0, y(t) = Gn[T](t,T) is a solution of
{y”(t) Fafyy(t) =0, tel o
y'(0) =y(T) =0.

As a consequence of previous result and equality (2.2.1), we deduce the following
corollary.

Corollary 3.2.12. If Gp[2T) has constant sign on J x J, then it holds that G [T
has the same sign as Gp[2T) on I x 1. In such a case, GN[T|(t, s) is different from
zero forall (t,s) € (I x I)\ {(0,0)U(T,T)}.

Moreover, GN[T](0,0) = 0 if and only if equation (3.2.2) has a non zero and
constant sign solution on [0, T)), which means that \}2[T] = 0.

GN[T|(T,T) = 0 if and only if equation (3.2.3) has a non zero and constant sign
solution on (0, T), which means that \)™ [T = 0.

Reasoning as in Lemma 3.2.10, it is deduced the following.
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Lemma 3.2.13. Suppose that a € L'(I) and the Green’s function Gp[T] has con-
stant sign on I x I and there exists some (to, so) € I x I such that G p[T|(to, so) = 0.
Then (to, so) belongs to the boundary of the square of definition of Gp[T).

Remark 3.2.14. From the Dirichlet boundary conditions and property (G5) of the
Green’s function (see Definition 1.1.1), it is clear that Gp|T'] must cancel on the
whole boundary of I x I. Previous lemma ensures that, when G p|T'| has constant
sign, it can not vanish at any other point.

In the sequel we will prove that Gp[T] can never be nonnegative when working
with Hill’s equation and it is negative on (0,7") x (0,7 for A smaller than the first
eigenvalue.

Lemma 3.2.15. [23, Lemma 36] Suppose that a € LI(I), then:

Gp[\,T] < 00n (0,T) x (0,T) if and only if A < \D[T).

Moreover, if A > AP [T is such that G p[\, T exists, then G p|\, T changes sign
onl x I

Proof. Choose A < AP[T]. From Theorem 3.1.3 it is clear that any solution of
equation
o’ (t) + (a(t) + N u(t) =0, tel, (3.24)

has at most one zero on 1.

From Definition 1.1.1, it holds that for each sg € (0,T), us,(-) = Gp[A, T](-, so)
satisfies (3.2.4) on [0, so) U (so, T.

Then, if u is the unique solution of (3.2.4) under the initial conditions

it is clear that there exists a constant k; such that us,(t) = kj u(t) for all ¢ < so.
Obviously, this constant k; depends on the value sy considered, so we could say that
there exists a function (which, for the sake of simplicity, will be denoted also by k1)
such that

Gp\,TI(t,s) = ki(s)u(t) forallt < s.

Moreover, since u(0) = 0, we have that u(¢) # 0 for all ¢ € (0, 7.
Analogously, if v is the unique solution of (3.2.4) satisfying the final conditions

then there exists a constant k2 such that us, (t) = ko v(t) forall ¢ > sg. Consequently,

Gp[AT|(t,s) = ka(s)v(t) foralls <t
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3.2 Hill’s Equation

In this case, v(7") = 0 implies that v(¢) # 0 forall ¢ € [0, T").
Now, since Gp[\, T is a symmetric function, necessarily k1(s) = cv(s) and
ka(s) = cu(s) for some non zero constant c, that is,

co(s)u(t), 0<t<s<T,
cu(s)v(t), 0<s<t<T,

Gp[\T|(t,s) = {

and, since G p[A, T'] is continuous on I x I, it is clear that
Gp\, T](s,s) = cu(s)v(s).

Therefore G p[\, T has strict constant sign on (0,7') x (0, T) for all A < AP [T].
We will see now that this sign has to be necessarily negative.

On the contrary, assume that there exists some value A\ < )\OD [T] for which
Gp[\,T] > 0on (0,T) x (0,T). From this property, since

dG\, T) O G\, T

T(O,S)#O and 8‘[:

it is immediate to verify that, choosing ¢(t) =t (1" —t), for all s € (0,7") we have
that

(T,s) #0, forall s € (0,7),

k1(s) = %?%ﬂ € (0,00)
e Gol3,T
Ko(s) = TG&LIXL[(;@;(A € (0,00)

and are continuous functions on /.
Then property (P,) in Lemma 1.1.9 is fulfilled. Thus, a necessary condition for
Gp[A + p, T to be nonnegative on I x I is that y1 > MV [A, T, being AP [, T the

smallest eigenvalue of operator L[\] coupled with Dirichlet conditions.
Now, taking into account that

AT = A [T] = A,

we have that a necessary condition for G'p[\ + p, T'] to be nonnegative on I x I is
that A+ p > AP [T or, which is the same, if Gp [\, T] > 0on I x I then A > \J[T].
This facts contradicts the existence of such .

As a consequence, Gp[\,T] < 0 on (0,7) x (0,7) for all A\ < AP[T] and
condition (NN) is fulfilled.

Thus, from Lemma 1.1.8, we can ensure that Gp[A\, 7] < 0on (0,7 x (0,T) if
and only if A < AP[T7].

Now we will see that for A > A\J[T] such that the Green’s function Gp[\, T
exists, it holds that G [\, T'] changes sign.
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Take A\D[T] < A < AP[T]. From the results given at the end of Section 3.1,
it is clear that the eigenfunction related to \}’[T] cancels at 0 and T but has strict
constant sign on (0,7), and that the eigenfunction related to A[T] cancels at 0
and T and has exactly one more zero on (0, 7). Taking this into account and using
Sturm’s comparison Theorem (Theorem 3.1.3), it is easy to deduce that any solution
of equation

u"(t) + (a(t) + N u(t) =0, tel

has exactly one zero on (0, 7T").

In particular, both » and v, defined in the first part of this proof, have exactly
one zero on (0,7"). Let’s denote by ¢y and ¢; the zeros of u and v, respectively, and
assume that ¢; < tg (being the other case analogous).

Now, for s < t1, u(s) > 0 and v(s) < 0, whereas for t; < r < to, u(r) > 0 and
v(r) > 0. This way we have found two points (s, s), (r,7) € (0,7') x (0,T") such
that Gp[A, T|(s, s) Gp[A, T](r,r) < 0.

As a consequence, for \J'[T] < A < AP[T], Gp[A, T'] changes sign and so from
Lemma 1.1.9 we conclude that G p [\, T] must change sign for every A > \P[T]. O

Remark 3.2.16. The previous result is a particular case of [39, Theorem 3.1 ], where
a characterization of the constant sign of the Green’s function is proved for the ge-
neral n-th order linear operator coupled with the so-called (k,n — k) boundary
conditions.

It can be also deduced as a consequence of [40, Theorem 11], where it is shown
that if a linear equation is disconjugate then the related Green’s function has constant
sign, and [38, Theorem 2.1], where the interval of disconjugation is characterized by
means of the eigenvalues of some suitable boundary condition.

Remark 3.2.17. It is important to note that Lemma 3.2.15 does not remain true
when n > 1. Indeed, we have considered in Example 2.4.8 a fourth-order problem
for which the Green’s function of the Dirichlet problem is nonnegative.

In the sequel, we characterize the intervals on which G x|\, T'] has constant sign.
Theorem 3.2.18. The following equalities are fulfilled for any a € L' (I).
1. GN[\T) < 0onI x I ifand only if X < NY[T](= M[2T)).
2. GN[N,T]) > 0on I x I if and only if

\12T] =) AN[T] < A < min {Aé”l (7], A2 [T]}.

3. GN[NTI(t,s) > 0 forall (t,s) € (I x I)\{(0,0)U(T,T)} if and only if

\127] =) AN[T] < A < min {Aé”l (7], A2 [T]}.
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3.2 Hill’s Equation

4. GN[A,T](0,0) = 2Gp[\,2T)(0,0) and )\842 [T] is characterized as the first
root of equation

(GN[NT](0,0) =) Gp\, 277(0,0) = 0.

5. GNINTNT,T) =2Gp[\2T)(T,T) and )\é\/h [T'] is characterized as the first
root of equation

(GNNTI(T, T) =) Gp[\, 2T)(T, T) = 0.

Proof. From Lemmas 3.2.3 and 3.2.5, we know that Gp[\, 2T is strictly negative
on J x J if and only if A < A}[27]. Thus, equation (2.2.1) and the equality
M12T) = AY[T] (see Theorem 2.3.2), imply Assertion 1.

Moreover, from Lemmas 3.2.3 and 3.2.5, we know that Gp[A, 2T is nonnega-
tive on J x J if and only if \J[27] < A < M\}'[27]. Then, (2.2.1) and the fact
that \J'[2 7] = A\Y[T] and M [2T] = min {\)""[T], \)2[T]} (see Theorem 2.3.2),
together with Lemma 3.2.10 and Corollary 3.2.12, imply Assertions 2 and 3.

Now, taking into account equality (2.2.1) and the fact that

Gp[A,2T](0,0) = Gp[\,2T](2T,0),
we conclude that for all A € R the following equalities hold

and
GNINTUT,T) =2Gp\2T|(T,T). (3.2.6)

From Lemma 3.2.6, we have that while both values on equations (3.2.5) and
(3.2.6) are positive, they are strictly decreasing with respect to A. Thus, Corol-
lary 3.2.12 ensures that )\3/12 [T] is the first zero of (3.2.5) and )\é\/ll [T] the first zero of
(3.2.6). Then, Assertions 4 and 5 hold. ]

For an arbitrary potential a we obtain the following corollaries.
Corollary 3.2.19. The following equalities are fulfilled for any a € L'(I).
1. GN[T|(t,s) <O forall (t,s) € I x Iifandonlyif0 < Xy[2T] (= XY [T)).
2. Gn[T](t,s) > 0 forall (t,s) € (0,T) x (0,T) if and only if

(A[T) =) W27 < 0 < min (N8 T), \RIT)) (< A[2T] < ADIT)).
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Corollary 3.2.20. The following property holds for any a € L' (I):
G [\ T)(t,s) < 0 forall (t,s) € (0,T] x (0,T] if and only if \ < N\y"2[T).

Proof. From Lemma 3.2.15, we know that the Green’s function Gp [\, 2T is strictly
negative on (0,27) x (0,27) if and only if A < \J[27].

Considering then equation and the fact that, as we have seen in Theorem 2.3.2,
AP[2T] = A2 [T, we conclude the result. O

Moreover, as an immediate consequence of (2.2.16) and Corollary 3.2.20, we
have the following characterization.

Corollary 3.2.21. Let a € L(I), then:
G [\ T(t, s) < 0forall (t,s) € [0,T) x [0,T) if and only if \ < A3 [T).

From Theorems 2.3.2 and 3.2.18 and Corollaries 3.2.19, 3.2.20 and 3.2.21, we
deduce some relations between the constant sign of various Green’s functions.

Theorem 3.2.22. [22] For any a € L(I) the following properties hold:

1. Gp[2T] < 0on J x Jifand only if GN|[T] < 0 on I X I. This is equivalent
to GN[2T] < 0on J x J.

Gp[2T] >00n(0,27) x(0,2T) ifand only if GN[T] > 0 0n (0,T) x (0, 7).

IfGN[2T] > 00n (0,27) % (0,27) then Gy[T] > 00n (0,T) x (0,7).

A

IfGp[2T) <0onJ x Jthen Gp[2T]) < 0o0n (0,2T) x (0,27).

N

IfGp[2T] > 00n (0,2T) x (0,2T) then Gp[2T) < 00n (0,27T) x (0,27T).

S

IfGNIT] (or, equivalently, G p[2 T')) has constant sign on I x I, then Gp[T] < 0
on (0,T) x (0,T), Gpr,[T] < 0o0n [0,T) x [0,T) and Gp,[T] < 0 on
(0,7 x (0, 7).

7. Gp[2T) <00n(0,2T)x(0,2T) ifand only if Gp1,[T] < 00n (0,T] % (0,T7.

8. Ifeither G, [T) < 00n (0,7] x (0,T) or Gpr, [T] < 00n [0,T) x [0,T), then
GplT] <00n (0,T) x (0,T).

Remark 3.2.23. Regarding Assertions 1 and 2, we recall that, for n > 1, the con-
stant sign of Gp[2T) implies the (same) constant sign of G y|T'] and the equivalence
holds when considering constant coefficients. Similarly, the negative sign of Gn[2T)
implies the negative sign of Gn[T| but the equivalence does not hold, not even for
the constant case.

Assertion 3 in previous theorem coincides with Assertion 4 in Corollary 2.4.1.

58



3.2 Hill’s Equation

Finally, with respect to Assertion 7, for n > 1, the negative sign of Gp[2T]
implies the negative sign of G, |[T] but the converse does not hold, not even for
constant coefficients.

Remark 3.2.24. Note that Assertion 6 in Corollary 2.4.1 has not been included in
previous result. The reason is that, as we have seen in Lemma 3.2.15, for n = 1, the
Green'’s function related to (D, 2T') can never be nonnegative.

We will show now some counterexamples in which we will see that Assertions 4,
5, 6 and 8 do not hold, in general, for n > 1.

Next example shows that Assertions 4 and 5 in Theorem 3.2.22 are not true in
general.

Example 3.2.25. Consider the periodic and Dirichlet problems on the same interval
[0,2T] = [0, 3] related to operator

Lu(t) = u @) + (t(t —3)+ N u(t), te]l0,3]. (3.2.7)

By numerical approach, we have obtained that for \ = —1.5, G p[2 T is negative
while Gp[2 T changes its sign on J x J.
Moreover, for A = 15, Gp|2 T is positive while Gp[2 T'] changes sign again.

We will see in the two following examples that none of the implications given in
Assertion 6 in Theorem 3.2.22 holds for n > 1.

Example 3.2.26. Consider now [0, T] = [0,2] and operators L and L given in (2.4.1)
and (2.4.2),

For A\ = —2, one can check that both G p[2T] and G [T are nonpositive, whe-
reas Gp|T| and Gy, [T are nonnegative.

For A\ = 2, it occurs that both Gp|2T) and GN[T| are nonnegative, whereas
Gpl|T), G, [T) and G 1, [T'] are nonnegative.

Example 3.2.27. Take now [0,T] = [0, %], the operator L given by
ey 3

and operator L given in (3.2.7).
In this case, for A\ = 1.5, it occurs that Gp[2T]| and GN[T] are nonpositive,
whereas G, [T'] is nonnegative.

Finally, we will show that Assertion 8 in Theorem 3.2.22 does not hold either
when n > 1.
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Example 3.2.28. Consider again [0,T] = [0,2] and operators L and L given in
(2.4.1) and (2.4.2).
In this case, for \ = —6, Gy, [T'] is nonpositive but Gp[T] is nonnegative.
Similarly, for A = —2, G, [T is nonpositive but G p [T is nonnegative.

3.2.4. Comparison Principles

In this subsection we complement the results proved in Section 2.5 for n > 1.

As we have seen in previous section, for the particular case of Hill’s equation, we
have stronger relations between the constant sign of various Green’s functions than
for the general 2n-th order operator. Therefore, we can obtain stronger comparison
principles too.

On the other hand, note that some results which have been proved for the general
even order problem do not make sense for Hill’s equation. This is the case of Item 4
in Corollary 2.5.3 or Item 1 in Theorem 2.5.5, which do not make sense since, as we
have seen, Gp[2 T related to Hill’s equation can never be nonnegative on J x .J.

Now, we will see how to adapt the results in Section 2.5 to this case.

In particular, from Theorem 3.2.22, results in Corollary 2.5.1 can be improved
for this case in the following way.

Corollary 3.2.29. IfGp[2T] > 0on J x J, then

Gn[T|(t,s) > —Gp[T](t,s) >0, V(ts)elxI.
IfGp2T] < 0on J x J, then

GnN[T|(t,s) < Gp[T|(t,s) <0, V(t,s)elxI.

As a consequence, Theorem 2.5.2 can also be rewritten in such a way that we
may assure that both solutions have constant sign.

Theorem 3.2.30. Let uy be the unique solution of problem (N, T') for o = o1 and
up the unique solution of problem (D, T') for o = o9. Then

1. IfGp[2T] > 00n J x J and |o2(t)| < 01(t) a.e. t € I, then
lup(t)] <un(t) foralltel.
1.1 If, moreover, o2(t) > 0 a.e. t € I, then
—un(t) <up(t) <0 foralltel.
1.2 If, moreover, 03(t) < 0a.e. t € I, then

0 <up(t) <un(t) foralltel.
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3.2 Hill’s Equation

2. IfGp2T)<0o0nJ x Jand 0 < 05(t) < o1(t) a.e. t € I, then
un(t) <wup(t) <0 forallt €.

3. IfGp[2T) <0o0nJ x Jand 01(t) < 02(t) <0a.e. t € I, then

0 <up(t) <un(t) foralltel.

This situation is represented in Figures 3.2.1, 3.2.2, 3.2.3 and 3.2.4.

Figure 3.2.3: Solutions of (N, T') and (D, T') in Case 2 in Theorem 3.2.30.
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Figure 3.2.4: Solutions of (N, T") and (D, T') in Case 3 in Theorem 3.2.30.

Remark 3.2.31. Note that Theorem 3.2.30 is stronger than its corresponding one for
the general even order equation (namely, Theorem 2.5.2) as for Hill’s equation we
are able to ensure the constant sign of both Neumann and Dirichlet solutions, which
did not happen in Theorem 2.5.2.

Analogously, Corollary 2.5.3 can be improved in the following way.

Corollary 3.2.32. If GN[2T] > 0on J X J, then

Gn[T|(t,s) > =G, [T](t,5) >0, V(t,s) el xI.
IfGN[2T] < 0on J x J, then

GN[T(t,s) < G, [T](t,s) <0, V(t,s)elxl.
IfGp[2T) <0on J x J, then

G, |T(t,s) < Gp[T](t,s) <0, V(t,s)elxI.

Remark 3.2.33. Note that Assertion 4 in Corollary 2.5.3 has not been included in
previous result since, as we have seen in Lemma 3.2.15, for Hill’s equation, the
Green'’s function related to (D, 2T') can never be nonnegative.

Now, we can adapt Theorems 2.5.4 and 2.5.5 for the case of Hill’s equation.

Theorem 3.2.34. Let uy be the unique solution of problem (N, T') for o0 = o1 and
upg, the unique solution of (M1, T') for o = o9. Then

1. IfGN[2T) > 00n J x J and |o2(t)| < 01(t) a.e. t € I, then
luns, (8)| < un(t) forallt e 1.
1.1 If, moreover, o5(t) > 0a.e. t € I, then

—un(t) <up,(t) <0 forallt € 1.
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1.2 If, moreover, 02(t) < 0a.e. t € I, then
0 <wupp(t) <un(t) foralltel.
2. IfGN[2T] <0o0n J x Jand 0 < 05(t) < 01(t) a.e. t € I, then

un(t) <wupp,(t) <0 forallt eI

3. IfGN[2T]<0o0nJ x Jand o1(t) < o9(t) <0a.e. t € I, then
0 <wupp(t) <un(t) foralltel.

Theorem 3.2.35. Suppose that Gp[2T| < 0 on J x J. Let ups, be the unique
solution of problem (M, T') for 0 = o1 and up the unique solution of problem
(D, T) for o = o9.

1. If0 < oy(t) < o1(t) a.e. t € I, then

upn,(t) <up(t) <0 foralltel.

2. Ifo1(t) < oa(t) <0a.e t €1, then
0 <up(t) <wup,(t) foralltel.

Remark 3.2.36. We note that, since Assertion 4 in Corollary 2.5.3 can never hap-
pen for the case studied in this section, it implies that hypotheses in Assertion 1 in
Theorem 2.5.5 are never fulfilled in such a case. Therefore, we have not included the
corresponding Assertion in Theorem 3.2.35.

Moreover, using the characterization given in Subsection 3.2.3, it is possible to
rewrite Corollaries 3.2.29 and 3.2.32 in terms of eigenvalues, as follows.

Corollary 3.2.37. If (AN[T] =) Ap[2T] < 0 < A4[2T), then
GnN[T](t,s) > —Gp[T)(t,s) >0, V(t,s)elxI.
If AN[T) = AN[2T) = Ap[4T] =) Ap[2T] > 0, then
GN[TI(ts) < Gp[T](t,5) <0, V(i,s) eI xI

and
GN[T|(t,s) < Gp, [T)(t,s) <0, V(t,s)elxI.

IFON[T] = AN[2T] =) Ap[AT] < 0 < A\4[AT), then

GNIT](t,s) > —Ga [T](t,s) >0, V(t,s)elxI.
If (Ap[2T) =) A, [T] > 0, then

G, [TN(t,s) < GplT)(t,s) <0, V(ts)elxl.
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Finally, we are also able to deduce the following result which is not true, in
general, for higher order equations.

Corollary 3.2.38. If GN[T] > 0on I X I, then

GN[T|(t,s) <2Gp2T|(2T —t,s)on I x I.
0> GplT](t,s) > —2Gp[2T](2T —t,s)on I x I.
Gn[T)(t,s) <2GN[2T)(2T —t,s)on I x I.

0> Gy, [T)(t,s) > —2GN[2T)2T —t,s)on I x I.

In particular, Gp[2T)(2T — t,s) > 0and GN[2T|(2T — t,s) > 0on I x I.

Proof. The inequalities are deduced from expressions (2.2.17) and (2.2.19) by taking
into account that if Gy[T] > 0 on I x I then Gp[T] < 0 and G, [T] < 0 on
Ix1. O

3.2.5. Global Order of Eigenvalues of Hill’s Equation

It can also be proved that, when dealing with Hill’s equation, there exists a certain
order relation between the eigenvalues related to problems (N, T'), (D, T'), (M1, T)
and (M, T).

Indeed, consider the following facts:

®

(i)

Let A\ [T], Ay, [T] € An[T) be two consecutive eigenvalues of Neumann
problem (V, T') and let ufj’T and ufjﬁ be their associated eigenfunctions. As
we have seen in Section 3.1, the aforementioned eigenfunctions have k£ and
k + 1 zeros on the interval [0, T, respectively.

If we consider the even extensions of uiV’T and ukN+:q to the interval [0, 2 7], it
is clear that they have 2k and 2k + 2 zeros on [0, 2 T'], respectively, so there
must exist an eigenvalue A € Ay[27T], AN [T] < A < AR, [T], such that its
associated eigenfunction has exactly 2k + 1 zeros on the interval [0, 2 T']. From
the decomposition of the Neumann spectrum showed in Section 2.3, we have
that, necessarily, A € Ay, [T7].

As we know that \)'[2T] = A\Y[T] we conclude that

AT < NPT < o< WY (T < T < M [T] < AT <

Analogously, we can easily see that Ay, [7'] corresponds with eigenvalues of
Ap[2T] whose eigenfunctions have an even number of zeros on the interval
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3.2 Hill’s Equation

(0,27) and Ap[T] corresponds with eigenvalues of Ap[27] whose eigen-
functions have an odd number of zeros on (0,27"). Taking into account the
fact that \[2 7] = )\842 [T'] we conclude that

AP < M) < oo < NPT < AP [T < M2 [T) < M [T) < -

(>iii) Oscillation Theorem (Theorem 3.1.6) guarantees that the eigenvalues of perio-
dic and antiperiodic problems related to the same interval always appear in the
following order

MPIT) < MHT) < MYT) < AT < AP [T] < MY [T < MUT) < ...

Consequently, if we consider Item (iii) for problems (P, 27T") and (A, 27') and
we take into account the inequalities obtained in Items (i) and (ii) we can affirm that

» Ineach pair {\}, ,[27], AL, [2T1]} of two consecutive eigenvalues of problem
(P, 2T), one of them belongs to A [7'] and the other one belongs to Ap[T].
In particular, if AJ, | [27] = A, [27] is a double eigenvalue, then it belongs
to both Ay [T] and Ap[T].

= Ineach pair {\5;[2T], A5, [27]} of two consecutive eigenvalues of problem
(A, 2T), one of them belongs to Az, [T'] and the other one belongs to Ay, [T].
As in the previous case, if A3 [2T] = g, +1[2T7 is a double eigenvalue, then
it belongs to both Ay, [T] and Ay, [T].

The previous reasoning lets us conclude that the eigenvalues of problem (P, 4T")
always appear in the following order:

AT] < T, X" (TT} < {AG T, A [T}
< T, AMPITTY < APIT] AT <

As an immediate consequence we can also deduce an alternating relation between
eigenvalues of (N, T') and (M2, T') and also between those of (M1, T') and (D, T)).

Corollary 3.2.39. The following properties hold for any a € L*(I).
LANT] < NP2(T) < MY [T) < M2 (7], k=0,1,...

2. NI < APT) < NI < AP IT), k=0,1,...
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Remark 3.2.40. In [106, Chapter 1] the following equalities are proved in the case
of an even potential on [0,2T):

ur (2T, \) = 2ug (T, \) ubp(T,\) — 1 =14 2u) (T, N ua(T, \), (3.2.8)
uy (2T, \) = 2uy (T, \) u)y (T, \), (3.2.9)
ua(2T, \) = 2ua(T, \) uh(T, \), (3.2.10)
un(2T,\) = ur (2T, \), (3.2.11)

with uy and us the fundamental solutions of Hill’s equation defined in Theorem 3.1.6.
Moreover, it is easy to verify (see [23, Chapter 2] for the details) that

» X\ € AN[T] if and only if u} (T, X) = 0.
» A\ € Ap[T] if and only if us(T, \) = 0.
» A€ Ay, [T] if and only if ui (T, ) = 0.
w )\ € A [T if and only if ub (T, X) = 0.

Therefore we deduce that, as a is an even function, the decomposition of Neumann
and Dirichlet spectra in 2T,

AN[2T] = AN[T] U AJ\/[1 [T] and AD[QT] = AD[T] U AMQ[T],

could also be deduced from the equalities (3.2.9) and (3.2.10). This deduction,
despite being more direct than the one presented in this work, does not give any
information about the order of eigenvalues.

We will see now some examples of the different situations that we could find.
To calculate the eigenvalues we will use the characterization of the spectra given in
Remark 3.2.40.

Example 3.2.41. If we consider the constant case a(t) = 0, it is known that (see

[18])

N7 = AT =0 and AS‘[QT]:)\OD[QT}:(%)Q.

Moreover, denoting A\ = m? > 0 and using [24] we obtain the explicit expressi-
ons of the corresponding Green’s functions:
cos(m(s—t+1T))

2m sinmT
cos(m(s—t—T))

2m sinmT

Gp[m?,2T](t,s) =
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3.2 Hill’s Equation

and

cos (ms) cos (m (T —1t))
msinmT

; 0<s<t<T,

Gnlm® T)(t5) = cos (mt) cos (m (T — s))

: T , 0<t<s<T.
m sinm

It is obvious that

1
2 — 2 = —F
GN[m 7T](O>O) - 2Gp[m ’2T](0’0)  mtanmT’

As a consequence, from Theorem 3.2.18, we know that )\g/h [T] = (%) 2
Moreover, from Theorem 3.2.18 and the fact that

1
mtanmT’

Gn[m?, TT,T) = 2Gp[m?,2T)(T,T) =

we deduce that \\2[T] = () *_ This is also deduced from Corollary 2.3.1.
We can use [24] to calculate the Green’s functions for the different boundary
conditions
sin (ms) sin (m (t —1T1))
m sinm T
sin (mt) sin (m (s —T))
m sinm T

G’D[m2,T}(t,s) =

cos (ms) sin (m (t —T))
m cosmT
cos(mt) sin(m (s —1T))
m cosmT

G, [m2, T(t,s) =

—sin(ms) cos (m (T —t))

T ., 0<s<t<T,
G, [mQ,T](t, s) = e T
sin (mt) cos (m ( s))7 0<t<s<T
m cosmT

and

—sin(m(s—t+T))
2m cosmT

—sin(m(—=s+t+1T))
2m cosmT

, 0<s<t<T,
Galm?,2T](t,s) =
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We observe then that \§ [T = (%)2

In this case,
AN[T] = Ap[TTU {0} = Ap[2T]

and
A [T] = A, [T] = Aa[2T7.

Then, if we represent graphically the discriminant (given in Oscillation Theorem
(Theorem 3.1.6)), A(X) = u1 (2T, ) + u5(2T, X), we obtain Figure 3.2.5.

AN

N D —_ N D —\N

Ao [T1 A0 [T] = AT AT = A5 [T] A =2
\{ /\M% AT = /\M2

Figure 3.2.5: Graphic of A()) for a(t) = 0.

Example 3.2.42. If we consider'T’ = 2 and

olt) = {0, t € [0,1],

L tell,2],

the eigenvalues can be directly obtained and we can verify that
A [2] = AV [4] = AD[4] = —0.0508,
A2[2] = AP[4] = M [4] = 0.5346,

A [2] = 0.5984

and

AD[2] ~ 2.4170.

Graphically, the situation would be represented in Figure 3.2.6.
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>
~~
>

1 [2]

Wi AR AP
VN Ny

A
%#@L A = -2
A2 At ARl A2

AP A"

Figure 3.2.6: Graphic of A()\) for a piecewise constant potential a.

Note that the k-th eigenvalue of problem (Mo, T') always appears before the one
of problem (M, T'). In addition, the order between the eigenvalues of (N, T') and

(D, T) is also maintained.

Example 3.2.43. Considering T = 7 and a(t) = cost, we obtain the following

approximations
M r) = AV 2xa] = MW [27] = A5 [4n] = —0.378,
A [x] = M2 ) ~ —0.348,
A2 ] = AP[2 7] = 0.5948

and
D[] = 0.918.

Graphically we would obtain Figure 3.2.7.

AN
AN ] AG ] — [ Alr]__ A[m] Ay =2
[N [Ny,
AN = -2
Mo ] T g™ (] A (] A2l At A" [x]

Figure 3.2.7: Graphic of A()) for a(t) = cost.
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In this case, the k-th eigenvalue of (M, T') is smaller than the one of (Ma, T).
Again, the order between the eigenvalues of (N, T') and (D, T') is maintained.

The following example shows that eigenvalues related to problem (N, T') do not
necessarily have to alternate with the ones of (D, T').

Example 3.2.44. Considering T = m and a(t) = cos2t, we obtain the following
approximation for the spectra of the considered problems

Ap[47] = {—0.1218, 0.0923, 0.47065, 1.4668, 2.34076, 3.9792,4.1009, ...},

Ap[27] = {—0.1218, 0.47065, 1.4668, 3.9792, 4.1009, ... },
Mg, [7] = Apg, ] = A2 7] = {0.0923, 2.34076, ...},
Ay|r] = {=0.1218, 0.47065, 4.1009, ... }

and
Ap[r] = {1.4668, 3.9792, ... }.

We observe that in this case
)\év[ﬂ'] < )\{V[W] < /\6) (7] < )\{) [7] < )\év[ﬂ'].

Note that the eigenvalues of mixed problems coincide. This is due to the fact that
a(t) = a(m — t) (see Corollary 2.3.1). Consequently, all the eigenvalues of Aa[2 7]
are a double root of A(\) = —2.

Graphically we get Figure 3.2.8.

o -@- ~@-

N =20 NP =M AR ] = AR ]

Figure 3.2.8: Graphic of A()) for a(t) = cos 2.
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Remark 3.2.45. The numerical results obtained in the considered examples suggest
an order of eigenvalues even more precise than the one theoretically proved.

It is observed that the eigenvalues of mixed problems alternate, with one eigen-
value of a mixed problem between two consecutive eigenvalues of the other one, and
reciprocally. This has been observed in all the considered examples in which the
spectra of the two mixed problems are different (Examples 3.2.42 and 3.2.43), inde-
pendently of which of them appears first.

We also appreciate in the examples an alternation between Neumann and Diri-
chlet eigenvalues except for the case in which the spectrum of the mixed problems is
the same (in this case the order of appearance of Dirichlet and Neumann changes
between one pair of eigenvalues and the next one, as we can see in Example 3.2.44).

This situation suggests the existence of some property justifying this fact. Ho-
wever, up to this moment, this has not been formally proved and these speculations
are uniquely based on the numerical results obtained while working with different
potentials.

3.2.6. Explicit Criteria to Ensure Constant Sign of Green’s Functions

As we have commented before, being able to ensure the constant sign of the
Green'’s function is important as, among other things, in some cases it allows to war-
rant the constant sign of the solutions.

Moreover, as it has been mentioned at the beginning of this section, the periodic
problem related to Hill’s equation has been widely studied. In particular, many cha-
racterizations of maximum and antimaximum principles have been proved. All these
criteria, by virtue of Theorem 1.1.7, can be used to ensure the constant sign of the
Green’s function related to problem (P, 7"). We will compile next these criteria and,
for the sake of simplicity, we will formulate them in terms of the constant sign of
the Green’s function, although most of them are originally proved for maximum and
antimaximum principles.

First, we will introduce now some notation that we will use in this section:

= The positive part
hy(t) = max{h(t), 0}, t €I

and the negative one
h_(t) = —min{h(t), 0}, t € I,
are defined as usual.

= Given 1 < a < oo we will denote by «o* its conjugate, that is, the number

o .1 .
satisfying the relation — + — = 1. If @ = 1 then o™ = oo and vice-versa.
(% «
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» Finally, denoting by H}(I) the usual Sobolev space of the W2(I) functions
that satisfy the Dirichlet conditions, we define K («,T') as the best Sobolev
constant in the inequality

Cllull2 < ||«|3 forallu € Hy(I),

which is given explicitly by

_2 2
2 ) — ’
K(a,T) = aT'a \2+a ri+1)
4
T’

This expression was first given by Talenti in 1976 [138], but he did not prove it.
The proof of the result can be seen in [51] for the case 1 < o < oo and in [26]
for the cases « = 1 and o = co. Moreover, a detailed proof can also be found
in [23, Appendix A].

We will compile now the aforementioned criteria.
Lemma 3.2.46. Suppose that a € L(I), then:

(i) )\P | < —% fo s)d s and the equality holds if and only if a is constant.
(See [160]).

(i) If o o < K(20%,T), then
NAT] > (%)2 (1 - K!;;”"T)> > 0.
(See [162]).
Lemma 3.2.47 ([21, Proposition 3.1] ). If Gp[T] < 0 on I X I then fo )ds < 0.
Lemma 3.2.48 ([19, Theorem 3.1]) Iffo )dt>0,aZ0o0nl and
laylle < K(2a*,T),
then Gp[T| > 0on I x I.

Lemma 3.2.49 ([142, Corollary 2.2]). Ifa < 0, then Gp[T] < 0on I x I.
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3.2 Hill’s Equation

Lemma 3.2.50 ([70, Corollary 2.5]). Ifa € Ll(I), aZ0on I and

T 4 fOTaJr(S) ds Ta o) ds
| areas< —Zﬁm@msSA (s) ds,

then Gp[T] <0onlI x I

We can also relate the discriminant A(\), defined in Theorem 3.1.6, with the
constant sign of the Green’s function.

Lemma 3.2.51 ([21, Theorem 4.2]). We have the following properties:
1. Gp[T] < 0onI x Iifand only if A(X\) > 2 forall A < 0.
2. Gp[T] > 0onI x I ifand only if A(X) > —2 for all A < 0 and A(0) < 2.

Lemma 3.2.52 ([21, Theorem 4.3]). Suppose that ||it||pe(ry < K(20*,T), with

a(t) = a(t) + A\, where a has mean zero and X = fOT a(s) d s is the mean value of
a. Then

1. Gp[T) < 0on I x I ifand only iffOTa(s) ds < 0and A(0) > 2.
2. IffOTa(s) ds < 0and A(0) < 2, then Gp[T] > 0on I x I.

3. If operator L coupled with periodic boundary conditions is nonresonant and

T § [0t [le
m +lLe )
0< ds< — (1 - ————=
—A“ﬁs—T< KWﬁﬂ)
then Gp[T| > 0on I x I.

Now, as a corollary of Lemma 3.2.46, we obtain the following bounds for the first
eigenvalues of Neumann, Dirichlet and mixed problems.

Corollary 3.2.53. Let a € LY(I). Then:
1. \Y[T) < —% OT a(s) d s and the equality holds if and only if a is constant.

2. If lat|lLa < 271/ K (2a*,2T) then

. T \2 21 lay e (s
APIT] > min {3 [7], M= (1]} > (ﬁ) (1 - W > 0.
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Proof. 1. As a consequence of item (7) in Lemma 3.2.46 applied to the even ex-
tension of a we know that

P 1 2T
2T < —— a
M [2T) < 2T/O a(s) ds

and the equality holds only when a is constant. Assertion 1 in Theorem 3.2.18
warrants that \)' [T] = A\}'[2T. Then, we deduce that

MVT < —21T/U2T&(s) ds= —% </0Ta(s)ds + /TzTa(2T—s) ds)

- _% (2/0Ta(s)ds> = —;/OTG(S) ds

and the equality holds if and only if a is constant.

2. From Assertion (ii) in Lemma 3.2.46 we have that if ||a || ;) < K(20",2T)

then
) el
AA2T><f—) 1— ) s,
02712 (37 K(2a*,2T) 20
We also have that

27T T
L) = ja(s)|*ds =2 [ lay(s)[" ds =2 |lat[La(,
0 0

from where we deduce that
latllpacs = 2" Naslpaqr -

The result can be concluded from the fact that
AA[27T] = min {/\8”1 (7], AM2 [T]} < AP[m,

proved in Theorem 2.3.2.
O]

On the other hand, using the implications between the constant sign of the Green’s
functions of the different problems, formulated in Corollary 3.2.22, we can rewrite
Lemmas 3.2.47, 3.2.48, 3.2.49 and 3.2.50. For that, it is enough to consider those
lemmas in terms of @ and take into account the following relations (which are dedu-
ced from the previous proof):
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= Condition a > 0 (respectively, < 0) is equivalent to a > 0 (respectively, < 0).

= We have the following relation between the norms of a and a
laill Loy = 2% Nlallpar)

= As a is an even function, it verifies that

/Osz(s)ds:2/0Ta(s)ds.

We are now in conditions to rewrite the hypotheses in the corresponding terms
for each case.

Corollary 3.2.54. The following assertions hold:
(i) Ifa < 0, then GN[T] < O0on I x I.

(ii) Ifa € LX(I), [y a(t) dt >0, a 2 0and |jay|a) < 277K (2a*,27),
then GN[T] > 0on I x 1.

(iii) Ifa € LY(I), a # 0 and

T 1 f()Ta+(s) ds T
/0 a+(s)d5<T, 1—TfOTa+(s)ds§/0 a_(s) ds,

then GN[T] < 0onl x I.
Any of the previous conditions implies that:
1. Gp [T)(t,s) < Oforall (t,s) € [0,T) x [0,T).
2. G [T)(t,s) < Oforall (t,s) € (0,T] x (0,T].
3. Gp[T|(t,s) <0 forall (t,s) € (0,T) x (0,T).
4. Gp[2T](t,s) <0 forall (t,s) € (0,2T) x (0,2T).
Corollary 3.2.55. If Gn[T] < O on I x I then [ a(s) ds < 0.

Considering now the discriminant A(\) = w3 (27T, \) 4 u4(2T, \) for the pe-
riodic problem on [0,2 7] with potential a, from Lemmas 3.2.51 and 3.2.52, it is
possible to obtain results about the constant sign of non-periodic Green’s functions.

Corollary 3.2.56. The following properties hold:
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(i) GN[T) < 0on I x I ifand only if A(X) > 2 for all X < 0.
(ii) GN[T] > 0o0n I x I ifand only if A(\) > —2 for all X < 0 and A(0) < 2.
Corollary 3.2.57. If A(\) > —2for all \ < 0 then:
1. G, [T)(t,s) < 0forall (t,s) €[0,T) x [0,T).
2. Gy, [T)(t,s) < Oforall (t,s) € (0,T] x (0,T).
3. Gp[T](t,s) < 0 forall (t,s) € (0,T) x (0,T).
4. Gp[2T](t,s) < 0forall (t,s) € (0,2T) x (0,27).

Corollary 3.2.58. Let a(t) = a(t)+ A, where a has mean zero and \ = 7 fOT a(s)ds
is the mean value of a, and suppose that ||a4 [y ey < 2=V K(2a*,2T). Then:

(i) GN[T] < 0o0n I x I if and only iffOTa(s) ds < 0and A(0) > 2.

(ii) IffOTa(s) ds < 0and A(0) < 2, then GN[T] >0o0n I x I.

(iii) If operator L coupled with periodic boundary conditions on [0,2 T is nonre-

sonant and
r ? 21/ lay |
T +llLe()
0< Wi ), A1 - =
—/0 als) ds = 77 < K@2a2T) |’

then GN[T] > 0on I x I.

/OTa(s) ds <0

T w2 219 lay o
< < —/1- ——
0—/0 als) ds < 77 K(Za*,2T) |°

Corollary 3.2.59. If either

or

then:

1. Gp [T)(t,s) < O0forall (t,s) €[0,T) x [0,T).

N

G, |T](t, s) < 0 forall (t,s) € (0,T] x (0,T].

“

GplT](t,s) < 0 forall (t,s) € (0,T) x (0,T).

&

Gpl2T](t,s) < O forall (t,s) € (0,2T) x (0,27).
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3.3. General Second Order Equation

In this section a more general problem of order 2 is considered and it is proved
to be equivalent to the one involving Hill’s equation treated in previous section. As a
consequence, all the results obtained until the moment could be rewritten in terms of
this problem.

First, the periodic problem will be studied and later the obtained results will be
generalized to other boundary conditions.

All the results in this section can be found in [23, Section 3.5].

3.3.1. Periodic Problem

Consider now the general second order equation given in self-adjoint form

(3.3.1)

withp > 0Oa.e. t € [ and ; € L'(I).

Let a and & be such that &paT_l and 6paT_1 € L*(I), for some o € [1,00].
Moreover, let u be a solution of problem (3.3.1), that is, a function v € AC(I) such
that pu’ € AC(I) and u satisfies the equalities in (3.3.1).

Defining
t
d
w(t):/—s, tel,
o P(s)

we have that w € AC(I) and w'(t) = ﬁ >0 a.e. t € I. Moreover, w(0) = 0 and

w(T) = R > 0. So, from [37, Lemma 1], both w and w1t are absolutely continuous.
As a consequence, both w and w1 are continuous and strictly increasing functi-
ons on their intervals of definition.
Lety : [0, R] = K — R be defined as y(t) = u(w~!(t)). Obviously, y € C(K)
and, since u € AC(I), w™! € AC(K) and w=! : K — I is a monotone function,
the following theorem warrants that y = u o w™! € AC(K).

Theorem 3.3.1. [113, Theorem 9.3] Let g € AC([c,d]) be such that g([c,d]) C
[, B] and f € AC([cv, B]). If any of the two following conditions is satisfied

(i) g is monotone,
(ii) f is Lipschitz,

then f o g € AC(]c,d)).
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Moreover, if f € AC([e, 8]) and g € AC([c, d]) is monotone, it is verified that

(fog)t)=Ff(g(t)d'(t) ae telcd.

This result can be seen in [37, Remark 3] and is deduced from [113, Theorems 9.3
and 38.4].
Therefore, for a.e. t € K, the following equality is satisfied:

V() = /(™ (1) (07 (1) = 0) s = 0w) (07 (0).

In an analogous way it can be deduced that (pu') o w™! € AC(K) and
y'(t) = ((pu) cw™1)(t) = (pu) (w™ (1)) p(w ™' (1)) € L' (1).
Consequently, we have that, fora.e. t € K,
y' (1) +p(w™ (1) a(w™ (1) y(t) = p(p ) (w™ (1)) + (pa) (™ (1)) u(w™ (1))
= (pa) (w™ (1)),
and, moreover,
y(0) = u(w™(0)) = u(0) = u(T) = u(w™(R)) = y(R),

y'(0) = lim 3/(t) = lim (pu') (w™'(£)) = lim (pu)(s) = (pu')(0)

t—0+ t—0+ s—0t
and
y'(R) = Jim. y'(t) = Jim (p u') (w™(t) = im (p u')(s) = (pu)(T).

On the other hand, note that

that is,
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Remark 3.3.2. The fact that a is measurable is deduced from both p o w™' and
a o w™! being measurable. Indeed, we will see that if V is open, then

(pow™ )M (V) =w(p~'(V))

is a measurable set.

As p is a measurable function, then pfl(V) is measurable. So, it is enough to
verify that w takes measurable sets into measurable sets.

Since w is absolutely continuous, the following theorem guarantees that the image
by w of any set of measure zero has measure zero.

Theorem 3.3.3 (Banach-Zarecki). [75, Theorem 18.25] A function f is absolutely
continuous on an interval [c, d| if and only if the two following conditions are verified:

(i) f is continuous and of bounded variation on [c, d|.

(ii) The image through f of any subset of [c,d]| with measure zero is a set with
measure zero.

Moreover, as a consequence of [ 136, Chapter 6, Exercise 6] we have that, as w is
a continuous function, the image of a set with measure zero has measure zero if and
only if the image of any measurable set is measurable.

Consequently, w(p~Y(V)) is a measurable set and the function p o w~
surable.

An analogous reasoning could be considered for @ o w™".

Lis mea-

Similarly we obtain that o(t) = p(w=1(t)) o (w1 (t)) € LY(K).
As a consequence, y € W21(K) is a solution of

{ y'(t) +a(t)y(t) =0o(t), aetekK, (33.2)

y(0) = y(R), v'(0) =y'(R),

with a, 0 € L(K).

Reciprocally, let a, ¢ € L¥(K) be arbitrary and let y € W?!(K) be a solution
of problem (3.3.2). Consider functions p and w in the previous conditions.

Defining v : I — R as u(t) := y(w(t)) and using the fact that y € AC(K)
and w : I — K is monotone and satisfies that w € AC(I), we deduce from Theo-
rem 3.3.1 that u = y o w € AC(I).

Therefore, applying again the chain rule, we have that

(0 = ¥/ b)) /1) = (w(0) s, et
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that is,
(pu')(t) =y (w(t)), aetel.
Since v € AC(K) and w : I — J is monotone and satisfies that w € AC(I), we
deduce again from Theorem 3.3.1 that pu’ =y’ o w € AC([), and

p(pu) (t) =y"(w(t), aetel.

Moreover
(pu) (t) + a(t) u(t) = W +a(t)y(w(t)) =ao(t), aetel,
witha(t) = i) and o (1) = 2 te I
Obviously
u(0) = y(w(0)) = y(0) = y(R) = y(w(T)) = u(T). (3.3.3)

The monotony assumptions on function w let us affirm that

pu/(0) = lim (pu')(t) = lim y'(w(t)) = lim 3/'(s) = ¥/ (0) (3.3.4)

t—0t t—0t s—0t

and

pu'(T) = lim (pu)(t) = lm ¢'(w(t)) = lim ¢'(s) =y(R). (335

Finally, we observe that

T a—1 « T 1 (e
[ = wao["at= [ fawo)s= o ar
0 0
4 «a dt _ 4 alw aw/
— |mwm|mﬂ—éw<<m| nar o

w(T)

/
/w(o) la(s)[* ds = /OR la(s)|* d s

= llallte(x) < +oo.

As a consequence u € AC(I), withpu' € AC(I), is a solution of problem (3.3.2)
with p“s @, p*a & € Lo(I).

We have proved that problems (3.3.1) and (3.3.2) are equivalent and the qualita-
tive properties of the solutions of both problems are the same.

We will see next the relation between the corresponding Green’s functions.
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3.3 General Second Order Equation

Lemma 3.3.4. Let Gp[T) and G p[R] be the Green’s functions related to problems
(3.3.1) and (3.3.2), respectively. It is verified that

GplT)(t, ) = Gp[R|(w(t),w(s)), Y(t,s)elxI.

Proof. If u is the unique solution of problem (3.3.1), then, as we have proved before,
y(t) = u(w=1(t)) is the unique solution of (3.3.2) for o(t) = p(w=1(t)) a(w=1(t))
and satisfies that

_ r 1 _ 1
y(t) = /0 GplR)(t, 5) plw™(5)) 5(w1(s)) ds.

Conversely, if y is the unique solution of (3.3.2) then, using previous arguments
again, u = y(w(t)) is the unique solution of problem (3.3.1). Consequently

R
u(t) = y(w(t)) = /0 Gp[R)(w(t),s) p(w™'(s)) a(w™!(s)) ds
T
:/0 Gp[R)(w(t),w(s))a(s) ds,

from where we deduce the result. U
As an immediate consequence we obtain the following corollary.
Corollary 3.3.5. The following equivalences hold:
1. Gp[T] >0o0nI x I ifand only if Gp[R] > 0on K x K.
2. Gp[T) < 0onl x Iifand only if Gp[R] < 0on K x K.

The previous result lets us obtain some criteria about the constant sign of the
Green'’s function of problem (3.3.1) from Lemmas 3.2.47, 3.2.48, 3.2.49 and 3.2.50.
These results are deduced by simply taking into account the following facts:

= As a consequence from (3.3.6) we have that

a—1
p~a

lalleqey = [p*= 2l -

= It is verified that

/ORa(t) dt

R R
/ plw™H (1) a(w™(¢)) dt:/ a(w™ (1)) (w™'(t)) dt
0 0
(s) ds.

r

l
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= Since by hypothesis p > 0 a.e. t € I, condition a > 0 (respectively, < 0) is
equivalent to a > 0 (respectively, < 0). Moreover,

ar(t) = pw™ () ar(w™' (1), a—(t) = p(w™ (1) a-(w™'(t))

and consequently

/ORa+(t)dt:/0TC_L+(t)dt and /ORa(t)dt:/oTa(t)dt.

Corollary 3.3.6. Ifa < 0, then Gp[T) <0on I x I.

Corollary 3.3.7. Ifa > 0 and Hp“%1 a”L o < K(20%R), then Gp[T] > 0 on
I x1I.

< K(2a*, R),

Corollary 3.3.8. If [ a(t) dt > 0,d % 0.on I and Hp“% a+‘ .

then Gp[T] > 0on 1 x I.

Corollary 3.3.9. Ifa € L'(I), a # 0 on I and

T T d T
/ a4+ (s) ds < é, J a;(s) i < / a—(s) ds,
0 R 1—%[0 a(s) ds 0

then Gp[T) < 0on I x I.
Corollary 3.3.10. If Gp[T|(t,s) < O forall (t,s) € I x I then fOT a(s) ds < 0.

Considering now the discriminant A(\) = wuy (R, \) + u,(R, \) for problem
(3.3.2), Lemmas 3.2.51 and 3.2.52 can be rewritten in order to obtain some conditions
that assure the constant sign of the Green’s function of problem (3.3.1).

Corollary 3.3.11. The following properties hold:
(i) Gp[T] < 0onI x I ifand only if A(\) > 2 for all X < 0.
(ii) Gp[T) > 0on I x I ifand only if A(\) > —2 for all A < 0 and A(0) < 2.

Corollary 3.3.12. Leta(t) = a(t) + A ?lt), where \ = 4 fOT a(s) dsis % times the
mean value of a and suppose that

< K(2a*,R).

a q
p + L (1)

a—1 A ‘

Then
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3.3 General Second Order Equation

(i) Gp[T ]<00nI><szandonlytff0 s) ds < 0and A(0) >
(ii) If [ a(s) ds < 0.and A(0) < 2, then Gp|T] > 0on I x I.

(iii) If operator L under periodic boundary conditions is nonresonant and

T 2 ‘p @ Q4
_ T Lo (1)
0< ds< — |1 - —— 7
—/0 a(s) ds < 5 K(2a%R) |’

a—1 . ’

then Gp[T] > 0on I x I.

Proof. The hypotheses of Lemma 3.2.52 (applied to a(t) = p(w=(t)) a(w=1(t)))
will be rewritten in terms of problem (3.3.1). Indeed, such result c0n51ders that
lay|lLary < K(2a* R), with a(t) = a(t) + A\, where A\ = Rfo ) ds is
the mean value of a. It is immediate to verify that

1 T
)\:E/O a(s) ds

and, clearly, this is % times the mean value of a.
Moreover,

R
Hamamq=Ma—n+qu=ié<ww—xﬁdt

\L\
=
ﬁ
;

A a-1 . ||
=| (a_p>+ ey 17 2
that is,
] L .

The other changes in this corollary with respect to Lemma 3.2.52 are immediately
obtained from the same considerations as in previous results. O
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3.3.2. Non-periodic Conditions

All the previous reasonings have been done considering periodic boundary con-
ditions. Nevertheless, equalities (3.3.3), (3.3.4) and (3.3.5) guarantee that

and
(pu')(0) ='(0), (pu')(T) =y'(R).

Consequently, periodic conditions in problems (3.3.1) and (3.3.2) can be substi-
tuted by any other kind of boundary conditions and this does not affect to the equi-
valence of the problems. We obtain the same relation between the Green’s functions
corresponding to each case, that is, using an analogous notation to the periodic case,
we have the following equalities:

GN[T](t,s) = Gn[R)(w(t),w(s)), V(ts) € x1,

GplT](t,s) = GplR|(w(t),w(s)), V(ts)elx],
GMI [T](t,s) = G [Rl(w(t), w(s)), V(¢s)€lxI,
G lT1( 8) = CrnlRIw(),w(s)) ¥ (t8) € I x T

and
Ga[T)(t,s) = Ga[R)(w(t),w(s)), V(t,s)€IxI.

As a consequence all the results relating different Green’s functions which were
obtained for Hill’s equation are still valid in this more general case. In particular, all
the corollaries in Subsection 3.3.1 can be rewritten in terms of the Green’s function
of other boundary conditions, in an analogous way to what we have made in Sub-
section 3.2.6. To do that it is enough to consider Lemmas 3.2.47, 3.2.48, 3.2.49 and
3.2.50 for a (the even extension of a) and take into account the following considera-
tions:

= We have that

a—1 _
D - a+‘

la+lrep2m = 2% ay ||La(ry = 2/ ’

Le(I)

= Condition a > 0 (respectively, < 0) is equivalent to @ > 0 (respectively, < 0)
which, at the same time, is equivalent to a > 0 (respectively, < 0).
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3.3 General Second Order Equation

= The integrals of potentials present the following relation

/OQREL(t) dt = 2/0Ra(t) dt = Q/OTa(t) dt.

Analogously, sincep > 0 a.e. t €1,
2R T 2R T

/ i (1) dtz?/ G.(t) dt and / 0 dt:2/ a_(t) dt.
0 0 0 0

Corollary 3.3.13. (i) Ifa < 0, then GN[T) < 0on I x I.
(i) If [Ta(t) dt > 0, @ # 0 and Hp“T‘l ‘_L*Hm(z) < 2-Va k(20,2 R), then
GN[T) >0o0nl x I.
(iii) Ifa € LM(I), a  0.and

T 1 f()TEL+(s)ds T& §) da
/0a+(8)dS<R’ 1—Rf0Ta+(s)ds§/0 -(s) ds,

then GN[T) < O0onl x I.
Any of the previous conditions implies that:

1. G [T)(t, s) < O forall (t,s) € [0,T) x [0,T).
2. G [T)(t,s) < Oforall (t,s) € (0,T] x (0,T).
3. Gp[T|(t,s) < Oforall (t,s) € (0,T) x (0,T).
4. Gp[2T)(t,s) < 0 forall (t,s) € (0,2T) x (0,2T).
Corollary 3.3.14. If Gn[T|(t,s) < 0 forall (t,s) € I x I then [ a(s) ds < 0,

Moreover, considering the discriminant A()\) = u1(2 R, A) +ub(2 R, \) for the
periodic problem

y'(t) +a(t)y(t) =a(t), ae. tel0,2R],
y(0) =y(2R), y'(0)=y(2R),
obtained from (3.3.2) by simply considering a and & the even extensions of a and

o, we can deduce results for Green’s function different from the periodic one by
rewriting Lemmas 3.2.51 and 3.2.52. The results are the following ones.
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Corollary 3.3.15. The following properties hold:
(i) GN[T] < 0on I x I ifand only if A(\) > 2 for all X < 0.
(i) GN[T] > 0on I x I ifand only if A(\) > —2 for all A\ < 0 and A(0) < 2.
Corollary 3.3.16. If A(\) > —2 for all \ < 0 then:
1. Gy [T)(t,8) < Oforall (t,s) € [0,T) x [0,T).
2. G [T)(t,8) < 0 forall (t,s) € (0,T) x (0,T].
3. Gp[T](t,s) < 0forall (t,s) € (0,T) x (0,T).
4. Gp[2T](t,s) <0 forall (t,s) € (0,2T) x (0,2T).

Corollary 3.3.17. Suppose that

|

with a(t) = a(t) + A Wlt)’ where A = % fOT a(s) d s is % times the mean value of .
Then

(i) GN[T] < 0on I x I ifandonlyif f; a(s) ds < 0and A(0) > 2

o ‘ <27 V¥ K(20*2R),

aa
p + Lo (1)

(i) If [ a(s) ds < 0.and A(0) < 2, then Gn[T] > 0on I x I.

(iii) If operator L under periodic boundary conditions on [0,2T) is nonresonant
and

a—1 A ‘

T 2
_ m Lo (1)
< ds< = 1=
0—/0 als)ds = 1p K(2a",2R) ’

then GN[T] > 0on I x I.

Proof. This result is obtained by applying Lemma 3.2.52 to a, the even extension of
a(t) = p(w=1(t)) a(w=1(t)). The hypotheses of that lemma consider that

< K(2a",2R),

Le[0,2R]

]
with a(t) = a(t) + A, where A = 7= 02R a(s) d s is the mean value of a. From the
fact that a is and even function and from the relation between a and a we have that

1 (" I
)\:R/O a(s)ds:R/O a(s) ds,
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3.3 General Second Order Equation

SO A is % times the mean value of a.

In addition, using again that a is even (and so a is even too) and taking into
account the reasoning developed in the proof of Corollary 3.3.12, we arrive at the
following relation between the norms of aand @

= 2% Jla|lpaguey = 27 |5 s

a—1 . ‘

a+‘ Le[0,2R] Le(n)

The rest of variations in this corollary with respect to Lemma 3.2.52 are immedi-
ately deduced from the considerations used in previous results. 0

Corollary 3.3.18. If either

T
/ a(s) ds <0
0
or .
T 2 p +
W Le (1)
0< ds<— |12
/0 als)ds< 13 K(2a*,2R) :
then:

1. G [T)(t,8) < 0forall (t,s) € [0,T) x [0,T).
2. G, [T)(t, s) < 0 forall (t,s) € (0,T] x (0,T).
3. Gp[T|(t,s) < Oforall (t,s) € (0,T) x (0,T).
4. Gp[2T](t,s) <0 forall (t,s) € (0,2T) x (0,27T).

We will finish this subsection with an example in which we will use the relation
between the Green’s functions of problems (3.3.1) and (3.3.2) to obtain the explicit
expression of one of them through another one of a problem with constant coeffi-
cients.

Example 3.3.19. Consider the equation

(1 u’(t))l +Atu(t)=0, tel0,1], (3.3.7)
u(0) = u(l), lim (¢'(8))(t) = lim (tu/(5)(2), (3.3.8)

which is a periodic problem of the type of (3.3.1) with a(t) = \t, p(t) = % and

[0,7] = [0,1].

87



Second Order Equation

With the definitions given at the beginning of this section, we have that

t t2
w(t):/sds:, t €0,1]
0 2

and

1
w(t) =V2t, te [0, 2} = [0, R],
so the previous problem is equivalent to the constant’s coefficients periodic problem

y'(t)+ Ay(t) =o(t), ae te [0, %} ,
y(0) =y (3), ¥0) =vy(3).
Using [24] we can calculate the Green’s function related to problem (3.3.9). We

will distinguish between the case A = m? > 0 and A = —m? < 0 (\ = 0 is not
considered since it is an eigenvalue for this problem). We obtain

(3.3.9)

cos(m(s—t%—}l)) 0<s<t<1
2msin(%) ’ R

Gplm?® RI(t,s) = 1
cos(m(s—t—z)) 0<t<s<1
2msin () B -2

and

'cosh(m(s—t—i—%)) 0<s<t<1
2msinh(%) { -

GP[—TRQ,R](t,S) = )
cosh(m(s—t—z)) 0<t<s<1
\ 2msinh(%) ’ - -2

Lemma 3.3.4 allows us to calculate the exact expression of the Green’s function
related to the periodic problem (3.3.7), (3.3.8). Such function is

cos (% (32 — 2+ %))

. ) 0<s<t<1,
_ 2msm(%)

Gp[T](t,S): m 9 9 1
cos (3 (s* —t* — 3)) 0<t<s<l
2msin(%) ’ - -

for \ =m? > 0 and

cosh(%(sQ—ﬁ—i—%)) 0<s<t<]
B QmSinh(%) ’ - ’

GplTl(t, s) = m (.2 2 1
cosh(g(s _t_i)) 0<t<s<l,

2m sinh (%) ’
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for A= —m? < 0.
Taking into account the eigenvalues calculated in Example 3.2.41 for a constant

potential a, we can analyse the values of X for which Gp[\, R] has constant sign.

Lemma 3.3.4 warrants that
» Gp[T|(t,s) < 0forall (t,s) €[0,1] x [0,1] if and only if A < 0.
» Gp[T](t,s) > 0forall (t,s) €[0,1] x [0,1] ifand only if 0 < X < (2)2%

Analogously, the expressions obtained in Example 3.2.41 for A\ = m? (and also
the ones corresponding to A\ = 0 or A\ = —m? calculated with [24]) allow us to

deduce the exact expression of the Green’s functions related to equation (3.3.7) under

different boundary conditions.
For Neumann problem

(% u/(t))/ +Atu(t) =0, tel0,1],

lim (tu/(t))(t) = lim (tu/(t))(t) =0,

t—0t t—1—

we have that

[ cos (m %) cos (2 (1 —t2))
- , 0<s<t<1,
B m sin (%)
Gn[m?*t,T)(t,s) =
cos (m %) cos (2 (1 —s?))
, 0<t<s<l,
L m sin (%) =7
and
( cosh (m %) cosh (%2 (1 — %))

., 0<s<t<l,
~ m sinh (%) -
Gn[-m?*t,T)(t,s) =

cosh (m %) cosh (% (1 — %))
L 0<t<s<lI,
m sinh () =7

and we deduce that
» GN[T|(t,s) < Oforall (t,s) € [0,1] x [0, 1] if and only if X < 0.

» GN[T|(t,8) > 0forall (t,s) € [0,1] x [0,1] ifand only if 0 < X\ < 72
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The Green’s function related to Dirichlet problem

(1w@0I+Amm):Q t€[0,1],

u(0) =u(l) =0,
is
sin (m %) sin (Z(t* — 1))
L 0<s<t<l,
B m sin (%) =7
Gp[m*t,T)(t,s) =
sin (m %) sin (2(s? — 1))
L 0<t<s<I,
L m sin (%) - °
_ 1 (2 =1), 0<s<t<1,
GD[07T](t7 8) -5
2 (s*-1), 0<t<s<l,
sinh (m %2—) sinh (2% — 1))
L 0<s<t<1
- m sinh () N
GD[_m2 t, T] (t7 3) =
sinh (m %) sinh (% (s* — 1))
, 0<t<s<l1
L m sinh (%1) =7
and we have that
ifA<(2m)2

» Gp[T|(t,s) < 0forall (t,s) € (0,1) x (0,1) if and only

With regard to mixed problems My,

(1w@0I+Atwﬂ——Q t€[0,1],

lim (t/(£))(t) = u(1) = 0,

t—0+t

and Mo,
1 /
<tw@>+wtmo=a t e 0,1],

w(0) = lim (t'(£))(t) = 0,

t—1—
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3.3 General Second Order Equation

the corresponding Green’s functions are

cos (m%) sin (2(t? — 1)) D acyen
Y S — Y
~ m cos ()
G, [m?t,T)(t,s) =
cos (m%) sin (Z(s* — 1)) Deieact
m cos (%) ’ =7 ’
2
t2—1
g 0<s<t<l,
G, [0,T](t,s) = 2
3; , 0<t<s<l,
cosh (m %) sinh (%2 (2 — 1)) G<aciel
Y S — Y
~ m cosh (%)
G [-m?t,T|(t,s) =
cosh (m %) sinh (2 (s? — 1)) G<ieact
) =S )
L m cosh (%)
and
(—sm(m%>cos(%(1—t2)) N
Y S — 9y
- m cos ()
G, [m?t,T)(t,s) =
— sin (m t;) cos (2(1 — s%))
P L, 0<t<s<l,
m cos ()
(g2
5 0<s<t<l,
G, [0,T(t,s) = 2
;, 0<t<s<l,
(— sinh (m%) cosh (3 (1 — %)) N
Y S — 9y
~ m cosh ()
G [-m?t,T)(t,s) =
— sinh (m %) cosh (2(1 — s%)) Geicact
<s

In this case we have that
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s Gy, [T)(t,s) < Oforall (t,s) € [0,1) x [0,1) if and only if \ < 72,
» Gap[T)(t,8) < 0 forall (t,s) € (0,1] x (0,1] if and only if X < 7.

In addition, the expression of each Green’s function lets us calculate the spectrum
of the problem under the corresponding boundary conditions. This way we obtain
that

Ap[T] = {(4km)* k=0,1,...},
AN[T)={(@2kn)* k=0,1,...},
Ap[T)={(2kn)* k=1.2,...}

and
A [T] = Mg [T) = {2k + 1)*7%, k=0,1,... }.
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Chapter 4
Solutions for Even Order Nonlinear

Boundary Value Problems with
Constant Sign Green’s Functions

In this chapter, as in the following ones, we will work with nonlinear problems.
Such study could be (wrongly) considered as something completely independent
from the study of the linear ones. However, as we will see in the remaining part
of this Thesis, the properties satisfied by the Green’s function are the basic tool to
prove many existence results for nonlinear problems. This clearly justifies the ne-
cessity of doing a careful study of linear problems and, in particular, of the Green’s
functions.

In this chapter, we will show how to apply the results proved in previous chapters
to ensure the existence of solution of some nonlinear problems. To do this, we will
use the relations found in Corollaries 2.5.1 and 2.5.3 and apply the method of lower
and upper solutions, following the line of [25].

The method of lower and upper solutions is a classical tool for proving the ex-
istence of solutions of nonlinear boundary value problems. Roughly speaking, this
method works as follows: the existence of a lower solution, «, and an upper solution
B, which are well-ordered, implies the existence of a solution lying between them.
This way, we have information not only about the existence of a solution, but also
about its location.

The usual tool to derive an existence result consists in the construction of a mo-
dified problem that satisfies the two following properties:

(1) The nonlinear part of the modified equation is bounded.

(2) The nonlinear part of the modified equation coincides with the nonlinear part
when the solution lies between the lower and upper solution.

Unfortunately, there is not a direct way of constructing the aforementioned pair
of lower and upper solutions. This is the reason why different generalizations on the
definitions of lower and upper solutions have been considered in the literature, trying
to weaken the regularity conditions that these functions must satisfy.
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We include now some references that the reader can consult to find more infor-
mation about this theory in a more general framework. First, we refer to the mono-
graph [9], where the authors develop the classical theory of lower and upper solutions.
Moreover, some recent results and open problems can be found in the works of Maw-
hin [109-112] and in the surveys of Cabada [17] and De Coster and Habets [44,45],
together with their monograph [46], and the references therein.

The novelty in our approach with respect to others presented in the literature is
that we are able to ensure the existence of solution of a problem by means of lower
and upper solutions of another problem with different boundary conditions. To the
best of our knowledge, this approach is new in the literature.

All the results in this chapter are collected in [31].

In particular, we will consider nonlinear problems that fulfil the following scheme

Lu(t) = f(t,u(?)), tel, uelX, (4.0.1)
being L the 2n-th order general linear operator defined in (2.1.1), namely

Lut) =u®(t) + agn_1 (&) u® V(@) + -+« + a1 (¢) W' (t)
+ap(t)u(t), tel,

withag : I - R, ap € L*(I), > 1,k=0,...,2n — 1.

We will assume that L is nonresonant on X, where, as in previous chapters,
X c W?™L(I) is a Banach space where the boundary conditions are included.

Finally, we shall mention that the constant sign of the Green’s function will be a
basic assumption to prove the existence of solutions.

This chapter is organized in the following way: First, Section 4.1 compiles some
basic definitions and conditions that will be used throughout the remaining of the
chapter. Section 4.2 includes the results proving the existence of solutions via lower
and upper solutions method. Finally, Section 4.3 provides an example in which we
prove the existence of solutions of the Dirichlet problem via lower and upper soluti-
ons of Neumann problem.

4.1. Preliminaries

It is clear that solutions of problem (4.0.1) correspond with the fixed points in X
of the following integral operator

T
L1 u(t) —/ G[T|(t,s) f(s,u(s)) ds.
0

In particular, when the Banach space X is either Xn 7, Xp 1, X, 7 or X, 1
(defined as in Chapter 2), we obtain, respectively, the following nonlinear problems:
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Neumann problem:

Lu(t) = f(t,u(t), tel, uweXyr, (4.1.1)
= Dirichlet problem:

Lu(t) = f(t,u(t), tel, uweXpr, (4.1.2)
= Mixed problem 1:

Lu(t)= f(t,u(t)), tel, wueXwmr, (4.1.3)
= Mixed problem 2:

Lu(t) = f(t,u(t), tel, ueXumr; (4.1.4)

each of them with its corresponding equivalent integral operator:

0
Tn u(t) :/0 GN[T](t, s) f(s,u(s)) ds,

T

Tpu(t) :/0 Gp[T|(t,s) f(s,u(s)) ds,
T

Ty, u(t) = /0 Gan [T)(t. 5) £ (5 u(s)) ds,

T
Ty u(t) = [ GanlTI() Fls.u() d.

Notation 4.1.1. Note that, as in Chapters 2 and 3, we will use the notation G[T] to
refer to the Green’s function related to operator L.

Moreover, analogously to what we have done in Chapter 3, we will consider
the parametrized operator defined from L, namely L[\ u(t) = Lu(t) + Au(t). In
this case, to stress also its dependence on \, we will denote by G\, T| the Green’s
function related to L[\|.

For the purpose of finding fixed points of the previously defined integral opera-
tors, we shall use the following definitions.
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Definition 4.1.2. We say that a function o € X is a lower solution of problem (4.0.1)

if
La(t) > f(t,a(t)) fora.etel.

Analogously, a function 8 € X is said to be an upper solution of problem (4.0.1)
if

LB(t) < f(t,B(t) forae tel.

Previous definitions are adapted to each of the considered problems by simply
changing X by any of the suitable Banach spaces Xy 7, Xp 7, Xar, 7 or Xaz, 7.

Before proving existence results for some of the problems, we will consider some
conditions that will be used in the remainder of the chapter.

First, we will ask the nonlinearity f to satisfy the following property:

L) The function f: I x R — R is a L!-Carathéodory function, that is,
y

* f(,x) is measurable for all x € R.
* f(t,-) is continuous for a.e. t € I.

* For every R > 0 there exists ¢ € L!(I) such that

[£(t,2)| < #r(?),
forallz € [-R,R]and a.e. t € [.

Moreover, given two continuous functions « and (3, we will state the following
conditions:

(L1) There exists some A € R such that forevery t € I and = € [a(t), B(t)], it holds
that

[t alt) + Aa(t) = f(t,z) + Az = f(¢,B(t)) + AB(1),
and

[t o) + Aa(t) 2 0= f(t,B(1) + AB(0).

(L2) There exists some A € R such that forevery t € I and z € [3(t), a(t)], it holds
that

[t alt) + Aa(t) = f(t,z) + Az = f(t,B(t)) + AB(),
and

[t a@) +Aa(t) 2 0= f(t, (1) + AB(1).
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4.2. Results of Existence of Solutions

In this section we will use the lower and upper solutions methods to prove the
existence of solutions of the considered problems.

Theorem 4.2.1. Assume that condition (Lg) holds and let o and [3 be lower and
upper solutions of the Neumann problem (4.1.1), respectively, such that

a(t) < B(t) forallt e I.

Moreover, assume that there exists some X\ for which Gp[\,2T] < 0 on J x J,
Gp[A\T] < 0on I x I and (L1) holds. Then, there exists a solution u of the
Dirichlet problem (4.1.2) such that

a(t) <u(t) < B(t), foralltel.

Proof. Let A be such that Gp[A,2T] < 0on J x J, Gp[\,T] < 0on I x I and
condition (L) holds. Consider the problem

LN u(t) = ftult)) + Au(t), tel, we Xpr, @.2.1)

with LA u(t) = Lu(t) + Au(t).

As a consequence, the solutions of problem (4.2.1) coincide with the solutions of
(4.1.2). Also, these solutions correspond with fixed points of the following integral
operator

T
Tp[Au(t) = /0 Gp[\T)(t,s) (f(s,u(s)) + Au(s)) ds.

We will divide the proof into several steps. In particular, Steps 1 to 3 follow
standard techniques but we include them for the sake of completeness.

Step 1: Tp[)\]: C(I) — C(I) is well-defined:

Let w € C(I) and (t,),.y C I such that lim ¢, = to € I. On the one

n—o0

hand, from property (G2) in the definition of Green’s function (Definition 1.1.1),
GpI\, T](-, s) is uniformly continuous on I. Thus,

Jim Gp[A, T](tn, s) (f(s,u(s)) + Auls)) = Gp[A T](to, 5) (f(s,u(s)) + Au(s))-
On the other hand it holds that

IGp [\ TN(t,5) (f(s,u(s)) + Au(s))| < [Gp[NTI(E 9)] (uy(s) + Allull) ,
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where ||u|| denotes the usual supremum norm. Moreover, from (G2) in Defini-
tion 1.1.1, Gp[\, T is continuous on I x I and so it is bounded on I X I by some
constant M. Therefore

IGDIATI(t,5) (£(s,u(s)) + Au())| < M (puy(s) + AlJul), ae. s €T
and, since the right hand side of previous inequality is in L!(I) by Lebesgue’s Do-
minated Convergence Theorem we obtain that

T
lim Tp[A u(t,) = lim Gp\, T(tn, s) (f(s,u(s)) + Au(s))ds

n—oo n—o0 0

T
_/0 lim Go[A Tl(tn, ) (F(s,u(s)) + Au(s)) ds

n—oo

T
:/0 Gl Tl(to, ) (F(s, u(s)) + Au(s)) d s = To[N] ulto).

Thus, Tp[A\ u € C(I).

Step 2: Tp[]] is continuous:

Let {u,}nen be a sequence which converges to u in C(I). Then, there exists
some R € RT such that ||u,| < R foralln € N.

Now, on the one hand, from (L), we deduce that

nh_)rgo f(s,un(s)) + Aun(s) = f(s,u(s)) + Au(s), fora.e. s € I.
On the other hand,
|G\, T(t, )| |f(s,un(s)) + Aun(s)] <M (er(s) + AR), a.e. s €]

and, since the right hand side of previous inequality is in L!(I) by Lebesgue’s Do-
minated Convergence Theorem we deduce that
T
lim Tp[A] u,(t) = lim Gp[NT|(t,s) (f(s,un(s)) + Aun(s))ds

n—oo n—oo 0

n—oo

T
:A lim Gp[AT(t, ) (f(5,un(s)) + Aun(s))d's

T
= /0 Gp[\T|(t,s) (f(s,u(s)) + Au(s))ds =Tp[A u(t).

Thus we can conclude that operator Tp[)\] is continuous.

Step 3: T[] is a compact operator:
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Take
B={ueC); |ul]| <r}.

First, we will prove that Tp[A](B) is uniformly bounded:

T
/0 G\ TI(t3) (f(s,u(s)) + Au(s)) ds

I Tp[A ul| = sup
tel

§/OTM(cpT(s)+)\r)ds:M</0Tgpr(s)ds+)\rT>

and, since ¢, € L1(I), it is clear that Tp[\](B) is uniformly bounded.
Now, we will prove that Tp[\](B) is equicontinuous. We have that

[(Tp[Au)(t1) = (Tp[A u)(t2)]

T
S/O [Gp[A T](t1,8) = Gp[A, Tl(t2, )| (1f (s, uls))| + Au(s)]) ds

T
< / IGoIA T (t, 5) = A T(t2, 8)] (n(s) + Ar)ds
0

and, since G p [\, T'] is uniformly continuous on I X I, it occurs that for every € > 0
there exists 0 > 0 such that when [t; — t2| < J,

T
[(Tp[AJu)(t1) — (To[A u)(t2)] < 6/0 (or(s) + A7) ds.

Thus, the fact that ¢, € L!(T) lets us conclude that Tp[\](B) is equicontinuous.
As a consequence, by Ascoli-Arzela’s Theorem (Theorem 1.2.2), we deduce that
Tp[A](B) is relatively compact in C(I) and thus Tp[A] is a compact operator.

Step4: o < Tp[A aand 5> Tp[A\]Son .
From Corollary 2.5.1, we know that Gp[A,2T] < 0 on J x J implies that

Gn[NT(t,s) < —|Gp\, T](t, s)|, forallt,se I. (4.2.2)

On the other hand, the fact that « € Xy 7 C W?™1(I) and L a(t) > f(t,a(t))
for a.e. t € I means that there exists a nonnegative function g € L(I), such that

La(t)+Xa(t) = f(t,a(t) + Aa(t) + g(t), fora.e.te l.

Therefore, since v € X r, it holds that

T T
a(t) :/0 Gn [N TI(t, s) (f(s,a(s))+)\a(s))ds+/0 GN ([N T](t, s) g(s)ds.
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From (4.2.2), it is deduced that G ;[\, T'] is nonpositive. Thus, Gy [, T(¢, s)g(s)
is nonpositive for a.e. ¢, s € I and so, the second integral in previous expression is
less or equal than zero.

Moreover, we also deduce from (4.2.2) that

GN[ANT] < Gp[A\,T] onl xI.

Therefore, taking into account the fact that (from (L)) f(s, a(s)) + Aa(s) > 0 for
a.e. s € I, we obtain the following inequalities for all ¢t € I:

T
a(t)g/o GrILTI(E ) (F(s,a(s)) + Aals)) ds

T
< /0 Gp[\T|(t,s) (f(s,a(s)) + Aa(s)) ds =Tp[A] a(t).

Analogously, from 8 € W*1(I) and L 3(t) < f(t, 5(t)), we deduce that there
exists a nonpositive function h € L(I), such that

Lp(t)+AB(t) = f(t,B(t) + AB(t) + h(t), fora.e.tcl.

As a consequence, reasoning analogously to the previous case and taking into account
that f(s, 8(s)) + AB(s) < 0fora.e. s € I, we obtain the following inequalities

T T
B(t) = /O GNIM Tt 5) (F(s, B(8)) + A B(s)) d s+ /0 GN[NTI(, ) h(s) ds
T
> /0 GnIMTI(E ) (F(s, 8(s)) + AB(s)) ds
T
> /0 GpIN T)(t,5) (F(5,5(s)) + AB(s)) ds = Tp[A] B(2).

Step 5: T[] ([e, B]) C [e, B], where
[, fl={ueC(I): a(t) <u(t) < p(t), forallt € I}.

We will decompose operator Tp[A] as a composition of two operators. First,
consider the Nemytskii operator N[)\]: C(I) — L!(I) defined in the following way

NN u(t) = f(t,u(t)) + Au(t), fora.e . tel.

On the other hand, consider operator K[\]: L'(I) — C(I) defined as

T
K[)\]o—(t):/o GpINTI(E ) o(s) ds, forallt e 1.
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It is clear that
Tp[A] = K[A\] o N[\

Moreover, let’s see that operator K [)\] is nonincreasing in [, 5]. Indeed, take
o1, 03 € LY(I) such that o1(t) < oo(t) for a.e. t € I. Then, since Gp[\,T] is
nonpositive, it holds that

Gp[\T|(t,s) o1(s) > Gp[A, T|(t, s) oa(s), fora.e.t,sel

and, therefore,

KN or(t) = /OT G\ TI(t 5) o1 (s) ds > /OT GoINT)(t 5) oa(s) ds
— K[\ oa(t), forallte .
Now, let u € [«, 5]. From (L;) we have that
F(ta(t) + Aa(t) = FEu(t) £ A ul) = F(t B(E) + AB(E), ae tel
and 50
alt) < T[N a(t) < To[N ult) < To N BE) < B(t), Vtel.

We conclude that Tp[A u € [a, 8] for all u € [a, S].

Step 6: Operator Tp[A] has a fixed point in Xp N [« A].

Since the interval [« 3] is a closed, convex, bounded and nonempty subset of
the Banach space X, Tp[A] is a compact operator and Tp[\|([«, 5]) C [a, 5], then
we are in the suitable conditions to apply Schauder’s fixed point Theorem (Theo-
rem 1.2.3) which ensures us the existence of a fixed point of Tp[A] on [a, 5]. Ob-
viously, this fixed point satisfies Dirichlet boundary conditions and therefore it is a
solution of problem (4.1.2). ]

Remark 4.2.2. Note that the functions o and 8 considered in previous theorem are
not required to belong to Xp r, that is, they may not be lower and upper solutions of
Dirichlet problem, that is, the equalities u**)(0) = 0 and u®**)(T') = 0 may fail for
some values of k.

In an analogous way, we can prove the following result when Gp[A, 2 T is non-
negative and hypothesis (Lz) holds.

Theorem 4.2.3. Assume that condition (Lg) holds and let o and [ be lower and
upper solutions of Neumann problem (4.1.1), respectively, such that

a(t) > B(t) forallt e I.
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Moreover, assume that there exists some X\ for which Gp[\,2T] > 0 on J X J,
Gp[A\T] > 0on I x I and (L2) is satisfied. Then, there exists a solution u of the
Dirichlet problem (4.1.2) such that

B(t) <u(t) < alt), foralltel.

Proof. The proof is analogous to the one of Theorem 4.2.1, so we will only detail the
parts of it which present some differences.

Let A be such that Gp[A,2T] > 0on J x J, Gp[A,T] > 0on I x I and condition
(L2) holds. Consider operator Tp[)A] as defined in the proof of Theorem 4.2.1.

Step 1: Tp[A]: C(I) — C(I) is well-defined, continuous and compact:
The proof is exactly the same than in Theorem 4.2.1.

Step 2: o > Tp[N awand 5 < Tp[A] 5.
From Corollary 2.5.1, we know that Gp[\,27] < 0on J x J implies that

GN[NT(t, s) > |Gp[A\, T|(t, s)| = Gp[\,T|(t,s), forallt,sel. (4.2.3)
In this case, there exists a nonnegative function g € L1(I) such that
La(t) +Xa(t) = f(t,a(t) + Aa(t) +g(t), forae.tel

and so the following inequalities hold for all ¢t € I:
T T
alt) = /0 GNINTI(t ) (f(s,(s)) + Aa(s)) ds + /0 GyINTI(t, 5) gs) d s
T
> / GNIM TR, 5) (F(5,0(s)) + Aa(s)) ds
0

T
2/0 Gp\T|(t,s) (f(s,a(s)) + Aa(s)) ds =Tp[A] a(t).

Analogously, there exists a nonpositive function h € L!(I) such that
LB(t)+AB(t) = f(t,B(t) + AB(t) + h(t), forae tel

and

T T
B(t) = /0 GNINTI(Es) (f(s,8()) + AB(s)) ds + /O GnIAT)(t, 5) h(s) ds
T
< / GNINTI(E 5) (F(5,8(5)) + AB(s)) d s

T
< /0 G\ T)(t5) (f(s,B(5)) + AB(s)) ds = Tp[N] A(H).
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Step 3: Tp[A\|([8,a]) C [5,a].
In this case, operator K [)] is nondecreasing.
Let u € [3, a]. From (Ly) we have that

flt,at)) + Aa(t) > f(t,u(t) + Au(t) > f(t,B(t) + AB(t), ae tel
and so
a(t) = Tp[A a(t) = Tp[A u(t) = Tp[A| B(t) = B(t), Viel

and we conclude that Tp [\ u € [B, o forall u € [§, a].

Step 4: Operator Tp[\] has a fixed point in Xp N [3, a.
Analogously to the proof of Theorem 4.2.1, this fact is deduced from Schauder’s
fixed point Theorem. O

Remark 4.2.4. We must note that when G p[\, T'] has constant sign, there exist o and
B, lower and upper solutions of Dirichlet problem, respectively, and it is satisfied that

[t a(t) + Aa(t) 2 f(E,2) + Az = f(E,8(8) + A B(1)

foreveryt € I and x € [a(t), 5(t)], then there exists a solution of the Dirichlet
problem (4.1.2) (see, for instance, [25] for the case 2n = 4). In this case, by adding
the hypotheses on the sign of f(t,a(t)) + Aa(t) and f(t,[(t)) + A5(t), we can
ensure the existence of a solution for problem (4.1.2) when we have lower and upper
solutions of Neumann problem (4.1.1).

Now, using the inequalities in Corollary 2.5.3, we can obtain similar results to
prove the existence of solutions of Mixed 1 and Dirichlet problems.

Theorem 4.2.5. Assume that condition (Lg) holds and let o and [3 be lower and
upper solutions of the Neumann problem (4.1.1), respectively, such that

a(t) < B(t) forallt e I.
Moreover, assume that there exists some X\ for which GN[A\,2T] < 0 on J x J,
G, [\ T) <0o0n I x1Iand (Ly) holds. Then, there exists a solution u of the Mixed
problem 1 (4.1.3) such that

a(t) <u(t) < p(t), foralltel.

103



Solutions for Even Order Nonlinear BVPs with Constant Sign Green’s Functions

Theorem 4.2.6. Assume that condition (Lg) holds and let o and [ be lower and
upper solutions of the Neumann problem (4.1.1), respectively, such that

a(t) > B(t) forallt e I.

Moreover, assume that there exists some \ for which Gy[A\,2T] > 0on J X J,
G, [N\ T) > 0o0n I x I and (Ls) holds. Then, there exists a solution u of the Mixed
problem 1 (4.1.3) such that

B(t) <u(t) < alt), foralltel.

Theorem 4.2.7. Assume that condition (Lo) holds and let o and [ be lower and
upper solutions of Mixed problem 2 (4.1.4), respectively, such that

a(t) < B(t) forallt e I.

Moreover, assume that there exists some X for which Gp[\,2T] < 0on J X J,
Gp\,T] < 0on I x I and (Ly) holds. Then, there exists a solution u of the
Dirichlet problem (4.1.2) such that

a(t) <u(t) < B(t), foralltel.

Theorem 4.2.8. Assume that condition (Lg) holds and let o and [ be lower and
upper solutions of Mixed problem 2 (4.1.4), respectively, such that

a(t) > p(t) forallt e I.

Moreover, assume that there exists some \ for which Gp[\,2T] > 0 on J X J,
Gp[A\T] > 0on I x I and (Ly) holds. Then, there exists a solution u of the
Dirichlet problem (4.1.2) such that

B(t) <wu(t) < alt), foralltel.

4.2.1. Particular Case: Second Order Problem

We shall briefly comment in this subsection some particularities which may occur
when dealing with the case n = 1 but are not true, in general, for any arbitrary n.

In particular, when considering Definition 4.1.2, for the general case it is required
that both the lower and the upper solution belong to the Banach spaces Xy 1, Xp T,
X, 1 or Xy, 7. For the case n = 1, it is possible to weaken these definitions in the
way that it is shown below.
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Definition 4.2.9. Assume that n = 1. Then, a function o € W' (1) is said to be a
lower solution of the Neumann problem (4.1.1) if

La(t) > f(t,a(t)), tel,
a'(0) >0, o(T)<0.

Analogously, a function 3 € W?Y(I) is called an upper solution of the Neumann
problem (4.1.1) if

B'(0) <o, p(T)>0.

Definition 4.2.10. Assume that n = 1. Then, a function o« € W?1(I) is said to be a
lower solution of the Dirichlet problem (4.1.2) if

La(t) > f(t,a(t), tel,
a(0)<0, a(T)<O0.

{Lﬁ(t) < ft,B(t), tel,

Analogously, a function 3 € W2Y(I) is called an upper solution of the Dirichlet
problem (4.1.2) if

LB(t) < ft.8(1), tel,

B(0) =0, B(T)=0.
Definition 4.2.11. Assume that n = 1. Then, a function o € W*(I) is said to be a
lower solution of the Mixed problem 1 (4.1.3) if

La(t) > f(t,at), tel,
a'(0) >0, «T)<0.
Analogously, a function 3 € W?Y(I) is called an upper solution of the Mixed 1
problem (4.1.3) if
L) < f(t,8(@1), tel,
p'(0) <0, B(T)=0.

Definition 4.2.12. Assume that n = 1. Then, a function o € W*(I) is said to be a
lower solution of the Mixed problem 2 (4.1.4) if

La(t) > f(t,at), tel,
a(0) <0, o(T)<0.

Analogously, a function 3 € W2 (I) is called an upper solution of the Mixed 2
problem (4.1.4) if

LB(t) < f(t,B(t), tel,
B(0) >0, B(T)>0.
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Apart from these generalizations with respect to the definitions of lower and up-
per solutions, some details need also be changed in the theorems of existence of
solution when n = 1 and a; = 0. In particular, as a consequence of Theorem 3.2.22,
it holds that the constant sign of Gp[A, 2T implies that Gp[A, T is nonpositive, so
this hypothesis can be eliminated from Theorem 4.2.1. The same way, the constant
sign of Gn[A,2T] implies that Gy, [\, T'] is nonpositive and we can remove this
hypothesis from Theorem 4.2.5. Finally, the hypothesis that G [\, T is nonpositive
can also be eliminated from Theorem 4.2.7 as it can be deduced from the constant
sign of Gp[A, 2T).

Furthermore, due to these relations between the constant sign of different Green’s
functions, Theorems 4.2.3, 4.2.6 and 4.2.8 do not make sense for the case n = 1 as
their hypotheses are never fulfilled in such case.

4.3. An Example

We will see in this section an example in which Theorem 4.2.1 can be applied.

Example 4.3.1. Consider the following nonlinear Dirichlet problem on [0, 1]

u® () + u(t) = <115 + arctan(u(t))> , telo,1], 43.1)

Using [24], we can calculate the Green’s function related to the periodic problem
on [0,2]

(4) _
{u (t) +u(t) =0, tel0,2], (432)

u(0) =u(l), w'(0)=2'(1), u"(0)=u"(1), «"(0)=1u"(1),
which is nonnegative on [0, 2] x [0, 2]. This function is represented in Figure 4.3.1.

The same way, using [24], we can calculate the Green’s function related to the
homogeneous Dirichlet problem

4.3.3)

which is also nonnegative on [0,1] x [0,1]. This function is represented in Fi-
gure 4.3.2.
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Figure 4.3.1: Green’s function related to the periodic problem (4.3.2).

Figure 4.3.2: Green’s function related to the Dirichlet problem (4.3.3).

Observe that, with the notation given in Theorem 4.2.3, we are choosing A = 0.
Now, we will see that o(t) = 1 and B(t) = —1 are lower and upper solutions,

respectively, of the Neumann problem

u® () 4 u(t) = (1—10 + arctan(u(t))) , te0,1],

u'(0) =4'(1) =0, «"(0)=u"(1)=0.
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Indeed, for all t € [0, 1],

a®(t) + at) =1> 12 <110 + arctan(a(t))) = (110 + W) 2
d(0)=da(1)=0, a"0)=dad"(1)=0.

and

B+ B(t) = -1 <1 (110 + arctan(ﬂ(t))) =— <_1 + W) 2,
g'0)=pg'(1)=0, B”"(0)=p"(1)=0.

Moreover; it holds that for x € [~1,1], arctan(z) € [, 7] and so

1 7\ 5 1 9 1 7\,
— — > | — > — — — .
(10 + 4>t > (10 —i—arctan(:c))t > <10 4>t

Finally, we have that, for all t € [0, 1],

F(t,a(t)) = (1% + D >0
" £ 8(6)) = (%O 2 2) £ <0.

Thus, hypothesis (L2) is satisfied.
Therefore, we are in conditions to apply Theorem 4.2.3 which guarantees the
existence of a solution u of the Dirichlet problem (4.3.1) such that

—1<wu(t) <1, forallte|0,1].

Note that o and 3 are not lower and upper solutions of the Dirichlet problem as
they are defined in Definition 4.1.2.
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Chapter 5

Positive Solutions for Nonlinear
Second Order Boundary Value
Problems with Sign-Changing

Green’s Functions

5.1. Introduction

In Chapter 4 we have proved the existence of solution of nonlinear boundary
value problems in the case where the Green’s functions have constant sign. To do
this, we have used the method of lower and upper solutions.

Another standard technique when dealing with nonlinear boundary value pro-
blems consists in obtaining the existence of positive solutions through Krasnosel-
skii’s fixed point Theorem on cones, or fixed point index theory. In these cases, the
positivity of the associated Green’s functions is usually a fundamental tool to prove
such results. However, in this chapter, using the aforementioned technique, we will
be able to guarantee the existence of positive solutions for several problems in which
the Green’s function changes its sign on the square of definition.

In particular, we will prove such results for boundary value problems related to
the Hill’s operator (which has already been considered in Chapter 3). To do this, some
of the properties satisfied by the Green’s function which were proved in Chapter 3
will be the key points to prove some of the main results. This shows, once more,
the importance of studying the properties of linear problems (and, specially, Green’s
functions) before dealing with nonlinear ones.

As we will see, the hypotheses that the nonlinear part f must satisfy in this chap-
ter will be stronger than in Chapter 4. Nevertheless, the results obtained will also
be more powerful as, contrary to Chapter 4, we will allow the Green’s function to
change its sign and we will be able to ensure now the positivity of the solutions.

Positivity results for boundary value problems where the Green’s function can
vanish are treated for example in [63, 147]. In [63], Graef, Kong and Wang studied
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

the periodic boundary value problem (with 7" = 1 in the paper)

{U"(t) +a(t)u(t) = g(t) f(u(t), te(0,T),
u(0) = u(T), u'(0) = u/(T),

with f and g nonnegative continuous functions and g satisfying the condition

i t) > 0.
té?é?r]g( )
Moreover, they assumed the Green’s function to be nonnegative and to satisfy the
following condition:
T
min / G(t,s) dt > 0. (5.1.1)
0

0<s<T

We note that the method in the aforementioned reference can not be used for Diri-
chlet and Mixed problems, as their related Green’s functions do not satisfy condition
(5.1.1).

In [147], Webb considered weaker assumptions to prove the existence of positive
solutions of the previous problem, but he still assumed the Green’s function to be
nonnegative. Despite our results do not require the Green’s function to be nonnega-
tive, as we will see, they could be applied to this particular case, obtaining positive
solutions assuming an integral condition weaker than (5.1.1) (see Remarks 5.3.6 and
5.3.11 in Section 5.3).

On the other hand, some existence results for boundary value problems with sign-
changing Green’s function were considered in [28, 79], where the authors asked for
the existence of a subinterval [c, d] C [0, T, a function ¢ € L*([0, T]) and a constant
¢ € (0, 1] such that the Green’s function G satisfies the following condition:

|G(t, s)| < ¢(s) forall t € [0, 7] and almost every s € [0, T,

5.1.2
G(t,s) > c¢(s) forall t € [c,d] and almost every s € [0, . ( )

It must be pointed out that, if we consider a periodic problem with constant poten-
tial a(t) = p? for which the related Green’s function changes its sign (i.e. p > 7/T,
p #2km/T,k=1,2,...),condition (5.1.2) is never fulfilled for any strictly positive
function ¢. This is due to the fact that in such situation the Green’s function is con-
stant along the straight lines of slope equals to one (as we have seen in Lemma 2.4.3).
On the other hand, as we will prove in Section 5.4, our results can be applied without
further complications to this case.

Moreover, for Dirichlet boundary value problem with constant potential a(t) = p?
with sign-changing Green’s function (i.e. p > w/T, p # kr /T, k = 1,2,...),as a
direct consequence of expression (5.5.1) below, it is immediate to verify that condi-
tion (5.1.2) holds if and only if p? lies between the first and the second eigenvalues
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of the problem (7 < p < 27”) but it is never satisfied for p > 27” However, as we

will point out in Section 5.5, our results can be applied for any nonresonant value of
p > m/T. Despite of this, we must note that the conditions are more restrictive when
p increases.

Furthermore, in [28,79] the authors proved the existence of solutions in the cone

Ky = {u € C[0,T], min u(t) > c yuu} ,

" tefe,d)

that is, they ensured the positivity of the solutions on the subinterval [c, d] but such

solutions were allowed to change sign when considering the whole interval [0, T'].
As far as we know, positive solutions for boundary value problems with sign-

changing Green’s function can be tracked only as back as 2011 in the papers [104,

163]. In the first of these papers, R. Ma considers the following one parameter family

of problems:

{“”(t) +a(t)u(t) = Ag(t) f(u(t), te(0,T), (5.13)

w(0) = u(T), ¥'(0) = v'(T).

By using the Schauder’s fixed point Theorem, the author obtains the existence of a
positive solution for sufficiently small values of A. These existence results are not
comparable with the ones we will obtain in this chapter.

In the second paper [163], S. Zhong and Y. An study the following autonomous

periodic boundary value problem, with constant potential p € (0, g’—ﬂ :

{u"(t) + P2 ult) = f(u(®), te(0,T),

(5.1.4)
w(0) = u(T), u'(0) = /(T).

In this case, it is very well-known that the related Green’s function G p(t, s) > 0 for
all p € (O, %] and it changes sign for p € (7, g’—;] (see [16, 18]). With this, it can be
defined the constant

s
o0, pEe (03 T:| )
0= T
inf f() G;(t’S) dsa (Wv 37r:| ’
tel fOTGJ_D(t,S) ds T 2T

and using the Krasnoselskii’s fixed point Theorem, the authors prove the following
existence result.

Theorem 5.1.1 ([163, Theorem 3]). Suppose that the following assumptions are
Sulfilled:
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

(J1) f:][0,00) — [0, 00) is continuous.

(J2) 0<m = zlle%{f(u)} and M = sg%{f(u)} <M < .

(J3) M/m <6, with M /m = oo when m = 0.
Moreover, if 6 = oo assume that

lim M < p? < lim M
T—00 I z—=0t T

Then problem (5.1.4) has a positive solution on [0, T).

Concerning this specific case, we improve the range of the values p for which the
result is still valid. Furthermore, we apply our study to nonconstant potentials and
nonautonomous nonlinear parts.

As we will see, some of the positivity conditions imposed for the periodic boun-
dary value problem cannot be adapted for Dirichlet problem, so the approach that
must be used needs to be considerably modified, by using, in this case, a different
type of cones.

This chapter is divided in the following way: in Section 5.2 we state some preli-
minary results considering the Hill’s operator, in Section 5.3 some new results con-
cerning the existence of a positive solution for the Hill’s periodic problem in the case
that the Green’s function may change sign are proved. Moreover, in this section,
such existence results are generalized to other boundary conditions. In Section 5.4
we improve Theorem 5.1.1 for the periodic problem with a constant potential and in
Section 5.5 we approach the Dirichlet problem, also in the case of a constant poten-
tial, where as far as we know, no results for sign-changing Green’s functions were
proved before.

All the results in this chapter are compiled in [27].

5.2. Preliminaries

Consider the particular case of operator L defined in (2.1.1) forn = 1 and a; = 0,
that is, the Hill’s operator related to the potential a

Lu(t)=u"(t) +a(t)u(t), tel,

wherea: I — R, a € L*(I), o > 1.
As in previous chapters, we denote z > 0 on I if and only if z > 0 on I and
T
Jo z(s)ds>0.
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Since throughout this chapter we will always work on the same interval [0, T, it
is not necessary to stress the dependence of the problem on the parameter 1. The-
refore, when working both with Green’s functions and eigenvalues, and contrary to
what we did in the previous chapter, we will skip the indication about the parameter
T'. This way, we will denote by Gp, G, Gp, Gy, and Gy, the related Green’s
functions and A", AV, A2, )\éwl and )\342 the corresponding smallest eigenvalue of
each of the problems (periodic, Neumann, Dirichlet, Mixed 1 and Mixed 2), all of
them considered on the interval /. Analogously, )\64 will be the smallest eigenvalue
of the anti-periodic problem.

For the reader’s convenience, we rewrite now the following relations which have
been proved in previous chapters and will be the key points to show some of the
following results.

Lemma52.1. 1. Gy(t,s) <0onl x Iifand only if \)Y > 0.
2. Gn(t,s) > 0onI x I ifand only if \)) <0, )\éwl > Oand)\éw"’ > 0.
3. Gn changes sign if and only ifmin{/\g/fl, )\é\b} < 0.

4. Gp(t,s) <0on (0,T) x (0,T) ifand only if \J' > 0.
5. Gp changes sign if and only if )\6) < 0.
6. G, (t,s) <0on[0,T) x [0,T) if and only if \)™* > 0.
7. G, changes sign if and only if)\éwl < 0.
8. G (t,s) < 0on (0,T] x (0, T)] if and only if \)"> > 0.
9. Gr, changes sign if and only ifAéVIQ <0.

10. Gp(t,s) < 0onI x I ifand only if \[' > 0.

11. Gp(t,s) > 0onI x Iifand only if \§' < 0, \§t > 0.

12. Gp changes sign if and only if)\()4 < 0.

5.3. Periodic Boundary Value Problems

Consider now the following nonlinear and nonautonomous periodic boundary
value problem:

! (5.3.1)
w(0) = u(T), v'(0) = /(7).

~—

{u"of) +alt)ult) = f(tu(t), tel.
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

We will assume that the Hill’s operator coupled with periodic conditions is non-
resonant and A} < 0. From Lemma 5.2.1, we know that in this case the related
Green’s function changes its signon I x [.

On the other hand (as we have seen in Section 3.1), there exists vp, a positive
eigenfunction on I, unique up to a constant, related to AP that is, vp is such that

{uj;(t) +a(t)vp(t) = =AY vp(t), forae.tel,
vp(0) = vp(T), vp(0) = vp(T).
Therefore,

T
vp(t) = —Agj/o Gp(t,s)vp(s) d's

and, since vp is positive and ]’ < A\ < 0, we have that

T
/ Gp(t,s)vp(s)ds >0 Vtel
0

and, consequently,

T T
/0 GH(t,s)vp(s) ds>/0 Gp(t,s)vp(s)ds Vtel,

where GIJS and G, are the positive and negative parts of G p.
Since the Green’s function changes sign, it makes sense to define

. fOT G;S(t, s)vp(s) ds
tel fOT Gp(t,s)vp(s) ds

(>1). (5.3.2)
Moreover, in order to ensure the existence of solutions of problem (5.3.1), we

will make the following assumptions:

(H1) f:1x[0,00) — [0,00) satisfies L'-Carathéodory conditions, that is:

» f(-,u) is measurable for every u € R.
= f(t,-)is continuous fora.e. t € I.
» For each > 0 there exists ¢, € L!(I) such that

ft,u) < ¢p(t) forallu € [—r,r|, a.e.t € l.
(H2) There exist two positive constants m and M such that
mop(t) < f(t,x) < Mvp(t)

for every t € I and x > 0. Moreover, these constants satisfy that % <.
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H3) There exists [¢,d] C I such that de t,s)dt > 0, for all s € I and
(&
fcd Gp(t,s) dt > 0, forall s € [¢,d].

Remark 5.3.1. Note that condition (H,) is the same as (L) given in Chapter 4 but,
for the reader’s convenience, we have decided to rewrite it so that one can find all
the hypotheses used in this chapter together.

Remark 5.3.2. We note that condition ( Hs) includes, as particular cases, hypotheses
(J2) and (J3) in Theorem 5.1.1 used in [163]. This is due to the fact that, if a(t) =
p%, as in problem (5.1.4), we have that )\(I)D = —p? and vp(t) = 1 forallt € I.
Moreover, as we will point out in Section 5.4, we have that, if a(t) = p2, then

/Gpts —1,

and condition (Hgy) is trivially fulfilled for [c,d] = 1.

Moreover, we note that in (Hs) we are not considering the possibility of m = 0.
Theorem 5.1.1 includes this case, but only when § = 400, which only happens when
the Green’s function is nonnegative. In [163] the authors consider this possibility
because they are assuming that p € (0, g’—:ﬂ and, when p € (0, %], Gp is nonnega-
tive. As we will see in Corollary 5.3.5, hypothesis (Hz) is not necessary in case that
the Green’s function is nonnegative, so this is the reason why we do not consider the
possibility m = 0.

We will consider the Banach space (C(I,R), || - ||) coupled with the supremum
norm ||u|| = ||u||~, and define the cone

T
K:{UEC(I,R): uZOonI,/ u(s)dsZJHuH},
0

where - 0
max {Gp(t, s)}
being
n= Srenilzl {/ Gp(t,s) dt} > 0. (5.3.3)

Now, it is clear that u is a solution of the periodic problem (5.3.1) if and only if
it is a fixed point of the following operator:

T
_ /0 Gplt, s) f(s,u(s)) ds.
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

Lemma 5.3.3. Assume that \' < 0 and (H1)—(H3) hold. Then T : C(I) — C(I) is
a compact operator which maps the cone K to itself.

Proof. We will divide the proof into several steps. We note that Steps 1 to 3 follow
standard techniques but we include them for the sake of completeness.

Step 1: 7: C(I) — C(I) is well-defined:
Letu € C(I) and (t,),,cy C I such that hm tn, =to € I.

On the one hand, from property (G2) in the deﬁnltlon of Green’s function (Defi-
nition 1.1.1), Gp(-, s) is uniformly continuous on /. Thus,
lim Gp(tn,s) f(s,u(s)) = Gp(to,s) f(s,u(s)), a.e sel.
n—oo
On the other hand it holds that

‘Gp(t,s) f(s,u(s))] < |Gp(t, 8)| ¢||u||(8), ae sel.

Moreover, from (G2) in Definition 1.1.1, Gp is continuous on / x I and so it is
bounded on I x I by some constant C'. Therefore

|GP(t7 8) f(s,u(s))\ < C¢||u||($)a a.e. s €l,
and, since the right hand side of previous inequality is in L!(T), by Lebesgue’s Do-
minated Convergence Theorem we obtain that
7,
lim Tu(t,) = lim Gp(tn,s) f(s,u(s))ds

n—o0 n—oo 0

n—o0

T
_ / lim Gp(tn, ) f(s,u(s))d s

T
:/0 Grlto, s) f(s,uls)) ds = Tulty).

Thus, Tu € C(I).
Step 2: Operator 7 is continuous:
Let {un tnen C C(I) be a sequence which converges to w in C(I). Then, there
exists some R € R such that ||u,|| < Rforalln € N.
Now, from (H1), we deduce that
lim f(s,un(s)) = f(s,u(s)), fora.e. s e I.

n—oo

On the other hand,

|Gp(t,s)| f(s,un(s)) < Cor(s), forae. sel
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and, since the right hand side of previous inequality is in L!(I), by Lebesgue’s Do-
minated Convergence Theorem we deduce that

T
lim Tu,(t) = lim Gp(t,s) f(s,un(s))ds

n—o0 n—oo 0

T
_ /0 lim Gp(t,s) f(s,un(s)) ds

T
:/0 Gp(t,s) f(s,u(s))ds = Tu(t).

Thus we can conclude that operator 7 is continuous.

Step 3: 7 is a compact operator:
Take

B={uelC(): ||u] <r}.

First, we will prove that 7 (B) is uniformly bounded:

T T
||Tu||=sup\ | Grtts s unas| < [ cons)as
tel 0 0

and, since ¢, € L'([I), it is clear that 7 (B) is uniformly bounded.
Now, we will prove that 7" is equicontinuous. We have that

T
[(Tu)(tr) — (Tu)(t2)] S/O IGp(t1,8) — Gp(t2, )| f(s,u(s))ds

T
< / Gp(t1, s) — Gp(ta, 5)| pr(s)ds
0

and, since Gp is uniformly continuous on I x I, it occurs that for every € > 0 there
exists 6 > 0 such that when [t; — 2| < 0,

T
(Tu)(t) — (Tu)(t1)] < 5/0 bo(s)d s,

Thus, the fact that ¢, € L'(I) lets us conclude that 7 is equicontinuous.
As a consequence, by Ascoli-Arzela’s Theorem (Theorem 1.2.2), we deduce that
T (B) is relatively compact in C(I) and thus 7 is a compact operator.

Step 4: 7 maps the cone to itself.
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Considering u € K, then, from (5.3.2), the following inequalities are fulfilled for
allt e I

T T
Tut) = [ Gr(t.s) fls.u(s) ds = [ (GH:9) = Golt.9) fs.us) s
T
2/0 (mop(s) GE(t,s) — Mvp(s) Gp(t,s)) ds

>m TG;(t,s) vp(s) ds—r TG]_D(t,s) vp(s) ds | > 0.
0 0

Moreover,
/OTTu(t) dt > /CdTu(t) dt = /Cd/OTGp(t,s) f(s,u(s)) ds dt

:/OTf(s,u(s))/chp(t,s)dt dsZn/OTf(s,u(s))ds,

and, since A
Tult) < max{Gr(ta)} [ s, u(s)) ds

we deduce that

T
/ Tu(t) dt > o Tu(t) forallte I.
0

Thus,
T
/ Tu(t) dt > o ||Tull,
0

and the result is concluded. O

Now, in order to prove the existence of solutions of problem (5.3.1), we will use
some classical results regarding the fixed point index which have been compiled in
Lemma 1.2.7.

First, we note that, as an immediate consequence of condition (Hs), we deduce
the following properties:

fo= lim { min f(t,a:)} = 00 f° = lim {max f(t,x)} =0

z—0t |t€led @ x—oo | tel x

where the interval [c, d] is given in (H3).
These properties will let us prove the following theorem.
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Theorem 5.3.4. Assume that \;' < 0 and hypotheses (Hy)—(H3) hold. Then there
exists at least one positive solution of problem (5.3.1) in the cone K.

Proof. Taking into account the definition of fy, we know that there exists 4; > 0
such that when ||u|| < 41, then

£t u(t) > “7(7’5), Vit € [, d],

with 7 defined in (5.3.3).

Let

0 = {U € K: ||uH < (51}

and choose u € 9y and e € K\ {0}.

We will prove that u # Tu + A e for every A > 0.

Assume, on the contrary, that there exists some A > 0 such that u = Tu + Ae,
that is,

u(t) = Tu(t) + Xe(t) > Tu(t) Vtel.

Then

/Cdu(t)dtZ/CdTu(t)dt:/cd/OTGP(t,s)f(s,u(s))dsdt

:/OT (/chp(t,s) dt) f(s,u(s)) ds
z/cd (/Cde(t,s) dt) f(s,u(s))ds>/cdu(s)ds,

which is a contradiction.
Therefore, we deduce from Lemma 1.2.7 that i (7', ;) = 0.
Now, proceeding in an analogous way to [21,62,63], we define

[t u) = Olgfgu f(t;2).

Clearly, f(t,-) is a nondecreasing function on [0,00) and f(t,z) > f(t,z) for all
t € I,z € ]0,00). Moreover, since > = 0 it is obvious that

lim {max f(t’$)} = 0.
T—00 tel x

As a consequence, we know that there exists d2 > 0 such that if ||u|| > 2 then

2

f(@ lul) < T2, |ul|, Vtel.
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Let
Oy = {U e K: HUH < (52}

and choose u € 9 Q.
We will prove that u # 7T u for every < 1. Assume, on the contrary, that
there exists some ;o < 1 such that u(t) = p Tu(t) forall ¢ € I. Then,

T T
a||u|yg/0 u(t)dt:,u/o Tu(t) dt

T T
:u/o /0 Gp(t,s) f(s,u(s)) ds dt

=u/OT (/OTGp@,s) 1) fsu(s) ds

T

< T mg (Golt o)} | fsiu(e)) ds
T ~

< uT max {Go(t. o)} [ Fls.uts) s

T ~
< uT iy (Grlt. ) /0 F(s, ull) d's

T2n

which is a contradiction. As a consequence, using Lemma 1.2.7, ix (7, €2) = 1.
We conclude, from Assertions 3 and 4 in Lemma 1.2.7, that the operator 7 has a
fixed point, that is, there exists at least a nontrivial solution of problem (5.3.1). [

The previous theorem is also valid if the Green’s function is nonnegative. In
this case, hypothesis (H3) would be trivially fulfilled and hypothesis (Hz) is not
necessary since it is only used to prove that 7 maps the cone to itself, which is
obvious (since f is nonnegative) when G p is nonnegative. On the other hand, we
would need to add the hypothesis that fo = oo and f*° = 0 (which can not be
deduced if we eliminate (Hs)).

The result is the following one:

Corollary 5.3.5. Assume that \J' < 0 < X' and hypotheses (Hy) and (H) are
fulfilled. Then, if fo = oo and f>° = 0 there exists at least one positive solution of
problem (5.3.1) in the cone K.
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Remark 5.3.6. We note that for a nonnegative Green’s function, we generalize the
results of Graef, Kong and Wang [62, 63] and Webb [147] since our condition (H3)
is weaker than condition (5.1.1) considered by them.

Corollary 5.3.7. If f(t,x) = f(t), with f € LY(I) satisfying (Hs), then the unique
solution of (5.3.1) is a nonnegative function on 1I.

Remark 5.3.8. We note that u(t) = 1 is the unique solution of the periodic problem

{u”(t) +a(t)u(t) =alt), tel,
u(0) = u(T), v'(0) = «'(T).

Therefore it is clear that

T
/ Gp(t,s)a(s)ds=1>0 (5.34)
0

and so the previous reasoning is also valid if a > 0, a > 0 on [c,d], and we change
the definition of v by

v g do Ghlt5) as) ds
= 1n .
tel fOT Gp(t,s)a(s) ds

In this case, assumption (Hsy) would be substituted by

(H3) There exist two positive constants m and M such that
ma(t) < f(t,z) < Ma(t), fora.etel, z>0.

. M *
Moreover, these constants satisfy that ey S

5.3.1. Neumann, Dirichlet and Mixed Boundary Value Problems

From the classical spectral theory (see Section 3.1), it is very well-known that, as
in the periodic case, for any of the boundary conditions introduced in Lemma 5.2.1,
there exists a positive eigenfunction on (0,7") related to the correspondent smal-
lest eigenvalue. Therefore, if we are in the case in which operator L coupled with
the associated boundary conditions is nonresonant and the related Green’s function
changes sign (different cases are characterized in Lemma 5.2.1), we could follow the
same argument as in the previous section to define 7, and we would obtain analo-
gous existence results. Hypotheses (H;)—(H3) would be the same with the suitable
notation for each of the problems (that is, considering in each case the appropriate
Green’s function and eigenfunction).
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Remark 5.3.9. For the Neumann problem, it is not difficult to verify that we also
have that if a(t) = p? then

r 1
t/cm@@dszg,
0 P
and condition (H3) is trivially fulfilled for [c,d] = 1.
On the other hand, since u(t) = 1 is the unique solution of

Remark 5.3.8 is also valid for the Neumann problem.

Remark 5.3.10. For the Dirichlet problem, condition (H3) does not hold in case
[c,d] = I. This is due to the fact that Gp(t, -) satisfies the Dirichlet boundary value
conditions for all t € [0,T), that is, Gp(t,0) = Gp(¢,T) = 0.

It is important to note that the eigenfunction vp is positive on (0,T) but, since
vp(0) = vp(T) =0, condition (Hz) would imply that f(0,x) = f(T,z) = 0 for
every x > 0. However, since as we have mentioned, [c, d] # I, this property does not
affect on the fact that fy = .

An analogous situation occurs for the mixed problems. In these cases it is also
impossible to consider [c,d] = I since the corresponding Green’s functions and
eigenfunctions vanish on one side of the interval.

Moreover, if we consider the Dirichlet and mixed problems, the constant function
u(t) = 1 is not a solution of the related linear problem Lu(t) = a(t). Therefore,
Remark 5.3.8 is not longer valid for such situations.

Remark 5.3.11. As it was commented in Remark 5.3.6, we also generalize the results
of Graef, Kong and Wang [62,63 ] and Webb [147] for a nonnegative Green’s function
coupled with the Neumann conditions.

On the other hand, as we have proved in Lemma 3.2.15, the Green’s function G p
related to the second order Dirichlet problem

u"(t) +a(t) u(t) = f(t,u(t), tel,
u(0) =u(T) =0,
can never be nonnegative. However, if we consider the following problem

{—u%o—awmwzfmuwx tel,
u

535
0) =u(T) =0, ( )
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5.4 Periodic Boundary Value Problem with Constant Potential

it occurs that its related Green’s function is —G p. Therefore, our method would be
applicable to prove the existence of constant sign solutions of problem (5.3.5) in case
that —Gp > 0on I x I (that is, when Gp < 0on I x I).

However, the results in [62,63, 147] could not be applied to problem (5.3.5) since
the related Green’s function will cancel on the whole lines s = 0 and s = T so
the minimum in (5.1.1) would be 0. The same will happen with any mixed problem.
Again, hypothesis (Hs) is not necessary in this case and we would need to add the
hypothesis that fo = oo and f*° = 0.

5.4. Periodic Boundary Value Problem with Constant Po-
tential

This section is devoted to the particular case in which the potential a is constant.
As we will see, in this situation it is possible to calculate the exact value of ~.
It is easy to see that the eigenvalues associated to the periodic problem

'+ Au=0,
(5.4.1)

u(0) = u(T), u'(0) = u(T),

are \' = (2n7/T)? withn = 0,1,2, ...

Moreover, the eigenfunctions associated to the first eigenvalue )\5 = 0 are the
constant functions, which can be written as multiples of a representative eigenfunction
vp(t) = 1.

Furthermore, we know from Lemma 3.2.4, that the related Green’s function is
strictly negative in the square I x I if and only if A < AJ = 0 and it is nonnegative
onI x Iifandonlyif 0 = \J < A < M} = (7/T)2

In particular, for A = p? > )\OA a nonresonant value, the explicit expression of
G'p is the following (see [16, 18, 104, 163]):

sinp(t —s) +sinp(T —t+s)
2p(1 —cospT)

sinp(s —t) +sinp(T — s+ t)
2p(1 —cospT) ’

Gp(t,s) =

From (5.3.4), it is clear that

1
2

T
g(t):/o Gr(t.s) ds = .
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

Therefore, we define

T
Gh(t,s) d
_ i do Gplbs)ds

0.1 [T Go(t,s) ds

forall p > 7 /T, p # 2kn /T, k € N.

Let us make a careful study of this value . From Lemma 2.4.3 and [18, Proposi-
tion 1.4.11], we know that the Green’s function related to the periodic problem (5.4.1)
satisfies that

Gp(t,s) =Gp(0,t —s) and Gp(t,s) =Gp(T —t,T —s).

Therefore,
T t T

/ Gp(t,s)d3=/ Gp(t,s)ds+/ Golt,s) ds,

0 0 t
where

t t t T

/Gp(t,s)ds:/GP(O,t—s)ds:/GP(O,T+s—t)ds: Gp(0,5)ds
0 0 0 T—t
and

T T 27—t T—t
/Gp(t,s)ds:/GP(O,T+s—t)ds:/ Gp(0,s)ds = Gp(0,s)ds,
¢ t T 0

that is - -
/ Gp(t,s) ds :/ Gp(0,s)ds forallt e [0,T].
0 0

The same argument is valid for both the positive and the negative parts of G p, that is

T T T T
/ Gh(t,s) ds :/ G1(0,s) ds and / Gp(t,s) ds :/ G5 (0,5) ds,
0 0 0 0

forall t € [0, 77, so the ratio
fOT Glt(t, s)ds
J Gp(t,s) ds
is constant for all ¢ € [0, 7.
This implies that we can restrict our analysis to the case ¢ = 0, that is, to assume

that -
B fo GIJS(O,S) ds

a fOT Gp5(0,s) ds

v
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5.4 Periodic Boundary Value Problem with Constant Potential

We have that
_ sinps +sinp(T — s)

Gp(0,s) =
p(0,5) 2p(1 — cos pT)
S0 GP(O, S) = 0if and only if s = % + (2k2+pl)7r

We will consider four cases:

Case 1A: Gp(0, L) Gp(0,0) > 0and Gp(0, %) > 0.

Case 1B: Gp(0,Z)Gp(0,0) > 0and Gp(0, %) < 0.

Case 2A: Gp(0, L) Gp(0,0) < 0and Gp(0, %) > 0.

Case 2B: Gp(0,Z)Gp(0,0) < 0and Gp(0,%) < 0.

Computing these values, we find that:

w If w <p< M for some k € Ny, we are in Case 2A and

\ 2%k + 1
- 2k+1-—sin(pT/2)

v

n If@ <p< m for some k£ € Ny, we are in Case 2B and

_ 2k+1—sin(pT/2)
h 2k +1
(4k—1)m 4kx .
» If —— < p < =7 for some k € N, we are in Case 1B and

- ok
2k +sin(pT/2)

v

(4k+1)7
T

w If ‘”“T" <p< for some k£ € N, we are in Case 1A and

2k +sin(pT/2)
= 2%k

In the cases where p = (2k + 1)7 for some k& € N, the value of y coincides with
the limit when p — (2k + 1)%. The graph of y for a given value p is sketched in
Figure 5.4.1.
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

/T 27T 3n/T 47x/T 5na/T 671/T 7n/T 8n/T

Figure 5.4.1: Graph of v for the periodic problem.

5.5. Dirichlet Boundary Value Problem with Constant Po-
tential

Let us now try to calculate the value of ~y for the Dirichlet problem with constant
potential. In this case, the eigenvalues for the Dirichlet problem

{u"(t) +Au(t)=0, fort eI,
u(0) =u(T) =0,

are \P = ((n+1)r/T)?forn = 0,1,2... and it follows easily that the eigenfuncti-
ons associated to A} = (7/T)? are the multiples of the function

vp(t) = sin (”Tt) .

As we have proven in Lemma 3.2.15, the associated Green’s function is strictly
negative if and only if A\ < A}’ = (7/T)2, and it changes sign for any nonresonant
value of A\ > (7/T)2.

Consider now A = p? > AP for p # 2, with n € N. We have that vp > 0 is a
solution of
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5.5 Dirichlet Boundary Value Problem with Constant Potential

and then it also solves

{wﬁ)+AMﬂ:(A—A§)mxm tel,
u(0) =u(T) = 0.

Therefore, since A = p? > A} is such that p # T, with n € N, previous problem is
nonresonant, and we deduce that

T
vp(t) = / (A - /\63) Gp(t,s)vp(s) ds.
0
Since vp(t) > 0 for t € (0,T), previous equality implies that

/GDtssm( >d8>0 fort € (0,T).

Thus, it makes sense to define

f0TG+ , )sm( ) ds
= inf ~(%, mf
(p) = dnf y(tp) = ™) 1T G (6 s) sin (52) o

The explicit formula for the Green’s function in the nonresonant cases is given by
(see [18])

sin(ps) sin p(T — t)

o~ < s<t<T
Gp(t,s) e psin(pT) i (5.5.1)
7S = B
’ G@)—_mWﬂmw@‘@ 0<t<s<T
2(t,s) = psin(pT) ’ ="

We will consider two cases:

. @n-D)m
= Case 1: nﬁ

<p<2"T”f0rn€N;

(2n+1)w
T

-Case2:2”T”<p< forn € N.

In Case 1 the function (¢, p) has a different computation in each of the 4n — 1
intervals

OT_(Zn—l)ﬂ —T_(Qn—l)ﬂ 7|l [7 , (@n-2)r
) pT b i pT ’pT_ b pT’ pT )
-T (2n —2)m 27] (2n — 2)m kS
i pT ’pT_ 9 ) pT ) pT )
7 @2n—-Dm] [(2n—Dm T
. T pT 7| pT 7

127



Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

and in Case 2, it has a different computation in each of the 4n + 1 intervals

or-22] [r-2m =] [ro 2 2] 2 ).
pT pT pT pT " pT pT

In both cases, given a fixed p it is easy to calculate the value of v(t, p). However
the general expression for an arbitrary p requires very long computations which are
not fundamental for the purpose of this chapter. Because of this, we are going to
calculate the general expression of v(p) only for the first intervals of p, in particular
for p < 6%.

For p < %’T, we can see that the infimum is attained at ¢ = 0, so we will re-
strain our analysis to the first interval of ¢ in both cases in order to obtain the exact
expression of y(p) for p < 67“.

In Case 1 we have

/OT G1(t,s)sin (%) ds= TT—’; Ga(t, s) sin <¥> ds

e
£ [ Gattsysin () ds
> oT
and
T TS t
/0 p(t,s)sin T s ; 1(¢, 8) sin = s
9% (27:3—1)71'
+/ Ga(t, s) sin (—) ds
t
n—1 T— (21‘7—’11)'”
+Z/ yin Ga(t, s) sin (—) ds
=1 By
7t T
:%’1—’)2_ Gg(t,s)sln(—) dS
PP ()" o
SO
T n T_( pj%)vr
/T—‘,"T Ga(t, s) sin (—) ds—&—iz_;/T_(2 o Ga(t, s) sin (—) d
’Y(t,P): T n T (2i=2)m - (ﬂ—t> .
s o s sin (Zt
Go(t,s)sin | — ) ds+ / Go(t,s)sin (= |ds — —LL
T- 2 2(t:5) (T) ; 7 @izur 2(t; s) (T) p2f(%)2
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5.5 Dirichlet Boundary Value Problem with Constant Potential

Doing a similar study for Case 2 we get

_(2i-D)m
T
Z/ ’ Go(t, s) sin (WS) ds
2
’y(t’p) = n (2i— 1)7'r
= sin ( T+
Z G (t s)sin(ﬂs> §—— (T7r)2
i=17T 2177: 1% —(T

Using the previous expressions, it is immediate to calculate (¢, p) for any fixed
value of p and T'. For instance, computing (¢, p) for T = 1 we obtain:

» If p € (m,27), then

. L2
sin pt sin %

V(ta P) =

. 2 2 . . .
sinpt sm%—i—smp sinmt

If p € (27,37), then

2
smpt(sm I +sin 2%)

Yt p) = - P et
smpt(smT+smT>—smpsmﬂ't

If p € (3m,47), then

. 2
sinpt (sm— + sin QL + sin %)

t pu—
’Y( 7p) Sinpt<sin7+sm%+sm3L)+SlnpSmﬂ—t

If p € (4m,57), then

. 2
sinpt (sm— +sm2i +sm3i + sin 4%)

t = .
7( 7p) sinpt(sin%—l-sm +sm—+sm%)—smp sinmt

If p e (57,67), then

2 2
sin pt(sin 2%+sm +sm ——i—sm —) +2 (1 _

us
7
t pu—
7( 7p) sinpt<sin #Jrsin %Jrsm 4%+sm 5%)+smp sin 7 ¢4 < )smpt

In Figure 5.5.1 we have a sketch of the function ~(¢,10.8) for 7" = 1.
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0.2 04 0.6 0.8 1.0

Figure 5.5.1: Graph of ~(¢, 10.8) for the Dirichlet problem.
Computing the limit
= 1.
(p) = lim (2, p),
we get the following expressions for v(p):

» If p € (m,27), then

axR¥ 7 sin p
")/(p) ) T sinp+p sin%.
» If pe (27, 3m,), then
-1 m sin p )
fY(p) + -7 sinp+p(sin%+sin #)

If p € (3m,47), then

—1_ 7 sin p .
FY(p) Wsinp+p(sin%+sin%+51n¥>
= If p € (47,57), then
-1 7 sin p .
7([)) * -7 sinp-l—p(sin%-i—sin%-‘rsin#-ﬁ-sméhﬂ)

If p € (5m,67), then

7 sin p
. . 2 . 2 . 2 . 2 . 2 2_ .2 -
m sin p+p <sm %Jrsm 2%Jrsm 3%+sm 4%+sm 5%) +2 %

1p) =1~
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5.5 Dirichlet Boundary Value Problem with Constant Potential

Graphically the function y(p) is represented in Figure 5.5.2 for 7' = 1.

Figure 5.5.2: Graph of  for the Dirichlet problem.

Remark 5.5.1. Analogous arguments and calculations can be done for Neumann
and mixed problems.

Let us now see an example.

Example 5.5.2. Consider the Dirichlet problem

{u”(t) +60u(t)=t(1—1t), telo,1], (5.5.2)

u(0) =u(1) =0.
It holds that (v/60) ~ 1.36 > 5 and

3 sin(mt) <t(1-1)< si]n(7rt)7
4 7 s

so hypothesis (Hs) is satisfied for m = % and M = 1.

Thus, from Corollary 5.3.7, the unique solution of problem (5.5.2) is nonnegative
on [0, 1] (in particular, it is positive on (0, 1)).

However, the solution of the Dirichlet problem

{u”(t) +60u(t)=t, te(0,1), 5:53)

u(0) =u(1) =0,

changes sign.
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

We can see the respective solutions in Figures 5.5.3 and 5.5.4.

0005
0.004 f
0003f
0002

0001

0.2 0.4 0.6 0.8 10

Figure 5.5.3: Solution of problem (5.5.2).

0.01 -

0.2 04 0.6 0.8 10

-0.01

Figure 5.5.4: Solution of problem (5.5.3).

We will finish this chapter with an example of a nonlinear problem.
Example 5.5.3. Consider now the following nonlinear Dirichlet problem
3+ 29 (u(t))?

' (t) +60u(t) =t (1 —1t) 1510 (a(t))2’ t €[0,1], 5:5.4)
u(0) =u(1) =0,
that is, we are considering
3+ 29 22

flta) =t -0 0
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5.5 Dirichlet Boundary Value Problem with Constant Potential

We will see that this problem satisfies conditions (H1)—(Hz):
(Hy) It is immediate to verify that this condition holds for ¢, (t) =t (1 —t).
(H2) It can be checked that

sin(m t) 3+ 2922 sin(mt)
i ULV S
T t1-1) 1+102% —

forallz € Randt € [0,1].
Thus, since v(v/60) ~ 1.36 and

2.26

3

hypothesis (Hz) holds for m = 2.26 and M = 3.

(Hs) Using [24] we obtain the explicit expression of the Green’s function related to

this problem
in24/15(1 — i 1
sin \/_5( s) Sln2\/_5t+sin2\/ﬁ(t—s), 0<s<t<l,
—1 sin 2+/15
Gp(t,s)=—-—=
2v/15 | sin 2\/5(1 — 5) sin 2/15¢
, 0<t<s<l
sin 2\/1_5
As we can see in Figure 5.5.5, this Green’s function changes sign on its square
of definition.

Figure 5.5.5: Green’s function related to problem (5.5.4).
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Positive Solutions for Second Order BVPs with Sign-Changing Green’s Functions

Finally, if we take [c, d] = [i, %], it occurs that
%
[ Gp(t,s)dt >0, forallse[0,1].
i

In particular,

3
/14 Gp(t,s)dt >0, forallse (0,1)
i

and

3 3
‘[4GD@JDdt::A4GD@J)dt:O.
1 1

Thus, hypothesis (H3) holds for [c,d) = [, 3].
We note that, as we have mentioned in Remark 5.3.10, it is not possible to
choose [c,d] = [0, 1] in this case.

Moreover, by numerical approach, we obtain the following values for the con-
stants involved in the construction of the cone

7~ 0.0087 and o =~ 0.067.

Since all the hypotheses hold, we can conclude that problem (5.5.4) has a nontri-
vial and nonnegative solution in the cone

K:{ueaMﬂﬂyuzOmmJLAw@Mszﬂm@.
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Chapter 6

Existence and Multiplicity Results
for some Generalized Hammerstein
Equations with a Parameter

As we have seen in previous chapters, every nonlinear differential equation can
be transformed into an integral operator whose fixed points will correspond with the
solutions of the aforementioned differential equation.

Therefore it is common to work directly with integral problems defined on Ba-
nach spaces, the so-called Hammerstein equations, which depend on a kernel function.
These kernel functions include but are not limited to Green’s functions. This way, the
study of fixed points of Hammerstein integral equations is further more general than
the one of nonlinear differential equations.

The solvability of this type of integral equations has been considered by many
authors. In fact they have become both a generalization of differential equations and
boundary value problems and a main field for applications of methods and techniques
of nonlinear analysis, as it can be seen, for instance, in [7,57,69,79-81,83,116].

Sections 6.1 to 6.6 in this chapter are included in [102], while the particular case
showed in Section 6.7 is collected in [32].

6.1. Introduction

We will study the existence and multiplicity of fixed points of the integral opera-
tor

T
Tu(t):)\/o k(t, ) (s, u(s),w/(s), ..., u™(s))ds, tel,  (6.1.1)

where
= )\ > (is a positive parameter,

» k: I x I — Risakernel function such that k € W™ (I x I),
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Existence and Multiplicity Results for some Generalized Hammerstein Equations

= m is a positive integer (m > 1) and
s f:IxR™! [0, 4+00) is a L!-Carathéodory function.

As it has been said before, this type of integral equations are known as Hammer-
stein equations (see [71]).
In [61], the following generalized Hammerstein equation is studied

1
u(t) = /0 k(t,s) g(s) f(s,u(s),u'(s),...,u™(s)) ds, (6.1.2)

with & : [0,1] x [0,1] — R a kernel function such that & € W™ ([0,1] x [0,1]),
m > 1is an integer, g € L'([0, 1]) is nonnegative almost everywhere in [0, 1], and
f:[0,1] x R™*1 — [0, 00) a L°°-Carathéodory function. Moreover, both the kernel
k(t, s) %Zt]f (t,s), fori = 1,...,m, are bounded and nonnegative
on the square [0, 1] x [0, 1].

Our work generalize the existing results in the literature introducing a new type
of cone,

uweC™I,R): uD(#)>0,te [min, iec o

(J > ) ' € J
teﬂ%ﬂ]“ () > & |, 5 € T

where

max. |u )],

[0 =

JE{O,l,...,m}&HdJl CJdoCJ,Ji # 2.

We note that the nonnegativeness of the functions and their derivatives may hap-
pen only on a subinterval, possibly degenerate (that is, reduced to a point), and, as
J1 C J, J1 # 9, the second property can hold, locally, only for a restrict number of
derivatives, including the function itself. This way, it is not required, as it was usual,
that (¢, s) and (a%lf (t, s) have constant sign on the square of definition.

Another important novelty is that, in the second property of the cone, we are con-
sidering the norm of the functions on a subset of the domain and not on the whole
interval [0, T'|. Moreover, as we will see, the two subintervals involved in this con-
dition, [a;,b;] and [c;, d;], must have nonempty intersection but are not required to
satisfy any other inclusion property (that is, it may occur that [a;, b;] ¢ [c;,d;] and
[¢j,d;] Z ag, b;).

In particular, second property in the cone (which ensures that the minimum of
the function and the derivatives on some interval is bigger than its norm on another
interval) will be given by certain inequalities (introduced in (Hy)) that both the kernel
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and its derivatives must hold. However, contrary to recent references such as [61],
the bounds must hold only for, at least, one of the derivatives of the kernel or, even,
for the kernel, on a subset of the domain.

This chapter is organized in the following way: Section 6.2 contains the main as-
sumptions, the definition of the new cone and some properties on the integral opera-
tor. In Section 6.3, the existence results are obtained with several asymptotic assump-
tions on f of the sublinear or superlinear type, near 0 or +co. Section 6.4 presents
existence and multiplicity results applying fixed point index theory. Section 6.5 has
two examples to illustrate our main results and, moreover, to emphasize the impor-
tance that (H,) holds only for some derivatives and that the subsets could be reduced
to a point. Section 6.6 contains an application to 2n-th order Dirichlet problems
(also called Lidstone problems), giving new sufficient conditions for the solvability
of these problems, which allow the dependence of the nonlinearity on odd and even
derivatives. In fact, our method allows that the nonlinearities may depend on deriva-
tives of even and odd order, which is new in the literature on this type of problems,
as it can be seen, for instance, in [43, 86, 146, 159]. In this way, our results fill some
gaps and improve the study of Lidstone and complementary Lidstone problems. Fi-
nally, Section 6.7 shows a particular case of a third order three-point boundary value
problem which is solved using the results developed in this chapter. This last section
gives also some conditions under which the considered problem has not any nontri-
vial solution.

6.2. Hypotheses and Auxiliary Results

Let’s consider £ = C™ (I, R) equipped with the norm
| = max{[[u o, i € J},
where ||v||c = sup |v(t)].
tel

It is very well-known that (E, || - ||) is a Banach space.
Throughout this chapter we will make the following assumptions:

(Hy) The kernel function k: I x I — R is such that k € W™(I x I), withm > 1.

Moreover, for i = 0,...,m — 1, it holds that for every € > 0 and every fixed
T € I, there exists some 0 > 0 such that |t — 7| < ¢ implies that
o'k o'k

%(t,s) — %(7‘,5) <e fora.e.sel.

Finally, for the m-th derivative of the kernel, it holds that, for every ¢ > 0 and
every fixed 7 € I, there exist a set Z, € I with measure equal to zero and some
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d > 0 such that |t — 7| < ¢ implies that

o™k o™k
W(t’ 5) — w(ﬂ s)| <e,

forall s € I'\ Z; such that s < min{¢, 7} or s > max{¢,7}.
(H2) Foreachi € Jy C J, Jy # &, there exists a subinterval [m;, n;| such that

o'k
ot

(t,s) >0 forallt € [m;,n;], s € I.

It is possible that this interval is degenerated, that is, m; = n;.

(H3) For all i € J, there exist positive functions h; € L!(I) such that

Ok

@(t, s)| < hi(s) forallt € Tanda.e. s € I.

(H4) Foreach j € Jy C Jo, J1 # @, there exist subintervals [a;,b;] C [m;,n;]
and [¢;, d;], with [a;, bj] N [¢;, d;] # @, positive functions ¢;: I — [0, 00) and
constants &; € (0, 1) such that

o,
ot

t,s)‘ < ¢;(s) forallt € [¢j,d;] and a.e. s € I,

and ,
Ik
@(t,s) > & pj(s) forallt € [aj,b;] and a.e. s € 1.

Moreover, ¢; € L1(I) satisfies that
bj
/ ¢j(s) ds>0.
a

(Hs) There exists ig € Jy such that either [c;,, d;,] = I or [my,,n;,] = I and,
moreover, {0,1,...,i0} C Jp.

(Hg) The nonlinearity f: I x R™*! — [0, 00) satisfies L!-Carathéodory conditions,

that is,
* f(-,xo,...,Tn) is measurable for each (x, ..., zy,) fixed.
e f(t,+,...,-)is continuous for a.e. t € I.

138



6.2 Hypotheses and Auxiliary Results

» For each r > 0 there exists ¢, € L'(I) such that
ft,zo, ..., zm) < @r(t), V(xo,...,zm) € (—=r,r)™ aetecl

(H7) Functions h; defined in (H3) and ¢, defined in (Hg) satisfy that h; ¢, € L1(I)
foreveryi € Jand r > 0.

We will look for fixed points of operator 7 on a suitable cone on the Banach
space F.

In particular, taking into account the properties satisfied by the kernel %, we define
the cone

u € C™(I,R) : u(i)(t) >0, t €[my,n], i € Jo;
K= ' 4
in w9 (t) > & ||ul? ,
tEI[Ic}j%j]u ( ) = 5] ”U‘ H[C]',dj]a je S

Lemma 6.2.1. Hypothesis (Hs) guarantees that K is a cone in E.

Proof. We need to verify that K is a closed and convex subset of C"(I,R) and
that satisfies the two properties which characterize cones in a Banach space (see
Definition 1.2.4).

First of all, from the definition of K, it is clear that it is closed. We will see that
it is convex. For u, v € K and \ € (0, 1), it is clear that

(1 =X uD )+ x0D(#) >0, forte [my,ni, i€ Jo.
In addition, for j € Ji,

; 1=\ a9t AoD ) > (1 =\ i e Y ; e
ter[g;gj](( yuD(t) + 20 D(1)) > ( ) min wD(6) + 0 min o)1)

> (1-X)¢; ”U(j)H[ijdj] T A ”v(j)H[CJ"di]
=¢; <||(1 =) u(j)H[Cjudﬂ + H)‘v(j)H[Cjadj])
> & 11 =N u) + /\“(j)H[cj,dj]-
Thus, (1 = AN u+ v € K.
Moreover, from the definition of K, it is trivial to check that if x € K, then
Ax € K forall A > 0.

Now, to prove that K N (—K) = {0}, we will distinguish between two different
cases:
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(I) There exists ig € Jp such that [m;,, n;,| = I.

Suppose that u, —u € K. Then u(%)(¢) > 0 and —u)(t) > 0 forall t € I,
which implies that uw©) = 0onI.Ifig > 1, ul~1) is constant on 1.

Now, we have that w0~ () > 0 and —u(o=(t) > 0forall t € [m;,_1,mi,_1]»
that is u(* =Y = 0 on [m;,_1,714,_1]. Then, since u("~1) is constant on I, we
deduce that (1) = 0 on I.

Using the same argument repeatedly, we conclude that w = 0 on I. In this way,
we have proved that K N (—K) = {0}.

(IT) There exists ig € Jy such that [¢;,, d;,] = 1.
Suppose again that u, —u € K. Then, from the fact that

min 60 (t) > &, Hu(iO)HI and  min (- u(io)(t)) > &io Hu(io)‘
te[‘lio’bio te[aiwbio}

I7

we deduce that ||u()||; = 0, which implies that u(*) = 0 on I. Now, following
the same arguments than in Case (I), we conclude the result.

O]

In the next section, considering some additional properties on the function f, we
will ensure the existence of fixed points of operator 7. However, before doing that,

we need to prove that 7 is compact.

Lemma 6.2.2. If hypotheses (H1)—(H7) hold, then operator T : K — K defined in
(6.1.1) is compact.

Proof. We divide the proof into several steps.

Step 1. 7 is well defined in K.

Letu € K.
First we will prove that 7u € C"™(I,R). By the rule of differentiation under the
integral sign for Lebesgue’s integral (see [15, 139, 140]), we have that for all ¢ € J

T 9tk

(Tw)® () = A 5

(t,5) F(s5,u(s), .., u™(s)) ds.
Now let (t,,),,cry C 1 such that li_>m tn, = to € I. On the one hand, by (H;), we
have that
ik
lim 8—(tn,s) Fls,u(s), ..., u™(s)) =

n—oo Ot

'k
att

(to,s) f(s,u(s),... ,u(m)(s)),
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fora.e. s € I.
On the other hand,

%(tn, s) f(s,u(s),..., u(m)(s))‘ < hi(s) @) (5)

and so, by Lebesgue’s Dominated Convergence Theorem and (H7), we obtain that

4 T §i k
Jm () O) = lim A Z (0, ) £, u () d s
0
T ot
= [ Jim G ) Fsu(s) ) ds
— () t).

Thus, (7u)? is continuous on I for i = 0,. .., m, that is, Tu € C™(I,R).
Now, we will prove that Tu € K.

It is obvious that, for i € Jo, (Tu)® (t) > 0 forall t € [m;, n,].
Moreover, for j € J; and t € [cj,d;], we have that

|(Tw)9(2) f(s,u(s),...,ul™(s)) ds

%(t, 5)

T
<A /0 63(5) F(5,uls), .. - u™(5)) ds,

and, taking the supremum for ¢ € [¢;, d;], we deduce that

4 T
|7, o g)\/o 63(3) F(suls), ..., u™ (s)) ds.

Moreover, for t € [aj, b;], we have

j
(Tuw)9(t )\/ gtlj t,s) f(s,u(s),...,u™(s)) ds

> A /(; fj ¢j(5) f(37u(8)7 s 7u(m)(5)) ds > £j H(TU>(])H[C] d;]

and we deduce that

min (Tu)9 () > & [[(Tw)

t€(a;,b;] H[Cg‘#j]

for j € Ji.
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Therefore, we can conclude that Tu € K.
Step 2. 7 is continuous in C™ (I, R).

Let {u,},c be a sequence which converges to u in C™ (I, R). Then, ul )(s)
converges to u(?) (s) and, from (Hg), this implies that f(s, u,(s),... ,uglm)(s)) con-
verges to f(s,u(s),...,u(™(s)) for a.e. s € I. Multiplying by h,(s), it is clear
that
lim hi(s) f(s,un(s), .., ul™(s)) = hi(s) f(s,u(s),...,u™(s)) fora.e. se I

n—oo

On the one hand, it is clear that there exists some R € R for which |lu,| < R
for all n € N. Therefore,

hi(s) f(s,un(s), ..., ul™ ()| < hi(s) pr(s), a.e. sel.

Since, by (H7), h; or € L(I), by Lebesgue’s Dominated Convergence Theo-
rem we deduce that

T
lim [ hi(s) ‘f(s,un(s),...,u(m)(s)) —f(s,u(s),...,u(m)(s))‘ds:0.

n—oo J n

On the other hand, for ¢ € I,
()@ (1) = (7))

%

T
S)\/ o'k
0

a7 (1:9)
T
[ o) [flssuas) () < sy a5 s
0
and therefore

lim H(Tun)@') — (Tw)®

n—0o0

= lim <sup ‘(Tun)(i) (t) = (Tw)® (t)D

‘f(s,un(s), () = f(s, u(s),. .. ,u<m>(s))( ds

o0

n
n—00

T
< lim A i hi(s) ‘f(s,un(s),...,u(m)(s))—f(s,u(s),...,u(m)(s)) ds=0,

from where we conclude the uniform convergence of 7w, to 7 u on I. Thus, operator
7T is continuous.
Step 3. 7 is a compact operator.

Let’s consider
B={ueE; |[u] <r}.
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First, we will prove that 7'(B) is uniformly bounded in C"(I).
We find the following bounds for v € B and i € J:

T o
A M(t,s)f(s,u(s),...,u(m)(s)) ds

Je7uy® T

o tel

with M; > 0. Therefore,

| Tu|| <max{M,;: i J}, VYueB.

Now, we will prove that 7 (B) is equicontinuous in C"(I). Let t2 € I be fixed.
Then, for every e > 0, take § > 0 given in (H;) and for: = 0,...,m — 1, it holds
that |t — t2| < 0 implies that

(7w (1) - (Tw) D 22)]

Tk 'k
< : - o™
[ G 08 = S| ). ) d s
1otk Ok
< - -
_)\/0 57 (t1,5) 57 (ta,s)| pr(s) ds

T
<er [ o) ds
0
and, since o, € L1(I), it is clear that there exists a positive constant # such that

(TwO () — (Tu)O(t2)] <

forall u € B.

On the other hand, for the m-th derivative, for every ¢ > 0, take § > 0 given in
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(Hyp) and |t; — to| < 9§, t1 < to, implies that

(7)™ (1) = (Tw) ™ (12)|
ok o™k
<A /O

Sy (8) = Fo (b, )| f(s,u(s),...,u™(s)) ds

ok ok

<
_)\/O atm (tl’ ) atm (tQ’ ) 907"(5) ds
t 8m 8mk
= /0 otm (tly ) om (tg, ) (Pr(s)ds
2 amk am
+>\/tl W(tl,S)— atm (t27 ) @T(S)ds
Omk amk

or(s) ds.

+)\/
t2

From (H1), it is clear that first and third integrals in last term of previous expression
can be arbitrarily small when |¢; — 2] < §. Moreover,

G 18) ~ g (12:9)

oMk oMk
‘at,rn(tlu ) ~ W(t27)’ 907’() € Ll[t1,t2]7

and so there exists some &’ > 0 such that

oMk o™k
t
A atm( 18) = G

—(t2,9)| pr(s) ds<e

t1

when [t] — to] < ¢'.
Therefore it is clear that, for |t; —t2| < min{d, '}, t; < t2, there exists a positive
constant k9 such that

(Tw) ™ (t1) — (Tw) ™ (t2)| < ko e

forall u € B.

Analogously, when |t; — ta| < §, t1 > to, there exists some some positive
constant k3 such that

(Tw) ™ (t1) = (Tw) "™ (t2)| < mze

forall u € B.

144



6.3 Main Results

We have proved the pointwise equicontinuity on I. Moreover, since I is compact,
pointwise equicontinuity is equivalent to uniform equicontinuity, as it is stated in
[129, Page 30 and Problem 31].

This way, we conclude that 7 (B) is equicontinuous in C"™([I).

As a consequence, by Ascoli-Arzela’s Theorem (Theorem 1.2.2), we can affirm
that 7 (B) is relatively compact in C"(I) and so 7 is a compact operator. O

6.3. Main Results

We introduce now the following notation

T b
A :—/ hi(s) ds, A; :—/ & di(s) ds
0 aq
and define
A:=(m+1) max{A*: i € J} and A:=max{&A;: i€ Ji}.

Moreover, we denote

t
fo:=liminf min S,y Tm)
|CCO|7--.7|~T'm|—)O tel |,fl,'0| + .- _.I_ |:L‘m|
and

;= limsup max S (6,20, Zm)
(2ol |@m| 00 TEL |To| 4 - + [Tm|

[e.o]

We will give now our existence result.

Theorem 6.3.1. Assume that hypotheses (Hy)—(Hz7) hold. If A f>° < A fo, then for

all . )
Ae| —,—=
<A fo A °°>
operator T has a fixed point in the cone K.

Proof. Let \ € (Aifo, ﬁ) and choose € € (0, fo) such that

et
A(fo—e) = T A(f*+e)

Taking into account the definition of fj, we know that there exists 6; > 0 such
that when ||u|| < ¢,

Ft ), u™ @) > (fo—e) (|u(t)]+-~+\u(m)(t)\>, Vtel
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Let
Qs, ={ue K: |Jul] <}

and choose u € 0€)5,. We will prove that Tu 2 u.
Using (Hy), we have that for j € Jy and t € [a;, b;] N [cj,d;],

, T ok -
(Tw)9) (t) =\ i %(t,s)f(s,u(s),...,u( )(s)) ds
>\ b %(t,s)f(s,u(s), ™ (s)) ds
bj
=25 & 05(s) f(s,u(s), ..., ul™(s)) ds

o [ 686 =) (W@ + -+ 1)) as

>A(fo— ) & u e,y /bj & dj(s) ds
aj
=X (fo = &) & [P, A5 = A(fo — ) & A5V (2).
Now, for jo € Ji such that £;; Aj; = A, it holds that
(Tu)V0) (t) > ul0)(t) for all t € [aj,b;] O [c;, dj],

and so it is proved that Tu A wu.
From Corollary 1.2.10, we deduce that

irx (T, le) =0.

On the other hand, due to the deﬁnition~ of f*°, we know that there exists C>0
such that when min {|u(i)(t)] rieJp>C,

Pt u(t), . u™ (@) < (1 +2) (Ju®)] + -+ (@)
< (m+ 1) (1% +2) ul,

forallt € I.
Let C' > {41, C'} and define

Qe = U {u €EK: I%lel}l|u(z)(t)| < C}.
i=0
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We note that €2 is an unbounded subset of the cone K. Because of this, the fixed
point index of operator 7 with respect to Q¢, ix (T, Q¢), is only defined in the case
that the set of fixed points of operator 7 in Q¢, that is, (I — 7)~1({0}) N Qc, is
compact (see Section 1.2 for the details). We will see that i (7, Q¢) can be defined
in this case.

First of all, since (I — 7) is a continuous operator, it is obvious that the set
(I —T)~1({0}) N Q¢ is closed.

Moreover, we can assume that (I —7)~1({0}) N Q¢ is bounded. Indeed, on the
contrary, we would have infinite fixed points of operator 7 on (¢ and it would be
immediately deduced that 7 has an infinite number of fixed points in the cone K.
Therefore, we may assume that there exists a constant A/ > 0 such that |lu|| < M
forallu € (I —7)71({0})NQc.

Finally, it is left to see that (1 —77)~1({0}) N is equicontinuous. This property
follows from the fact that (I — 7)~*({0}) N Q¢ is bounded. The proof is analogous
to Step 3 in the proof of Lemma 6.2.2.

Now, we will calculate ix (7, Q). In particular, we will prove that || 7 u|| < ||ul|
forallu € 9Q¢. Letu € 08¢, thatis, u € K is such that

min {min Iu(i)(t)‘ S J} = C.

tel

Then, for: € J,
i

8 tZ (t7 S)

T
(Tw)® )| g)\/o F(s,u(s)sre e u™ (s)) d s

T
< )\/0 hi(s) f(s,u(s),...,u™(s)) ds

T
<(m+1)/\/0 ha(s) (f +2) [[u]] d s
=(m+ DA +e) ul A< A(f°+e) [Jull A < |ul.

‘We deduce that
[Tl < lull

and, as a consequence of Corollary 1.2.9, we have that
ix(T, Qc) = 1.
Therefore, we conclude from Lemma 1.2.7 that 7 has a fixed point in Q¢ \ Q5,. O

Consequently, we obtain the following corollary.
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Corollary 6.3.2. Assume that hypotheses (H1)—(H7) hold. Then,

(i) If fo = oo and f* = 0, then for all A € (0,00), T has a fixed point in the
cone K.

(ii) If fo = oc0and 0 < f° < oo, then for all \ € (0, ﬁ), T has a fixed point
in the cone K.

(iii) If 0 < fo < coand f>* = 0, then for all A € (ﬁ,oo), T has a fixed point
in the cone K.

6.4. Existence and Multiplicity of Solutions

In this section we will use the fixed point index theory to study the existence of
multiple fixed points of operator 7. Similar arguments can be found in [28,29, 79,
81,149,152].

We introduce now the following sets:

K, = {ue K: llul <p},

Vv, = {uEK: 1tm[ni]r}l)]u(i)(t) < p, i € Jy, ”U(i)”oo<,0,i€J\J2},
€la;,0;
where J = {0,...,m} and
Jg:{iEJZ [Ci,di]ZI}.

To ensure that the sets K, and V), are not the same, we need to change condition
(H 5) into

(Hs) There exists some index ig € {0, ...,m} such that [¢;,, d;,] = I and, moreo-
Ver, {0, 1,..., io} C Jo.

In this situation, it is clear that Jo # & and therefore
Kp g V,YO -,C«- K€7

where
c=min{ : i € Jo}. (6.4.1)

Now we will give sufficient conditions under which the index of the previous sets
is either 1 or 0.
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Lemma 6.4.1. Let

1 719k }
— — max<{su -(t,s)| ds: i€ J
v = s [0
and
t R o .
AGEISIRPETL) ctel, x; €0,p] if [mi,n] =1[0,T),
f? =sup p

zi € [=p, p| if [mi,ni] # [0, T

If there exists p > 0 such that

A% <1, (I})

then ig(T,K,) = 1.

Proof. We will prove that Tu # pwu for all u € 0K, and for every ;o > 1.
Suppose, on the contrary, that there exist some v € K, and ;1 > 1 such that

T o'k

put () T

(t,s) f(s,u(s),...,u™(s)) ds.

Taking the supremum on I, we obtain that

(0 "ok (m)
:U'Hu HOOS)\SUP W(ta‘S) f(s,u(s),...,u (8))d5
tel JO
T 8ik fp
<Apffs / (t,5)| ds < Ap—= <p.
<Apf sup. | 5a (L8| ds<Apm <p

Consequently, we deduce that

,upz,umax{”u(i)”oo: 1€ J} < p,

which contradicts the assumption that © > 1. Therefore, by Lemma 1.2.7, we con-

clude that ig (7, K,) = 1. O
Lemma 6.4.2. Fori € Jy, let

1 bi gik

— = inf —(t,s) d

YA : gy (1s) ds,
and

t -
' f( 7x07 7fL'm) . t G [ai,bi], wj 6 |:O7 p:| ,]e J2,
f! = inf p &

p
xke[oap}7k€J\J2
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If there exists p > 0 and ig € Jy such that

0
“p 1 O
A Ao (Z,)
then ig(T,V,) =0.

Proof. We will prove that there exists e € K \ {0} such that u # Tu + «e for all
u € dV,andall a > 0.

Let us take e(¢) = 1 and suppose that there exists some u € d V,, and a > 0 such
that w = Tu + «. Then, for t € [a;,, bi,],

(i0) Lok (m)
ut(t) > A = (t,s) f(s,u(s),...,u"™(s)) ds

, Ot
biO a’tok

> A 570 (125) Fls,u(s),...,u™(s) ds
Qi

- [P0 9ok
>Ap fy %(t,s)ds>p.

i

Consequently, u(?0) (t) > pfor t € [a,, bi,], Which is a contradiction and, there-
fore, by Lemma 1.2.7, ix (T, V,) = 0. O

Combining the previous lemmas, it is possible to obtain some conditions under
which operator 7 has multiple fixed points.

Theorem 6.4.3. Assume that conditions (Hy)~(Hy), (Hs) and (Hg)—(Hz) hold, and
let c be defined in (6.4.1). The integral equation (6.1.1) has at least one non trivial
solution in K if one of the following conditions holds:

(CI) There exist p1, p2 € (0,00), & < py, such that (1Y) and (1},) are satisfied.

(C2) There exist p1, p2 € (0,00), p1 < pa, such that (1},) and (I7),) are satisfied.

The integral equation (6.1.1) has at least two non trivial solutions in K if one of
the following conditions holds:

(C3) There exist p1, p2, p3 € (0,00), 2- < py < p3, such that (Igl), (1,,) and (I),)
are satisfied.

(C4) There exist py, p2, p3 € (0,00), with p1 < p2 and 22 < p3, such that (Ipll),
(I9,) and (1,,) are satisfied.
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The integral equation (6.1.1) has at least three non trivial solutions in K if one
of the following conditions holds:

(C5) There exist p1, pa2, p3, pa € (0,00), with 2= < py < p3 and %2 < py, such that
(I9,), (1), (ID,) and (I},) are satisfied.

(C6) There exist p1, p2, p3, pa € (0,00), with py < ps and 22 < p3 < py, such that
(I;l), (122), (Igg) and (1'24) are satisfied.

The proof of the previous result is an immediate consequence of the properties
of the fixed point index given in Lemma 1.2.7. Moreover, it must be point out that,
despite of the fact that the previous theorem studies the existence of one, two or three
fixed points, similar results can be formulated to ensure the existence of four or more
fixed points.

6.5. Examples

In this section we will show two examples in which the theory previously develo-
ped will be applied. In particular, these examples will show that the existence results
given in Theorems 6.3.1 and 6.4.3 are not comparable.

Example 6.5.1. Consider the following boundary value problem:
t t !/ " t
e’ (Ju(®)] + /(1)) er |u( )I)’ teo0,1]
RIS 6.5.1)

w(0) = —u(1), u/(0) = %u'(l), o (0) = 0.

The Green’s function related to the homogeneous problem

u®(t) = A

u® () =0, telo1],
1
u(0) = —u(1), u/<0) - 9 ul(1>7 u”(O) =0,
which has been calculated using [24], is the following one

1] —g)(— <
Glt.s) = 7(1—=5)(=3+s+41), t<s,
1(-3+s(s+4)+2t(t+2)—8st), s<t.

Therefore, solutions of boundary value problem (6.5.1) correspond with the fixed
points of the following operator:

1
Tu(t):A/O Glt,s) f(s,u(s),u/(s),u"(s)) ds, te[0,1],
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which is a particular case of the operator defined in (6.1.1) forT =1, m =2, k=G
and
e’ (|z] + [yl +12])

1+ 22 )

We will check now that the kernel G satisfies conditions (Hy)—(Hs). To do that, we
need to calculate the explicit expression of the first and second order partial deriva-
tives of the Green’s function, that is,

f(t’ $7y7 Z) =

0G 1—s, t<s,
(t78):
ot 1-2s+t, s<t,

and

aZGt B 0, t<s,
3752(75)_ 1, s<t

Using these expressions, we are able to check that the required conditions hold:

(Hy) Let T € I be fixed. Both G and %(t—; are uniformly continuous, so the hypothesis

2 .
% g (that is, for

is immediate for 1 = 0, 1. Moreover, for the second derivative
the case i = m = 2), we can take Z, = {7} and we have that

2 2
‘%Lf(tas) - %(T» s)|=]1=1]=0, Vs < min{t, 7}
and ) ,
%tg(t,s) - %(7, s)| =10-0] =0, Vs > max{t, 7},
so the hypothesis holds.

(H2) It can be seen that
G(t,s) >0, forallt € [to,1], s € [0,1],

with ty = 0.6133. Therefore, in this case [mg, no| = [to, 1].
Moreover, both %—? and %25 are nonnegative on the square [0, 1] x [0, 1], which
means that [m1,n1] = [ma, n2] = [0, 1].

(H3) It can be checked that

|G(t,s)| < = (3—4s+s?), forallt €0,1], s € [0,1],

=
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and the equality holds for t = 0 and t = 1, so the choice ho(s) = 1 (3 — 4 s+

s2) is optimal. This inequality can be easily proved by taking into account that,

since %—? is nonnegative, then G(-, s) is nondecreasing for every s € [0, 1] and,

therefore,
1
G(t,5)| < max{|G(0, )], 1G(1 )|} = 1 (34 +52).

For the first derivative, it occurs that

0G

W(t’ s)‘ <2(1—ys), forallt €0,1], s € [0,1],
and the equality holds for t = 1, so h1(s) = 2 (1 — s) is also optimal.
Finally,

<1, forte|0,1]anda.e. s €|0,1],

0?G
)

and ho(s) = 1 is trivially optimal.

If we take ¢o(s) = ho(s) = 1 (3 — 4s+ s2), [co, do] = [0,1], and [ag, bo] =
[t1,1] with t1 > to (to given in (Hy)), it holds that there exists a constant
&o(t1) € (0, 1) such that

G(t, S) > 60(751) (,250(8), forallt e [tl, 1], s € [0, 1].
We note that the bigger t; is, the bigger the constant &y(t1) is. For instance, if

we take t1 = 0.62, we can choose £y = %

With regard to the first derivative of G, it satisfies that

%(t, s)<2(1—s), forallt €0,1], s € [0,1],

and

%C;(t, s)>1—s, forallt €[0,1], s €[0,1],

that is, we could take ¢1(s) = hi(s) = 2(1 — s), [e1,d1] = [0,1], & = % and
[al, bl] = [0, 1].

Finally, for the second derivative of G, it does not exist a suitable function ¢
and a constant & for which the inequalities in (Hy) hold.

As a consequence, we deduce that J, = {0, 1}.

Moreover, it is obvious that fabz ¢i(s) ds>0fori=0,1.
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(Hs) It is immediately deduced from the proofs of the previous conditions.

Moreover, the nonlinearity f satisfies condition (Hg), being ¢, (t) = 3re’. Fi-
nally, it is clear that condition (H7) also holds.
We will work in the cone

u € C?([0,1],R) s u(t) >0, t € [to, 1], «/(t),u”(t) >0,t € [0,1];

K= 1
i t) > &t , min u'(t) > = ||/
i u(t) = €o(t) ulloay. min o/ (8) = 5 oo
With the notation introduced in Section 6.3, we obtain the following values for
the constants involved in Theorem 6.3.1:
1
AN=20 Al=1, A*=1,
3
and therefore B
A=3 max{AO, Al A2} =3,
1 3 1

1 1
Ao = &(t1) <3—4t1+2t%—ﬁt§), A =2

and so
1 3

1 1 1
A:max{f(g)(tl) <§ " Zt1+§t%— Et?) , 4—1}
We note that, since &y(t1) € (0,1),
1

1 3 1 1 1 3
2 2 3
t Tt ¢ T+
60(1)<3 | )<3 I1

_ th _ i 3

2t 12t 21t 127t

and it is easy to see that the right hand side of previous inequality decreases with t,
and, in particular, it is always smaller than i. Thus,

1
A=-
- 4
independently of the value of t;.

On the other hand, we obtain the following values for the limits over the nonline-

arity f:

T ez +yl+1=)) I
fo= liminf min 3 = im oy = 1,
el lyl,21=0 tefo.1] (1 +2?) (|2 + |y[ +12])  lallyllzl»0 (14 22)

t
® = limsup max e (o] + [yl + |=) = lim _° - 0.

el Jyl,|zl—oo t€10,1] (1 +22) (2] + [yl + |2])  lallyl,|l2l—o00 (1 + 22)
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Therefore, from Corollary 6.3.2, we deduce that for all A\ > 4, T has at least a
fixed point in the cone K. This fixed point is a nontrivial solution of problem (6.5.1).

On the other hand, we will prove that it is not possible to apply Theorem 6.4.3 to
this example. With the notation introduced in Lemma 6.4.2, we have that

e'(|z| + |yl + |2]) { P ]
cteft, 1], ze |0, 21,
P it @+ S R I .
y€1[0,2p], z €10, p]
and
t
fi = inf p(x?+1) =0,

§o(t1)
y €10,2p], 2 €[0,p]

and therefore it does not exist any p such that condition (IS) holds. Thus Theo-
rem 6.4.3 is not applicable to this example.

Example 6.5.2. Consider now the following fourth order Dirichlet problem:

u(t) = At (04 (@(0)2 + (@) + @"(©)>), e 0,1,
u(0) = u(1) = 4" (0) = «"(1) = 0.

(6.5.2)

Notice that fourth order differential equations with this type of boundary conditions
have been applied for the study of the bending of simply supported elastic beams
(see [115, 141]) or suspension bridges (see [50, 97]).

The Green’s function related to the homogeneous problem

{u<4> (t)=0, tel0,1],
u(0) = u(1) =" (0) =" (1) = 0.

has the following expression:

G, 5) 1[ t(1—s)(25s—s2—12), t<s,
TE) s(—h(@2t—22— ), s<t,

which implies that the solutions of problem (6.5.2) coincide with the fixed points of

1
Tu(t) =\ /0 G(t,s) f(s,u(s),u'(s),u”(s),u"(s)) ds, te][0,1].
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Previous operator is a particular case of (6.1.1) forT =1, m = 3, k = G and
ft,zy,z,w) =t (e +y* + 22 + w?).

Next, we will give the explicit expressions of the first, second and third derivatives
of the Green’s function:

3£(t )_1 —(1—s)(—2s+s*+31t%), t<s,
ot "’ 6 1s(24s2+312—61), s < t,
82G(t 3)— —t(l—S), t§57
ot —s(1—1), s<t,

a?;(;(t’s) _ {—(1—3), t<s,

o3 s, s < t,

and now we will see that they satisfy the required hypotheses:

(Hy) As in previous example, it is easy to verify that this condition holds.

(H2) The Green’s function G is nonnegative on [0, 1] x [0, 1] (in fact it is positive on
(0,1) x (0,1)). Therefore [mg, no] = [0, 1].

For first derivative it holds that

aacz(t, s) >0 forallt €]0,ts], s €[0,1],

withty = 1 — ¥3 ~ 0.42265. Thus [my,n1] = [0, t2].

With respect to the second derivative, it is immediate to see that it is nonpositive
on its square of definition. However it is zero on the boundary of the square,
so we could take [ma,na] = {0} (note that it would also be possible to choose

[ma, na] = {1}).

Finally, the third derivative is nonnegative on the triangle
{(t,s) €10,1] x [0,1] : s < t},
that is, [ms, ng] = {1}.
(Hs) We have that

|G(t,s)| = G(t,s) < ho(s) forallt € |0,1], s €0,1],

156



6.5 Examples

where ,
1 s(1—s%)2, 0<s<i,

hO(S): 9\ 8 1
9v3 (1-5)(25—57)2, 5<s<1

The previous inequality has been proved in [150] but we include the proof for
the sake of completeness: we note that G is zero at the boundary of its square
of definition so, since it is nonnegative, it is clear that the restricted function
G(-, s) will attain its maximum on a point in which % is null. It is immediate
to check that:

o Fors <t,itholds thata—?(t, s) = Oifand onlyift = +(3—/3(1 — s2))
andt < %

* For s >, it holds that %(t, s) = 0 ifand only ift = ¥ 2\%52 andt > 1.

. . ’ . . 892G
Therefore, due to the regularity properties of the Green’s function, since %

is nonpositive at every point of its square of definition, we deduce that:

« For s < %, G(-,5) has its maximum at (% (38— /31— 52)),5>. In
particular,
“

» Fors > % G(-, s) has its maximum at (

(3_m),s): %5(1_52) .

W~
Ne}

25—s52

S

, s) . In particular

Njw

:i(l—s)@s—sz) .

93

o V25 — g2 .
\/g )

Thus, it is clear that

G(t,s) < ho(s), forallte0,1], s € [0,1].

Previous inequality is optimal in the sense that, for each s € [0, 1], there exists
at least one value of t € [0, 1] for which the equality is satisfied.

Analogously, it holds that

9 1.s)

57 < hi(s) forallt €[0,1], s €0,1],
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for
2 —s, OSSS%,

1+s, 1<s<1,

hl(s):és(l—s){

and the equality holds for 0 < s < %att: Oandfor% <s<latt=1,

so this choice of hy is optimal. This inequality is easily proved by just taking
. 20 . .. . .
into account the fact that %—g is nonpositive and so %—f(', s) is decreasing for

every s € [0, 1]. Therefore,
1

55 o280
=—-s(1—s)max{2—s, 1+ s} = hy(s).

(t.5) oG
ot ot
6

E(lv*g)

9

For the second derivative, we have that
0?G y
W(t’ s)| < s(l=8)=ha(s) forallte[0,1], s € [0,1],
and the inequality is optimal in the same way it was for the Green’s function G.
With regard to the third derivative, it satisfies that

*G

W(t’ s)| <max{s,1 — s} = hs(s) forte|0,1]anda.e. s € [0,1],

and the inequality is also optimal.

If we choose ¢o(s) = ho(s), given in (Hs), and [co, do] = [0, 1] then, for any
closed interval [ag,bo] C (0, 1), it is possible to find a constant &y(ao, by) €
(0,1) such that

G(t,s) > &o(ao, bo) do(s), forallt € [ag,bo], s € [0,1].

This has been proved in [150] with an explicit function. Of course, it is satisfied
that the bigger the interval [ag, bo| is, the smaller &y(ag, by) needs to be.

Analogously, we can take ¢1(s) = hi(s) and [c1,d1] = [0,1] and it holds that
for any interval [0, b;], with by < 1 — @, there exists £1(by) € (0, 1) such that

0G

57 (t,8) > &1(b1) ¢1(s), forallt € [0,b1], s €[0,1].

Finally, with respect to the second derivative of the Green’s function G, it does
not exist any pair of a function ¢o and a constant £o such that the inequali-
ties in (Hy) hold. The same occurs with the third derivative of G. Therefore,
J1=Jy =40, 1}.
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(Hs) It is a direct consequence of (Hy).
Clearly, f satisfies (Hg) and (Hz7), being o, (t) =t (e + 3r2).

As a consequence of the properties of the Green’s function that we have just seen,
we will work in the cone

u € C3([0,1],R) : u(t) >0,te[0,1], u/'(t)>0,t€[0,ts],)
u'(t) >0, t € {0,1}, (1) >0,

K= min u(t) > &(ao, bo) [ullo,1;
t€lao,bo]
in o/ (t) > & (by) ||/
té][%l,?ﬂu( ) = &1(b1) [[u[o,1]
Moreover, we will make all the calculations with the values [ag, bg] = [0.1,0.9],

S =1 10,b1] = [0,3] and & = 5.
In this case, with the notation introduced in Lemma 6.4.1, we have that

1 5 1 1 1) 1
N " 3814724°8°2( " 2

and

t(e® +y* +2° +w?)

P te [Oa ]-]7 T, Y, 2, wWE [_027[)2]}
P2

_e”?+3 p%
P2 ’
and so (I 22) holds for any
2p2
er2 + 3 p3’

Analogously, with the notation used in Lemma 6.4.2,

1 29 1 7

My 75000 M, 1944’

t(e® +y%+ 22 +w?
. (" +y ) e 01,09, z€[0,4p1],| 0.1
fp1 = inf p1 -

) c [076p1]7 Z, w € [Oﬂpl]
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and

t(e” +y° + 22 +w?)

fp1 = inf p1

1
tte |:073:| y T € [0,4/)1}7
ye [076P1]7 Z,w e [07/01]

and thus (121) holds for 00
> P

29

Therefore, as a consequence of (C1) in Theorem 6.4.3, for any pair of values
p1, p2 > 0 such that p1 < cps = 2 and

A

75000 P1 2 P2
< )
29 er2 + 3 p3

problem (6.5.2) has at least a nontrivial solution for all

75000 pq 2 po
AE , r
29 er? + 3 p3

In particular, there exists at least a nontrivial solution of (6.5.2) for all
A€ (0,04171).

On the other hand, we obtain that:

o ) t(e“’—l—yQ—l—zQ—{—wQ)
0= liminf min
el lyl |21, [w]—0 te0,1] || + [y| + [2] + [w]

)

and thus neither Theorem 6.3.1 nor Corollary 6.3.2 can be applied to this example.

6.6. Application to some Even Order Problems

In this section we will show an application of our results to solve some general
2n-th order Dirichlet problems. We note that these boundary conditions are also
called Lidstone conditions in some references.

In particular, we will contribute to fill some gaps on the study of general 2n-th
order Dirichlet boundary value problems for n > 2. We note that the case n = 2 has
already been considered in Example 6.5.2.

Usually, in this kind of problems, the nonlinearities may depend only on the even
derivatives (see, for example, [43,86,146,159]). We will generalize now these studies
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by considering the following problem, with a full nonlinearity (that is, depending on
all the derivatives up to order 2n — 1),

W@ (t) =  (Lult),..., D), teo,1],
u®?)(0) =u®¥(1) =0, k=0,...,n—1.

(6.6.1)

Let G(t, s) be the Green’s function related to the homogeneous problem

u(2n) (t) =0, te [07 1}7
u®0)=u®)(1) =0, k=0,...,n—1.

It can be checked that, forn > 2, g(¢,s) = %(t s) is the Green’s function
related to the problem

{M@@):o, teo,1],
w(0) = u(1) = u"(0) = u”(1) = 0,

whose explicit expression has been calculated in Example 6.5.2. As a consequence
of the calculations made in that example we know that the following facts hold for
n > 2:

« P0G (t,s) = g(t.s) = 0on [0,1] x [0,1] and 2725 (¢,5) = 0 on the

boundary of the square.

a P0Gt s) = 99(t,5) > 0on [0, 8] X [0, 1], with 5 = 1 — 2.

o 026t s) = 24(t,s) < 0on [0,1] x [0,1], and 272G (¢, 5) = 0 on the

boundary of the square.

2n—1
. %tgin?(t s) = 8—9( ,8) > 0fors e [0,1].

With this information, we can deduce some results about the constant sign both
of the derivatives of smaller order of GG and of the Green’s function itself.

1. Since %Z;ﬁ(t s) > 0, for n > 3, it holds that for each fixed s € [0, 1],

92n—>5 .
%ﬂ%(-, s) is nondecreasing.

.. . 2n—6 .
Assume that it is nonnegative. Then %tzTg (+, s) would also be nondecreasing
and, since the boundary value conditions imply that

a2n76 G _ 821176 G

W(Oas) = W(Ls) =0,
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we would conclude that Wiﬂ?( ,s) = 0forall (¢,s) € [0,1] x [0,1], which
is not possible.

5 . ..
The same argument holds if we assume that Wn?(y s) is nonpositive.

Therefore, necessarily W;j(-, s) is sign-changing and, since it is nondecre-
asing, we know for sure that

aQn—5 G 2n—>5

W(O,s)<0 and Gy =(1,8) >0 forall s € [0,1] and n > 3.

5 6 .
2. Now, since %ﬁin?(-, s) is sign-changing and nondecreasing, Wn?(-, s) will

be first decreasing and then increasing. This together with the boundary value

conditions o -
0" vG (o alban €
Hpne (0:8) = —ag (1,5) =0

. . 2n—6 . 0,0
implies that %tQTGG is nonpositive forn > 3.

. 2n—6 . ..
3. Since %ﬁ% is nonpositive, we can follow an analogous argument to the one

made in 1. to deduce that Wg—; is sign-changing and nonincreasing. In
particular this implies that

aQn—7 G aQn 7 G

W(078)>0 and Gy =a =(1,5) <0 foralls € [0,1] and n > 4.

g is nonnegative

4. Finally, arguing analogously to 2., we can deduce that 2 MT

on [0, 1] x [0, 1], for n > 4.

Note that all the previous arguments could be repeated iteratively. This way, the
following sign-criteria for the derivatives of GG can be deduced for n > %:

» If £ =0 (mod 4), then

82n—k G

W(t, S) Z 0 on [O, ].] X [0, 1]

= If £ = 1 (mod 4), then %(-, s) is sign-changing and nondecreasing for

every s € [0, 1]. In particular,

82117](? el 2n—k

0,s) <0 and W(l,s) > 0 forevery s € [0,1].

at2n—k (
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» If £ = 2 (mod 4), then

aQn—k G

W(t,S) S 0 on [07 1] X [0, 1]

s If £ = 3 (mod 4), then %(-, s) is sign-changing and nonincreasing for
every s € [0, 1]. In particular,

a?n—k G aQn—k

W(O’S) > 0 and W(l,s) < 0 forevery s € [0,1].

In particular, if n is even, we could deduce that G(¢,s) > 0 on [0, 1] x [0, 1] and,
if nis odd, G(t,s) <0on [0,1] x [0,1].

Therefore, the Green’s function and its derivatives satisfy the required hypothe-
ses:

(H1) Asin Example 6.5.2, this condition holds as a direct consequence of the general
properties of the Green’s function.

(H2) As we have just proved, we could take

[man—i, nan—i| = [0,1] for i = 0 (mod 4),
[mgn,i, ngn,i] = {]_} for: =1 (mod 4),
[Man—i,nan—i| = {0} for i = 2 (mod 4)

and
[man—i, nan—i| = {0} for i = 3 (mod 4).
(H3) It is enough to take h;(s) = max{‘%—g(t,s)‘ : telo, 1]} ,fori € J.

(H4) For n > 2, we could take J; = {2n — 4,2n — 3}. As a consequence of
Example 6.5.2, we know that

62n74G 82n74
‘W(t, $)| = ggan=g (t:8) = 9(t,5) < Pan—a(s),
with
3
B R e U PP
Pon—a(s) = WE s
(1—-s)(2s—5%)2, L<s<1.
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(Hs)

(Hs)

Moreover, it holds that for any closed interval [ag,—4, ban—4] C [0, 1], there
exists a constant 2,4 (@24, ban—4) € (0, 1) such that

a2n—4 G

W(t’ 5) > Eon—alazn—a,b2n—1) P2n—4(s),

for all t € [ag2n—4a,b2n—4], s € [0,1]. Obviously, the bigger the interval
[@2n,—4, ban—4] is, the bigger the constant 2y, 4 (a2, —4, bon—4) needs to be.

Analogously, from Example 6.5.2 we know that

93 @G dg 1 2—s, 0<s<i,
zc ¥ —|ZY < Pon_ - ~s(1—
‘8t2n—3 (tas)’ ‘8t(tvs) < ¢2 3(5) 68( S){ 1+s, %<S§ 1,

S

forallt € [0, 1], s € [0, 1], and for any interval [0, ba,,—3], with ba,—3 < 1— 73
there exists £2,,—3(b2ny) € (0, 1) such that

aQn—B G
W(t’ S) > fgn_g(bgng) (Z)Qn_3(8), forall t € [O,an_;ﬂ, S € [O, 1].
Again, the bigger ba,,_3 is, the bigger £2,,—3(b2,,, ) needs to be.
As we have already seen, it holds that [ma;,—4, n2,—4] = [0, 1].

As we have seen, it holds that [c2,,—3, d2,—3] = [0, 1] and, moreover, Jy = J.

Then, for n € N such that n > max {2, %}, we could work in the cone

w21 (0) > 0,7=3 mod 4,

min w4 (t) > &on—a(azn—a,b2n—4) ||U(2n_4)||[0’1]7
t€lazn—a,b2n 4]

min u(2"73)(t) > &an—3(ban—3) Hu(znfg)u[o,l]

L t€[0,b2n 3]

Thus, for any nonlinearity f satisfying (Hg), (H7) and conditions of either The-
orem 6.3.1 or Theorem 6.4.3, it is possible to find nontrivial solutions of problem
(6.6.1).
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6.7. Particular Case: a Third Order Eigenvalue Three-point
Boundary Value Problem

In this section we will study the existence of solutions of the third order nonlinear
differential equation

—u® @) = A f(t, ult), @), (1), teo1], 6.7.1)

with A > 0 areal parameter and f: [0, 1] xR? — [0, 00) a L!-Carathéodory function,
coupled with the three point boundary value conditions

uw(0) =4/(0) =0, u'(1)=ad(n), (6.7.2)

where0 <n<landl <a< % are given constants.

This type of third order three-point boundary value problems can be seen as a
particular case of multipoint problems (as in [156]), nonlocal problems (see [78]),
functional problems (as in [35]) or, as we will show in this section, integral equations.
Therefore all the applications for the above type of problems hold for our problem.
More precisely, these third order three-point boundary value problems arise in several
areas of applied mathematics and physics, such as the deflection of a curved beam
with a constant or varying cross section, three layer beams, electromagnetic waves,
gravity driven flows, study of the equilibrium states of a heated bar, and other ones
contained in [65].

A precedent problem

{u(3) (t) + alt) f(u(t)) =0, tel0,1],
u(0) ='(0) =0, (1) =au'(n),

has been considered in [69]. There, the authors established some of the properties of
the Green’s function related to previous problem. From them, they built a suitable
cone and applied Guo-Krasnoselskii’s Theorem to assure the existence of a positive
solution of the problem.

Recently, in [116], the authors considered the following system

—ul®(t) = f(t, o(t), (1), tel0,1],

—v@®)(t) = f(¢, ult), «'(1)), tel0,1],
u(0) =/(0) =0, /(1) =ad(n),
v(0) ='(0) =0, (1) =av'(n)

They studied the properties of the first derivative of the Green’s function related to
the problem and used them to construct a cone K such that there exist u, v € K
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which constitute a positive solution of the system. To do this, they also use Guo-
Krasnoselskii’s Theorem (see [68]).

A similar nonlinear fourth-order boundary value problem has been treated in [83],
where the authors studied the existence of nonzero and positive solutions by means
of monotone iterative techniques and lower and upper solutions.

In this section, we will study a generalization of previous equations by conside-
ring that the nonlinearity f depends on the solution and its first and second order
derivatives. Because of this, we need to examine the properties of the second deriva-
tive of the Green’s function.

We shall adapt the existence results given in previous sections to this particular
case. Moreover, we will give some sufficient conditions for nonexistence of solution.
All the results in this section are collected in [32].

6.7.1. Preliminary Results

In this subsection we compile several results regarding some properties of both
the Green’s function related to the problem and its first derivative. Next, we prove
some inequalities satisfied by the second derivative of the Green’s function.

The Green’s function related to the homogeneous problem

—u®(t)y=0, telo,1],
{ u(0) =u/'(0) =0, /(1) =au(n),
is given by the following expression (see [69])
(2ts—sH) (1 —an) +t?s(a—1), s<min{n, t},
1 t?2(1—an)+t?s(a—1), t<s<n,

G(t,s) = ————
) 2(L—an) | 2ts—s2)(1—an) +2(an—s), n<s<t,

t2 (1 — s), max{n, t} <s.
Next lemmas establish some properties of the Green’s function.

Lemma 6.7.1. ([69, Lemma 2.2]) Let0 <n < land1 < a < % Then,

1
0< Gt ) < dnls) = 1=

Lemma 6.7.2. ([69, Lemma 2.3]) Let0 <n < land1 < a < % Then,

s(1—s), Y(ts)€[0,1] x [0,1].

G(t,s) > € do(s), V(ts)e [gn} % [0, 1],

with0 < & = ) min{a — 1,1} < 1.

7?2
202 (14«
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In particular, with the notation introduced in Section 6.2, we are taking hy = ¢y,

[mo, no] = [0, 1], [C(), do] = [O, 1] and [ao, bo] = [g,n].
The first derivative of G is given by (see [116])

s(l—an)+ts(a—1), s<min{n,t},

0G 1 t1—0”7)+755(04—1)> tﬁsﬁna
i) =
1 (

(
(
P=an | s —an) +t(an=-s), n<s<t,
t(l—s), max{n, t} < s,
and satisfies the following properties.

Lemma 6.7.3. ([116, Lemma 3]) Let0 < n < land1 < o < % Then,

< %(t, ) < ¢1(s) = L Y (t,s) € [0,1] x [0,1].

0 =
1—an’

Lemma 6.74. ([116, Lemma4])Let0 <n<landl < a < % Then,

%(tvs) 2 51 d)l(s)? V(t,s) € [Z’n} X [0’ 1]’

with) <& =n< 1.

In particular, with the notation introducen in Section 6.2, we are taking hy =

[ml, nl] = [0, 1], [Cl, d]] = [O, 1] and [al, bl] — [g,n]
The second derivative of G is given by

s(a—1), s < min{n, t},
0*G 1 Jl-ants(a=1), t<s<n,
6t2 (t?s): 1
—an an — S, 7]§8<t,
1—s, max{7n, t} <s.

It is immediate to verify that it satisfies the following conditions.

Lemma 6.7.5. Let0 <n<landl < a < % Then,

%G
W(u 8) > 07 V(t, S) € ([07 1] X [07 1])\A7
where
A={(t,s) €[0,1] x [0,1); an<t<1,an<s <t}

b1,
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Remark 6.7.6. Note that, in particular, & S (t,s) > 0forall (t,s) € [0,an] x[0,1].

ot?

This implies that, with the notation introduced in Section 6.2, [ma, ns] = [0, an].

Lemma 6.7.7. Let0 <n < landl < a< % Then,

2

PG <o ¥0e [L1] xlo1

and
9?G l—nm
1< W(t’s) < max{@(s), 1_0”}}, v (t,s) €10,1] x [0,1],

with

_a(l-an) +n(a=-1) G

bo(s) = (o =1) 52 (15)

:a(l—an)+n(a—1){ s(@—1), 0<s<n,

n(a—1)(1—an) 1—s, n<s<lI.

Proof. First, we will prove that %—th(t, s) < ¢a(s) forall (¢,s) € [2,1] x [0,1].

For s < min{7, ¢} and s > max{n, ¢} we have that 55

2 2
2 G(t7 S) = %tg;

(n, s) and,

since 2= | 1 > 1 it is obvious that %ig(t, s) < ¢a(s).

n(a—1)

Fort < s < 7, we have that

a(l—an)

82G(t )_l—an+s(a—1)_(a_1) (nan(a_f; +‘9>
g2 %= 1—an N 1—an

s(a—1) (0:7(%;_0[17;) —i—l) o8

- 1—an = 208
Finally, forn < s <,
2 G an—s 1—s 02 G
=21 "< = ST (0.5) < als).

Z 1t — —
8t2(78) l—an~1—an 0t?

Now, we will prove that

2
%(t,s) > —1 forall (¢,s) € [0,1] x [0, 1].
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It is immediate to verify that %ZQG (t,s) > 0for s < min{n, t},t < s < nand

max{7, t} < s. On the other hand, for n < s < ¢, we have that

2 _ _

)

Cl—an T 1l-an
and so the result holds.

Finally, we will prove that

82—G(t,s) < max{qSQ(S) L= } for all (¢,s) € [0,1] x [0, 1].

ot2 "1—an

Obviously, it is enough to prove the inequality for (¢, s) € [0, 2] x [0, 1].

For s < t and s > 7, we have just seen that %th; (t,s) = %23 (n,8) < Pa(s).

On the other hand, for £ < s < n, the following inequality holds

82G(t ) 1—an+s(a—1)<1—an+n(a—1) 1—n

—_— S) = =

o2’ 1—an B 1—an 1—an

and so the result is proved. O

Corollary 6.7.8. Let0 <n<landl < a < % Then

’82G

W(t’ s)| < ha(s) = max{qbg(s), 1= }, V(t,s) €10,1] x [0,1].

1—an

In addition, from Lemmas 6.7.5 and 6.7.7, we get the corollary below.
Corollary 6.7.9. Let 0 <n < land1 < a < %. Then
o<£(t s) < dals), V(ts)e [ﬁ a ]
>~ at2 ) >~ P2 ) ) O[? nl -
This implies that, with the notation introduced in Section 6.2, we are taking
[c2,da] = [L,am].

Remark 6.7.10. We note that for any constant ¢ € (0, 1) it would be possible to find
a continuous function g # ¢o such that
0?G

Gz ts) < g(s), V(ts) € e, 1] x [0,1].
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Lemma 6.7.11. Let0 <n < land1 < a < %. Then,

0’ G 0?2 G
W(tvs) > W(mS) = 52 ¢2(S)) V(t, S) € [g,ﬁ} X [07 1]7

. a_l
with0 < &y = W

Proof. For s < tand s > n, we have that %275’(15, s) = &2 Pa(s).
On the other hand, for t < s < 7, it holds that

0°G l—an+s(a—1)

W(tas)_ Zs(oz—l)

1—-an 1—an

= &2 Pa(s).

Thus, with the notation of Section 6.2, we take [az, ba] = [Z,7].

Remark 6.7.12. We note that for any interval [a,b] C (0,an) it would be possible
to find a constant £ such that

02G

S (t:5) 2 €0a(s), V(t,5) € [a,0] x [0,1].

However, for the sake of simplicity, we have chosen [g,n] to maintain the same
interval than in Lemmas 6.7.2 and 6.7.4.

Remark 6.7.13. We point out that, on the contrary to function G and %, it is not

possible to find a continuous function ¢2(s) such that

2 ~
’%5(1&,5) < ¢o(s), V(t,s)€0,1] x[0,1]
and )
6(;5(75, 5) > E2da(s), Y(t,s) € [a,b] x [0,1],

with [a,b] C [0,1] and & € (0,1).
This is due to the fact that for s > an,

s—an
82G _ l1-an’ Sgt’
ot? (t75) N 1-s

l1—an’ t<s
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6.7 Particular Case: a Third Order Eigenvalue Three-point Boundary Value Problem

As a consequence, if there exists ¢o satisfying the previous conditions, it would
necessarily satisfy that

s—amn 1—5} i—anp S>> 72

SR B
@2 (s) _max{lcw]’ 1—an

for s > an, and so 52(1) > 1.
On the other hand, we have that %2—5(& 1) = 0 so, if there exists ¢y in the
previous conditions, it would happen that

2 ~ o~ ~
0= aa.tf(t, 1) > & ¢a(1) > & >0,

which is a contradiction.

6.7.2. Existence and Multiplicity of Solutions

Now, following the line developed in previous sections of this chapter, we will
find solutions of problem (6.7.1)—(6.7.2) by identifying them with the fixed points of
the integral operator

1
Tu(t) = A / G(t,s) f(s,u(s),u'(s),u"(s)) ds, te€]0,1]. (6.7.3)
0
In particular, we need to verify that this problem satisfied all the required hypot-
heses, namely (H;) — (Hs) or, alternatively, (H;) — (H4) and (Hj):

(H1) This condition holds as a consequence of the general properties of the Green’s
function.

(H2) In this case Jo = J = {0,1,2}. In particular, as we have just commented, we
could take [mq, ng] = [0, 1], [m1,n1] = [0, 1] and [mg, n2] = [0, an).

(H3) This hypothesis holds for hg = ¢ given in Lemma 6.7.1, h; = ¢; given in
Lemma 6.7.3 and h9 given in Corollary 6.7.8.

(Hy4) In this case J; = Jy = {0,1,2} and functions ¢g, ¢1 and ¢, are given in
Lemmas 6.7.1, 6.7.3 and 6.7.7. In particular, as we have mentioned before, we
may choose

N

* [co,do] = [0,1] and [ag, bo] = [Z, 7],
¢ [cbdl] = [07 1] and [alvbl] = [5;77],

N
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* [co,do] = [g,an} and [ag, by] = [g,n].

Moreover, it is clear that ¢, ¢1, ¢o € L1([0, 1]) and

b.
/]@(s) ds>0 forj—0,1,2.
aj

(Hs), (Hs) Since [co, do] = [0, 1], we may choose ig = 0.

Taking into account the properties satisfied by the Green’s function and its deri-
vatives, we will consider the cone

u e C?([0,1],R) :u(t) >0, t €[0,1], «'(t) >0, t € [0,1],

u’(t) >0, t€[0,an], min u(t) > & |uloo,
K- telt)

min u'(t) > & ||u']|o, min u”(t) > & Hu"||[1 an]
te[ 2] telam :

with &, &1 and & defined in previous subsection.

Remark 6.7.14. In [32], last condition in the definition of the cone K is

. " n
min u" (t) > & ||lu ||[ﬂ’n].
te[ ] «
However, as we have seen in this chapter; it is possible to take the interval [cz, dg] =
[g, « 17] instead of [g, 77]. This way, we get a smaller cone, which makes the location
of the possible solutions of the problem more precise.

Now, if the nonlinearity f satisfies hypotheses (Hg), (H7) and either conditions
of Theorem 6.3.1 or 6.4.3, we could guarantee the existence of nontrivial solutions
of problem (6.7.1)-(6.7.2).

Next, for the sake of completeness, we will give the exact expression of the con-

stants A;,7 = 1,...,5, involved in Theorem 6.3.1:
" A= 0‘7“’
6(1—an)
1
u A = —,
T 2(1-an
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6.7 Particular Case: a Third Order Eigenvalue Three-point Boundary Value Problem

o —2a(a?+1)n+ (a*+3® +a+1)n?
2(@=1D)n(an—1)(a((a-1)n—1)+n)
—2(a(a(a(2a—3)+5)-3)+1)n3
2(@=1)n(an—1)(a((a=1)n—1)+mn)
a?(a((a —2)a +3) — 1)
)n(an—1)(a((@a=1)n—1)+n)’

n* (a3 (2n—3)+3a—27n)
120® (an—1)

IA3:

_|_

2(a—1

. Ay = min{a — 1, 1},

LA l@= D (a(n=2)+n)
o 20?2 (an—1) '

Also for the sake of completeness we give the exact expression of the com-
ponents involved in the formulas of and 5, © = 0,1,2 which appear in Lem-
mas 6.4.1 and 6.4.2:

1 3 2_1
/ G(t,s) ds— —¢ <(a—n—)—2t>
0 12 an—1

and
! e an(2-3n)+1
sup G(t, s ds=/ G(1l,s)ds =
te[o,l]/o (t:5) 0 7 12(1 - an)
Moreover, )
8£(t78)d8:t(an(n—t)+t—l)
o Ot 2(an—1)
and

toa /18G an(l—mn)
su —(t,s) ds = —(1,s)ds = ————.
tE[OI,)l]/O ot %) o Ot (L) 2(1—an)

Finally,

an(n—2t)+2t—1

) t<an,
1920 2(an—1)
-5 (t,s)ds=
o Ot 202t +an(n+2t) -2 -1)t—1
, t>an,
2(an—1)
and 2 1 52 2
Lo2a 0°G 1—an
sup t,s)ds= —(0,s)ds = ————.
te[0,1] 8t2( ) 0 3t2( ) 2(1—an)’
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Now, it is easy to verify that

1 {ozn(2—377)+1 an(l—-n) 1—an? }_ 1—an?
2

N U 20 —an 2(—an)’ 2(1—an) (1 —an)

On the other hand, for ¢ € [2, 7],

n 3 2 2 . .
/G(t,s)d521<277 _6n t+3nt (a(a(an+n—2)+n)—n) 2t3>
n

12\ o? a? a?(an—1)
and
1 . " n_(n (a=1)n® (@2 —an) —n)
—_— = f G(t ds = G|(— ds = )
W~ iy Jy G as= 60 0 1a1(1—an)

In addition,

”aﬁ(t S)ds_—aznt(at—|—2)+a2t2—|-772((a3+a2+a— 1)t—|—1) —an?
n Ot B 2a? (an—1)
and

. "T0G _ ["0G (n
— = inf ~—(t,s)ds—/7 W(a,s> ds

203 (1 —an)
Finally,
e n(a(a(ant+n—2)+n) —n)
n Ot? (t5) ds 202 (an—1) -
and
1 o2 G oG (a—1)2(a+1)n?
_ = ‘f _ g _— = .
%=, ], g o) s [, G e as = O

We will show now two examples in which we will be able to warrant the existence
of nontrivial solutions of problem (6.7.1)-(6.7.2).

Example 6.7.15. Let’s consider the problem with

h(t)
t =— 7
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6.7 Particular Case: a Third Order Eigenvalue Three-point Boundary Value Problem

where c1 > h(t) > co > 0forall t € [0, 1], and n and « arbitrarily chosen, that is,

h(t)
a3 () —
O = aoE T @ s e 0
w(0) =4/(0) =0, (1) =au(n)
In this case,
fo=  lim f(t,z,y,2)
|, lyl,|z|—0 te[o 1 J2] + 1yl + |21
minge|o,1) A(t)
= lim = +o00
allylizi=»o (@2 +y? + 22) (|z| + |y| + |2])
and
- . ft,,y,2)

= lim max ———————
@yl 2|00 tel0,1] @] + |y| + |2|

lim maxieo,1] h( ) _
 lallylll—oo (@2 + 42 + 22) (2] + [y] + [2])
so Theorem 6.3.1 assures that there exists at least a positive solution of the problem
forall A > 0.

On the other hand, let p > 0. Then,

P = h(t) X X X [— =00
= { ot () €0 [0, % 0.5 % [l =

)

so it is not possible to find a positive p such that \ % < 1 and, consequently, Theo-
rem 6.4.3 can not be applied in this case.

Example 6.7.16. Let’s consider the problem with
flt,z,y,2z) = h(t) (2 + y* + 22 + 1),
where ¢y > h(t) > co > 0forallt € [0,1], n = § and o = 3, that is,
{ —ul(t) = Xh(t) ((w(®)? + @'(6)* + (W"(t)* + 1), telo,1],
u(0) =u'(0) =0, (1) =3 (3).
In this case,

ftz,y,2)

fo= min ————>
|z, \y| Jel-0 tefon] [z] + [yl + ||
. (minyep 1 A(t)) (22 +y* + 22 + 1)
= lim = 00
|, |yl |2|—0 lz] 4+ [y| + ||
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and

o0 _ llm maX f(t7 x’:’J’z)
|z, lyl, |2l o0 tef0,1] |z| + |y| + | 2]

i (maxyeq) h(t) (2% + 4> +2° +1) o
], Iy, |00 2| + [yl + || ’

so Theorem 6.3.1 cannot be applied.

However, we will see that Theorem 6.4.3 lets us ensure the existence of at least
one positive solution for certain values of .

Let p1, p2 > 0. Then,

1 .
ffg]l:ff}l:f/?l:* inf h(t)

P1 te[l,3
and
143 p3
fr? = 2496 sup h(t).
P2 t€[0,1]
Moreover, % = % and Mil = max {MLO’ I\—/IIT’ MLQ} = ﬁ. As a consequence of
(C1) in Theorem 6.4.3, for any p1, p2 > 0 such that p; < ¢ ps = g—% and
108 py 4 p2

ref2,21P(0) 51 +3p3) supgepo) A1)’

there exists at least a non trivial solution of problem (6.7.1)-(6.7.2) for all

\ e 108 py 4 p2
11 inf h(t)’ 5(1+3p3) sup h(t)
te[3.3] t€[0,1]

In particular, it can be deduced that there exists at least a non trivial solution of

problem (6.7.1)-(6.7.2) for all

Ae|0, ———
5v3 sup h(t)
te[0,1]
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6.7.3. Results of Non Existence of Solution

We will finish this subsection with a result which gives some conditions to ensure
that the integral equation (6.7.3) has not nontrivial solution in K.

Theorem 6.7.17. If one of the following conditions hold
(i) f(t,z,y,2z) < m max{x, y, |z|} foreveryt € [0,1], z,y > 0 and z € R,

where

1

— =1max sup)\/Gts S, sup)\/ (t,s)ds, sup)\/ ds
m ic[0,1] te[0,1] 3t tef0,1] Jo

(ii) f(t,x,y,z) > M x for every t € [a,b] C [g,n], witha # b, x, y > 0 and

z € R, where
e inf )\/ G(t,s) ds,
tea,b|

(iii) f(t,z,y,2) > My foreveryt € [a,b] C [2,n], witha # b, x,y > 0 and
z € R, where

092G
o (b)

1 . boa

f A
M telﬁz,b] a at(

t,s) ds,

then problem (6.7.1)—(6.7.2) has not nontrivial solution in K.
Proof. We will only prove () and (i) since item (i) is totally analogous to (7).

(i) Suppose, on the contrary, that there exists u € K such that u = Tu. Let
to € [0, 1] be such that ||ul|sc = u(tp). Then,
1
Julle = | Glto:s) fsvulo).w'(s),(5) s
0
1
< )\/ G(to, s) m max {u(s), v'(s), [u"(s)|} ds
0
1
<l [ Glto.s) ds < Jul.
0

Now, let ¢1 € [0, 1] such that ||u/||ooc = u/(¢1). Then,

toa

57 (1:8) f(s,u(s), u/(s),u"(s)) ds

HUIHOO =A

<A Hu||/0 %f(tl,s)m max {u(s), v'(s), [u"(s)|} ds

- loa
<l [ 57 ) ds < Jul.
0
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Finally, let to € [0, 1] such that ||u”||s = |u”(t2)]. Then,

" 82G / "
Hu HOO = A 0 8152 (t27 )f(87u(8)7u (8)7u <3>) ds
2
o [ |28 02,9 565, (605 s
0
0?G
<\ /0 O (12,9) ), u/(5), 1" (s)]} d s
82G
<A e (t2,9)] ds < [l
Consequently, we obtain
lull = max{[|ulls, |t [loos lt]loc} < llull,

which is a contradiction.

(ii) Suppose, on the contrary, that there exists v € K such that u = Tu. Let
to € [0, 1] be such that u(tp) = minye(, s u(t). Then, for t € [a,b] we have
that

1
:A/O Gt 5) F(s,u(s), 4 (5), 4 (s)) d 5
b
2)\/ G(t, 5) Fls,u(s),u(s), 0" (s)) d s
>M)\/bG(t,s)u(s) ds.

Therefore, we arrive at

b
u(tp) = min u(t) > M inf XA [ G(t,s)u(s) ds
te(a,b] te(a,b| a
b
> Mu(ty) inf X [ G(t,s) ds=u(ty),
t€la,b] a

which is a contradiction.
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Unbounded Domains

Part II is devoted to the study of nonlinear problems defined on unbounded dom-
ains.

Boundary value problems on unbounded intervals arise in many models of app-
lied mathematics, such as in combustion theory, plasma physics, models of unsteady
flow of a gas through semi-infinite porous media, to study the electrical potential of
an isolated neutral atom... For more details, techniques and applications in this field
we refer, for example, to [66,67,84,93,94,99, 154], and the monograph [2].

There are many results in the recent literature in which the authors deal with
differential or integral problems defined on unbounded intervals (see, for instance,
[48,54,114,117,118] and the references therein). The main difficulties which ap-
pear while dealing with this kind of problems arise as a consequence of the lack of
compactness of the domain. In particular, this makes it impossible to apply Ascoli-
Arzeld’s Theorem to prove the compactness of the operator. In all of the cited referen-
ces the authors solve this problem by means of the following relatively compactness
criterion (see [41, 121]) which involves some stability condition at £o00:

Theorem 1 ([41, Section 2.12]). Let E be a Banach space and C(R, E) the space of
all bounded continuous functions x: R — E. Fora set D C C(R, E) to be relatively
compact, it is necessary and sufficient that:

1. D is uniformly bounded.
2. Functions from D are equicontinuous on every compact subinterval of [0, 00).

3. Functions from D are equiconvergent at +00, that is, given € > 0, there exists
T > 0 such that for all t > T, we have that

H:z:( ) — lim x(¢ H
t—o00

By using the previous result, the authors of the aforementioned references prove
the existence of solutions of differential or integral problems by means of either
Schauder’s fixed point Theorem (Theorem 1.2.3) or lower and upper solutions met-
hod.

In this Thesis we will show three different approaches to prove the existence of
solutions of both differential and integral problems on unbounded domains.

First, in Chapter 7, we will study a nonlinear resonant problem. The difficulties in
this kind of problems arise as a consequence of the noninvertibility of the differential
operator, which makes it impossible to transform it into an integral operator. We
will solve this problem by constructing a modified problem (whose solutions will be
solutions of the original one) which will be nonresonant. Then, we will define an
integral operator, we will prove its compactness by means of Theorem 1 and we will
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use the lower and upper solutions method to prove the existence of fixed points of the
aforementioned integral operator. All the results in this chapter are collected in [103].

In Chapter 8 we will solve the problem of the lack of compactness of the domain
by defining a new Banach space which will let us use Ascoli-Arzeld’s Theorem. Mo-
reover, this Banach space will include some asymptotic conditions which will make
it possible to predict not only the existence of solutions of the considered problems
but also its asymptotic behavior. In this chapter we present two different methods
to prove the existence of fixed points of integral operator: the first one based on the
fixed point index properties and the second one on spectral theory. The results in this
chapter can be found in [34] and [33].

Finally, Chapter 9 presents a problem which needs to be solved using diffe-
rent techniques. In particular, we will consider an initial value problem with a ¢-
Laplacian. This problem will be singular, which makes it impossible to transform it
into an equivalent integral problem with a Green’s function as kernel. Therefore, we
will need to consider a different approach in order to prove the existence of soluti-
ons. In particular, we will focus our attention on unbounded solutions. Results in this
chapter are included in [131].
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Chapter 7
On Multi-point Resonant Problems
on the Half-line

In this chapter, we will deal with a nonlinear resonant problem defined on the
half-line.

Resonant problems have been studied for many years under a huge variety of
techniques: degree theory (see, for instance, [6, 53, 88, 124]), Lyapunov—Schmidt
arguments (see [105]), a Leggett—Williams theorem (see [58, 119]), fixed point and
fixed point index theories (see [5, 72,79, 155]) or monotone methods together with
lower and upper solutions techniques (see [3]), among others.

The main problem when dealing with resonant problems is that the related Green’s
function does not exist. This makes it impossible to construct an equivalent integral
problem in the same way than in previous chapters. This issue is overcome applying
several techniques.

From a theoretical point of view, resonant problems can be formulated as an equa-
tion Lu = Nu, where L is a noninvertible operator. Once the problem is formulated
in such a way, if operators L and [V satisfy certain conditions, the existence of a
solution can be ensured (see, for instance, [48, 85]).

Our approach will be different: we will construct a modified problem (which will
be shown to be equivalent to the original one) which will be nonresonant. Thus, this
modified problem will have a related Green’s function, so we will be able to transform
itinto an equivalent integral problem. The fixed points of this integral operator will be
solutions of the aforementioned modified problem and, consequently, of the original
one. This technique is also applied in [23,36].

Our construction of the modified problem will have a second important advantage
in order to find solutions of the nonlinear problem. What we will do is to construct
a problem whose related Green’s function belongs to L1[0, 00) N L*°[0, 0o) and this
will make it possible to ensure the compactness of the integral operator when the
nonlinearity satisfies either L' or L°°-Carathéodory conditions. This way, we are able
to solve nonlinear problems defined on unbounded domains in which the nonlinearity
satisfies weaker properties than the ones usually required in the literature.

In this sense, we would also like to mention that this technique of modifying the
problem in order to obtain another one whose related Green’s function belongs to
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L]0, 00) N L%°[0, 00), is also applicable to problems without resonance. Thus, if we
used this idea in problems defined on unbounded domains like

u () + ku(t) = f(t,u(t), o' (), u"(t),u" (1)), t € R,
u(£oo) = 0, v/ (+o0) = 0,

considered in [118], we could prove the existence of solutions of this problem in case

that the nonlinearity satisfies L.°°-Carathéodory conditions instead of L' -Carathéodory

ones. The same could be said about, for instance, the problem considered in [114].
All the results in this chapter are collected in [103].

7.1. Introduction

We will prove the existence of bounded solutions for the multi-point boundary
value problem

u’(t) = f(tu(t), u'(t), te0,00),

|y 7.1.1
u(0) = 0, u'( Z%U ( )

=1
where a; > 0and 0 =& < -+ - < &1 < +00. We will assume that the coefficients
«; satisfy the following resonant condition

Y ai=1 (7.1.2)

It is easy to check that, under condition (7.1.2), the homogeneous boundary value
problem related to (7.1.1),

u'(t) =0, te[0,00),
m—1

u(0) = 0, v (4+00) = Z ;' (&),
i=1

has a nontrivial solution (in fact, every constant function is a solution of previous
problem), that is, (7.1.1) is a resonant problem.
In [85] the authors studied the problem

u’(t) + f(t,u(t)) =0, te]0,00),

m—1
u(0) =0, v/(+00) = > a; v/ (&), (7.1.3)
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also under condition (7.1.2). To deal with the resonant problem, they defined some
suitable operators L and N such that the solutions of (7.1.3) coincide with the solu-
tions of the equation L u = N u. We must point out that operator L defined in this
reference is noninvertible. With this technique, they were able to find a solution in
the space

E=3u€C[0,00), u(0) =0, sup [u(®)] < 400 g,
tef0,00) 11

so clearly that solution could be unbounded.

Our arguments apply a different technique to find bounded solutions for problem
(7.1.1). Moreover, we note that, on the contrary to [85], we allow the nonlinearity f
to depend on the first derivative of w.

In [48], a similar third order boundary value problem is considered, namely

u"(t) = f(t u(t),u'(t),u"(t)) =0, t€[0,00),
2

3

w(0) = v/ (0) = 0, u(+00) = ‘ a; u” (&),

coupled with the resonant condition

The techniques used in [48] are basically the same than in [85] and, again, the authors
are able to find a solution which may be unbounded. On the other hand, they allow
the nonlinearity f to depend on all the derivatives up to the highest possible order but,
to do that, they ask for the following quite restrictive condition on the nonlinearity:

(Ho) f:[0,400) x R3 — R is s2-Carathéodory, that is,

(i) f(-,u,v,w) is measurable for each (u, v, w) fixed.
(ii) f(¢,-,-,-) is continuous for a.e. t € [0, c0).

(iii) For each r > 0 there exists 1. € L[0,00) with t ., 2. € L]0, 00)
such that

|f(t,u, v, w)| < (),

for all (u,v,w) € (=r,r) X (=r,r) X (—r,r)and a.e. t € [0, c0).
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In this chapter, we will look for solutions of problem (7.1.1) in the Banach space

X=<{ueCl0,00) : sup |u(t)|<oo, sup |u'(t)] < oo
te[0,00) t€[0,00)

equipped with the norm

[Jull = max {{|u]|oo, [14'[|oo}
where
[vlloc = sup |o(t)].
te[0,00)

In order to deal with the lack of compactness of the set X, we will use Theorem 1.
Moreover, we will assume that at least one of the two following conditions holds:

(Hy) The nonlinearity f : [0,00) x R? — R satisfies L!-Carathéodory condition,
that is,

(i) f(-,u,v) is measurable for each (u,v) fixed.
(ii) f(t,-,-) is continuous for a.e. ¢ € [0, o).

(iii) For each r > 0 there exists ¢, € L![0,00) such that
]f(t,u,v)] < (pT<t)’ V(U,,U) < <—’l", T) X (_Ta ’l“), a.e.tc [0700)

(H3) The nonlinearity f : [0,00) x R? — R satisfies L>°~Carathéodory condition,
that is,

(i) f(-,u,v) is measurable for each (u,v) fixed.
(ii) f(t,-,-) is continuous for a.e. ¢t € [0, 00).
(iii) For each r > 0 there exists ¢, € L>°[0, co) such that

|f(t,u,v)| < @p(t), V(u,v) € (=r,7)x(—r,71), ae tecl0,00).

We must point out that, although in this chapter we work with the second order
problem, the same techniques could be applied to the third order problem. In this
sense, we allow the nonlinearity f to depend on all the derivatives up to the highest
possible order but using either hypothesis (H7) or (Hs), instead of (Hy). This way,
our hypotheses are clearly much less restrictive than (Hy) so our method improves
the results in [48].

Finally, to prove the existence of solutions we will consider two different results.
First of all we will use the very well-known Schauder’s fixed point Theorem (Theo-
rem 1.2.3).
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On the other hand, we will also give a result to prove the existence of solutions
based on the lower and upper solutions technique. To do that we need to introduce
the following definition:

Definition 7.1.1. A function o € X is said to be a lower solution of problem (7.1.1)

if
a’(t) > f(t,a(t),d'(t), te€0,00),
m—1
a(0) <0, o( ZO‘Z (&).
=1

A function B € X is said to be an upper solution of (7.1.1) if the reversed inequalities
hold.

This chapter is divided into several sections: In Section 7.2, we construct an
auxiliary differential problem whose solutions are the same than those of problem
(7.1.1). In Section 7.3, this auxiliary problem is transformed into an integral one, for
which some bounded solutions are found. These solutions are showed to be solutions
of the original problem. Finally, Section 7.4 includes an example for which the results
in [85] can not be applied.

7.2. Construction of the Auxiliary Problem
We will construct now a modified problem, which will be equivalent to (7.1.1),
for which it is possible to construct the related Green’s function.
Indeed, consider the modified problem
u'(t) + ku'(t) + Mu(t) =0, te][0,00),

m—1 7.2.1
U(O) = O, Ul(—l-OO) = Z (67 ul(fi), ( )
=1

where k and M are positive constants such that k> — 4 M < 0 and
m—1
_kg k.
D aie™? (—2sm (&) + 7 cos (m)) #0,
i=1

with vy = V4 M — k2.
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After detailed calculations, we obtain the explicit expression of the Green’s function
related to problem (7.2.1):

—sin (v1) hu(s), 0<t<s, §G1<s<&,
e_w 07 Ogtg S, gmfl S S,
Gt s) =S
" —sin (yt) by(s) +sin(y(s = 1), 0<s<t, &1 <s<E,
\Sin(f)/(s_t)% O§8<t7 f’rn—l Ssa
where
m—1 X
A . .
D aiem 2 (<Esin(y(s— &)+ cos (v (s — &)))
hi(s) = =

m—1
D oie™ 3 (—hsin (78) + 7 cos (1)
=1

The first derivative of the Green’s function is given by

'(g sin (yt) — 7 cos (yt)) hu(s), 0<t<s, &1 <s<§,
0 0<t<s &n-1<s
_ k(t+s) ) ) ’
%G(ta 5):! (£ sin (vt) — v cos (71)) hu(s)
¢ v Qk‘ 0§8<ta Sl*l§s<£la
—gsin(y(s =1)) — cos (v(s — 1)),
—% sin(y(s—t))—cos(y(s—t), 0<s<t, &no1<s.

Remark 7.2.1. [t is easy to see that there exist two positive constants, C1 and Clo,
such that

G(t,s)| < Cre "5
and 56
Sr(ts) < Coe 5

forall (t,s) € [0,00) x [0, 00).
As a consequence, it is clear that both G(t,-) and %—?(t, -) belong to the space
L]0, 00) N L*®[0, 00) for all t € [0, 00).

7.3. Main Results
Consider now the following integral operator 7': X — X defined by

Tu(t) = /000 G(t,s) (f(s,u(s),u/(s)) +ku'(s) + Mu(s)) ds. (7.3.1)
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It is clear that solutions of problem (7.1.1) are fixed points of operator 7.
We will prove now that operator T" is compact.

Lemma 7.3.1. Assume that either (Hy) or (Hz) holds. Then operator T defined in
(7.3.1) is compact.

Proof. The proof will be divided into several steps.

Step 1: T' is well-defined in X.

Given an arbitrary v € X, we will prove that Ty € X.

We will omit the proof that Tw € C1[0, 00) as it can be deduced from the proof
of equicontinuity that we will present in Step 3.

We will see then that both |7"u| and |(7T'w)’| are bounded on [0, co). First, we will
make the proof in case that hypothesis (H1) holds. If u € X, then there exists some
r > 0 such that ||u|| < r. Therefore, for all ¢ € [0, o), it holds that

Tu(t)| = /OOO G(t,5) (F(s, u(s), /() 4 k' (s) + Mu(s)) ds
</0 )| (| f(s,u(s), v/ ()] + k& |[u'(s)| + M |u(s)]) ds
s%ﬁkﬂa@uw@r+w+ADMds
N On (1.3.2)

< /0 Cie 2 (o(s)+(k+M)r)ds
—Cie s (/Oooek‘; #(s) ds+ k;(k+M) >
=Cie % (/Oooek‘; or(s) ds+ (2+ 224> r)

and, analogously, for ¢ € [0, c0),

[(Tu)' ()] = ; 8G (t,s) (f(s,u(s),u'(s)) + ku'(s) + Mu(s))ds
SA ﬁf@ﬁ)Oﬂ&wﬁﬂﬂﬁﬂ+kW@N+A4M@Dds
< [T155¢9)] (erto) + (e 2y as (73.3)

_ k(t+s)
g/'@e 7 (pr(s) + (k+ M)7) ds
0

o s 2M
2026_% </ e_ggpr(s)ds—l—<2+k> r>.
0
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Now, since ¢, € L'[0,00) and e % e L [0, 00), it holds that the product
or(s)e~3 € L]0, 00). Thus, it is clear that

sup [Tu(t)] <oo and  sup |(Tu)(t)]| < oo,
t€[0,00) t€[0,00)

thatis, Tu € X.

On the other hand, if (H2) holds instead of (H;), following similar steps to the
previous case, we obtain the following upper bounds for |Tu(t)| and |(T'w)'(t)]:

N 2M
Tu(®)] < C1 % </ e % Pr(s) ds+ (2—1— k) 7‘>
0
and

(Tu) (1)) < Cae™% (/OOO e 5 gp(s) ds+ <2+ %) r) .

In this case ¢, € L*°[0,00) and, since e s € L1[0, 00), we obtain that the
product ¢, (s) e % e L [0, 00). Therefore we conclude again that T'u € X.
Step 2: T' is a continuous operator.

We will detail the proof for the case in which (H;) holds. For (H2) the proof will
be analogous, with the obvious changes, as it occurred in Step 1.

Consider the sequence {uy, },en C X and assume that it converges to u in X,
that is,

lim u,(t) =u(t) and lim u,(t) = 4/(t),

n—o0 n—oo

uniformly on ¢. Then, since f(t,-,-) is continuous for a.e. t € [0, c0), it is deduced
that

lim f(s,un(s),ul,(s)) = f(s,u(s),u'(s)) fora.e. se[0,00).

n—oQ

Let’s see that {T'uy, } nen converges to T in X.

Since {uy, }nen is convergent in X, there exists some r > 0 such that |lu,|| < r
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for all n € N. Now, if (H;) holds, we have for all ¢ > 0 that
[ Tun(t) — Tu(t)] < /0 G(t, )] | f(s,un(s),up(s)) = f(s,u(s),u'(s))|ds
+/0 |G(t,s)] (k lul, (s) — /' (8)] + M |un(s) — u(s)]) ds

o0 ks
Scl/ ez
0

01 [T (ko) = 6]+ M fun(s) — u(e)) ds

F(s,un(s), () = (s, u(s),/(s))] d s

Oo e
gcl/ e 5 (20,(8) +2(k+M)r)ds < oc.
0

Then, we deduce from Lebesgue’s Dominated Convergence Theorem that

7w~ Tl
< Jim G [ e s (600t (9) < Flsvu(e) () s
+ lim ¢4 /00 e s (K |up(s) = ' (s)| + M |un(s) = u(s)]) d s
0

:01/0 lim e” 2 ‘f(s,un(s),u;l(s)) - f(s,u(s),u’(s))} ds

n—oo

n—oo

+ ¢ /OOO lim e~ % (k [uly(s) — w/(s)] + M |un(s) — u(s)|) ds = 0.

Analogously, we get that
Jim | (Tun)  (Tw)

<C /O T im e [ (s un(s), 1y () — £(su(s), ol ()] d s

n—oo

+ Cy /000 lim e~ % (K up(s) — o/ (s)| + M |un(s) — u(s)]) ds = 0.

n—o0

Thus, {T'up },,cr converges to Tu in X.

Step 3: T" is compact.

Again, we will make the proof only for the case in which (H;) holds, being the
one with (Hs) analogous.

Let B be a bounded subset of X, that is, there exists some r > 0 such that
|lu|]| < r, forall u € B. Let us see that T'( B) is relatively compact in X.
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(i) 7'(B) is uniformly bounded:
If u € B, then, for ¢t € [0, c0),

ru) e ([Te % as (2420 )
0
e ([Tt prans (202) ) a0
0

and

Thus,
|Tu|| < max{Mj, M},

for all u € B, that is, T'(B) is uniformly bounded.
(ii) 7'(B) is equicontinuous:

We will see that functions in T'(B) are equicontinuous on [0, c0). Indeed, let
t1, ta € [0,00) and assume that ¢; > ¢9. Then,

|Tu(t) — Tu(ts)|
/ |G(t1,s) — G(ta, s) (‘fsu |—|—k’u ‘—i—M\u(s)Dds

_/0 G(t1,5) — Glt2, 5)| (n(s) + (k + M)r)ds

t2 (7.3.4)
- /0 G(t1,5) — G(t2, )] (or(s) + (k + M)r)ds

+ / Gt 8) = Glta, )] (on(s) + (ki + M) r)ds

t2

+ /00 |G (t1,8) — G(ta, s)| (¢r(s) + (k+ M)r)ds.

t1

We will find some suitable upper bounds for the difference |G(t1, s) —G(t2, s)|.
We will distinguish between three different cases.

1) For 0 < tg < t; < s, we have two possibilities:
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m [fE 1 <s<§forsome2 <[ <m—1,then
G (t1,5) — Glta, )|

kty kto

1 s
=—|hi(s)] e |—e T sin(yt1) +e” 2 sin(yt2)|.
Y
n Ifs>&,_1,then
|G(t1,$) — G(tg, S)’ =0.

Moreover, we note that h; is uniformly bounded, that is, there exists some
positive constant C' such that

|hi(s)] < C, foralls e [0,00), 2<I<m-—1.

Therefore, we can affirm that, for a given € > 0, there exists some § > 0 such
that if |t; — ta| < d then, for s € (¢, 00), it holds that

IG(t1,8) — G(ta, s)| <ce 7.

This implies that the third term of the last part of inequality (7.3.4) tends to zero
with independence of the function u € B.

2) Similarly, for 0 < s < tg < t3:
w [fE 1 <s <& forsome 2 <1 <m — 1, then
|G(t1,5) — G(ta, )|

ks

1
< —|h(s)le 2
7\ (s)]

kty kto )

—e 2 sin(yt)) +e 2 sin(yta)

e 2 sin(y(s—t1)) —e 2 sin(y(s—t2))

kit ko ‘

Last term in the previous sum can be upperly bounded as follows

= sin(y (s —t)) —e” = sin(y (s — to))

ktg kto
(&
kit kto ‘

< |sin(7y s)| ‘B_T cos(yty) —e 2 cos(yta)

ty kto ‘

k
+ | cos(7y s)| ‘—e_T sin(yt1) + e~ 2 sin(yts)

kty kto
< ‘677 cos(yty) —e 2 COS(’V@)‘

tq kt ‘

k
+ ‘—eiT sin(yt1) + e 2 sin(yts)
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As a consequence,

G(tl, 8) — G(tg, S)’

1 ks kty . kto .
— (Jm(s)|+1) e 2 ‘—6_7 sin(yt;) +e 2 sm('ytg)‘
'Y
1 _& ktq kto
+—e 2 e 2 cos(yty)—e 2 cos(wtg)’ .
Y

n Ifs > &1, then

|G(t1,5) = G(ta, 5)]

1 ks kty kty
—e 2 le” 2 sin(y(s—t1)) —e 2 sin(y (s — tg))‘
’Y
1 ks kit kto
<Ze T leT 2 cos(yty) —e 2 COS("}/tQ)’
vy
1 ks kty kty
+ —e 2 |—e 2 sin(yt)+e 2 sm(’ytg)’.
Y

Therefore, as in previous case, we can affirm that for a given € > 0 there exists
some d > 0 such that if [t; — t2| < ¢ then, for s € [0, ¢2), it holds that

IG(t1,5) = Glts, 8)] < ee 7.

This implies that the first term of the last part of inequality (7.3.4) tends to zero
with independence of the function u € B.

3) Finally, for 0 < to < s < {3:
m IfE 1 <s <& forsome2 <! <m—1,then
!G(tlys) — G(t2, )|

kto

S—e_* |hi(s |‘— -5 sin (vt1) + e 2 sin(yta)

n Ifs> &1, then

ks kty

|G (t1,s) — G(ta,s)| = flye_2 ’6_7 sin(vy(s —t1))]| .
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Thus, when s € [ta, t1], it holds that

|G(t1,8) — G(ta,s)| < Ce 2z,

w‘;*”

for some positive constant C. This implies that
|G (t1,) = G(t2, )| (pr(-) + (k + M) 1) € L[t1, 1]

for any ¢, ta € [0,00). Then it is clear that

/tl Gt 5) — G(t, 5)| (or(s) + (k + M) r)ds ——> 0

to t1—to

with independence of the function u € B.

Thus we conclude that given € > 0 there exists 6(¢) > 0 such that |t} —t2| < §
implies that |[Tu(t;) — Tu(tz)| < e for all u € B.

In a completely analogous way, finding suitable upper bounds for

0G oG

m‘(tlas) B W(tQas) )

it is possible to prove that given e > 0 there exists d(¢) > 0 such that if
|t1 — to] < 4, then |(Tw) (t1) — (T'w)'(t2)| < e forall u € B.

Therefore, T'(B) is equicontinuous.

(iii) 7'(B) is equiconvergent at co:

Given u € B, it holds that

’Tu(t) — lim Tu(t)‘

t—o0

ks 2M
<Cie </ 67%@,(3) ds+ <2+k> r)
0
ks 2M
+ lim Cre™ s </ €% pu(s) ds+ <2+> r)
t—o0 0 k

SC’lef% </ ef%cpr(s) ds+ <2+2]]€W> r)
0

. ks : .
and, since e~ 2 ,(s) € L'[0, 00), it occurs that for every ¢ > 0 there exists
some N € R such thatitt > N, then

t—o00

‘Tu(t) ~ lim Tu(t)‘ <.

195



On Multi-point Resonant Problems on the Half-line

Analogously, we have that

(Tu)'(t) — lim (Tw)'(t)
| |

t—o00

& s 2M
<Che % (/ e s or(s) ds + <2+ k:) r)
0

e s 2M
e s or(s) ds + <2 + k> r>

& s 2M
<Che % (/ e s or(s) ds + <2+ k:) r) ,
0

from where we deduce that for every £ > 0 there exists some N € R such that
itt > N, then

+ lim Cy e*% (
t—o0

S—

)(Tu)'(t) ~ lim (Tu)’(t)’ <e

t—o00

Thus, T'(B) is equiconvergent at co.

Therefore, from Theorem 1 in Page 181, we conclude that 7'(B) is relatively
compact in X. O

Now we will see our existence results.

Theorem 7.3.2. Let f : [0,00) x R? — R be such that there exists t, € [0, 00) for
which f(to,0,0) # 0. Moreover, suppose that, for Cy and C3 given in Remark 7.2.1,
either

» (Hy) holds and, moreover, there exists some R > 0 such that

t m—1
max{Cl,Cg}max{ sup e %/ e ' og (s) ds, / e @R(s)ds}
0

t>Em—1

1 k§m1 M
*,2 1—8 ( k)R<R

+ max{C1, Cs} max{2

or

» (Hy) holds and, moreover, there is R > 0 such that

t>f”m—1

t t o s Em—1 s
max{C, Cg}max{ sup 67%/ e or(s) ds, / e dr(s) ds}
0 0

Em—1

1 k M
+Inax{C’1,C’2}max{2,2(le 2 )}<1+k>R<R.
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Then problem (7.1.1) has at least a nontrivial solution u such that ||u|| < R.

Proof. We will prove the first case, being the second one analogous.
Consider

D={ue X: ||ul| <R}
If w € D then,

Tu(t)] < /0 T 16t 5)] (pr(s) + (k+ M) R) ds, Vi € [0,00),

and, since G(t, s) = 0 for s > max{t, {m—1},

max{t,Em—1}
Tu(t) g/o G(t, )| (or(s) + (k+ M) R) ds, Wt € [0,00).

Ift > &,,—1, previous expression leads to

Tu(t)| < /0 G(t,9)] (or(s)4 (k +M)R) ds

<Cie k2/ e (pr(s) + (k+ M)R) ds
0

X s M
<y (egt/ e~ % vr(s) ds—f—1 (1 + —) R) .
0 2 k

On the other hand, if t < &,,,_1, we obtain that

Em—1
|Tu<t>\s/ G(t,3)] (or(s) + (k + M) R) ds

kt

<Clez/ e (pr(s)+ (k+ M)R) ds

<Cy (’2/ e pp(s) ds+2e 2 (1—6“’31) (1+J\]:[)R>
gcl</0 e ()ds+2<1—e—kg'§1><1+‘7\5>}2>.

Therefore,
t
|Tu(t)] <Cy max{ sup egt/ e T vr(s) ds, /
t>£7n71 0 0
M
k

1 kfm—l
+ C1 max{2, 2(1—6_ 2 )} <1

w\“‘

e T ©r(s) ds}

>R Vt e [0,00).

197



On Multi-point Resonant Problems on the Half-line

Analogously, it can be seen that

t>Em—1

1 k&m—1
+ Co maX{Q, 2(1—6_ 2 )} <1+

Thus, by (7.3.5),

t
(T (1) sczmax{ wp % [l
0

m‘%“
S
X
S
(oW
k)
w‘ § o\
A}
3
L
)
|
w‘f
AS)
=
S
o,
w
—

[Tl

kol

s

|

t s gm—l
< max{C1, Cg}max{ sup e_gt/ e er(s) ds, / e
0 0

t>£m—1

k€
+ max{C1, Cg}max{;, 2 (1—6_ 2 1)} (1—}—]]:[) R < R,

thatis, Tu € D.
Therefore, T'(D) C D and, from Schauder’s fixed point Theorem (Theorem 1.2.3),
operator 1" has at least one fixed point in D, which is a solution of problem (7.1.1).
Moreover, since there exists at least some ¢y € [0, 00) for which f(¢y,0,0) # 0,
this solution can not be the trivial one. O

vr(s) ds}

Now, we will give another existence result based on the lower and upper solutions
technique. The proof will follow the line of [145]. Before formulating the theorem,
we will give a previous lemma that we will use in the proof.

Lemma 7.3.3 ([145, Lemma 2]). Letu € C*(I), v, w € WY(I) and define

v(t), u(t) <o(t),
p(tu(®)) = qut), v(t) <ut) <wd),
w(t), u(t) > w(t)

Then, the two following properties hold:
d .
1. ap(t,u(t)) exists fora.e. t € I.

2. Ifu, uy, € CH(I) and w,y, converges to w in C*(I), then

lim ip(t, um(t)) = ip(t,u(t)), a.e.tel.

m—oo dt dt
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Theorem 7.3.4. Let o, B € X be lower and upper solutions of problem (7.1.1),
respectively, with

a(t) < B(t), Vte0,00),

and denote

R = max{|[aloo 1Bllocs 10 loo, [18lloc} (7.3.6)
Assume that, for C1 and Cy given in Remark 7.2.1, either

» (Hi) holds and, moreover, there exists some R > 0 such that

t>£m71 0

ke [ s fm—1 s
max{C’l,CQ}maX{ sup 6_7/ e_%gamax{Rﬁ}(s)ds,/ e gomax{Rﬁ}(s)ds}
0

1 k&m—1 M
+max{01,c2}max{2,2(1—e— ; )}(1+k>R<R.

or

» (Ha3) holds and, moreover, there exists some R > 0 such that

t & s §m71 E]
maX{C’l,CQ}max{ sup 67%/0 e ¢max{R,E}(8)d57/0 e (bmax{Rﬁ}(s)ds}

t>£m,71
1 _k&m_1 M
+max{Cy, Cy} max{2, 2(1-e )} (1 + 7) R<R.
Then, problem (7.1.1) has a solution w € X such that

at) <u(t) < B(t), Vtel0,00).

Proof. We will prove the first case, being the second one analogous.
Let € > 0 be such that

t>Em 1

—l—maX{ChC’g}maX{;, 2 (1 —e_MZLl)} ((1+ A ) R+ - . <R+]§)) <R.

Consider the modified problem

+ t s gwl 1 : s
ma‘X{Ch 02} max { sup 6_%/ 6_% (pmaX{R,E}(S) ds, / 6_% wmax{lﬂﬁ}(s) d S}
0 0

u'(t) + k' (t) + Mu(t) =f (t, 5(t, u(t)), % 5(¢, u(t))> + ka/(t)

+Mu(t) +e (ut) = 0(t,u(t), t€0,00), (737

u(0) = 0, u'(+ Zaz &)

199



On Multi-point Resonant Problems on the Half-line

where the function 0: [0,00) x R — R is given by
Bt), u(t) > (1),

S(t,u(t)) = wu(t), at) <u(t
at), u(t) < al(t).

~—~
o~
S~—

< B(t),

Define now operator 7*: X — X by
T*u(t) :/Ooo G(t,s) f <s,5(s,u(s)), % (5(3,u(5))> ds
+ /000 G(t,s) (k: u'(8) + M u(s) + e(u(s) — d(s, u(s)))) ds.

From Lemma 7.3.3, we know that £ 6(s, u(s)) exists for a.e. ¢ € [0,00). Thus,
Lemma 7.3.3 together with the Carathéodory condition on the nonlinearity, implies
that the first integral in previous expression is well-defined.

Following the same steps than in Lemma 7.3.1, it is easy to prove that if (H;)
holds, then 7™ is well-defined in X and it is a compact operator.

Moreover, by (7.3.6), it is clear that

0(t,u(t))] < R and ‘%5(t,u(t))‘ < max{||ul|, R} forallt e [0,00).

Thus, if we consider
D={ueX: ||u| <R}
and u € D then, following analogous steps to the proof of Theorem 7.3.2, it can be

deduced that
[T ull

t>Em—1

+max{01,02}max{;, 2 (1 _e“’é“l)} (<1+ A:) R+ (R+E)> <R,

thatis, T*u € D.

Therefore, T(D) C D and, from Theorem 1.2.3, 7 has at least one fixed point
in D, which is a solution of problem (7.3.7).

Finally, we will prove that this solution u of the modified problem (7.3.7) satisfies
that

t ¢ s Em-1 s
<max{C1, Cs} max{ sup 67%/0 e SOmax{R,R}(S) ds,/O e ‘Pmax{R,E}(S) d 5}

a(t) <wu(t) < B(t), Vi el0,00),
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which implies that it is also a solution of problem (7.3.1).
Define v(t) = u(t) — S(t) and consider ¢ € [0, 00) U {oo} such that

v(to) :=sup{v(t) : t €[0,00)}.
Suppose that v(tg) > 0. Then, since
v(0) = —5(0) <0,
necessarily to # 0. Thus, there exists ¢ € [0, c0) such that
v(t) >0 forte (t,tg) and o'(f) > 0.

Now, using the facts that « is a solution of (7.3.7) and /3 is an upper solution of
problem (7.1.1), we obtain for ¢ € (¢, %) that

u'(t)=f <t, 5(t, u(t)), % 5(t, u(t))) +e (u(t) — (¢, u(t)))
= f(t,B(t), B'(t)) 4 € (u(t) — B(t) = B"(t) + & (u(t) — B(1)) -

Thus, we deduce that

' (t) =" (t) — B(t) = e (u(t) — B(t) =ev(t) >0, te(tty),
which implies that v’ is strictly increasing on (¢, o). In particular, since v'(£) > 0, it

occurs that v/ > 0 on (¢, t).
Now, the fact that v’ > 0 on (¢, o) implies that ¢, = oo and so

lim o'(t) > 0.

t—o00

On the other hand, since v € X,

v(oo) = sup v(t)=C€eR
te€[0,00)

and, using L'Hoépital’s Rule,

C = lim v(t) = lim e u(t) = lim e ult) + e v'(H) = lim v(t) + v'(¢)

t—o0 t—o0 et t—o0 et t—o0

=C + lim v/(t),
t—o0

and we deduce that
lim v'(t) = 0,

t—o00
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which is a contradiction.
Therefore
sup{v(t) : t €[0,00)} <0,

that is,
u(t) < B(t), te]0,00).

Analogously, it can be seen that
u(t) > at), te]0,00).

This way, we conclude that u is a solution of problem (7.1.1). O

7.4. An Example

Let us consider the following boundary value problem:
1 — u(t)]
u’(t 2 +sint |“(t)|*—| W(t)—1), tel0,00),
(1) = 1000 ( e (u(t)2+1 (w'(®) 1) [ ) (7.4.1)
w(0) =0, u/(400) =0.114/(0) + 0.89%/(0.11).

This problem is a particular case of (7.1.1) with
t 2 e el =1 | 2

m = 3, o] = 0.11, a9 = 089, 51 = 0 and 62 =0.11.
We have that for |z|, |y| < r, it holds that

(y—1),

1

so we could take ¢, (t) = 155 (2+sin ) (r+1)? and hypothesis (Hs) holds. We note
that, since ¢, ¢ L]0, 00), results in [85] can not be applied to solve this problem.
Now, we will look for a pair of lower and upper solutions of problem (7.1.1) and
suitable values for k and M for which the hypotheses in Theorem 7.3.4 hold.
As lower and upper solutions we will take

3 22—t

at) = 100 <—(t+ De '+ o 1) and f((t) =1, Vte0,00).

It can be checked that [afl = 0.0087, [[/[cc &~ 0.0065 and [|f]lec = 1,
|8llcc = 0. Therefore, we obtain that R given in (7.3.6) is

R=1.
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Moreover, for M = 0.35 and k£ = 0.86, we obtain the following approximations for

Cl and CQI
C1 ~ 1.2305, (5 = 1.3395.

Therefore,

13

max{C1, C2} max {;, 2 <1 —e 731) } (1 + Alf) ~ 0.9423.

On the other hand,

gm—l ks ~ 2
/ e 2 ¢max{R E}(S) d s ~ 0.00022 (max{R, R} + 1)
0 K
and

_ke [P ks ~ 2
sup e 2 e 2 ¢max{R é}(s) ds =~ 0.00174 (max{R, R} + 1) .
0 9

t>£m— 1

This way, we may approximate

2% : s Em—1 s
maX{Cl7 02} max { sSup e“kz/o 6_% ¢maX{R,I~3} (S) d 57/0 67% (bmax{R,E}(s) d S}

t>§7n—1

]. k&m—1 M
+ max{C1, C3} max{Q, 2 (1 —e 2 )} (1 4 ?> R

~0.00233 (max{R,1} + 1)*> + 0.9423 R,

and it can be seen that for R € (R, Ry), with Ry ~ 0.1615 and R; ~ 22.71909, it
holds that
0.00233 (max{R,1} + 1)+ 0.9423 R < R.

Thus, we have proved the existence of a solution u of problem (7.4.1) such that

2 —t

3 (_<t+1>et+ t2+1) <u(t)<1, Vie0,o00)

400

Since a(t) > 0 for t € (t1,00), with 1 ~ 2.01, this solution is nontrivial.
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Chapter 8

Existence of Solutions of Integral
Equations with Asymptotic
Conditions

8.1. Introduction

In this chapter we will study the existence of fixed points of integral operators of
the form
o0
Tu(t) = p()+ | bt5)n(o) Flouls) d
—0o0
that is, defined on unbounded domains.

As it has been mentioned before, the main problem when dealing with this kind
of problems arise as a consequence of the lack of compactness of the domain, which
causes difficulties for proving the compactness of the operator. In particular, when
the domain is unbounded, it is not possible to apply Ascoli-Arzela’s Theorem (Theo-
rem 1.2.2) to prove the compactness of the operator, as we have made in Chapters 4,
5 and 6. The most common way of solving this problem involves the compactness
criterion given in Theorem 1 in Page 181, which has been used in Chapter 7.

In this chapter, we will deal with the problem of compactness of the integral
operator using a different strategy: we will define a suitable Banach space, which
will be proved to be isometrically isomorphic to the compact space

C"(R,R) := {f:]R{—ﬂER: flr €C"(R,R), 3 lim f(j)(t)e]R,jzo,...,n}.
—+o0

This isomorphism will allow us to apply Ascoli-Arzela’s Theorem to our Banach
space instead of using Theorem 1.
Moreover, the Banach space that we will define will include some condition
which will ensure a certain asymptotic behavior of the solutions of the problem.
Once we have constructed the aforementioned Banach space and proved the com-
pactness of the integral operator 7" in such Banach space, we will show the existence
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of fixed points of 7' via two different approaches. First of them, which will be gi-
ven in Section 8.4, will be based on the fixed point index theory in abstract cones.
The second one, developed in Section 8.5, will make use of spectral theory. As we
will show later with two examples, our two methods are not comparable but comple-
mentary, making it possible to deal with different kinds of differential and integral
problems defined on unbounded domains, either with more restrictive conditions on
the linear part (the kernel, k) or on the nonlinear one (the nonlinearity, f).

The chapter is divided in the following way: in Section 8.2 we present a physical
problem which motivates the importance of the asymptotic behavior of solutions of a
differential equation. In Section 8.3 we first summarize some classical definitions of
asymptotic behavior and then define a suitable Banach space (in which we will look
for solutions of our integral problem) and study its properties. Section 8.4 includes
results of existence of fixed points of integral equations by means of the theory of
fixed point index in abstract cones. In particular, in Subsection 8.4.1 we will recon-
sider the physical problem presented in Section 8.2 and we will solve it by using the
results given in Section 8.4. It can be seen that these examples could not be solved
with the method developed in Section 8.5. Finally, Section 8.5 contains results of ex-
istence of fixed points of integral equations via spectral theory and shows an example
which can be solved with this theory but not with the one given in Section 8.4.

All the results regarding the method developed in Section 8.4 are collected in
[34], meanwhile all the results in Section 8.5 can be found in [33].

8.2. Motivation

In many contexts it is interesting to anticipate the asymptotic behavior of the solu-
tion of a differential problem. For instance, consider the classical projectile equation
that describes the motion of an object that is launched vertically from the surface of
a planet towards deep space (see [77]). This situation is modelled with the following
equation:

iy + o 1000 82.1)

where u denotes the distance from the surface of the planet, R is the radius of the
planet, g is the surface gravity constant and v the initial velocity.

Clearly, if vy is not big enough, the projectile will reach a maximum height, at
which «’ will be zero, and then fall. Hence, in order to compute the minimum initial
velocity necessary for the projectile to escape the planet’s gravity (which is called
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escape velocity), it is enough to consider that, in such a case,

- _ T o () —
tllglo u(t) =00 and v := tlggou (t) =0.

Then, multiplying both sides of the equation in (8.2.1) by «’ and integrating between
0 and ¢, we obtain

% ((W'(1)* —v3) = g R? (R —|—1u(t) — ;) -

Thus, taking the limit when ¢ — oo, we get —v3/2 = —gR, that is, the escape

velocity is
vs = 1/2¢gR.

Observe that, with vy = v, we have that

1N 2 gR?
YO =umer

Using the same argument, for any initial velocity higher than v, when the projectile
is far enough from the planet, it should drift away at constant velocity given by

Wty = \/vg—ZgR.

Moreover, the solution of (8.2.1) has a very interesting asymptotic behavior. For
vg > Vs, as it was previously said, it is asymptotically linear. This can be checked
using L”Hopital’s rule:

ult)
Jim S i 6) = v

On the other hand, in the particular case vy = vs we have that v, = 0 and

tim 0 _lim “(t)gr = [3 lim u(t)%u’(t)]3

t—oo 3 t—00 t 2 t—o00
[ 2oz 10 13 5 /3\3
1 g 3
=2 limu@)s 29| 2 agr2| = (2) ¢2gRe.
S i [ | = [ vaem] = (3) v

In a more realistic setting, with a self propelled projectile, we could consider the
following equation to model its motion:

_gR®? + h(t,u(t)) — p(u(t))u'(t), te[0,00)
(u(t) + R , ’ T (822)

u(0) =0, u'(0) = vy,

u//(t) — _
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where h(t,y) is the acceleration generated by the propulsion system of the rocket
(which depends on time and also height, since different phases of the launch re-
quire different propulsion systems) and p is the friction coefficient, which depends
on height since it is related to atmospheric drag. The friction term is expected to not
affect the asymptotic behavior of the solution (the atmosphere is finite, and therefore
p has compact support), so it would be interesting to study for what kinds of 7 it
would be reasonable to expect the same asymptotic behavior as that of the solution of
(8.2.1). In any case, we would have to define first what we understand by asymptotic
behavior.

8.3. Asymptotic Behavior

8.3.1. Classical Ways of Dealing with Asymptotic Behavior

Asymptotic behavior, always associated to perturbation theory in Physics, has
been studied for a long time in an abstract mathematical way. For instance, if we go
to the book of G. H. Hardy Orders of Infinity ([73]), we find the following notions:

“Let us suppose that f and @ are two functions of the continuous va-
riable x, defined for all values of x greater than a given value x(. Let
us suppose further that f and @ are positive, continuous, and steadily
increasing functions which tend to infinity with x; and let us consider
the ratio f /. We must distinguish four cases:

w If /¢ — oo with x, we shall say that the rate of increase, or
simply the increase, of f is greater than that of v, and shall write

[ =

w If f/p — 0, we shall say that the increase of f is less than that of
©, and write

[ =<

w If f/@ remains, for all values of x© however large, between two
fixed positive numbers 0, A, so that 0 < § < f/p < A, we shall
say that the increase of f is equal to that of p , and write

[ =

It may happen, in this case, that f/p actually tends to a definite
limit. If this is so, we shall write

=
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Finally, if this limit is unity, we shall write
f~e

= [If a positive constant d can be found such that f > d for all
sufficiently large values of x, we shall write

=

and if a positive constant A can be found such that f < A ¢ for
all sufficiently large values of x, we shall write

f < (p. 3

Hence, it is clear that there are several ways to approach this issue. The case of

f=

¢ (also written as f = O(¢p) in the notation of Landau) is the one used in the

study of computational complexity (see [135]).

On the other hand, we find this kind of asymptotic behavior in fading memory
spaces (see [95]), but also in weighted spaces (see [134]), where the comportment
can also be that associated to f < , noted as f = o(p) as well (see [135]).

The aforementioned notions of asymptotic behavior are connected through the
exponential map to their corresponding ones using the difference instead of the quo-

tient.

To be explicit, consider the exponential map

exp: C(R,R) — C(R,R™)

frsel,

where Rt = (0, 00). Thus, for every f, p € C(R,R),

lim (f — ) = oo if and only if ef = €.

T—00

lim (f — ¢) = —oc if and only if e/ < e,

T—00
|f — ¢l is bounded if and only if ef < e?.

lim (f — ¢) = L € Rif and only if e/ = e®.

T—00

lim (f — ) = 0if and only if e/ ~ e?.

T—00

A constant d € R can be found such that f — ¢ > d for all sufficiently large
values of x if and only if el = e,
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= A constant A € R can be found such that f — ¢ < A for all sufficiently large
values of z if and only if e/ < e¥

Needless to say, the all of the aforementioned definitions can be applied to non
necessarily positive functions with due precautions.

In this work we will center our discussion in the case f =¢. In order to do so, we
will need a conveniently defined Banach space.

8.3.2. The Space of Continuously n-Differentiable (-Extensions to In-
finity

Consider the space R := [—o00, oo] with the compact topology, that is, the topo-
logy generated by the basis

{B(a,r) : a € R, r e RT}U{[~o0,a) : a € R}U{(a,] : a € R},

where, as usual, B(a,r) = (a —r,a + 7).

With this topology, R is homeomorphic to any compact interval of R with the
relative topology inherited from the usual topology of R.

It is easy to check that C(R, R) is a Banach space with the usual supremum norm.
In a similar way, for n € N, we define

C"(R,R) := {f:]R—>R: flr €C"(R,R), 3 lim f(j)(t)e]R,j:O,...,n}.
—>T00

It holds that C*(R, R), n € N, is a Banach space with the norm

1 £llny := sup{Hf(k)Hoo : kzO,...,n}.

Take now ¢ € C"(R,R*) and define the space of continuously n-differentiable
(p-extensions to infinity

Cy=CiR.R) = {f € C"(R.R) : 3] €C"RR), = fla}.

We define the induced norm

1o i= 1Tl £ €00

Remark 8.3.1. || - ||, is well- -defined, since the extension f is unique for every f.
Indeed, assume there are fl, f2 such that f1 = f2 w = finR. Since R is dense in
R and f1 and f2 are continuous, f1 f2

On the other hand, for every f € C™"(R,R) there exists a unique f € C” such

thatf|ch = [ (just define [ := f(p inR).
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The previous remark shows that there is an isometric isomorphism between the
Banach spaces C"(R, R) and C;, namely

®:C"(R,R) — C
fr—=@(f) = flre,
whose inverse isomorphism is
7 C — C"(R,R)
fr=27Y(f) = f/e.

_ Furthermore, Ascoli-Arzela’s Theorem (Theorem 1.2.2) applies to C"(R,R) since
R is a Hausdorff compact topological space and R is a complete metric space. Using
® we can apply the theorem to C7.

If we write this result in terms of (Z’,} using the isomorphism ® we get the follo-
wing theorem.

Theorem 8.3.2. F' C C~$ has compact closure if and only if the two following condi-
tions are satisfied:

s Foreacht € R, the set {]?(t), f € F} has compact closure or, which is the

same (since f(t) € R), {f(t), f € F} is bounded, that is, for each t € R
there exists some constant M > 0 such that

o f & (/)

— ()| = |———=)| <M

(‘3tﬂ(| o WS M <o,

forallj =0,... nand f € F.

» F is equicontinuous, that is, for all ¢ € R there exists some 6 € R such that

O (f/e) D (f/e)
T ) - )| <

v 0T
ot ot

-

forallj=0,...,n, f € Fandr, s € Rsuchthat |r — s| < 0.
Proof. Let
FO) = {(f/go)(j) : feF}CC(RR), j=0,...,n.

Since
1l = sup {[lF®], = k=0.....n},

F' has compact closure in (:"Vg if and only if F @) have compact closure in C(R, R) for
7 =0,...,n. By Ascoli-Arzela’s Theorem, this happens if and only if:
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» For each t € R, the set {f(t) : f € FU)} has compact closure for every
7=0,...,n.

» 1) is equicontinuous for j = 0, ..., n.

Remark 8.3.3. Observe that, if f € C(R,R) and f|g € C*(R,R), then

lim f®t)=0 foreveryk=1,...,n

t—=too
since f is asymptotically constant. Hence, f € C"(R,R).

Remark 8.3.4. Although C"(R,R) and CiZ are isometrically isomorphic as Banach

spaces, C"(R,R) is a Banach algebra but C~$ is not. In fact, we have that C~$ is a
C"(R,R)-module satisfying that

J )
I£alle < xS (D) 70BN sl €28 1576l lallo
FXXXX) k=0

= 2"[£lle lgll(ny
forevery f € CNZ, g € C"(R,R).
Similarly, we can work on intervals of the form [a, o) (or (—00, a]) instead of
R. In such a case we obtain the Banach space Cg([a, 0)) (or CZ((—00, a])).
It is easy to construct an inclusion of 53([@, 00)) into C?,f using cutoff functions,

SO C~$([a, 00)) is a Banach subspace of Ciﬁ

Moreover, it is important to point out that the function ¢ given to define CNZ,} is
not unique. In fact, we can always choose another one with better properties than the
given .

Theorem 8.3.5. The following assertions hold:
1. Forevery ¢ € C"(R,R™) there exists 1) € C*° (R, R™") such that CN$ = C:’;
2. Let o1,02 € C"(R,RY). If 6721 = 5322 for some k € {0,...,n}, then
CEI = CNJ,Q forevery j €{0,...,n}.
Proof. 1.Forevery k € Z, let

min o/ g4 1]

Ek = |k“—{—1
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The Weierstrass Approximation Theorem guarantees the existence of
or € C([k, k +1],RT)
such that
ng][;@kﬂ] — SpkHoo < min{ek, 8]@,1}. (8.3.1)

Let k € Z be fixed. We know that ¢ is continuous at k, so there is d; € (0, %)
such that

lo(t) — ¢(k)| < min{eg, ex—1}, foreveryt € [k — ok, k + 0. (8.3.2)
Now, define
1, t=0,
plt)i={ TP (1 4 e‘ﬂ) te(0,1),
0, t=1

It is easy to check that p € C°°([0,1], [0, 1]), p9(0) = p\W (1) = 0, j € N. Now
consider the functions
t

@k(k+5k)+/ ©r(s)p (%)ds, te(ag, k + 0k,
k455 )
Yr(t):=4 pr(t), te (k+0k, k+1—0811),
t
sok(k+1—5k+1)+/ Ghr(s)p (IR s, el 1 - G, bil,
k4+1—0k41 ’

for every k € N, where
ak =k + 0k — Vi1,

b := k41— 0pt1 + V2,

and
Vk,1 € (07 5k‘)7 Vk,2 € (Oa(sk‘-i-l)'

We have that ¢, € C*>([ag, bx]) and w,gj)(ak) = w,gj)(bk) = 0 for every j € N.
Also, for ;1 and v, 2 sufficiently small, we have that

lox(t) — Yr(t)| < min{eg, ex—1}, fort € [ag, bg). (8.3.3)
Hence, define

Tl)k(t), tE[ak,bk), kEZ)
¢(t) = ap41—1
Gr(be) + Wt (axs1) = )] p (2555 ) . € lbe arp), kEL.
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It holds that ¢ € C*°(R,R™") and in the sets [by, ar+1], k € Z, we have that
50 = 9O = [ 0r) + s (o) — el (2255 ) - o)
= |k (br) = @r (b)) + [Yr+1(ar+1) =i (bi)] P(ﬁ) + 1 (br) — @ (bk) + @ (br) — ()
< (b)) — o (br)] + [Yrs1(ar+1) — Vi (be)| + [0k (br) — ©(bk)] + [0(br) — @ (t)]-
Now, using (8.3.1) and (8.3.3),
[h(t) — ()] < 2ex + |r+1(ant1) — r(br)] + |@(br) — @(t)]
< 2ep + [Yrg1(artr) = Yil(br)] + [0(bk) — ok + 1) + [o(k + 1) — @(t)],
and, from (8.3.2),
[(t) — o(t)] < 4er + [Yrtr(ars1) — Yr(r)]
<dep + [Yrr1(art1) — Grtr(ars1)| + [@rr1(ansr) = or(r)| + |or(br) — Vi (bi)]-
Using again (8.3.3), we get that
|1h(t) — o(t)| < 6ek + [prt1(ar+1) = or(br)l
<6k + pnt1(antr) — plansr)| + [olanrt1) — o(k + 1)| + [o(k + 1) — ()|
+ [o(bk) — @i (bi)l,
and, from (8.3.1) and (8.3.2), we conclude that

min

|(t) — p(t)] < 10 = 10 ﬁ, forevery t € [k,k+ 1], keZ.
Now, for every t € [k, k + 1], |k| > 10,
min Q| x41)
t)| > t) — 10 ——————
(O] > le(t) - 10 P
Thus,
l(t) —w(t)] < 10 min ¢f (g k41 < 10 min | 1]
10 min
¥ ()] IR+ D@1 (k] + 1) (\90(?5)! - %)
10 10
= O 19 = K9
(1Kl +1) min | ey 0
This fact allows us to prove that
| e(t) o e(t) —e@®)] 10
lim |2 1| = PV Z VN < fim ——— =0
1o ‘Qp(t) ‘ S O] klso [k — 9
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8.3 Asymptotic Behavior

Hence,

i M = lim M =1
t—*+oo w(t) t—+oo t) '

Therefore, if f € cr,

SO O et
A0 T B S0 v T A ) B gy )

Thus, f € (ZZ The other inclusion is analogous, so CN" = 5{2

2. By definition, @y € C~ = C@l, so there exists fgp2 € CF(R,R) such that
¢2 = ¢1 fp,|r. By Remark 8. 3 3 we have that f,, € C"(R, R).

Hence, for j € {0,...,n} and f € C@Q, there exists f € C/(R,R) such
that f = o f2|R = ( ﬁp2 fg) |g. Therefore, we show that f € 5 and thus
Cl, c CL,. Analogously, C, < C%, and so C2, = C2,.

O

Remark 8.3.6. Theorem 8.3.5 allows us to consider spaces of the form CNQ even
when o € C(R,RT) is not differentiable. In order to do so, we just pick a function
Y € C®(R,R™) to represent the space Cy = Cy, and consider Cjj. Furthermore,

Theorem 8.3.5 implies that 5:; does not depend of the choice of 1.

8.3.3. Comparison with Other Spaces
Take p € C(R,R™). We can define two types of weighted spaces:

CA(R) = {feC(R,R) TN :o}

T—Fo00 90(1‘)
and
CB,(R) := {f € C(R,R) : / is bounded}.
P
Both of them are Banach spaces with the norm || ||, = H £ H

Furthermore, define

0, z>1,
¢1(x) == { min {p(z), (0)(1 —2)}, = €[0,1],
p(), z <0,
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Existence of Solutions of Integral Equations with Asymptotic Conditions

and
0, z <0,
pa(x) == ¢ min{p(z), (1) z}, x€[0,1],
o(x), x> 1

(1 and 9 are continuous and we may define the linear map
E: C3(R) ® R? — Cy(R)
(fia,b) — f+api+bos.
If we define on C;(R) ® R? the norm
1(f;a, D)l = Il fllg + lal + 0],

we have that ||=(f,a,b)||, < ||(f,a,b)||, so E is continuous.
Moreover, = is invertible. Just consider

=0 = (- (i, Z57) o~ (img 55) o tim, £ i £

and, furthermore,

1=

= ‘ /- (ﬁgmoo gpig) o1 (JE& %) G
)

f(z)

700 o(x)

 fa)
z—00 ()

/()

0 o) | T
f(x)

G | )
< f(z) /(@)
< 151, + | tim 2 o, + |t Sl | i L2

. f(z)
lim @)

O
)

+

<Iflo+2 | tim_ <501l

so CL(R) @ R? and (ZP(R) are isomorphic Banach spaces (up to equivalent norms).

On the the other hand, 5@(]1%) is a closed subspace of C'B,(R). Unfortunately
C}(R) has no clear complement subspace in C'B,(R) as in the case of C;(R) in
CB,(R).

Furthermore, in the case of C' B, (R), the domain of its functions is unbounded,
but cannot be compactified in a meaningful way preserving the behavior of the functi-
ons, so we would have to use Theorem 1 instead of Theorem 8.3.2 in order to work
with it.

Moreover, when looking for solutions of differential or integral problems, it is
clear that if we assure that these solutions are in the space C”, we will have a much
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8.4 Fixed Points of Integral Equations

more precise information about their asymptotic behavior than when we find them
in the space C'B,,(R). This reason, together with the possibility of applying Ascoli-
Arzela’s Theorem, is why we find more convenient to use the space 5]’} instead of
CB,(R).

8.4. Fixed Points of Integral Equations

In this section we will develop our first method to prove the existence of fixed
points of the integral operator 1" given by

oo

Tu(t) :=p(t) + / k(t,s)n(s) f(s,u(s))ds. (8.4.1)
—0o0

As we have mentioned before, this method will be based on the fixed point index

theory on abstract cones. In particular, given ¢ € C"(R,R™), we will work with

cones of functions in the space 53 This way, we will obtain solutions with a certain

asymptotic behavior.

To do this, we will follow the line of [56], where the authors studied the exis-
tence of solutions of integral equations of Hammerstein-type in abstract cones. In
particular, they considered a real normed space (XN, || - ||) and a continuous functio-
nal «: N — R. They proved that if this functional « satisfies the three following
properties:

(P1) a(u+v) > a(u) + a(v), forall u, v € N;
(P2) a(Au) > Aa(u), forallu € N, X > 0;
(P3) [a(u) >0, a(—u) > 0] = u=0;

then
Ky={ueN : a(u) >0}

is a cone.
Following their arguments, we will consider the cone

Ka:{uefg : a(u)EO},

where o C~$ — R is a functional satisfying (P;) — (Ps).
Moreover, we will make the following assumptions:

(C1) The kernel k : R x R — R, is such that %f(t, Jn(-) € LYR) forevery t € R,

j=0,...,nand k(-,s)n(s) € 53 for every s € R.
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Existence of Solutions of Integral Equations with Asymptotic Conditions

Moreover, forevery e > Qand j = 0, ..., n, there exist § > 0 and a measurable
function w; such that if [¢t; — 2| < § then
& (k/¢) & (k/¢)

S (11, ) n(s) — 5 (12, ) n(5)] < i (s)
fora.e. s € R.

(C2) f: R xR — [0, 00) satisfies a sort of L!-Carathéodory conditions, that is:

» f(-,y) is measurable for each fixed y € R.
= f(t,-) is continuous for a.e. t € R.

» For each r > 0, there exists ¢, € L*(R) such that
[y e(t) < on(t)
forally € [-r,r] and a.e. t € R.
(C3) Forevery fixedr >0,7=0,...,nandl =0,...,7,
-l 1 oo
a1 o() /oo

and w; ¢, € L}(R).

o'k

S (9 1(3)] 6r(s) ds € L=(R)

Moreover, defining

and

Mj(s) = sup z giéso) (¢, 8)n(s)],

these functions must satisfy that |z%| ¢,, M; ¢, € L1(R) forall r > 0.

(C4) pE Cg.

(C5) a(k(-,s)n(s)) >0fora.e. s € Randa(p) > 0.

(Co)
a(Tu) > / alk(-,s)n(s)) f(s,u(s)) ds+ a(p) forallu € K,.

— 00
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8.4 Fixed Points of Integral Equations

(C7) There exist two continuous functionals 3, : (ZZ — R satisfying that, for

u, v € Ky and X € [0, 00),
BOvw) = AB(u), B(Tu) < / " Bk, )n(s)) f(s,u(s)) ds+ B(p)

and
Y(u+v) = v(u) +yw), v(Au) = Ay(u),

A(Tu) > / T (k) n(s) (s, u(s)) ds ().

Moreover, for all s € R, B(k(-,s)n(s)), v(k(-,s)n(s)) € LY(R) must be

positive.
(Cs) There exists £ € K, \ {0} such that v(&) > 0.

(Cy) For every p > 0 there exist either b(p) > 0 such that 5(u)
u € K, satisfying y(u) < por ¢(p) > 0 such that v(u)

b(p) for every

<
< ¢(p) for every

u € K, satisfying B(u) < p.
Theorem 8.4.1. Assume that hypotheses (C1)—(Cg) hold. Then T maps (CNS, - le)

to itself, is continuous and compact and maps K, to K.

Proof. We will divide the proof into several steps.
Step 1: T maps (Cg, | - [lo) 10 (CZ: |- ll):

Given u € CMZ; we will see that T'u € C.
Let j € {0,...,n}. By condition (C), we can use Leibniz’s Integral Rule to get

P/ ) 1), (84.2)

| L 0y s, utsn) s + 2

O (Tufe)
j ot

& Tu 5=

ot Y ot

On the other hand, from condition (C}), given e € R, there exists some § € R
t1 — to] < 4§ itis satisfied that

—0o0

such that for t1, t5 € R,
o'k ok
%(tlv s)n(s) — %(t% s)n(s)
& (k

E/9) (1, 5)n(s)

& (/)
S (s n(s) = =50
219
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Existence of Solutions of Integral Equations with Asymptotic Conditions

and since p € cr,

p o'p

2 t) - 52 )| = |20 ) - 202

0w 1)_8tj(2)’<5'

Therefore, from (C?),

O )~ 2T
< [P ws e - FE o) f(s,utsas 843)
+ 8]%@ () -2 (aptéw) (tQ)l

<o ([ wereasnas s <e ([ mow,eas+1),

—o
where we have used the fact that

u(s)
w(s)

Since wj @y, € LY(R), the previous expression is upperly bounded by ¢ ¢ for some

f(s,u(s)) = f <8, QD(S)) < ¢||u||so(8)’ a.e. s € R.

positive constant c. Hence, aéz;“ is continuous in R, that is, Tu € C"(R, R).

Now we will see that there exists (and is a real number) the limit of Tu when ¢
goes to F-oo. First, note that

. ~ .. Tu(t)
ST = I
= lim L - s)n(s s, u(s s im @

Since p, k(-,s)n(s) € C~$ for all s € R, there exist

tilgloo o) €R and leoo o) = 25(s) eR
On the other hand,
W 75, u(s)| < Mo(s) F(5,u(s)) < Mo(s) by (5) forall ¢ € R
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8.4 Fixed Points of Integral Equations

and, from (C3), My Pl € L!(R). Thus, from Lebesgue’s Dominated Convergence
Theorem,

. 1 oo . o0 ‘m k(t,s) 77(8) s uls s

tliimoo m /oo k(t’ S) n(S) f(87 U(S)) ds = /oo t—l)ioo (p(t) f( ’ ( )) ¢
= /_00 2E(s) f(s,u(s)) ds

and, since

\ [ st as

< [ Suts) ds

—00
o0
S/ |Z=(3)] Sy, () ds < oo,
—0o0
( )
Thus, since Tu = % € C”(R, R) and the previous limit exists, taking into
account Remark 8.3.3, it is clear that 7' is bounded in || - ||, and, consequently,
Tu € Cj.

Step2 Continuity:
Let {up fnen C C” be a sequence which converges to u in C” Then, there exists
some R € R such that |lunlly < Rforalln € N.
Moreover, lim ||u, — ul|, = 0 implies that lim ||“7" -2
n—oo n—oo

]
n(s) _, u(s)
( ) o)
Therefore, u,(s) — u(s) for a.e. s € R and we have, by virtue of (C3), that
f(s,un(s)) = f(s,u(s)) fora.e. s € R.
From (8.4.2), it is clear that, forall ¢ € Rand j € {0,...,n},

& (k/¢)
T(t’ s)n(s)

= 0, from where

we deduce that

fora.e. s € R.

praalUrralQ) (5, un(s)) — (s, u(s))| d s.

91 Tu, 91Ty . S/O@
o0

Now, using (C2) and (Cj),

ots otI

dTu,, DTy,
t t

)| < [ M) 15 Gssualo) = Fs.ulo)l s

< 2/OO M;(s) pr(s)ds < oo.
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Existence of Solutions of Integral Equations with Asymptotic Conditions

Now we deduce, by application of Lebesgue’s Dominated Convergence Theorem,
that

o0

Plun _OT| <t [ My(5) /5, tuns) — fls,u(s))] ds

o oy ot

n—0o0

= [ Jim i) 15, 0a(9) — Fs.u() ] ds =0

Therefore, we deduce that Tu,, — Tu in 53 Hence, operator 7' is continuous.

Step 3: Compactness:

Let B C Eg be a bounded set, that is, there exists some R > 0 such that
llull, < Rforallu € B.

First, we will see that 7'( B) is uniformly bounded. Using the General Leibniz’s
Rule (for differentiation), it is clear that

OTu  09(Tufp) ZJ: 7\ 0'Tu -1 1
o —1:0 1) ott oti-ly

Moreover, from Leibniz’s Integral Rule,

O Tu < 9k d'p

W(t)z 8tl(t s)n(s) f(s,u ())ds+8tl() teR.

Thus,

ITu
oti

Ty 971 1
ot dti—tp

( <>()]
)Hjt L (/[ | ks s ds+aﬂ)H
)

d i~ 1 © ok 271 19'p
(1) (s [ e omerroenas| +| =l 5

Ty -1 1 H

— ott tﬂlgooo

ig,(

l

(8.4.4)

IN

) |
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8.4 Fixed Points of Integral Equations

It is satisfied that

j—1 1
‘gtjll(t) 2,5@ ()£ (5, u(5)) d s

R ok,

‘8753 ! ‘/ atl )n(s)| f(s,u(s))ds (8.4.5)
1 ok,

‘&fj ! ‘/ 3tl )n(s)| ¢r(s) ds

and so, from (8.4.4) and (8.4.5) and using (C3) and (Cy),

J . j—1 o0
J 1o 1
< V4
—?;(l)(‘aﬂ—l so(-)./oo i‘
So, we have found an upper bound which does not depend on u. Therefore it is clear
that the set 7'(B) is uniformly bounded.

On the other hand, taking into account the upper bound obtained in (8.4.3), we
have that given € > 0 there exists 6 > 0 such that if ¢;,

forj=0,...,n
(/_O; wj(s) f(s,u(s)) ds + 1>

e (/_ij(s) ¢R(s)ds+1>.

Then, since from (C3) w; ¢g € LY(R), we can conclude that there exists some
constant ¢ such that

& Tu ok
@(',S)TI(S)

ot

or(s)ds

7=t 1 9lp
ai-lp ot )=

FTu, PTu,
w (") g )] =

IN

& Tu & Tu
g (1)~ g (t2)

<ec, forallue B.

This implies that 7'( B) is equicontinuous.

In conclusion, we derive, by application of Theorem 8.3.2, that 7'( B) is relatively
compact in CZ} Therefore, 1" is a compact operator.

Step 4: T maps K, to K,:

It is an immediate consequence of conditions (C5) and (Cp). O

Now we will give some conditions under which we can assure that the index of
some subsets of K, is 1 or 0. We will consider the following sets:

Kg’p ={u € Kq: B(u) <p},
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Existence of Solutions of Integral Equations with Asymptotic Conditions

K)P:={ue Ky: v(u) <p}.

Now, hypothesis (Cy) implies that either there exists a function b: Rt — R
given by
b(p) :=sup {B(u): u € Ko, y(u) < p},

or there exists ¢: RT — R such that
c(p) :==sup{y(u): v e Kq, B(u) < p}.

With these definitions, KE”J c K c(p) and KX C Kﬁ’b@, in case that the
aforementioned functions exist.

To prove that the index of some of these subsets is 1 or 0, we will use the sufficient
conditions given in Lemma 1.2.7.

Lemma 8.4.2. Assume that conditions (C1)—(C7) hold. Moreover let there exist
p > 0 such that

O<fp/ooﬁ(k(-,s)n(s))ds+@<1, (I/})

where

) o
p—sup{ 5 : teR, GKQ,B()—,O}.

Then ir, (T, K2*) = 1.

Proof. We will prove that T'u # pu for all u € 8K£ '# and for every pu > 1.
Suppose, on the contrary, that there exist some u € JK, 5 *#and p > 1 such that

pul) = [ K(t.s) (o) S u(s) ds + p(0)

— 00

Then, taking 5 on both sides and using (C7), we get
o =) = 8(T0) < [ B9 1(s)) S5 uls) s+ 50
> B(p)
<o (7 [ st as+ 1) <,

which is a contradiction. Therefore, from Lemma 1.2.7, we conclude the veracity of
the result. O
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8.4 Fixed Points of Integral Equations

Lemma 8.4.3. Assume that conditions (C1)—(Cg) and (C3) hold. Moreover, let there
exist p > 0 such that

K'? is bounded and f, /OO v(k(-,s)n(s)) ds+ 'y(pp) > 1, (1)
where
fp:inf{f(t’;j(t)) : teR, uEKa,'y(u):p}.

Then ik, (T, K3") = 0.

Proof. We will prove that there exists e € Kq'” \ {0} such that u # Tu + X e for all
w € 0K P and all A > 0.

Let us take e = ¢ in (Cs) and suppose, on the contrary, that there exist some
w € OKJ” and A > 0 such that

u(t) = /00 k(t,s)n(s) f(s,u(s)) ds+ p(t) + Xe(t).

—00

Now, taking «y on both sides and using (C7) and (Cy),
p="7(u)=yTu+Ae) = y(Tu) + Ay(e) = v(Tw)

> / (kG 8 n(s) (s, u(s)) ds + ()

—00

zp(fp/w oy (b 9)(3)) d3+1@> > p.

—o0 p

which is a contradiction. The result follows from Lemma 1.2.7. O

From previous lemmas, it is possible to formulate the following theorem. In this
case, we establish conditions to ensure the existence of one or two solutions of the
integral equation (8.4.1). However, similar results can be formulated to ensure the
existence of three or more solutions.

Theorem 8.4.4. Assume that conditions (C1)—(Cy) hold. The integral equation
(8.4.1) has at least one nontrivial solution in K, if one of the following conditions

holds:

(S1) There exist b given in condition (Cg) and p1, p2 € (0,00) with po > b(p1)
such that (1)) and (1,,) hold.

(S2) There exist ¢ given in condition (Cg) and p1, p2 € (0,00) with po > c(p1)
such that (I},) and (I9,) hold.
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Existence of Solutions of Integral Equations with Asymptotic Conditions

The integral equation (8.4.1) has at least two nontrivial solutions in K, if one of the
following conditions holds:

(S3) There exist both b and c in condition (Cy) and p1, p2, ps € (0,00) with ps >
b(p1) and p3 > c(p2) such that (IS1 ), (132) and (ISS) hold.

(S4) There exist both b and c in condition (Cy) and p1, p2, p3 € (0,00) with pa >
c(p1) and p3 > b(py) such that (1)), (I7,) and (I,,,) hold.

The proof of previous theorem is immediate from Lemmas 8.4.2 and 8.4.3, toget-
her with the general properties of fixed point index given in Lemma 1.2.7.

Remark 8.4.5. We note that the previous results could also be formulated for either
C3([a, 00)) or C((—00, a]) for any a € R.

8.4.1. An Example: Asymptotic Behavior of a Self Propelled Projectile

We will finally apply the theory developed in this section to solve a particular
case of the problem of the self propelled projectile which has been formulated in
Section 8.2, namely

gR?

u'(t) = _W + h(t,u(t)) — p(u(t)) u'(t), te0,00), (5.46)

u(0) =0, u'(0) = vp.

As stated in Section 8.2, we will ignore the friction term (the term depending on
u’) because it is only related to atmospheric drag and therefore does not affect the
asymptotic behavior.

Hence, we will study the problem

{U"(t) = f(t,u(?)), te]0,00);

(8.4.7)
u(0) =0, u'(0) = vo,

with f : [0, 00) X [0,00) — R defined as

R2

flty) = —(yg_‘_iR)Q + h(t,y),

where h : [0,00) x [0,00) — R represents the propulsion of the projectile.
Given the domain of f and h and taking into account Remark 8.4.5, we will work
on the interval [0, 00).
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8.4 Fixed Points of Integral Equations

Rewriting (8.4.7) as an integral problem, we know that the solutions of (8.4.7)
coincide with the fixed points of the following integral operator,

Tu(t) = p(t) + / k(t, ) f(s,u(s)) ds, (8.4.8)

0

where
p(t) =vot

and

t—s, 0<s<Ht,

k(t,s) =
0, otherwise,

is the corresponding Green’s function. We note that in this case the Green’s function
is nonnegative on [0, c0) x [0, c0).
We will take

—S

g R
h(37y): 7 tye

v+ R)
for s,y € [0, 00).

To ensure the constant sign of f, we extend h (and thus f) in the following way:

g R?
h(s,y) = ——— fory < 0.

We note that this extension does not have a physical meaning, as we know that the va-
riable y will never be negative in reality, but it is considered to ensure the applicability
of the results in this section in order to solve the problem.

We will consider

p(t) =t+1,
and work in the space é:o([O, o0)). Our cone
K, = {u € CNSO([O, o0)) : a(u) > 0}
will be defined by the functional

a:Cy([0,00)) — R

RYSRIOE
w—afu) = [ 20 = full,

with po(t) = C'e' for some constant C' > 0, which will be calculated later, and
ps3(t) = el
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Existence of Solutions of Integral Equations with Asymptotic Conditions

The functional « is well-defined because if u € (Zp([O, 00)), then it holds that
u(t) = (t + 1) a(t), with a € C(]0, oo, R), which implies that @ is uniformly boun-
ded for some constant /N. Then,

[TUERE | [ 0,

¢ <1 2N
<N< —dt+ dt)—
0

G| -

- Cet o Cet c’
e ju(t) u(t)
u(t u(t
sup — < sup = llu]| o,
tef0,00) € t€(0,00) t+1

so a(u) € Rforallu € C}([O, 0)).
Moreover, it is easy to check that « satisfies properties (P;)—(Ps) and therefore
the cone K, is well-defined:

(Py) Forallu, v € C, »([0,00)), it holds that

a(u+v) / dt — [Ju+ v|es

) — ||w|lps — ||v
/ /0 2t = [ull ~ 0],

pa(
a)+()

(P2) Forallu € é:a([(), o0))and A > 0,

a(hu) = /OOO A G, = Aau).

P2(t)
(P3) If
[ u®) "
aw = [ 24 atully, > 0
and

o) = [ de =l > 0

then —2 |lul|,, > 0. This implies that ||u||,, = 0, which is equivalent to u = 0.

We will see now that hypotheses (C)—(Cy) for n = 0 are satisfied:
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8.4 Fixed Points of Integral Equations

(C1) Inthis case n = 1 and k(t,-) n(-) € L(]0, 00)) for every ¢ € [0, 00); indeed

t2

Moreover, k(-,s)n(s) € (1,([0, o0)) for every s € [0,00). This is deduced
from the fact that k(-, s) n(s) € C([0,00)) and there exist both limits
k(t,s)n(s) . t—s

lim ———~— "7 = lim —
t—o00 go(t) t—woot+ 1

and L
t
llm ( ’S) n(s) — 0
t—0 o(t)
Finally, we will see that last condition in (C1) is satisfied for wp(s) =1 + s.

Fix € > 0. Since é is a uniformly continuous function, there exists § < ¢ such

1

1
that for |ty — to] < 4, i BT

’k‘(ths) _ k(t2,s)

‘ < €. We will compute now the difference

et ey || FiX 8€10,00),

e Ift1, to > s, then

k(ti,s) k(t2,s)| [t1—s ta—s| |-1-s —1-s
o))  ot2) | |+l tat+1] [+1 tp+1
1 1
“ . — < .
A+e) t2+1‘ ewols)
e Ift1 > sand ¢ty < s, then
k(t k(t t1 — t1 —t
lin,5) _ Kty o) =22 S <e<ewp(s).
p(t1)  p(ta) ti+1] [+l i+l

e Ift1, to < s, then

=0.

o(t1) o(ta)

(C3) By definition of h, we have that f(t,y) = 0 fory < 0and f(t,y) =ye t >0
for y > 0. Clearly, f(-,y) is measurable for each fixed y € R and f(¢,") is
continuous for a.e. ¢ € [0, 00). Finally, for each > 0,

'k‘(tl,s) k(tQ,S)

ft,ye(t) =0, forally e [—r0], t € [0,00)
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Existence of Solutions of Integral Equations with Asymptotic Conditions

and
fit,yet) =ypt)e ™ <ret)e™t, forally e [0,r], t € [0,00).

Therefore condition (Cy) is satisfied if we take ¢,.(t) = 7 () e~".

(Cs3) For a fixed r > 0, we have that

1 [ 1 s
W/O ) 1(s)| (o) s = o (=) (s 1) ds
:#(—3+2t+6_t(3+t)),
SO 1 o
5 | I n(0)18 (5) ds € L<(0.00).
Moreover,

/oowo(s) or(s)ds = /Oor(s—i—l)ze_sds: 5r,
0 0

that is, wo ¢ € L1([0, 00)).

Finally, from the limits calculated in (C ) and the expression of Green’s function,
we have that 27 (s) = 1, 27(s) = 0 and My(s) = 1, so it is clear that
|Z+‘ (Z)Ta |Zi| d)?": MO ¢7“ € Ll([0,00))

(Cy) Ttis clear that p(t) = vgt € @;([O, 00)) since p € C(]0,00)) and there exist

both
lim p(t) 0
t—o0 go(t)
and
pt) _
t—0 @ t) '

(Cs) We have to prove that

Y GL S r s 00
a(k(-,s))_/o el dr b9l 20 forae s 0.00)

We have that

*© k(r,s) X r—s e ®
dr = dr = .
/0 902(7—) s Cer C
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8.4 Fixed Points of Integral Equations

On the other hand, fixed s, we have that
‘ k(t, s)

o =0, t<s,

and
t—s t—s
- et =e et—s — ’ =

’k(t;s)

e
Therefore, it is enough to take C' < e to ensure that a(k(+, s)) > 0.
On the other hand,

p(t) vo t

a(p)z/ PO 4t Aplgs = [ 22 dt— sup
0 p2(t) Pl o Ce t€[0,00)

Therefore, a(p) > 0 if and only if C' < e.

By definition,

B ° Tu(t) T
o(Tu) = [ T8 de= [Tu,,

‘We have that

I el Ul i s 2 55) o

/Ooo ( /0 2 'fg’(f)) dt) Fls,us))ds + /0 h ;’2(2) at,

Tl = [~ K8 s as +p

and

®3

S ‘

/ k(- s) f(s,u(s)) ds
0

+ [Iplles
®3

< / T EC )l £, u(s) ds + lpllgs,

and, consequently,

o(Tw) 2/000 (/OOO ’Z'O(;’(f)) dt) F(s,u(s))ds
p(t)

- / V(s )l £(5u(s)) ds + / 2 at=lpl,

:/OOO a(k(-,s)) f(s,u(s))ds+ a(p).
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Existence of Solutions of Integral Equations with Asymptotic Conditions

(C7) We will define 3, : (’?:0([0, 00)) — R in the following way:

B(u) = |lullyy, with @3(t) = €',

and

Analogously to «, functionals 8 and +y are well-defined on C}([O, 00)).

Now, we will show that 3 and ~y satisfy all the properties in condition (C7). It
is obvious that B(Au) = A B(u) forall A € [0,00) and u € K,.

Moreover,
B = [Tuly, < [ bte5)l 5. 9) + ol
= [ Bk Fssulo)) + ),
Finally, it is clear that 8(k(-, s)) > 0 and, since

Bk(8)) = sup =2 = =t
tefs,0) €

it occurs that

o</ ﬁ(k(-,s»ds:/ e+ g g = o1,
0 0

that is, B(k(-, s)) € L1([0, 00)).

With regard to , it is immediate that  is linear.

Also,

Y(Tw) :/Ooo Tth) dt :/OOO/OOO k(Z;S) f(s,u(s)) ds dt +/0°°p§? di
:/Ooo (/Ooo k(Z’ts) dt> f(s,u(s)) ds+~(p)
:/OOO k(- 9)) £ (5, u(s)) ds +(p).

Finally,

Wk(.9) = [Tt de =m0, se o),
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8.4 Fixed Points of Integral Equations

[ atsnas= [Teras—n
that is, v(k(-, s)) € L([0,0)).

and

(Cg) By condition (C5) we know that p € K, \ {0}. Thus, since
> p(t gt
v(p)Z/ p(t)dt:/ D% dt = >0,
o ¢ o €
it is enough to take £ = p.

(Cy) Every u € K, satisfies that 8(u) < % ~(u), soitis enough to define b(p) = 5.

Note that in this case it is not possible to define a function ¢ such that v(u) < ¢(p)
for every u € K, satisfying S(u) < p.

Now, we will see that there exist some values of p for which (IS) and (I pl) are
satisfied.

Let’s take u € K, such that S(u) = sup
te[0,00)

ut)| p. This implies that

et

u(t) et
p

fp:sup{ 1 t€[0,00), u € Ky, Bu) =p, u(t)ZO}

_lsu @ 00), U u) = U —
_p p{ o : t€]0,00), u€ Ky, B(u) =p, (t)ZO}—

Consequently,

o [ : BB _ ve
f/O k() s+ B2 — 1 4 10

and (Ipl) is satisfied if and only if p is such that e~ 4 % < 1, that is, if and only
if
-1

1576—1”0 ~ 0.58197.. . - vp.

On the other hand, f, > 0 and so

> v(p) o p) _ o
fo [tk ds o 122 20Dt

p >

Therefore, (IS) is satisfied for all p < vg.
Finally, we will see that there exist p, p2 € (0,00) with p2 > b(p1) such that
(19,) and (I},) hold.
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Existence of Solutions of Integral Equations with Asymptotic Conditions

We have proved that condition (Cj) is satisfied for all C' < e. Now, if we choose
C > e —1and p1, po satisfying that

p1 <vg and ps > g

e—1’
then it is clear that (Igl) and (I ;2) hold and
Vo Vo
b < =< < pa.
(Pl) C = ec_1 P2

Therefore, we conclude that problem (8.4.7) has at least a nontrivial solution in
K,.

We point out that this solution is in the space C}([O, 00)), which implies that its
asymptotic behavior is the same than ¢(¢) = ¢ 4+ 1. This way, we are able to ensure
that if the propulsion of the projectile is given by the previously defined function A,
then its trajectory will be asymptotically linear (that is, the same than in the case
without propulsion).

8.5. Existence of Solutions via Spectral Theory

In this section we complement the findings obtained in Section 8.4 by approa-
ching the problem in a different way. This method will be based on the definition of
some auxiliary linear operators. Then, if some limits involving the nonlinearity f and
the spectral radius of the auxiliary operators satisfy some suitable properties, we will
be able to find fixed points of the original integral operator.

This approach has been used successfully previously, as we can see in the works
of Infante et al. ([79]), Webb and Lan ([151]) or even in the case of linearly bounded
nonlinear operators as it is shown in [30].

The main advantage of this method is that, while in the previous section we had
fairly restrictive conditions on the nonlinearity f, here we relax in a significant way
those restrictions.

There is of course a price to pay for the advantage regarding the nonlinearity,
and is that the conditions on the kernel k occurring in (8.4.1) are more restrictive. In
particular, one can check that the results in the present section could not be applied,
for instance, to the problem studied in Subsection 8.4.1 as its kernel does not satisfied
condition (C3).

At the same time, we will show in Subsection 8.5.1 an example which is solved
with the method developed in this section but does not satisfy the hypotheses required
in Section 8.4.

This will prove that, as it has been mentioned in the introduction of the chapter,
our two methods are not comparable but complementary.
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8.5 Existence of Solutions via Spectral Theory

On the other hand, we note that, for the sake of simplicity, we will not include
in this section the function p occurring in (8.4.1), that is, we will work with the
following integral operator

Tu(t) = /OO k(t,s)n(s) f(s,u(s))ds. (8.5.1)

—0o0

However, we point out that the term p could be included with minor adaptations,
following the hypotheses for p given in Section 8.4.
Finally, as in Section 8.4, we will consider the abstract cone

Kaz{uegg : a(u)ZO},

where «: 52 — R is a functional satisfying (P;)—(Ps).

Remark 8.5.1. Ifthe cone K is defined by a continuous functional « (as it will occur
with the cones considered in this chapter), then v an element of the cone will belong
to its interior if and only if a(v) > 0.

In order to state our eigenvalue comparison results, we consider the following
linear operator on C:

Liu(t) := /00 |k(t,s)n(s)|u(s) ds, teR.

—00

Moreover, we will denote by P the cone of nonnegative functions in C~”, that is
P = {uegg ; uZOon]R}.

In this section we will assume the following hypotheses:

(Cy) The kernel k : R2 — R, is such that k(-,s) n(s) € C~$ for every s € R.
Moreover:

e If n = 0, then for every ¢ > 0, there exist 6 > 0 and a measurable
function wy such that if |t; — t2| < J then

1

Bt ) n(s) Kt s)n(s)

‘ o) el | ~el)
and
(i1)

‘(k(tl,s)ﬁ(s)fr (k(t2, 8)n(s))*
o(t1) p(t2)

< EWO(S)a
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Existence of Solutions of Integral Equations with Asymptotic Conditions

fora.e. s € R.
Here, as usual,

(k(t,s)n(s))" = max {k(t, 5)n(s), 0} .
Moreover, we note that (i) implies that

' k(t1,s)n(s)|  [k(t2, s) n(s)|
o(t1) o(t2)

’ < ewp(s),

fora.e. s € R.

e Ifn >0, k(t,s)n(s) > 0 and for every ¢ > 0 and j = 0,...,n, there
exist § > 0 and a measurable function w; such that if |t; — t2| < J then

) — 0 . 5) (e

fora.e. s € R.

< 6&)]'(8)

(C3) 1t holds that wj @, %f(t, In(-)e(-) € LY(R) foreveryt € R, j = 0,...,n;

and - (
o N e No Y
W@/_M‘W("SM(S)

p(s) ds € L*(R),

forallj =0,...,nand! =0,...,j.
Moreover, defining
k(T
() = i HESTG)
t—+oo go(t)

and

() = sup | L 0,5y ).

it is satisfied that z(4y ¢, M; ¢ € L'(R), for j = 0,...,n.
(C~'3) f: R xR — [0, +00) satisfies a sort of L°°-Carathéodory conditions, that is:

* f(-,y) is measurable for each fixed y € R.
* f(t,-) is continuous for a.e. t € R.
¢ For each r > 0, there exists ¢, € L°°(R) such that
[tz o(t))
(1)
forallz € [-r,r] anda.e. t € R.

< or(t),

236



8.5 Existence of Solutions via Spectral Theory

(Cy) a(|k(-,s)n(s)|) > 0fora.e. s € R.
(C5) a(lk(-s)n(s)]) ¢(s) € L'(R) and

a(Liu) > /OO a(|k(-, s)n(s)])u(s) dsforallu € P.

—00

(6’6) There exists A C R such that A is a finite union of compact intervals and
k(t,s)n(s) >0, k(-,s)n(s) Z 0forevery t € Aand a.e. s € R. Moreover, it

holds that ) )
—_— === inf/ k(t,s)n(s) ds > 0.
M(A) M t€AJa

We will also define the following auxiliary linear operator on 5]’}:

Lo u(t) := /A (k(t,s)n(s)T u(s) ds, teR.

With regard to operator Lo, we will consider the following assumptions:
(C7) a(k(-,s)n(s))t) > 0fora. e s €R.

(Cs) a((k(-s)n(s)*) e(s) € L'(A) and

a (Lau) > /Aa ((k(-,s)n(s) ") u(s) ds forallu € P.

Finally, to ensure that operator 7" maps the cone K, into itself, we need to ask
for the following conditions:

(6’9) a(k(-,s)n(s)) > 0fora.e. s €R.
(Cho) o (k(-,s)n(s)) (s) € LY(R) fora.e. s € R and

a(Tu) > /00 a(k(-,s)n(s)) f(s,u(s)) ds forallu € K,.

—00

Theorem 8.5.2. If (C1), (Cy), (C4) and (Cs) hold, then operator Ly is continuous,
compact and maps P into P N K.

Proof. We will distinguish two different cases:
CASEI: n =0:
We will divide the proof into several steps.
Step 1: L1 maps (Cy, | - o) t0 (Cy, [| - [l):
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Existence of Solutions of Integral Equations with Asymptotic Conditions

Given u € é:o, we will see that Liu € (Zp.
From (C4), (i), given € € R™, there exists some § € R such that for ¢1, t5 € R,
|t1 — to]| < ¢ it is satisfied that

m(tl) —m(tQ)‘ S/_OO ‘|k(t107(3> 77(3)| _ |k(t278) 77(8)‘ |u(s)\ ds

t1) o(t2)
SE/OO wo(s) |u(s)| ds
- (o) (8.5.2)
—6/_Oowo(s) 2(5) o(s) ds

<e \|1L||<p/oO wo(s) p(s) ds

— 00
and since, by (C3), wo € LY(R), the previous expression is bounded from above

by € ||u||, c for some positive constant ¢. Hence, L1 u is continuous in R.
Now we will prove that there exists . ligl Liu(t) € R. Indeed,
—> 00

. e . . Llu(t)_ A 1 °
Jim i) = tim ZE0 < i s () 009 () ds

—0o0
Since k(-, s) n(s) € Cip, then, for all s € R, there exists

|k 8) n(s)]

dim 200) =: z)(s) €R.

On the other hand, forallt € Rand a.e. s € R,

) o(s)
and, from (C3), My € LY(R). Thus, from Lebesgue’s Dominated Convergence

Theorem,
'LOO s)n(s)|lu(s s:wimMuss
Jdim o [ k@ ue) ds= [t HEEE ) a

W%?@WﬂSM@MM:%®MﬂMKMMM®M@

— [ s,
and, since,
[ e as < [ e ds

swm/ 2e)(8) ols) ds € R,

—00
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8.5 Existence of Solutions via Spectral Theory

we deduce that z(4)u € LY(R). Therefore there exists thm Liult) ¢ R Conse-

+oo ©)
quently, Liu € 5@.

Step 2: Continuity:

It is obvious from the linearity and boundedness of operator L.

Step 3: Compactness:

Let B C C~¢, be a bounded set, that is, there exists some R > 0 such that
|ull, < Rforall u € B.

Then,

N L
Izl = 2] = =24
o0

H () ()] u(s) ds

[e.9]

<lull, ﬁ;[ Ik(-8)n(s)] o(s) d (8.53)
1 o
SRHwJ[mm«$Mﬂwwdsm<m,

and we have obtained an upper bound which does not depend on u. Therefore it is
clear that the set L;(B) is uniformly bounded.

On the other hand, taking into account the upper bound found in (8.5.2), we have
that if ¢1, to € R are such that |t; — 3] < 0 then

o0

Lyu(ty) — LAJL(tz)‘ <e ||U”<p/

—00

wo(s)p(s)ds < 6R/_OO wo(s) e(s)ds,

and, since wp ¢ € L' (R), we conclude that L (B) is equicontinuous.

In conclusion, we derive, by application of Ascoli-Arzela’s Theorem (Theorem 8.3.2),
that L, (B) is relatively compact in Cio and therefore L; is a compact operator.

Step 4: Ly maps Pto PN K,:

Since L, has a positive integral kernel, it clearly maps P into P. Finally, it maps
P into P N K, as a direct consequence of hypotheses (Cy) and (Cs).

CASEII: n # 0:

We note that in this case we have the additional hypothesis that k(-, s) n(s) is
nonnegative for all s € R. As a consequence, we will omit the absolute value in the
definition of Lqu.

As in Case I, we will divide the proof into four steps.

Step 1: Ly maps (Cy, || - [lp) 10 (CZ, || - ll):

Letu € 53
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Existence of Solutions of Integral Equations with Asymptotic Conditions

Since k(";zg(s) is integrable for every s € R, we can use Leibniz’s Integral Rule
to get
Py, F(Laufe) [ P (k/)
gt = S e = [ ZEP s s s

On the other hand, from (C~’1), given ¢ € R, there exists some § € R such that
for ty, ta € R, |t; — ta] < J it is satisfied that

& Ly & Lyu
7&; t1) — 7875; (t2)
< [P syats) - A ()0t
§E/OO wj(s)lu(s)|ds <e ||u|]90/OO w;(s) p(s) ds.

—00 —00

lu(s)|d s (8.5.4)

Since w; » € L(R), the previous expression is bounded from above by ¢ ||ul|,, ¢ for
some positive constant c. Hence, 83’;;“ is continuous in R for 5 = 0, ..., n, that is,
Liu € Cn(R, R)

Analogously to Case I, it can be proved that there exists : li_gcn Elvu(t) and, con-
—+oo

sequently, Liu € (73
Step 2: Continuity:
Again, it is obvious from the linearity and boundedness of operator L.
Step 3: Cgmpactness:

Let B C Cg be a bounded set, that is, there exists R > 0 such that [|ul|, < R for
allu € B.

We will prove that L;(B) is uniformly bounded.
Using the General Leibniz’s Rule (for differentiation), it is clear that

B Liu  0(Liufp) i (;) O'Lyu 9! 1

ot Ot 1) ot oti-ly

Moreover, from Leibniz’s Integral Rule,

d'Liu < 9k
s M= Fr(t.s)n(s) u(s)ds.

240



8.5 Existence of Solutions via Spectral Theory

Thus,

(9j L1 u
ot

Ej: 7\ 0L &7 1 <§J: A\ ||0'Liw 71 1
ot ovte| T\l ot ot~

)| [ o

=0

[e.9]

It is satisfied that

/| © Ik

a0 gt uls) ds

toX 1 alk;
]W l \/ \(w n(s)| fu(s)] ds
o2 1 8lk
at] l ’ / 8tl (S) 90(8) d87

and so, from two previous inequalities and taking into account condition (5’2) we

deduce that
J l
oL 1
<=3 ()&=a0

The rest of the proof is analogous to Case I but using equation (8.5.4) instead of
(8.5.2).

Step 4: Ly maps Pto PN K,:

The proof is the same than in Case I. O

Ok
atl

& Lyu

- < 0.
ot

o0

¢ )n(S)lso(S)dS

Theorem 8.5.3. If (C1), (Cs), (Cs), (C7) and (Cg) hold, then operator Ly is conti-
nuous, compact and maps P into P N K.

Proof. We will distinguish two different cases:

CASEIL: n=0:
Step 1: Ly maps (Co, |- 1) 10 (Co || - 1)
Letu € Cy.

Since k(-, s)n(s) € (Zp for all s € R, it is clear that

(Rt} _ BN Cop) s e
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Existence of Solutions of Integral Equations with Asymptotic Conditions

Reasoning analogously to the proof for L, from (51), (i), given € € R, there
exists some & € RT such that for t1, to € R, [t; — 2| < § it is satisfied that

Lau(t) - Lautta)| < e lull, [ wos) o) s (85.5)

and, since wg € L! (R), it can be deduced that i;’zt is continuous in R.
Now we will see that there exists . liin Lou(t) € R. We have that
—+oo

— Lou(t 1
lim Lou(t) = lim 2u(l) = lim —
t—=oo t—too  (t) t—oo (1)

/ (k(t, 5)n(s))* u(s) ds.
A

Reasoning as before, since k(-, s) n(s) € (zp, then (k(-,s)n(s))" € (ZP and so, for
all s € R, itis ensured the existence of

+
o< i GO RGN
t—~+oo o(t) t—+oo o(t)
On the other hand,

(kts)n(s)* | [t
‘ o) ”H o@ M=

< [Jully Mo(s) e(s)

for all t € R. From (Cy), My € LY(R) and so Myy € L'(A). Thus, from
Lebesgue’s Dominated Convergence Theorem,

im L $)n(s)) T u(s) ds = 1m Mus s
Jdim s [ k(e ) ds = [ im SEZED ) s,
and since

L Gl ) n(s)*

/I;tﬁioo go(t) u(s) ds

< [ s uts) as

< Jlully /A 2)(8) 0(s) ds € R,

and z(1) ¢ € L'(A), it can be concluded that there exists tl}g}m L;?t()t) and, conse-

quently, Lou € C~<p.
Step 2: Continuity:
It is obvious from the linearity and boundedness of operator L.
Step 3: Compactness:
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8.5 Existence of Solutions via Spectral Theory

The proof is analogous to the one for operator L; (Theorem 8.5.2) by considering
inequalities We have the following inequalities
1

— »8)n(s)Tu(s) ds
1

<lulle || 5 [ sy (o) ds

LQU
? oo

] =

o0

90() A o)
< Jlully gj) /A k(- 5)n(s)] (s) ds
< Jlull, ﬁ / kG sy n(s)] ols) ds||

and (8.5.5) instead of (8.5.3) and (8.5.2), respectively.

Step 4: Lo maps Pto PN K,:

Since Lo has a positive integral kernel, it clearly maps P into P. Finally, it maps
P into P N K, as a direct consequence of hypothesis (C7) and (Cs).

CASE1II: n # 0:
The proof is analogous to the one made for operator L1, with some small changes
in the line of those introduced in Case L. g

Analogously to the two previous theorems, it can be proved that operator 7" satis-
fies the following properties.

Theorem 8.5.4. If (C1)—(Cs), (Co) and (Cig) hold, then operator T is continuous,
compact and maps K., into K.

Proof. The proof, except for the continuity, is completely analogous to previous the-
orems but using the following inequality

ZEZ; 90(5)) < Oull () 2(5) < || puf, ||, #(5);

instead of u(s) < ||ul|, ¢(s).

Fs,u(s)) = f (

Continuity:

Since 7' is not a linear operator, continuity can not be deduced from boundedness,
contrary to what we did in previous theorems. Therefore, we shall prove that operator
T is continuous in a different way.

Let {u, }nen C C?O be a sequence which converges to u in C;. Then, there exists
some R € R such that |[u,||, < R for all n € N and so it holds that

Foun) = 1 (520 5(5)) < 0n(5) (6) < 6l 205
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where we have used condition (Cs).
Moreover, from (C'3), it holds that f(s, un(s)) = f(s,u(s)) fora.e. s € R.
From (8.4.2), it is clear that, for all ¢t € R and j € {0,...,n},

O Tu, . &Tu 190 (k/)
- - B < - -
o T o (t)|—/ o (s)n(s)

(s,un(s)) = f(s,u(s))| ds

and, using (C),

&' Tun, -2 Tu
ot ot

>s/fﬂ@@ﬂﬂaw@»—ﬂaM@wu

< 2|l6xll, /’A4 (s)ds < co.

Now we deduce, by application of Lebesgue’s Dominated Convergence Theorem,
that

o0

< Jim [ M) £ tn(s) = £ s u(s)) s

~ n—oo

OTu,  &Tu

oti otJ

lim
n—oo

n—00

z/mlmiw(ﬂﬂawwb—ﬂ&M@WMZQ

Therefore, we deduce that Tu,, — 7w in 53 and so 7" 1s continuous.
O

The following theorem proves that the spectral radius (see Definition 1.3.2) of
both operators L; and Lo are positive and their related eigenfunctions have constant
sign. This result is analogous to [79, Theorem 4.5] and is proven using the facts
that the considered operators leave P invariant and that P is a total cone (see Defini-
tion 1.2.5), combined with Krein-Rutman Theorem (Theorem 1.3.3).

Theorem 8.5.5. Assume that conditions (C1), (Ca) and (C4)—(Cs) hold. Then, it
holds that (L1) > 0 is an eigenvalue of L with an eigenfunction in P\ {0}.
Analogously, r(La) > 0 is an eigenvalue of Lo with an eigenfunction in P\ {0}.

Proof. We will prove the result for L;. Consider v € P such that v = 1 in A. Then,
fort € A,

le()—/w\k( s)n(s) ds>/ykts lo(s) ds

/k'ts s>:,
M
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with 1/M given in (Cp).
Then, there exists some open and bounded set B, with A C B such that when

teB,
1

/ykts 9 ds> .

2M

Now, defining u(t) = 1 fort € A and u(t) = 0 when t ¢ B, from Whitney’s
Extension Theorem (see [153, Theorem I]), u can be extended to R (and this exten-
sion will be also denoted by ) as a function of class n. Moreover, from the proof
of Whitney’s Extension Theorem, it is possible to deduce that this extension will be
nonnegative and upperly bounded by 1.

Finally, since u(t) = 0 when ¢ ¢ B and B is a bounded set, then it is clear that
tlg:noo u(t) =0and u € 5{,}, with independence of the choice of .

Therefore, for t € B, it holds that

Llu()—/ e (t, ) m(s)| u(s) ds>/|m5 lus) ds
1
/\kts Hds> ——> L ),
2M  2M
and fort ¢ B,
© 1
Llut:/ k(t,s)n(s)| u(s)ds > 0= t).
(t) _Ool( ) n(s)| u(s) 2M()
Thus, as a consequence of Theorem 1.3.6, we conclude that

1
T'(Ll) Z — > 0.
2M

Finally, since P is a total cone and L; maps P into P, Krein-Rutman Theorem
(Theorem 1.3.3) ensures that (L;) is an eigenvalue with a related eigenfunction
¢ € P\ {0}. ]

Remark 8.5.6. As a consequence of Theorems 8.5.2 and 8.5.5, we know that the
eigenfunctions mentioned above are in P N K.

We will define now the following operator on C" (A4, R)

Lu(t) :== /Ak(t, s)n(s)u(s) ds, teA,

and consider the cone P4 of positive functions in C" (A4, R).
As with previous operators, we will prove that L satisfies the following properties.
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Existence of Solutions of Integral Equations with Asymptotic Conditions

Theorem 8.5.7. Assume that conditions (C1), (Cy) and (C)—(Cs) hold. Then, the
operator L is compact and maps Py into Pa.

Proof. Let f € C"(A,R) and B C R an open and bounded set such that A C B.
Define now g(t) = f(t) fort € Aand g(t) = 0 fort € R\ B. Then, from Whitney’s
Extension Theorem (see [153, Theorem I]), g can be extended to R as a function of
class n, that is, there exists an extension of f to R as a function of class n such that
this extension vanishes for ¢ € R\ B. Obviously, this extension of f belongs to
CH(R).

Now, denote by ¢ the function which maps a function in C"(A,R) to the afo-
rementioned extension in C;(R) and by 7 the map which takes every function in
C3(R) to its restriction to the set A (which clearly belongs to C" (A, R)). We obtain
the following diagram:

cAR) —2 ., cA(®)
g

Cr(A,R) —E 5 ¢n(A,R)

Let us show now that it is commutative. Consider f € C"(A, R). It holds that
(o Laoi)(7(0) = ([ (klesn(e))* i((e) ds)
= ([ ktsne)® 7s) ds )
A

:/Ak(t,s)n(s)f(s)dSZL(f)(t), te A

Now, since L is compact and both ¢ and 7 are continuous, we deduce that Lisa
compact operator.
Finally, from (Cp) it is clear that L maps P4 into Pjy. O

Remark 8.5.8. We point out that, in the previous proof, Whitney’s extension theorem
can be used as a consequence of the fact that A is a finite union of compact intervals.

Theorem 8.5.9. It holds that (L) > 0 and it is an eigenvalue of L with an eigen-
function in Pjy.

Proof. Let 1 be the eigenfunction related to Ly whose existence is proved in Theo-
rem 8.5.5. Then, if we consider its restriction to A, 1| 4, it is clear that for t € A

Lp|a(t) = Lawp(t) = r(La) (t) = r(L2) ¥a(t),
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8.5 Existence of Solutions via Spectral Theory

and so from Theorems 1.3.6 and 8.5.5, we deduce that (L) > r(L2) > 0. O

We define the following numbers in the extended real line:

[tz o(t)) o fLze(t))
b f
o fmeer w0 e el)
z—0 |33| z—0 |$|
ft,zo(t) o ftzo(t))
A P S el SV
o~ Tm 0 C fe= lim s olt)

Next, we will give a result in which we will prove that, under suitable conditions,
the index of some subsets is 1 or 0. Before that, we shall give the following definition
that will be implicitly used in Theorem 8.5.11.

Definition 8.5.10. Let, X, Y, Z be topological spaces, Y Hausdorff. Let f : X — Y,
g: X — Z. Let 29 € g(X)". We say that L is the limit of f when g(x) tends to 2
if for every neighborhood Ny of L there exists a neighborhood Nz of zg such that

f (971 (NZ\{Z()})) C Ny. We write

lim f(z) =L.
g(z)—z0

A particular case of this definition would be the notion of limit in the case of the
topology occurring when studying Stieltjes derivatives with respect to a function g
(cf. [59,120]).

Now, in order to prove the following theorem, we adapt some of the proofs of
[151, Theorems 3.2-3.5] to this new context. In particular, to prove that the index
of some subsets of a cone is 1 or 0, we will use the sufficient conditions given in
Lemma 1.2.7.

Theorem 8.5.11. Assume that hypotheses (C1)—(Cho) hold. Assume also that there
exists 3 : C} — [0,00) such that

lim ||ul, =0, lim ||, = 400,
Jm =0, lm
and
Bu) # 0= u#0.

Consider KB'P = {u € K4 : B(u) < p}. Then, the following assertions hold:

(1) If 0 < fO < u(Ly), then there exists py > 0 such that ix (T, K5'*) = 1 for
each p € (0, po).
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(2) If 0 < f°° < (L), then there exists Ry > 0 such that i, (T, Kg’R) = 1for
each R > Ry.

(3) If u(L2) < fo < oo, then there exists py > 0 such that K2? is bounded and
i, (T, K3'") = 0 for each p € (0, po.

(4) If p(L2) < foo < 00 and there exists Ry > 0 such that K2R is bounded for
all R> Ry, then i, (T, K5*™) = 0 for each R > Ry.

We recall that 11 denotes the characteristic value of a bounded linear operator (see
Definition 1.3.2).

Proof. (1) LetT > Obe suchthat fO < u(L1)—7 =: £. Then there exists pg € (0,1)
such that, for all z € [—po, po] and almost every ¢ € R, we have

[tz o(t)) <€z o).

Also, since lim |lul|, = 0, thereis pg < pg such that
B(u)—0

ull, < po foru € Kr.

Let p € (0, po]. We will prove that T'u # Au for u € OKZP and A > 1, which
implies that ix (7 Kg’p ) = 1. In fact, if we assume otherwise, then there exist
u € 8K£’p (that is, f(u) = p and therefore, u # 0) and A > 1 such that Au = T'u.
Therefore, for t € R,

hmMSme:umwv{/fkw@M@ﬂaMQMs

<[~ e )(Nf< o )ds<5/ ) u(s)] ds
— & (Lalul) (1),

We conclude that |u| < £L;|u|. Thus, as L; is a nondecreasing operator, iterating,
we have that

ul <& Liful < &Ly (§Laful) = & Lifu] < -+ < €™ LY.
That is,
[ully < €™ [|LY]ul [[4
and, hence,

IL 1| ullly
n n n
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8.5 Existence of Solutions via Spectral Theory

where ||L7||, denotes the norm of the operator, namely
[L7w ]
23], = sup 1L
w0 lulle

Taking the n-th square root and the limit when n — oo, we get
1
< n n o —
1< (L7 1p)F —— €r(Ly),

which is a contradiction.

(2) Let 7 € R such that f*° < u(Ly) — 7 =: £&. Then there exists R; > 0 such
that for every |x| > R; and almost every t € R

ft o) < Elalo(t).
Also, by (Cs) there exists ¢, € L°°(R) such that

f(t,zp(t))
o(t)

forall x € [-Ry, R1] and a.e. t € R. Hence,

< d)Rl (t)a

ft,zo(t)) <&zl (t) + o(t) or, (t) forallz € Randa.e. t € R.  (8.5.6)

Moreover, since £ < ( o we deduce that

r(ELy)=¢&r(Ly) < 1.

Thus, if we denote by Id the identity operator, since £ L has spectral radius less than
one, Id —£ Ly is invertible. Furthermore, by the Neumann series expression,

([d—¢Ly)~ = (E L)
k=0

and therefore, (Id —¢ Ll) maps P into P N K, since L, does.
Since ¢g, € L*(R),

o0

c= [ " lk(t,5) ()] 0(5) o (5) d s < [l6m [ [ ks ne)lets) ds

—0o0 —00

and so, from (5’2), itis clear that C € 53 Furthermore, since C'(¢) > O forall¢ € R,
C € P. Therefore (Id —¢ L) ~'C € PN K, and

Ry := ||(Id =€ Ly) 10|, < +o00.
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Because lim  |jul|, = 400, there exists Ry > Ry such that
Bu)—=+o0

|ull, > Ro forevery u € 9K with R > R».

Now we prove that for each R > Ro, Tu # Au forall u € OKS ™ and A > 1, which
implies, from Lemma 1.2.7, that ix (7T, Kg’R) = 1. Assume, otherwise, that there

exist u € 8K£’R and A > 1 such that A w = T'u. Taking into account the inequality
(8.5.6), we have, fort € R,

[u®)] < Au(t)] = [Tu(t)] = ‘/w k(t,s)n(s) f(s,u(s)) ds

< [" s s (5 52 o)) ds

(
< [" ks ats >|[ 5 o)+ () 0, 5] s

<£/ )| [u(s)] ds+ O(t) = € Lyjul(t) + C(1),

which implies that
(Id =€ L1)|ul () < C(1).
Since (Id —¢ Ll)_l is nonnegative (and, therefore, nondecreasing), we have that

u(t)| < (Id =€ L1)~'C()

and, consequently,
lully < [1(1d € L1)~*Clly = Ro.

Therefore, we have that ||u||, < Ro, which is a contradiction.

(3) There exists pyp > 0 such that for all z € (0, pp] and all ¢ € A we have that

ft,zp(t) > p(La)xe(t).

Since lim ||ull, = 0, there exists p1 € (0, po] such that
B(u)—0

lull, < po forevery u € Kg’p, p € (0, p1].

Let p € (0, p1] be fixed. Let us prove that u # Tu + A p; for all v in 0K and
A > 0, where 91 € K, N P is the eigenfunction of Lo with ||p1|| = 1 correspon-
ding to the eigenvalue 1/u (L), whose existence is proved in Theorem 8.5.5. From
Lemma 1.2.7, this implies that i (T, K5'?) = 0.
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8.5 Existence of Solutions via Spectral Theory

Assume, on the contrary, that there exist u € aKﬁﬁf’ and A > 0 such that
u = Tu + A\ 1. We distinguish two cases. B

Firstly, we discuss the case A > 0. We have, for ¢ € A in the conditions of (Cj),
that

utt) = | T k(ts)n(s) Fls u(s) ds + A ()

> /Ak:(t,s)n(s)f(s, @EZ; ¢(s)>ds+)\<p1(t)

I

> 1 (L) /A k(L 5)n(s) u(s) d s + Ar () = 1 (L) Lau(t) + Aga (£).

Note that the equality u = T'u + A @1 implies that u(t) > 0 for ¢t € A. Therefore,
w(La) Lou(t) > 0 for t € A and we deduce, from previous inequalities, that

u(t) > Api(t) for t e A.

Hence, fort € A,

Lou(t) = A Lo (t) = d

in such a way that we obtain
u(t) > p(La) Lou(t) + Api(t) > 21 (t), fort € A.
By iteration, we deduce that, for t € A, we get
u(t) > nAepi(t) forevery n € N,

a contradiction because u(t) is finite and p1]|4 #Z 0.
Now we consider the case A = 0. Let € > 0 be such that for all z € (0, po] and
almost every ¢t € A we have

ft,xo(t) > (u(L2) +€)zp(t).

We have, fort € A,

u(t) = [ kts) ) fs.u(s) ds > [ (bt (s S us) ds

—00 A

> (1 (L2) +¢) /A (k(t,5)n(s)" u(s)ds = (1 (L2) + €) Lau(?).
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From previous expression together with (Cg), it is immediately deduced that
u(t) > 0fort € A.

Since Lapi(t) =7 (L2) p1(t) for t € R, we have, fort € A,

Loy (t) = Lo (t) = 7 (La) 91 (1),

and we obtain 7(L) > r (Ls).

On the other hand, we have, fort € A,

u(t) > (1 (L2) + &) Lou(t) = (1 (L2) +€) Lu(t),

where u(t) > 0. Thus, using Theorem 1.3.7, we have

_ 1
G 7S

and therefore

1
T (Lz) S m—&

This gives i (L2) + & < (L), which is a contradiction.
(4) Let Ry > 0 be such that
ft,2o(t) > p(La) ©o(t)

forall x > R; and all t € A.
Moreover, since limg,) 4 ||u]|, = +00, there exists Ry such that

|ul|, > Ry forevery u € KB for R > Ry.

Let R > Rs. Now, proceeding as in the proof of Statement (3), it is easy to
prove that u # Tu + Ay for all u in OKS ™ and A > 0, which implies that
ix(T, K2 = 0. O

The next theorem, following the line of [152], applies the index results in The-
orem 8.5.11 in order to prove the existence of nontrivial solutions for the equation
(8.5.1).

Theorem 8.5.12. Assume that conditions (Cy)—(C1o) hold. Suppose also that one of
the following conditions is satisfied

(T1) 0 < fO < p(L1) and p(La) < foo < o0

(T2) 0 < f* < pu(Ly) and ji(L2) < fo < oo.
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8.5 Existence of Solutions via Spectral Theory

Then the integral equation (8.5.1) has at least one nontrivial solution in K,

Proof. We will prove (T1), being (75) analogous.

Take 3(u) = ||ul|,. Clearly 3 is in the conditions of Theorem 8.5.11. Then, the
existence of pg > 0 and R; > 0 such thatig, (T Kﬁ’p) = 1 for each p € (0, po] and
i, (T, Kg’R) = 0 for each R > R; is ensured.

Therefore, if we choose p < pp and R > R; such that p < R, we have that
Kﬁ”’ C Kg’R, and from (3) and (4) in Lemma 1.2.7 we deduce that T" has a fixed

point in K2F \ K2, a

The following lemma establishes some relations between the characteristic values
of some of the considered operators.

Lemma 8.5.13. I holds that M(A) > 11 (La) > pu(Ly).

Proof. First, we prove that u (L2) > u(Lp). Let ¢ € 5;‘ \ {0} be an eigenfunction
of L related to the eigenvalue (L ). We have that

oo

(L) 6(0) = Lio(t) =

—00

k(t, 5) n(s)| 6 (s)ds > /A k(t, 5) n(s)] 6(s) d s
> / (k(t, 8)1(3))" 6(s)d s = Lad(2).
A

Thus, Theorem 1.3.7 implies that 7 (La) < r(Ly) or, equivalently, p (L) > p(L1).

Now we prove M(A) > p(Lg). Let ¢ € PN K, be a corresponding eigen-
function of norm 1 of 1/u (L) for the operator Lo, that is ¢ = p (L2) L2(¢) and
||@|l = 1. Then, for t € A, we have that

o(t) = (L) /

[ k09 n(s) 6(5) ds > g (L) min ) [ k(0 9)n(s) .

A

Taking the minimum over A, we obtain

It%i}xl é(t) > p(L2) thélf‘l o(t) m,

that is, M(A) > (Lo). O

Remark 8.5.14. We note that all the previous results could also be formulated for
the spaces C}([a, +00)) or C}3((—00, a]) for any a € R.
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8.5.1. An Example

Consider the problem

Tu(t) :/ e sint Vu(s)| sin?s d s,

—00

ls]
thatis, k(t,s) = e~ 2 sint,n = 1and f(s,y) = +/|y| sin?s.

We will take
o(t) = It],
and
a(u) = min u(t) — Q 12| oo
el5.57] 2

We will verify that conditions (Cy)—(Cl) are satisfied for the case n = 0:

(Cy) First of all, since k(-, s) € C(R) and there exist

_lsl.
e 2 sint

k(t, s) o,

lim = lim
t—+oo go(t) t—s+oo ’t|

it is clear that (-, s) € CN@ forall s € R.

Moreover, for every € > 0 there exists 0 > 0 such that when |t; — t3] < 4,

(1)
k(ty,s) _ k(ta,5) 6_% sin tq 6_% sin tg _ls|
‘Wﬂ_@(w) Tl el |50

and

(ii)

ls| [s]

e 2 (sint))T e 2 (sinty)T
|1 |t2|

o(t1) o(t2)

‘(k(ths))—l— (k(t273))+

so we will take wy(s) = e~ 2.
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(Cy) Clearly, it holds that wg ¢ € L!(R). Also,

1 /°° |sint| [ _lsl | sin ¢|
— |k(t,s)|e(s) ds = e 2 |s|ds=38 € L(R).
P(t) J-oo ) i

Moreover, in this case

. ez |sint
) (s) = Jip ——p— =0,
ls|
2 |sint Is|
Mo(s) = sup “— ] _ -t
teR I

and it holds that z(1.) ¢, Moy € LY(R).

(C3) Itis clear that f(-,y) is measurable for each fixed y € R and f(t, -) is continu-
ous for a.e. t € R. Finally, for each > 0, there exists

in?
ou(t) = —% e I(R)

such that
fao) it _ o
(t) i U 4
forall z € [—r,r] and a.e. t € R.
(C4) In this case,
: V2
ok s)) = min (K 5)] — 57 K )l
te[§.5F
=e 2 min |[sint|—— -5 =0
te[5.%7]

(Cs) Ttis clear that a(|k(-, s)|) ¢(s) € L*(R). Moreover, for all u € P, it holds that

(L) = min ]/OO le(t, 5)| u(s) ds — \f H/_Zyk<.,s)|u(s) ds

te[2.37] oo

o0

Z/OO min |k:(t,s)|u(s)ds—£ OOHki(',S)HooU(S)dS

—oo te[§. 5] 2 Jooo

= [ a9 uts) as

—0o0
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(Cs) We can take A = kS %] For such A, we obtain

1 S —3m s
_= inf/ e*% sint d s = inf {26 : (—1 —1—61) sint}
M(A) teA )y teA

= \[26% (—14-6%) > 0.

(C7) Itis analogous to (Cy). The same occurs to (Cy).

(Cg) It is analogous to (C5). The same occurs to (Cig).

Finally, we obtain the following values for the limits f°° and fj:

Vx| sin?t

sup
_ t L/
= lim R il < lim il =0,
2|00 ] ol —+oe |zl
and so f*° = 0.
Analogously,
.. \/]z| sin®¢
e /M NE
Jo= lim li

lim = +00
2|0 V3 |z

2| =0 2]

On the other hand, since both r(L1) and r(Ls) are positive (as it has been proved

in Theorem 8.5.5), it holds that ;4(L1) > 0 and p(L2) < +o0.

Thus, from (73) in Theorem 8.5.12, we deduce that our problem has at least a

nontrivial solution in K, C C,,.

Remark 8.5.15. Note that, as it has been indicated before, the results in Section 8.4
are not applicable to this problem as the nonlinearity f does not satisfy condition

(Co).
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Chapter 9
On Unbounded Solutions of Singular

Initial Value Problems with
¢-Laplacian

In this chapter, we will study the existence of unbounded solutions of a singular
nonlinear initial value problem with a ¢-Laplacian.

The same problem has already been considered in [13], where the authors dis-
cussed the existence and properties of bounded solutions. Here we will focus our
attention on unbounded solutions of the problem and provide sufficient conditions
for their existence. This way, this chapter completes the results obtained in [13].

Contrary to previous chapters, since the problem is singular, it is not possible
to construct an equivalent integral problem with a kernel given by a related Green’s
function. As a consequence, the techniques developed in this chapter are completely
different to the ones used previously in this Thesis.

All the results in this chapter are collected in [131].

9.1. Introduction

The aim of this chapter is to analyse the singular nonlinear equation
(p(t) o(u' (1)) + p(t) f(d(u(t)) =0, ¢>0, 9.L.D)
with the initial conditions
u(0) = ug, u'(0)=0, 9.1.2)

where ug € [Lo, L].
A special case of equation (9.1.1) with ¢(u) = uwand p(t) = t" ', n € N,n > 2,

("L (1)) 1 f(u(t) =0, >0,

arises in many areas. For example, in the study of phase transition of Van der Waals
fluids ([60]), in population genetics, where it serves as a model for the spatial dis-
tribution of the genetic composition of a population ([55]), in the homogeneous nu-
cleation theory ([1]), in the relativistic cosmology for description of particles which
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On Unbounded Solutions of Singular Initial Value Problems with ¢-Laplacian

can be treated as domains in the universe ([100]), or in the nonlinear field theory, in
particular, when describing bubbles generated by scalar fields of the Higgs type in
the Minkowski spaces ([47]).

The above nonlinear equation was replaced with its abstract and more general
form

(p(t) /(1)) +a(t) f(u(t) =0, >0,
which was investigated for p = ¢ in [122, 123, 125-128] and for p # ¢ in [12, 14,
130, 144]. Other problems without ¢-Laplacian close to (9.1.1)-(9.1.2) can be found
in [2,8,10,90-92] and those with ¢-Laplacian in [49,82,107, 108, 137].
Before precising what the main objectives of this chapter are, we need to define
what we understand by solution of problem (9.1.1)—(9.1.2).

Definition 9.1.1. Ler [0,b) C [0,00) be a maximal interval such that a function
u € CH([0,b)) with p(u') € CL((0,b)) satisfies equation (9.1.1) for every t € (0,b)
and let u satisfy the initial conditions (9.1.2). Then u is called a solution of problem
on [0,b).

If uw is a solution of problem (9.1.1)—(9.1.2) on [0, 00), then w is called a solution
of problem (9.1.1)—(9.1.2).

In particular, following the line of [13], we will distinguish three different types
of solutions.

Definition 9.1.2. Consider a solution of problem (9.1.1)~(9.1.2) with ug € (Lo, L)
and denote

Usup = sup{u(t): t € [0,00)}.

If usup = L, then w is called a homoclinic solution of problem (9.1.1)—(9.1.2).
If usup < L, then w is called a damped solution of problem (9.1.1)—(9.1.2).

Solutions from Definition 9.1.2 are bounded. Therefore, we are mostly interested
in another type of solutions specified in the next definition.

Definition 9.1.3. Ler u be a solution of problem (9.1.1)~(9.1.2) on [0,b), where
b € (0,00]. If there exists some c € (0,b) such that

u(c) =L, '(c)>0, (9.1.3)
then w is called an escape solution of problem (9.1.1)—(9.1.2) on [0,b).

The three considered types of solutions can be seen in Figure 9.1.1.
As we have mentioned before, analytical properties of the solutions of problem
(9.1.1)—(9.1.2) with a ¢-Laplacian have been already studied in [13], with a focus on
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/escape solution

homoclinic solution

J

damped solutions

Lo

Figure 9.1.1: Types of solutions of problem (9.1.1)—(9.1.2).

the existence of bounded solutions on [0, c0). In particular, the existence of damped
solutions was proved for certain values of uyg.

Some results derived in [13] will also be useful here when the existence and
properties of unbounded solutions are of interest. Therefore, we will recapitulate
them in Section 9.2.

The goal of this chapter is to find conditions which guarantee the existence of
escape solutions of problem (9.1.1)—(9.1.2) which are unbounded.

Note that the analysis of problem (9.1.1)—(9.1.2) with a general ¢-Laplacian in-
cludes, for example, ¢(z) = |z|*signx, for @ > 1. Let us emphasize that in this
case, ¢ 1(z) = || a sign x is not locally Lipschitz continuous. Since ¢! is present
in the operator form of (9.1.1)—(9.1.2), namely

t 1 s
u(t) = ug +/ o1 <—/ p(T) f((]ﬁ(u(T)))dT) ds, t>0,
0 p(s) Jo
the standard technique based on the Lipschitz property is not applicable here and
another approach needs to be developed.
Therefore, we will distinguish two cases:

= In the first case, where functions ¢! and f are Lipschitz continuous, the uni-
queness of solution of problem (9.1.1)—(9.1.2) is guaranteed. In this case, we
will obtain a sequence of escape solutions with different initial values.

» In the second case, functions ¢! and f do not have to be Lipschitz continuous.
The lack of uniqueness causes difficulties and therefore is more challenging.
The problems are overcome by means of the lower and upper solutions method.
Also here sufficient conditions for the existence of escape solutions are derived.
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However, contrary to previous case, it may occur in this one that all the escape
solutions have the same initial value L.

Moreover, since, in general, an escape solution does not need to be unbounded,
criteria for an escape solution to tend to infinity will be derived. In this manner, we
will obtain new existence results for unbounded solutions of problem (9.1.1)—(9.1.2).

This chapter is organized in the following way: Preliminary results for an auxili-
ary problem with a bounded nonlinearity are stated in Section 9.2. Auxiliary lemmas
necessary for proofs of the existence of escape solutions of the auxiliary problem are
given in Section 9.3. The existence of escape solutions of this problem is further dis-
cussed in Section 9.4. Namely, the first existence result in Section 9.4 is derived by an
approach based on the Lipschitz property. The other case without the Lipschitz con-
dition is studied by means of the lower and upper solutions method. In Section 9.5,
several criteria for escape solutions of the original problem to be unbounded are pro-
ved. The main results about the existence of unbounded solutions with examples are
given in Section 9.6.

9.2. Preliminaries

Throughout this chapter, we will make the following basic assumptions:
= ¢ € C(R) is a Laplacian, that is,
H(R)=R, ¢(0)=0 and ¢'(z)>0forze (R\ {0}). (By)
= o < 0 < L and the nonlinearity f satisfies the following properties
f € Clé(Lo),00), f(d(Lo)) = f(0) = f(¢(L)) = 0. (B2)
= Moreover, f oscillates in the following way:
v f(x) > 0forz € (6(Lo), (L)) \ {0}, f(x) < Ofora > $(L). (Bs)
= Finally, p € C[0,00) N C*(0, c0) is an increasing function, that is,
p(0)=0 and p'(t) > 0fort e (0,00). (By)

Moreover, in order to derive the main existence results about unbounded soluti-
ons of problem (9.1.1)—(9.1.2), we introduce the following auxiliary equation with a
bounded nonlinearity

(p(t) p(u'(1))) + p(t) f((u(t))) =0, t € (0,00), 9.2.1)
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where

- {f(:v) for z € [¢p(Lo), p(L)], (9.2.2)

fle) = 0 forx < ¢(Lo), x> ¢(L).

Since ]? is bounded on R, the maximal interval of existence for each solution of
problem (9.2.1), (9.1.2) is [0, c0).

In this section, we collect preliminary results for solutions of problem (9.2.1),
(9.1.2) derived in [13]. Properties, asymptotic behaviour and a priori estimates of
such solutions are specified in Lemmas 9.2.1-9.2.9. The existence and continuous
dependence on initial values of solutions are provided in Theorems 9.2.10 and 9.2.12,
respectively.

Lemma 9.2.1 ([13, Lemma 2.1 b)]). Let (B1)—(B4) hold and let u be a solution
of equation (9.2.1). Assume that there exists a > 0 such that u(a) € (Lo,0) and
u'(a) = 0. Then u/(t) > 0 fort € (a, 0], where 0 is the first zero of u on (a, o). If
such 0 does not exist, then u'(t) > 0 for t € (a, 0).

Lemma 9.2.2 ([13, Lemma 2.2]). Let (B1)—(B4) hold and let u be a solution of
equation (9.2.1). Assume that there exists a > 0 such that u(a) = L and v'(a) = 0.

a) Let 0 > a be the first zero of u on (a,c0). Then there exists a1 € [a, ) such
that

w(a)) =L, u(a1)=0, 0<u(t) <L, u(t)<0,te (a0

b) Let u > 0 on [a,00) and uw % L on [a,0). Then there exists a1 € [a,00) such
that

uw(ay) =L, u(a1)=0, 0<u(t)<L,d(t)<0,te (a1,00).

In both cases, u(t) = L fort € [a, a1].
Lemma 9.2.3 ([13, Lemma 2.6]). Assume (B1)—(By),

_pt)
lim 0 = 0, (9.2.3)

and

B € (Lo,0): F (B) = F(L), where F(z) = /Ogc F(d(s)ds, z€R. (9.2.4)

Let u be a solution of equation (9.2.1) and let there exist b > 0 and 6 > b such that

u(b) € [B,0), «/(b) =0, u(d) =0, wu(t)<0, telbb). (9.2.5)
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Then there exists a € (6,00) such that
u'(a) =0, u'(t)>0,te (ba), u(a)e(0,L).

Lemma 9.2.4 ([13, Lemma 2.7]). Assume that hypotheses (B1)—(By), (9.2.3) and
(9.2.4) hold. Let u be a solution of equation (9.2.1) and let a > 0 and 0 > a be such
that

u(a) € (0,L], u'(a)=0, u(@) =0, wu(t)>0,tE¢€]/a,b). (9.2.6)

u'(b) =0, /'(t) <0, te(ab), ub)e(B,0).

Lemma 9.2.5 ([13, Lemma 2.8]). Assume that (B1)—(By4) and (9.2.3) hold. Let u be
a solution of equation (9.2.1) and let b > 0 be such that

u(b) € (Lo,0), u'(b)=0, wu(t)<O0,te[bo0).

Then
lim u(t) =0, lim u'(t) = 0.

t—o00 t—o00

Lemma 9.2.6 ([13, Lemma 2.9]). Assume that (B1)—(By4) and (9.2.3) hold. Let u be
a solution of equation (9.2.1) and let a > 0 be such that

u(a) € (0,L], u'(a)=0, wu(t)>0,tEe[a, ).

Then either

or
lim u(t) =0, lim /() = 0.

t—o00 t—o00

Lemma 9.2.7 ([13, Lemma 3.1]). Assume that hypotheses (B1)—(By), (9.2.3) and
(9.2.4) hold. Let u be a solution of problem (9.2.1), (9.1.2) with ug € (Lo, B). Let
there exist 0 > 0, a > 0 such that

w(@) =0, wu(t)<0, telo,6)

and
u’(a) =0, u’(t) >0, te(f,a).

Then
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Lemma 9.2.8 ([13, Lemma 3.2]). Let assumptions (B1)—(Bjy), (9.2.3) and (9.2.4)
hold. Let u be a solution of problem (9.2.1), (9.1.2) with uy € (Lo,0) U (0, L). Then
ug € [B,0) U (0,L) implies that B < u(t) < L, t¢€ (0,00)

and
ug € (Lo, B) implies that ug < u(t), t€ (0,00).

For the following result, we introduce a function ¢ defined as

1 t
o(t) == p(t)/o pls)ds, € (0.T] 9.2.7)
0, t=0.

This function is continuous on [0, 7’| and satisfies that

0<pt)<t, te(0,7] and lim ¢(t) =0. (9.2.8)
t—0+
Moreover, sincefis bounded, there exists some constant M > (0 such that
(9.2.9)

|f(z)| < M, VzeR.

Lemma 9.2.9 ([13, Lemma 3.4]). Assume (B1)—(By). Let u be a solution of problem
(9.2.1), (9.1.2) with ug € [Lo, L]. The inequality

Bp,(t) / A
B lot el ar < 37 (5 o(3).

with ¢ given in (9.2.7), is valid for every 8 > 0. If moreover (9.2.3) and (9.2.4) hold,
then there exists ¢ > 0 such that

W] <E e 0,00),

for every solution u of (9.2.1), (9.1.2) with ug € (Lo,0) U (0, L).

The existence of solutions of the auxiliary problem (9.2.1), (9.1.2) is proved in
[13] by means of the Schauder’s fixed point Theorem. We state this existence result
in the next theorem.

Theorem 9.2.10 ([13, Theorem 4.1]). Assume that conditions (B1)—(Ba) hold. Then,
for each ugy € [Ly, L], there exists a solution u of problem (9.2.1), (9.1.2).
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Remark 9.2.11. Assumption (Bs) yields that the constant functions u = Lo, u = 0
and uw = L are solutions of problem (9.1.1)—(9.1.2) on [0, 00) with ug = Lo, ug =0
and ug = L, respectively.

The uniqueness of solutions of (9.2.1), (9.1.2) follows from the continuous de-
pendence on initial values. This assertion is based on the Lipschitz property of both

f and ¢.
Theorem 9.2.12 ([13, Theorem 4.3]). Assume (B1)—(B4) and

f € Lip [¢(Lo), #(L)], (9.2.10)
¢~ € Lipioc(R). (9.2.11)

Let u; be a solution of problem (9.2.1), (9.1.2) with uwg = B; € [Lo, L], i = 1,2.
Then, for each 5 > 0, there exists K > 0 such that

[ur —uzllorjo,g < K |Br = Bal.
Furthermore, any solution of problem (9.2.1), (9.1.2), with uy € [Lo, L], is unique.

Remark 9.2.13. We note that, even if (9.2.10) and (9.2.11) do not hold, v = 0 is the
unique solution of (9.1.1)~(9.1.2) with ug = 0. Indeed, if u(0) = 0, then u' cannot
be positive on (0,0) for any 6 > 0 since, in such a case, uw would be positive on (0, 0)
and integrating equation (9.1.1) from 0 to t € (0,0), we would get, by (Bs3), that

p(t) dlul (1)) = — / p(s) F(@(u(s))) ds <0,

which is a contradiction. Similarly, u' cannot be negative. Therefore, the solution
u(t) = 0 is the unique solution of problem (9.1.1)~(9.1.2) with ug = 0 and, clearly,
it is a damped solution.

Remark 9.2.14. We note that Lemmas 9.2.3-9.2.8 are proved in [13] under the we-
aker assumption

/
t
lim sup rt) < 00 9.2.12)
t—o0 p(t)

instead of condition (9.2.3). Obviously (9.2.3) implies (9.2.12) but, since in this chap-
ter we will need to assume the stronger condition (9.2.3), we have decided to use it in
the formulations of all the results in this section, for the sake of keeping the formula-
tions as simple as possible.

Similarly, no sign conditions on f(x),x ¢ [Lg, L] are needed in [13] while here
we use (B3). In particular, contrary to [13], we will need the condition f(x) < 0 for
x > ¢(L). So, we will use this additional condition in formulations of results in this
section, whereas these results are proved in [13] without it.
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9.3. Auxiliary Results

In this section, we provide auxiliary lemmas, which will be used in Section 9.4
for proving the existence of escape solutions of the auxiliary problem (9.2.1), (9.1.2).
Note that all the solutions of problem (9.2.1), (9.1.2) with ug € [B, L) are dam-
ped solutions (see Remark 9.2.13 and Lemma 9.2.8). Therefore, when looking for

escape solutions of problem (9.2.1), (9.1.2), we will consider only uy € [Lg, B).
Such solutions can be equivalently characterized as follows.

Lemma 9.3.1. Let (B1)—(B4), (9.2.3) and (9.2.4) hold and let u be a solution of
problem (9.2.1), (9.1.2). Then w is an escape solution if and only if

sup {u(t): t €[0,00)} > L. (9.3.1)

Proof. Let u fulfil (9.3.1). According to Definition 9.1.2, v is not a damped solution
and hence, due to Lemma 9.2.8, u(0) < B < 0. Consequently, there exists a maximal
¢ > 0 such that u(t) < L for t € [0,¢) and

Assume that «/(¢) = 0. Using Lemma 9.2.2 (and, in case of more roots of u, also
Lemmas 9.2.3 and 9.2.4), we get that

sup{u(t): t€[0,00)} =u(c) =L,

contrary to (9.3.1). Therefore, u’(¢) > 0 and so w is an escape solution.
On the other hand, if v is an escape solution of problem (9.2.1), (9.1.2), then
(9.3.1) follows immediately from Definition 9.1.3. U

The proof of the existence of escape solutions are based on Lemmas 9.3.2 and
9.3.5. These lemmas are denoted here as basic lemmas because they are essential for
the proof of existence of escape solutions.

Basic Lemma I (Lemma 9.3.2), fully covers the case when the uniqueness of
solutions of (9.2.1), (9.1.2) is guaranteed. In particular, in such a case, u = Ly is the
unique solution with ug = Lg. Therefore, ug = Lg is not discussed in the context of
escape solutions.

The situation is different when (9.2.10) and (9.2.11) do not hold, as we will see
in Basic Lemma II (Lemma 9.3.5).

Lemma 9.3.2 (Basic Lemma I). Let (B1)—(By), (9.2.3) and (9.2.4) hold. Choose

)_
C € (Lo, B) and a sequence {B,,}5°; C (Lo,C). For each n € N, let u,, be a

265



On Unbounded Solutions of Singular Initial Value Problems with ¢-Laplacian

solution of problem (9.2.1), (9.1.2) with ug = B,, and let (0,by,) be the maximal
interval such that

un(t) <L and u,(t) >0, te(0,b,). (9.3.2)
Finally, let y, € (0,by,) be such that
tn () = C. 9.3.3)

If the sequence {vy,}>2 | is unbounded, then the sequence {u, }°° | contains an es-
cape solution of problem (9.2.1), (9.1.2).

Proof. If the sequence {7, }°° ; is unbounded, then there exists a subsequence which
goes to infinity as n — oo. For simplicity, let us denote it also by {7, }°> ;. This
way, we have that

lim v, =00, Y <by, meN.

n—o0

Assume now, on the contrary, that u,, is not an escape solution of problem (9.2.1),
(9.1.2) for any n € N. Then, by Lemma 9.3.1,

sup {un(t): t €[0,00)} <L, VneN. (9.3.4)

We will divide the proof into several steps:

Step 1: It holds that w,,(b,) € [0, L] and «/,(b,,) = 0 for all n € N.

Fixed n € N and consider a solution u,, of problem (9.2.1), (9.1.2) with vy = B,,.

First assume that u,, < 0 on [0, c0). Then, by Lemma 9.2.1, we get that u], > 0
on (0, co). This way, the interval (0, by,) given in (9.3.2) is (0, co). In addition, from
Lemma 9.2.5, we get that

lim u,(t) =0, lim u,(t) = 0.

t—o0 t—o00
If we put
. . . ! . !
tlg& upn(t) =: up(b,) and tliglo uy, () =: uy, (by),
we obtain
un(by) = 0, ul,(b,) = 0. (9.3.5)

Now assume that u,, changes sign and let # > 0 be the first zero of u,. By
Lemma 9.2.1, u), > 0 on (0, §]. We will consider two cases:

(i) Let u], > 0 on (6,00). Since, according to (9.3.4), 0 < u,, < L on (6,00),
then (0, b,) = (0, c0). We will prove that, in these conditions,

. o . i o
tlgglo up(t) =L and lim wu,(t) = 0.

—00
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(i)

‘We denote
lim u,(t) =: ¢ € (0, L].

t—o00

Since u,, is a solution of equation (9.2.1), then

d(up (1) + f(dun(t)) =0, t € (0,00). (9.3.6)

If we restrict the previous equation to the interval (6, co) then, by (B1)—(Bjy),
we have that

p’(t) / ry 7o
) P(up(t) >0,  f(Pp(un(t))) >0 and ¢ (uy(t)) >0,

so we deduce that

un(t) <0, te(6,00).

Consequently, u/, is decreasing on (#, 00) and so, there must exist

. ! >
tllglo uy, (t) > 0.

If lim u) (t) = a > 0, then lim wu,(t) = oo, which is a contradiction. There-
t—o0 t—00

fore,
> / .
tlggo uy, (t) = 0.
Now, assume that ¢ € (0, L). Letting ¢ — oo in (9.3.6), we get, by (Bj) and
(9.2.3), that

#(0) lim wi(t) = —F(6(0))

From (Bs), £ € (0, L) implies that f(¢(¢)) € (0,00) and we get

1- "
Jim ay, (t) <0,

which contradicts that tlim ul,(t) = 0. Therefore, necessarily, ¢ = L.
—00

Thus, we conclude that

Un(by) = L and ,(by) = 0. (9.3.7)

Let a > 6 be the first zero of u),. By (9.3.4) we have u,(a) < L. For b, = a
we get (9.3.2) and
Un(bn) € (0, L], u,(by) = 0. (9.3.8)
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Step 2: We will prove that

F(C)-F(L) 1 .
—I-c & OWa0h) (9.3.9)
where W
— i)
K, :=sup { o0 te ['yn,bn)}
and 7,, € [Yn, by) is such that
U, (7,) = max {uy, (t) : t € [, bn)} . (9.3.10)

Note that, due to (9.2.3), lim K, = 0.
n—0o0
Let n be fixed. We define

up (1) ~
E,(t) := /0 r ¢ (z)dx + F(u,(t)), te(0,by,).

Then, by (9.3.6), the following inequality holds for ¢ € (0, b,),

LEnE) _ o 0) o 0 i 0) 4+ FCOan ) (0

S(uy, (1)) i (£) <O,

where the negative sign is deduced from (B1), (B4) and (9.3.2).
Integrating the above equality over (7y, b,) and using (9.3.2) and (9.3.10), we
obtain

bn ot bn
Eatn) = B = [ B o004t < ot ) [ w0yt

bn

< G(up (V) Kn | up(t) dt < d(up, (3,)) K (L = C).
Tn

Hence,
En(vn) < En(bn) + ¢(uy,(7,)) Kn(L — O).

Moreover, from Step 1, we deduce

En(v) > F(un(v)) = F(C) and  Ey,(by) = F(un(bn)) < F(L).
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This leads to

F(C) < En(ym) < F(L) + ¢(up, (7)) Kn (L = C). 9.3.11)
Hence, we derive the estimate (9.3.9).

Step 3: Existence of an escape solution of problem (9.2.1), (9.1.2).
Consider a sequence {uy }22 ;. Since li_)m K,, = 0, we derive from (9.3.9) that
n o
lim ¢(ul,(7,)) = oo. (9.3.12)
n—0o0
Using (Bj), we obtain that

lim ;,(7,) = lim ¢~ (d(u, (7)) = 0.

n—oo n—o0

Since F > 0 (with F given in (9.2.4)) and F,, is decreasing on (0, by, ), using (9.3.11),
we obtain the following inequality for all n € N

U (V) ~
/0 ' v ¢/ (z)dz < En(7,) < En(m) < F(L) + ¢(uy (7)) Kn (L = C)

and, therefore,

n—o0

up, (V)
lim ( /0 " e @ @)z - S (,)) Kn (L - 0>> < F(L) < o,

Since

K ] — A
Jimw,, (7,) = o0,

then there exists ng € N such that
u;l(in) >1, n=ng.

Therefore, for n > ng,

-

ul (V) ul, (V) uy, (V)
/ r§(z)dz > / r¢(z)dz > / ¢'(2)dz = $dy(7F))— (1),
0 1 1

By (9.3.12) and lim K, = 0 we derive
n—oo

(7,
lim </ e ¢'(x) da — ¢(up, (7)) Kn (L — C))
0

n—oo

> lim §(uy(7,)) (1~ Ky (L~ C)) — 6(1) = o,

This yields a contradiction. Therefore, the sequence {u,} >, contains an escape
solution of problem (9.2.1), (9.1.2). ]
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The previous lemma gives a powerful tool to ensure the existence of escape solu-
tions with ug € (Lo, C).

However, if ! and f are not Lipschitz continuous, then problem (9.2.1), (9.1.2)
with ug € [Lo, L] \ {0} can have multiple solutions. These solutions may be escape
solutions. In particular, more solutions can start at Lg, not only the constant solution
u = Lg. Therefore, we need to extend the assertions of Lemma 9.3.2, which deal
with values greater than Lg, to the case ug = Lg. For this purpose next two lemmas
will be helpful.

Lemma 9.3.3. Let (B1)—(Ba) hold and let u be a solution of problem (9.2.1), (9.1.2)
such that
ugp = Lo, u# Lo, u(t) > Ly fort € |0,00). (9.3.13)

Then there exists a > 0 such that
u(t) = Lo fort € [0, al (9.3.14)

and
u'(t) >0 fort € (a,b],

where 0 is the first zero of u in (a, 00). If such 0 does not exist, then
u'(t) >0 forté€ (a,c0).
If 0 € (a,0) and there exist a1 > 6 such that
W(a1) =0 and o'(t)>0,te€ (0,a1), (9.3.15)
then u(ay) € (0, L].
Proof. By (9.3.13), there exists 7 > 0 such that
Lo <u(r) <0.

Put
a:=inf{r >0: Lo < u(r) <0}.

Then u fulfils (9.3.14) and «/(a) = 0.
Put
0 :=sup{r >a: Ly <u(r) <0}.

Then

p(t) f(P(u(t))) <0, te(a,b). (9.3.16)
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Integrating equation (9.2.1) over [a, t], we get, by (9.3.16),

P06 (1) =~ [ P FOe) ds>0. te(@s) O3

and, since p(t) > 0, necessarily v'(¢t) > 0 for t € (a, 6).

If = oo, then the proof is finished.

On the other hand, if § < oo, then 0 is the first zero of v on (a,c0) and (9.3.17)
yields u/(6) > 0.

Let § € (a,00) and a; > 6 such that (9.3.15) holds. Since u(f) = 0 and
u'(t) > 0 on (0,a1), then u(a;) > 0. Assume that u(a;) > L. Then there exists
aop € (6,a1) such that u > L on (ao, a1]. Integrating equation (9.2.1) over (ag, a1)
and using (9.2.2), we obtain

al

plao) ¢(v'(ao)) — p(a1) ¢(u'(a1)) = / p(s) f(¢(u(s)))ds =0,

ag

and so, p(ap) ¢(u'(ap)) = 0. Consequently, u’(ag) = 0, which contradicts that
u’ > 0 on (6, a;). We have proved that u(a;) < L, which completes the proof. [

Lemma 9.3.4. Let (B1)—(By) and (9.2.3) hold and let u be a solution of (9.2.1),
(9.1.2) satisfying that

wo = Lo, w# Lo, wu(t)> Lo forte0,00).

Assume that
u(t) <0, telo,00).

Then
lim w(t) =0, lim /(t) = 0.

t—o0 t—o0

Proof. By Lemma 9.3.3, there exists a > 0 such that u(t) = Lg for ¢t € [0, a] and
u'(t) > 0 fort € (a,0). Hence, u is increasing on (a, c0) and so

Ly <u(t) <0, te(a,00)

and there exists
lim w(t) =: £ € (Lo, 0].

t—o00

Now, if u is a solution of (9.2.1), then

S )" ) + 2D s (1) + o) =0, te 0,00,  ©318)
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Multiplying previous equation by «’ and integrating it from « to ¢, we obtain

d}l(t) + ¢2(t) + ¢3(t) = 07 te (av OO),

where
Pi(t) = /u u((j) z¢(x) dz,
w0 = [ 2 o)l as
dolt) = (()) Fo(e)) da
It holds that

V3(8) = F(u(t)) — F(u(a)).
Since F'(z) is decreasing for z € (Lo, 0) and u is increasing on (a, o), F(u(t)) is

decreasing for ¢t € (a,c0) and so

lim F(u(t)) = F(£).

t—00

Therefore,
tliglo wg(ﬂ =: Q3 € (—F(Lo),()) 5

On the other hand, since ¢; is positive on (a, c0), it occurs that 19 (t) < 13(t)
for t € (a,00). This way, since 1) is continuous, increasing and positive on (a, 00),
it holds that

Jim s (t) =: Q2 € (0, =Qs).

As a consequence, we get that
lim ¢1(t) = Q1 € [0,~F(Lo)) .
t—o0

Thus, defining
D(2) ::/ ¢ (r) du,

0
it occurs that tlim ®(u'(t)) = Q1. Moreover, since ® is positive, continuous and
—00
increasing on (0, 00), its inverse ®~! is also positive, continuous and increasing.
Consequently,

lim o/ (t) = Jim (@ (W (1)) =21 (Q1) >0

t—o00
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and, since there exists tlim u(t) =: £ € (Lo, 0], we conclude that
—00

. / o
tlggou (t)=0.
Now, assume that ¢ # 0. Then, taking the limit when ¢ goes to oo in (9.3.18) and
using (9.2.3), we obtain

¢'(0) lim u”(t) = = f(g(1))-

t—o00

Since —f(¢(1)) € (—00,0), then necessarily tlim u”(t) > 0, which is a contra-
—00
diction with 1tlim u/(t) = 0. Therefore, £ = 0 and the result is proved. O

—00

Lemma 9.3.5 (Basic Lemma II). Let (B1)~(Ba), (9.2.3) and (9.2.4) hold. Choose

C € (Lo, B). For eachn € N, let u,, be a solution of problem (9.2.1), (9.1.2) with
uog = Lo and let (ay, by) be the maximal interval such that

Lo <un(t) <L and u,(t) >0, te (an,by).
Finally, let 7y, € (an, by) be such that

Un () = C.

If the sequence {7, }5°, is unbounded, then the sequence {w,}>> | contains an es-
cape solution of problem (9.2.1), (9.1.2) with ug = Ly.

Proof. The proof is held in an analogous way to the proof of Lemma 9.3.2 where in
Step 1, Lemmas 9.3.3 and 9.3.4 are used instead of Lemmas 9.2.1 and 9.2.5, respecti-
vely. O

9.4. Existence of Escape Solutions

This section is devoted to prove the existence of escape solutions of problem
(9.2.1), (9.1.2).

First, we will discuss the existence of escape solutions provided the Lipschitz
continuity of ¢! and f. For this purpose we choose a sequence of solutions which
converges locally uniformly to the constant solution © = Lg. In this manner we
obtain an unbounded sequence {~,, } > ; required in the Basic Lemma I (Lemma 9.3.2)
for the existence of an escape solution.

This approach fails without the assumption on the Lipschitz condition. This situ-
ation is subject of investigation in the rest of this section. In particular, we will solve
this problem with the lower and upper solutions method.
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Theorem 9.4.1 (Existence of escape solutions of problem (9.2.1), (9.1.2) I). Assume
that (B1)—(By), (9.2.3), (9.2.4), (9.2.10) and (9.2.11) hold. Then there exist infinitely
many escape solutions of problem (9.2.1), (9.1.2) with different starting values in
(Lo, B).

Proof. Choose n € N, C € (Lo, B) and B,, € (Lo,C). By Theorems 9.2.10 and
9.2.12, there exists a unique solution u,, of problem (9.2.1), (9.1.2) with ug = B,,.

By Lemma 9.2.1, there exists a maximal a,, > 0 such that ], > 0 on (0,a,).
Since u,,(0) < 0, there exists a maximal a,, > 0 such that u,, < L on [0, a, ). If we
put b, = min{ay,, a, }, then

un(t) <0, aul(t) >0, te(0,b,).

Further, due to Lemmas 9.2.1 and 9.2.5, either tlim up(t) = 0 or u, has a zero
—00

0., € (0, by,). Consequently, there exists 7y, € (0, by,) satisfying that u,,(y,) = C.
This way, from the sequence {B,, }7° ; C (Lo, C'), we get the sequence {uy }o2
of solutions of problem (9.2.1), (9.1.2) with ugp = B,,, and the corresponding se-

quence of {7, }22 .
Assume that lim B, = Lo. Then, by Theorem 9.2.12, the sequence {u, }>>

n—oo
converges locally uniformly on [0, 00 ) to the constant function u = L. Therefore,

limy, 00 1 = 00 and the sequence {7, }5° ; is unbounded.

Thus, by Lemma 9.3.2 there exists ng € N such that w,, is an escape solution of
problem (9.2.1), (9.1.2). We have uy,,(0) = By, > Lo.

Now, consider the unbounded sequence {7y, }p2,, ;- By Lemma 9.3.2 there
exists 71 € N such that u,,, is an escape solution of problem (9.2.1), (9.1.2) such that
Un, (0) = Bn1 > L.

Repeating this procedure, we obtain the sequence {unk}zio of escape solutions
of problem (9.2.1), (9.1.2). ]

Remark 9.4.2. We note that the proof of previous theorem does not remain valid
if we eliminate hypotheses (9.2.10) and (9.2.11). The reason is that, without these
hypotheses, we do not have uniqueness of solution. Then, in the previous proof,

lim B, = Lo implies that the sequence {u,}°2 , converges locally uniformly on
n—00

[0, 00) to a function u such that u(0) = Lg. However, since there is no uniqueness of
solution, we can not affirm that u = Ly and so we can not ensure that the sequence
{1 }5% is unbounded.

Since previous method is not valid in case ¢! and f are not Lipschitz continu-
ous, we need to find an alternative approach to investigate the existence of escape
solutions in such a case. In order to prove this existence result, we consider the lower
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and upper solutions method for an auxiliary mixed problem on [0, T']. In particular,
we will use this method to find solutions of (9.2.1) which satisfy that

W(0)=0, u(T)=C, C €Ly L] (9.4.1)

Definition 9.4.3. A function u € C*([0,T)) with ¢(u') € C*((0,T)) is a solution of
problem (9.2.1), (9.4.1) if u fulfills (9.2.1) for t € (0, T and satisfies (9.4.1).

Definition 9.4.4. A function o1 € C(]0,T) is a lower solution of problem (9.2.1),
(9.4.1) if there exists a finite (possibly empty) set 1 C (0,T) such that o1 €
C%((0,T)\ X1) and

(p() 6(o5 (1)) + p(B) F(B01(1)) 2 0, ¢ (0,T)\ Sy, 9.4.2)
—c0 <o (1) <ay(tT) < oo, TEY, (9.4.3)
a1 (07) >0, o1(T) < (9.4.4)

Analogously,

Definition 9.4.5. A function oo € C([0,T) is an upper solution of problem (9.2.1),
(9.4.1) if there exists a finite (possibly empty) set Yo C (0,T) such that oo €
C%((0,T]\ X2) and

(p(t) p(ch(1))) + p(t) f(dlo2(t)) <0, t€ (0,T]\ s, (9.4.5)
—00 < oh(TT) < 0b(17) < o0, TE X, (9.4.6)
ah(01) <0, 09(T) > (9.4.7)

Theorem 9.4.6 (Lower and upper solutions method). Let (B1)—(B4) hold and let o¢
and o9 be lower and upper solutions of problem (9.2.1), (9.4.1) such that

Ul(t) SUg(t), te [O,T].
Then problem (9.2.1), (9.4.1) has a solution u such that
o1(t) < ult) < oolt), te[0,T].

Proof. The proof is divided into two steps.
Step 1: Construction of an auxiliary problem and its solvability.
For ¢t € [0,7] and x € R we define the following auxiliary nonlinearity

Fo(or (1)) + 77825, o < (),
Frt.) = f(o(x)), o1(t) <z < oa(t),

(02(1)) — 752207, @ > 0a(t).
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Note that f* is bounded, that is, there exists M* > 0 such that
|f*(t,z)] < M*, Y (t,z)€[0,T] x R. (9.4.8)
Consider the auxiliary equation
(p(t) $(' (1)) + p(t) f*(t,ult) = 0, t€ (0,T]. (9.4.9)
Integrating (9.4.9), we get the equivalent form of problem (9.4.9), (9.4.1):

u(t)—C—/thﬁl (-p(ls)/osp(T)f*(T,u(T)) dT) ds, tel0T].

Now, consider the Banach space C([0,77]) with the maximum norm and define an
operator F: C([0,7]) — C([0,T7) in the following way:

T s
(Fu)(t) == C —/t 6 (-}%/O () £ (7, u(r)) dT> ds.
Put A := max{|Ly|, L} and consider the ball
B(0,R) = {ueC(0,T): [lulleqoy <R},

where R := A+ T ¢~! (M*T) and M* is the upper bound given in (9.4.8). Since ¢
is increasing on R, ¢~ is also increasing on R and, by (9.2.8),

¢ (M p(t) < ¢ (M*T), tel0,T],

where ¢ is defined in (9.2.7). Then, the norm of Fu can be estimated as follows

c—/f¢—1 <—]7(2—)/03p(7)f*(7,u(7)> dT> ds

SA+/tT|¢—1<M*so<s>>|dssA+/tT¢—1<M*T>ds

<A+T¢ ' (M*T) =R,

which yields that F maps B (0, R) to itself.

Let us prove that F is compact on 5 (0, R).

First, we will show that F is continuous. Choose a sequence {u,} C C([0,T])
such that limy, o0 [|un — ulle(o,77) = 0. We have that

Fu) - Fow=- [ (67 (< [ snr i ar)

p(s)

| Fulleqor)) = Jnas
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Since f* is continuous on [0, 7] x R, we get
Tim (£ () = £ CulD e = 0

Now, for n € N, define

Ap(t) = _p(lt)/o p(7) f*(T,un(7)) d1, te (0,7,

0 t=20

and t
A(t) = _1%/0 p(7) f*(r,u(r)) dr, te (0,77,

0, t=20

Then, for a fixed n € N,
1 t X )
‘An(t) - A(t)’ = ‘M/) p(T) (f (7‘7u(7-)) _ f (7_7 Un(T))) dr Cte ((),T]

and, by (9.2.8) and (9.4.8), 111%1+ |A,,(t) — A(t)| = 0. Therefore, A,, — A € C([0,T7])
t—

and from

An(t) = AW < 17 Crn() = £ oo \p(lt) /O p(r) dr

<) = G oy —— {p(Tz)o(:t)T =

=1/ Coun() = 5 Coul ) leqomy £t € 10,71,

t

we deduce that

14 — Allegory < I Crwn() = £ ul) ooy Ts n €N

This implies that
lim [[An — Alle(po,rp) = 0.
n—oQ

Using the continuity of ¢! on R, we have

lim [|¢~"(4,) — ¢71(A)HC([0,T]) =0.

n—oo
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Therefore,

T
/t (671 (An(s)) — ¢~ (A(s))) ds

< T lim (|67 (An) = &~ (D) oy = O

n—oo

2 1t = Fuleqory = Jixn, ’

c((o,17)

that is, operator J is continuous.
On the other hand, choose an arbitrary ¢ > 0 and put  := -—5~— . Then, for

¢~ T(M*T)
t1,t2 € [0,T7, [t1 — to] < d,and u € B (0, R), it holds that

/ o (- [ pormuryar)as

t1
¢~ (M*p(s))ds

to

= ¢ N (M'T) [ty — ta] < oL (M*T) 6 =e.

|[(Fu) (t1) — (Fu) (t2)] =

! ¢~ (M*T)ds

to

< <

Hence, functions in F(B (0, R)) are equicontinuous, and, by the Arzela—Ascoli’s
Theorem (Theorem 1.2.2), the set F(B (0, R)) is relatively compact. Consequently,
the operator F is compact on B (0, R).

Then, Schauder’s fixed point Theorem (Theorem 1.2.3) yields the existence of a
fixed point u* of F in B (0, R). Therefore,

T s
wy=c- [ o (<= [on rmuenar) as
is a solution of (9.4.9), (9.4.1).

Step 2: Solvability of the original problem (9.2.1), (9.4.1).
We will prove that any solution u of problem (9.4.9), (9.4.1) satisfies that

o1(t) <u(t) < oo(t), telo,T],

and, therefore, it is a solution of problem (9.2.1), (9.4.1).
Put v(t) = u(t) — oa(t) for t € [0, 7] and assume that

max{v(t) : t € [0,T]} = v(to) > 0. (9.4.10)

By (9.4.6), v'(77) < v/(71) for each 7 € 3, s0 to ¢ Y.

Moreover, o2(7") > C and u(T) = C, so v(T') < 0 and, consequently, ty # 71"
Therefore, ¢y € [0,T) \ Xa.

We distinguish two cases:
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(i) If to = 0, then (9.4.1) and (9.4.7) yield
V(0F) =/(07) = 05(0") = —03(07) > 0.
If v/(0) > 0, we get a contradiction with (9.4.10); hence, v'(0") = 0.
(i) Iftg € (0,T) \ X2, (9.4.10) also implies that v'(tg) = 0.

Since ty € [0,7T) \ 3o, there exists § > 0 such that (¢o,t9 + ) C (0,7") \ X2 and
v(t) > 0 fort € (ty, to + ). Moreover, for ¢t € (tg,tg + d), we have that

(p(t) 3 (1)) = (p(t) S(o5(t)))" = p(D) (—f*(t, u(t)) + f(o (az(t))))

v(t)

0
v(t)+1 -

= p(t)

and integrating the previous expression, we obtain that

(0510 9)' = () 0los(s1) ) s = p(t) (o0 (1)) = (0301 >0,

fort € (to,to + 0).

Therefore, since ¢ is increasing, we have that v'(¢) > 0 on (g, to + ¢), which is
a contradiction with (9.4.10).

Consequently, we have proved that

u(t) < oo(t), tel0,T).

Analogously, it can be proved that

u(t) > o1(t), tel0,T).
We conclude that the solution u of problem (9.4.9), (9.4.1) is a solution of (9.2.1),
9.4.1). O

The main result of this section (which proves the existence of escape solutions
in case that ¢~! and f are not Lipschitz continuous) is contained in Theorem 9.4.8.
Its proof is based on Lemmas 9.3.2 and 9.3.5, where a suitable sequence {u, }>° ; of
solutions of problem (9.2.1), (9.1.2) is used. In order to get such a sequence with the
starting values equal to Lg (see part (ii) in the proof of Theorem 9.4.8), we need the
next lemma.
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Lemma 9.4.7. Let (B1)—(By), (9.2.3) and (9.2.4) hold. Choose C € (Lg, B) and
assume that there exists at least one solution u of problem (9.2.1), (9.1.2) satisfying
that

uo = Lo, uw# Ly, u(t)> Lo forte[0,00).

Then there exists v > 0 such that for each T' > -y, problem (9.2.1), (9.1.2) with
ug = Lo has a solution ur satisfying

’U,T(T) =C, uT(t) > Lo, te [O, OO) 9.4.11)

Proof. As aconsequence of Lemmas 9.3.3 and 9.3.4, we know that either there exists
6 > 0 such that u(6) = 0 or 1tlim u(t) = 0. Because of this we can take
—00

v =min{t € [0,00) : u(t) =C} > 0. (9.4.12)

Now, fix T' > ~. We will prove the assertion in four steps.
Step 1: Construction of a lower solution of problem (9.2.1), (9.4.1):
We prove that o3 = Ly satisfies conditions (9.4.2)—(9.4.4). First, for ¢t € [0, 77,

(p(t) p(01(1)))" + p(t) f(B(01(1))) = (p(£) $(0))" + p(t) f(¢(Lo)) = 0 = 0.
Moreover, in this case, o1 € C?([0,77), so X1 = 2. Finally,
o (0")=0>0 and o1(T)= Lo <C.

Therefore, o is a lower solution of (9.2.1), (9.4.1).

Step 2: Construction of an upper solution of problem (9.2.1), (9.4.1):
We distinguish two different cases.

(i) If u < 0 on [0,00), we choose 03 = w. First,
(p(t) $(05 (1)) + p(t) F((02(t)) =0 <0, t€(0,T].
Moreover, in this case, o2 € C2((0,T]), so ¥o = @. Finally,
oh(0T)=0<0 and 09(T) > o2(y) = C.

Last inequality is a consequence of the fact that, from Lemma 9.3.3, we know
that o9 is increasing on [a, 00) for some a € [0,). Hence, o5 satisfies conditi-
ons (9.4.5)-(9.4.7).
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(i) If there exists 6 > 0 such that u(6) = 0 then y € (0, #) and we choose

First,

(p(t) ¢(o5(t)) + p(t) f(d(o2(t)) =0 <0, te(0,T]\{6}.

In this case, X9 = {#}. From Lemma 9.3.3, we know that v’ > 0 on (a, 0]
for some a € [0,7) and hence, o(6~) > 0. It is clear that o4(6%) = 0, so
05(07) < o3(07).

Finally, analogously to case (7),

o5(07) =0<0 and 09(T) > oa2(7) = u(y) = C.

Therefore, o9 satisfies conditions (9.4.5)—(9.4.7) and so, o2 is an upper solution
of (9.2.1), (9.4.1).

Step 3: Existence of a solution uy:
We have found a pair of lower and upper solutions which clearly satisfy that

o1(t) < o9(t), te0,T]foreach T > .

As a consequence, Theorem 9.4.6 ensures the existence of a solution ur of problem
(9.2.1), (9.4.1) such that

Ly < uT(t) < Ug(t), te [O,T].

Since 02(0) = ur(0) = Lo, u satisfies (9.1.2) with ug = Lo.

Finally, since f(¢) is bounded on R, ur can be extended to the interval [0, co) as
a solution of equation (9.2.1).

Step 4: ur > Lo on [0, 00):

Analogously to the proof of Lemma 9.3.3, if we define

a:=inf{r >0: Ly < up(r) <0}
and
0 :=sup{r >a: Ly <up(r) <0},

it occurs that u/»(a) = 0 and u/.(t) > 0 for ¢t € (a,0).
In particular, since ur(7') = C < 0, this implies that a € [0,7) and 6 > T'.
Now, we have two possibilities:
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(i) First, if = oo, then u/.(t) > 0 for t € (a,c0) and this implies that up > Lo
on (a,00). Thus, up > Lg on [0, 00).

(ii) On the other hand, if # < oo, it occurs that @ is the first zero of ur on (a, c0)
and u/.(0) > 0.

Now, if /. > 0 on (6, 00), then up > Lo on (a, 00) and the result holds.

On the contrary, there exists ¢; > 6 such that w/.(;) = 0 and v/, > 0 on
(0,61) and, from Lemma 9.3.3, ur(6;) € (0,L]. Again, we may consider
two possibilities: either uz > 0 on (61, 00) and the proof is finished, or there
exists 2 > 61 such that up(62) = 0 and ur > 0 on [y, 603). In the second
case, applying recursively Lemmas 9.2.3 and 9.2.4, we would conclude that
B < ur(t) < Lfort € (62,00) and thus the result holds.

Therefore, we conclude that ur is a solution of problem (9.2.1), (9.1.2) with
uo = Lo and satisfies (9.4.11). ]

Theorem 9.4.8 (Existence of escape solutions of problem (9.2.1), (9.1.2) II). Let
conditions (B1)—(By), (9.2.3) and (9.2.4) hold. Then there exist infinitely many es-
cape solutions of problem (9.2.1), (9.1.2) with not necessary different starting values
in [L(], B )

Proof. Choose n € N, C' € (Lo, B) and B,, € (Lo, C). By Theorem 9.2.10, there
exists a solution u,, of problem (9.2.1), (9.1.2) with ug = B,,.

By Lemma 9.2.1, there exists a maximal a,, > 0 such that u}, > 0 on (0, ay,).
Since u,,(0) < 0, there exists a maximal a,, > 0 such that u,, < L on [0,ay,). If we
put b, = min{ay,, a,}, then

up(t) <L and wu,(t) >0, te(0,b,).

Due to Lemmas 9.2.1 and 9.2.5, there exists v, € (0, b,) such that u,(v,) = C.
From the sequence {B,,}>>, C (Lo, C), we get a sequence {uy,}5>; of soluti-
ons of problem (9.2.1), (9.1.2) with ug = B,,, and the corresponding sequence of
{1} . Assume that lim,,_,~, B,, = L.
Now, integrating equation (9.2.1) we get the equivalent form of problem (9.2.1),
(9.1.2) for u,,

= t -1 L ) T £ Un (T T)ds 00
wlt) = B+ [ 67 (o [ o) Flotumm) ar) s, ve fo.oo). 0413
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We will prove that the sequence {uy, }°° ; is uniformly bounded on [0, 3] for all
B > 0. Indeed, for t € [0, 5],

t N t N
unlt)] < |2l + [ |67 (T olop| s < Lol + [ 07! (W B)ds
0 0
< |Lol + B¢ (M B) = K,

where ¢ is defined in (9.2.7) and M is from (9.2.9).

Moreover, as a consequence of Lemma 9.2.9, we know that the sequence of de-
rivatives {u}, }5° ; is uniformly bounded. Therefore, the sequence {u,}2 ; is equi-
continuous.

Therefore, by Ascoli-Arzela’s Theorem (Theorem 1.2.2), there exists a subse-
quence of {u,}>° ; which converges locally uniformly on [0,00) to a continuous
function u. For the sake of simplicity, we denote this subsequence also as {u, }7 ;.

In particular, if we take the limit when ¢ goes to infinity on equation (9.4.13),
since the convergence is locally uniform, we obtain that v satisfies the following

t B 1 S .
u(t) = Lo+ / o1 (—- / p() Fldu(r)) dT) ds, tel0,00),
0 p(s) Jo
and therefore, w is a solution of problem (9.2.1), (9.1.2) for ug = Lg.
Now, we distinguish three different cases:
(i) u = Lg:
In this case, lim,,_, 7, = 0o and the sequence {7, }°° ; is unbounded.

By Lemma 9.3.2 there exists ng € N such that u,, is an escape solution of
problem (9.2.1), (9.1.2). We have uy,,(0) = By, > Lo.

Now consider the unbounded sequence {7, };2,, 1. By Lemma 9.3.2 there
exists n1 € N such that u,, is an escape solution of problem (9.2.1), (9.1.2)
such that uy,, (0) = By, > Lo.

We repeat this procedure and we obtain the sequence {u,, }Z;o of escape solu-
tions of problem (9.2.1), (9.1.2) with starting values in (Lg, B).
(i) uw # Lo is not an escape solution:

In this case, we define En = Lo for all n € N and consider v defined in
(9.4.12). Now, we can take an unbounded sequence {7, }5° ; such that 3,, > ~
for all n € N.

By Lemma 9.4.7, for all n € N there exists a solution w,, of problem (9.2.1),
(9.1.2) with ug = B,, such that

Un(Yn) = C,  Up(t) > Ly, te€]0,00).
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Therefore, we have a sequence of solutions {uy,}°° ; satisfying the conditi-
ons of Lemma 9.3.5 and so, this sequence contains an escape solution ,,, of
(9.2.1), (9.1.2) with ug = Ly.

As in the previous case, we could consider now the unbounded subsequence
{Fn}pn, 1 and repeat the procedure from (i). This way we obtain a sequence
{tn, }72, of escape solutions of problem (9.2.1), (9.1.2) with ug = Ly.

(iii) u # Ly is an escape solution:

In this case, we can argue as in (i7) and we also obtain a sequence {u, }7°, of
escape solutions of problem (9.2.1), (9.1.2) with ug = Lg.

Moreover, in this case, since the sequence {u,}°, converges locally uni-
formly to an escape solution of (9.2.1), (9.1.2), there must exist some ng such
that u,, is also an escape solution for all n > ng. As a consequence, we also
obtain a sequence {un}%o:no of escape solutions of problem (9.2.1), (9.1.2)

with starting values in (Lo, B). O

9.5. Unbounded Solutions

In this section, we discuss the existence of escape solutions of the original pro-
blem (9.1.1)—(9.1.2) and provide conditions which guarantee that an escape solution
of such problem is unbounded.

Note that, when (B1)—(By), (9.2.3) and (9.2.4) are assumed, solutions of the
original problem (9.1.1)—(9.1.2) and solutions of the auxiliary problem (9.2.1), (9.1.2)
are related in the following way:

= Each solution of (9.2.1), (9.1.2) which is not an escape solution, is a bounded
solution of the original problem (9.1.1)—~(9.1.2) in [0, 00). This results from
Lemma 9.2.8 and Lemma 9.3.1, where such solutions of (9.2.1), (9.1.2) satisfy

Lo <u(t) <L, telo,00)
and, due to (9.2.2),
f(@(u(t))) = f(o(u(?))), te€0,00).
= If u is an escape solution of the auxiliary problem (9.2.1), (9.1.2), i.e.
Je € (0,00): ult) € [Lo, L), t € [0,¢), u(c) =L, w'(c)>0, (9.5.1)

then w fulfils at once the auxiliary equation (9.2.1) and the original equation
(9.1.1) on [0,c]. The restriction of u on [0, ¢] can be extended as an escape
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solution of problem (9.1.1)—(9.1.2) on some maximal interval [0, b). This situ-
ation is represented in Figure 9.5.1.

Ly

Figure 9.5.1: Relation between an escape solution of the auxiliary problem (9.2.1),
(9.1.2) (function in red) and the original one (9.1.1)—(9.1.2) (in blue).

Therefore, we will search unbounded solutions of (9.1.1)—(9.1.2) in the set of
escape solutions of (9.1.1)—(9.1.2) on [0, b).

Since in general, an escape solution « of (9.1.1)—(9.1.2) on [0, b) does not need to
be unbounded (see Figure 9.5.2), we will derive some criteria for « to tend to infinity.

Lo

Figure 9.5.2: Various types of escape solutions of problem (9.1.1)—(9.1.2). In this
case, b < oo for the solution in blue (which is unbounded) and b = oo for the
solutions in green (which is also unbounded) and red (which is bounded).

Lemma 9.5.1. Assume that (By)—(By) hold. Let u be an escape solution of problem
(9.1.1)=(9.1.2) on [0, b). Then

u(t) > L, u'(t)>0, te(cb),
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where c is from (9.5.1). Moreover, if b < oo, then

lim wu(t) = oo.
t—b~

Proof. Let u be an escape solution of problem (9.1.1)—(9.1.2) on [0, b). Then
Jc € (0,00): u(t) € [Lo, L), t € [0,¢), wu(c)=L, u'(c)>0.
Assume that there exists ¢; > c such that
W'(c1) =0, wu(t)>L, u'(t)>0 forte (cc).

Integrating equation (9.1.1) over [c, ¢1], dividing by p(¢) and using (Bj), (Bs) and
(By), we get

ple)p(u'(c) 1 [
o' (t)) = — p(s) f(d(u(s)))ds >0, t € |lc, cl,
(/1)) = HUEE s [ i) rotuts)) e,
which contradicts that u’(c¢1) = 0. Hence, u(t) > L and w/(t) > 0 for ¢t € (¢, b).
Let b < oo. Since [0, b) is the maximal interval where the solution w is defined,
u cannot be extended behind b. Therefore, since u'(t) > 0 for ¢ € (¢, b), it holds that

lim wu(t) = oo and thus, the solution « is unbounded. O
t—b~

Since all escape solutions of (9.2.1), (9.1.2) on [0, b) which cannot be extended
to the half-line [0, co) are naturally unbounded, we continue our investigation about
unboundedness of escape solutions defined on [0, co). That is, we will assume from
now on that [0, b) = [0, c0).

Theorem 9.5.2. Assume (B1)—(By) hold and let

lim p(t) < oc. (9.5.2)

t—o00

Let u be an escape solution of problem (9.1.1)—(9.1.2). Then

tlgglo u(t) = oo.

Proof. Let u be an escape solution of problem (9.1.1)—(9.1.2). Lemma 9.5.1 ensures
that
u'(t) >0, te (e o00),
with ¢ from (9.5.1), and so, there exists lim u(¢) € (L, oc]. Due to (By), (B4) and
©9.5.1), o
p(c) p(u'(c)) =t co € (0, 00).
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Integrating now equation (9.1.1) from c to t > ¢, we get, by (B3) and (Bjy), that

) =1+ [o7 (22— [ stotatmn ar) as > | e (o) as

fort € (¢, 00).
Conditions (By) and (9.5.2) warrant that

€0
Jim gy € 0:00)
and, by (By),
00 o o
/ 10) <> ds = oo.
1 p(s)

Therefore,

im () > [ o7 ()

im wu —— |ds=

too T g p(s) ’
which implies that the solution is unbounded. 0

Theorem 9.5.3. Assume (B1)—(Ba), (9.2.3) and

f(z) <0 forxz> ¢(L). (9.5.3)
Let u be an escape solution of problem (9.1.1)—(9.1.2). Then u is unbounded.

Proof. Let u be an escape solution of problem (9.1.1)—(9.1.2). Lemma 9.5.1 implies
that ' > 0 on (¢, 00) and hence, there exists lim;_, u(t) € (L, oo]. Assume on the
contrary that

lim wu(t) =: A € (L,00). (9.5.4)

t—00

Step 1: We prove that v/ is bounded.

Assume that ' is unbounded. Then there exists a sequence {¢,,}>2 ; such that

lim t, = oo and lim v/(t,) = .
n—o0 n—o0
Equation (9.1.1) has an equivalent form

¢(u'(t)) + f(d(u(t))) =0, € (0,00). (9.5.5)

Choose n € N. Multiplying this equation by u’ and integrating it from c to t > ¢, we
obtain for ¢ = ¢,, that

V1(tn) + Pa(tn) + ¥3(tn) =0, t, € [c,00), (9.5.6)
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where

Then ¥3(t,) = F(u(ty)) — F (L), where

Fz) = /Ozf(gb(s))ds, zER.

Due to (Bj) and (9.5.3), F(x) is decreasing for x > ¢(L). Since u is increasing
on (¢, 00), F(u(ty,)) is decreasing for t,, € (¢, 00) and limy,_,c F(u(t,)) = F(A).
According to (9.5.4),

lim ¢3(tn) S (_0070)7

n—o0

and, by (B1) and (By),

lim v (t,) =oc and lim ¥(t,) > 0.
n—oo

n—oo

Hence, letting n — o0 in (9.5.6), we obtain
0= Jlﬁ\nolo(qﬁl (tn) + 2(tn) + ¥3(tn)) = oo,

which is a contradiction. So, u’ is bounded.
Step 2: We will prove that lim u(t) = oc.
t—o00
Since «’ is bounded, letting ¢ — oo in (9.5.5) and using (9.2.3), (9.5.3) and
(9.5.4), we get
lim ¢'(u'(t)) u"(t) = —f(6(4)) > 0.
t—o00

Since ¢/ (u/(t)) > 0 for t > ¢, there exists 7 > ¢ such that «” (¢) > 0 for ¢ > 7. The-
refore, v is increasing on |7, 00) and there exists tlim u'(t) > 0, which contradicts
—00

lim u(t) = A < oo. Thus, the solution is unbounded. O

—00

The following corollary can be deduced from the proof of Theorem 9.5.3.
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Corollary 9.5.4. Assume conditions (B1)—(By) and (9.2.3) and let u be a solution
of problem (9.1.1)—(9.1.2). If u satisfies that

lim u(t) =: A € (L, 00),

t—o00

then f(p(A)) = 0.

Remark 9.5.5. Note that, in previous corollary, f($(A)) = 0 is equivalent with the
fact that u(t) = A is a solution of equation (9.1.1).

For f = 0 on (¢(L),00), we are able to find necessary and sufficient condition
for the unboundedness of escape solutions of problem (9.1.1)—(9.1.2).

Theorem 9.5.6. Assume (B1)—(Bj4),

flx)=0  forx > ¢(L) (9.5.7)
and
o(ab) = ¢(a) p(b), a,be (0,00). (9.5.8)
Let u be an escape solution of problem (9.1.1)—(9.1.2). Then u is unbounded if and
only if
/ ¢! <L> ds = oo. (9.5.9)
1 p(s)

If we replace condition (9.5.8) by
od(ad) < é(a) p(b), a,be (0,00), (9.5.10)
then (9.5.9) implies that wu is unbounded.

Proof. Let u be an escape solution of problem (9.1.1)-(9.1.2). Then, according to
Lemma 9.5.1, ' > 0 on (¢,00). Thus there exists ¢ty > ¢ such that u(tg) > L,
u'(t) > 0 fort € [tp, 00). Therefore, there exists

lim wu(t) € (L, 0]

t—o00

Using (9.5.8), we obtain

@) ¢TI 0) = 6T (G @ T B)) = 6T G @) BT D)
= ¢ Yab), a,b e (0,00). B

Due to (Bi), (Ba4) and (9.5.7),

p(to) ¢(u'(tg)) =: co € (0,00) and f(¢(u(t))) =0 fort € [tg, 00).
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Thus, integrating equation (9.1.1) from ¢y to ¢ > tg and using (9.5.11), we get

o) =utio) + [ 67 (2 ) as =t

to p(s)

Y 1 € R TN O R

Letting t — oo here, we get the equivalence.
Now, let us consider (9.5.10) instead of (9.5.8) and assume that (9.5.9). Then we
continue analogously and obtain

¢ Ha) g (b) = ¢ (d(¢ a) g (D)) < &' (68 (a) BB (D))
= ¢ '(ab),
with a,b € (0, 00), and

u(t) = ulto) + /t o <C°> ds > ulty)

to p(s)

ot ([ (ol i), veem

We let ¢ — oo here and obtain that if (9.5.9), then the solution is unbounded. [

9.6. Main Results and Examples

In this section, we first present the existence results about unbounded solutions of
the original problem (9.1.1)—(9.1.2) in case that ¢! and f are Lipschitz continuous
(see Theorems 9.6.1, 9.6.3 and 9.6.5). Each of these theorems is afterwards illustrated
by an example which is chosen in such a way that only this theorem is applicable,
while none of the remaining two theorems can be used for this example.

Then, in Theorems 9.6.7, 9.6.9 and 9.6.11, we present the main existence results
about unbounded solutions of the original problem (9.1.1)—(9.1.2) provided ¢! and
f do not need to be Lipschitz continuous. The illustration by examples is done as in
the previous case and shows that none of these theorems is included in any of the two
remaining ones.

In the whole section, we assume that (due to Definition 9.1.1) for each n € N,
[0,b,) C [0,00) is a maximal interval such that a function wu,, satisfies equation
(9.1.1) for every t € (0,by,).

Theorem 9.6.1. Assume that conditions (B1)—(By), (9.2.3), (9.2.4), (9.2.10), (9.2.11)
and (9.5.2) hold. Then there exist infinitely many unbounded solutions u,, of problem
(9.1.1)=(9.1.2) on [0, by,) with different starting values in (Lo, B), n €N
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Proof. By Theorem 9.4.1, there exist infinitely many escape solutions u,, of problem
(9.2.1), (9.1.2) with starting values in (Lo, B). Let us choose n € N. Then

Jen € (0,00): un(t) € (Lo, L), t €[0,¢n), un(cn) =L, ul(cn) >0.

Consider the restriction of u,, to [0, ¢,]. Then there exists b, > ¢, such that u,, can
be extended as a solution of problem (9.1.1)—(9.1.2) on [0, by,). If b,, < oo, then, due
to Lemma 9.5.1,

lim wu,(t) = oo,
t—b,,

SO uy, is unbounded. If b,, = oo, then Theorem 9.5.2 yields
Jim n(0) = oo
that is u,, is unbounded, as well. L]

Example 9.6.2. Consider problem (9.1.1)—(9.1.2) with

A
¢(x) = sinhz = %, z € R,
fa) x (x +sinh4) (sinh1 — z), € [—sinh4,sinh 1],
€Tr) =
cos(x —sinh 1) — 1, x > sinh1,
ot — ot
p(t) = arctant  or  p(t) = tanht = Tt t €[0,00).

Here Lo = —4, L = 1, ¢~ !(x) = arcsinhz = In (x + VvV + 1). These functions
p satisfy (By), (9.5.2) and

1 1
o (arctant)’ i P 0. - (tanht) _ iy coh%E 0.
t—oo arctant t—oo arctant t—oo tanht t—oo tanh ¢
that is, (9.2.3) holds, as well. Functions ¢ and f fulfil (B1)—(Bs).

Moreover, 0 < L < —Lg, ¢ is odd and

_ —4

F(Ly) = (s) (¢(s) +sinh4) (sinh1 — ¢(s))ds

0

4
- /0 #(s) (sinh4 — ¢(s)) (sinh 1 + ¢(s))d s

1
> / @(s) (sinh4 — ¢(s)) (sinh 1+ ¢(s))ds
0

1 ~
> /0 @(s) (¢(s) + sinh 4) (sinh 1 — ¢(s))ds = F(L),
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thus, (9.2.4) holds. Since f and ¢~ are Lipschitz continuous, conditions (9.2.10)
and (9.2.11) are valid, too.

We have fulfilled all assumptions of Theorem 9.6.1. Since f has isolated zeros on
(sinh 1, 00), we cannot use neither Theorem 9.6.3 nor Theorem 9.6.5 here.

In the same way as in the proof of Theorem 9.6.1, we can prove the following
Theorems 9.6.3 or 9.6.5, if we use in the proof Theorems 9.5.3 or 9.5.6, respectively,
instead of Theorem 9.5.2.

Theorem 9.6.3. Let (B1)—(By), (9.2.3), (9.2.4), (9.2.10), (9.2.11) and (9.5.3) hold.
Then there exist infinitely many unbounded solutions u,, of problem (9.1.1)—(9.1.2)
on [0, b,) with different starting values in (Lo, B), n € N.

Example 9.6.4. Let us consider problem (9.1.1)—(9.1.2) with

¢(x) =In(|z| +1)signz, x € R,
fz)=2(x+1nd)(In2—=z), = € [—In4,c0),
p(t)=t°, B>0,tel0,00).

Here Lo = —3, L = 1 and ¢~ () = (e"”' — 1) signz.

We can easily check that ¢, f and p satisfy (By)—(By), (9.2.3) and (9.5.3). In
addition, 0 < L < —Lyg, ¢ is odd and we can show, similarly to Example 9.6.2, that
(9.2.4) holds.

The Lipschitz continuity of f and ¢~ yields (9.2.10) and (9.2.11). Thus, we can
apply Theorem 9.6.3 here.

Since lim t° = oo and f(z) < 0 for x > In2, we can not use neither Theo-

t—o0
rem 9.6.1 nor Theorem 9.6.5.

Theorem 9.6.5. Assume that (B1)—(By), (9.2.3), (9.2.4), (9.2.10), (9.2.11), (9.5.7),
(9.5.10) and (9.5.9) hold. Then there exist infinitely many unbounded solutions ., of
problem (9.1.1)—~(9.1.2) on [0, by,) with different starting values in (Lo, B), n € N.

Example 9.6.6. Consider problem (9.1.1)—(9.1.2) with
o(x) =z, x €R,
p(t) =Vt, te]0,00),

Fa) = {x% —0Lo)@(L) ~x), wepLo)oL), o
0, x> ¢(L),
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Functions ¢, f, p and ¢~ '(x) = x satisfy (B1)—(Bs), (9.2.3), (9.2.10), (9.2.11),
(9.5.7), (9.5.8) and consequently, (9.5.10).

Since f(¢(x)) = f(x) and L < — Lo, we have F(L) < F(Lg) and (9.2.4) holds.

In addition,
o0 1 * 1
o1 <>ds:/ —ds=00
/1 p(s) 1 Vs

We have satisfied all assumptions of Theorem 9.6.5.
Since hm Vit = oo and f(z) < 0 for x > In2, we cannot use neither Theo-
rem 9.6.1 nor Theorem 9.6.3.

Now, applying Theorem 9.4.8 instead of Theorem 9.4.1, we get as before the
existence results about unbounded solutions in each case, where ¢~' and f do not
have to be Lipschitz continuous.

Theorem 9.6.7. Let (B1)—(By), (9.2.3), (9.2.4) and (9.5.2) hold. Then there exist
infinitely many unbounded solutions uy, of problem (9.1.1)—(9.1.2) on [0, by,) with not
necessarily different starting values in [Lo, B ), n €N

Example 9.6.8. Let us consider problem (9.1.1)—(9.1.2) with 0 < L < —1L
¢(x) = |z|*signz, a>1, x €R,

|z| signz (2 = ¢(Lo)) (#(L) — x), x € [¢(Lo), p(L)];

f(@) = q (8(L) — 2)(¢(2L) = z), z € (¢(L), ¢(2L)),
0, T > ¢(2L)’

p(t) = arctant  or  p(t) = tanht = € [0, 00).

et +et’
According to Example 9.6.2, functions p satisfy (By), (9.2.3) and (9.5.2). Functions
¢ and f fulfil (B1)—(Bs3). Since f is continuous, 0 < L < —Lg and ¢ is a continuous
and odd function, (9.2.4) holds, too.

We have verified all assumptions of Theorem 9.6.7.

The form of f implies that neither Theorem 9.6.9 nor Theorem 9.6.11 can be
applied.

Theorem 9.6.9. Assume that (By)—(B4), (9.2.3), (9.2.4) and (9.5.3) hold. Then there
exist infinitely many unbounded solutions u,, of problem (9.1.1)~(9.1.2) on [0, by,)
with not necessarily different starting values in [Lo, B), n €N
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Example 9.6.10. Consider problem (9.1.1)—(9.1.2) with
o(z) =23, z € R,
flz) = \/E(a: +8)(1—x), z € [-8,00),
p(t) =t >0, te0,0).

Here Ly = —2, L = 1, ¢~ Y(x) = x. It is easy to see that ¢, f and p fulfil
(B1)—(Bu4), (9.2.3) and (9.5.3). Further,

-2
FV(LO):/O 8(83—#8)(1—83)(18:1;;4

and

~ ! 99
F(L):/ 8(s3+8) (1—33)ds:—.
0 40

So, F (Lo) > F (L) which yields (9.2.4). Therefore, we can apply Theorem 9.6.9
here.
Since thm t? = oo and f () < 0 for x > 1, we cannot use neither Theorem

9.6.7 nor Theorem 9.6.11.

Theorem 9.6.11. Let (B1)—(By), (9.2.3), (9.2.4), (9.5.7), (9.5.10) and (9.5.9) hold.
Then there exist infinitely many unbounded solutions wu,, of problem (9.1.1)—(9.1.2)
on [0,by,) with not necessarily different starting values in [Lo, B ), n €N

Example 9.6.12. Let us consider problem (9.1.1)—(9.1.2) with
o(x) = |z|*signz, a>1, z €R,
p(t) =t7, B e (0,a], t €0,00),

3
fa) = {\/5 (¢ = 9(Lo) ($(L) ), we[p(Lo) (L),
0, x> ¢(L),
Functions ¢, f and p satisfy (B1)—(By), (9.2.3), (9.5.7), (9.5.8) and consequently,
(9.5.10). Moreover, 0 < L < —Lg and ¢ is odd function which yields (9.2.4).
Furthermore,
o z) = za forxz >0

[ o [

that is, we have verified all assumptions of Theorem 9.6.11.
Since lim t* = oo and f(x) = 0 for x > ¢(L), neither Theorem 9.6.7 nor

t—o00

Theorem 9.6.9 are applicable.

and
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It si clear that every unbounded solution of problem (9.1.1)—(9.1.2) is an escape
solution. According to the proofs of above theorems, we can formulate also the
reverse assertion.

Corollary 9.6.13. Assume all assumptions of Theorem 9.6.1 or 9.6.3 or 9.6.5 or
9.6.7 or 9.6.9 or 9.6.11. Then each escape solution of problem (9.1.1)—(9.1.2) is
unbounded.
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Resumen

La presente Tesis, englobada bajo el titulo “Ecuaciones diferenciales no linea-
les en dominios acotados y no acotados”, contiene la préactica totalidad del trabajo
desarrollado por la autora en los dltimos afios.

Se encuentra dividida en dos partes diferenciadas: la primera de ellas, que consta
de seis capitulos, comprende el estudio de problemas de frontera definidos en inter-
valos acotados, asi como el caso mds general de considerar ecuaciones integrales de
Hammerstein. La segunda parte, compuesta por tres capitulos, se centra en el estudio
de problemas diferenciales e integrales definidos sobre dominios no acotados.

Cabe indicar ademas que, pese a que en el titulo se mencionan tnicamente las
ecuaciones diferenciales no lineales, los primeros capitulos de la Tesis se dedicardn
al estudio de problemas de frontera lineales. Esto es asi puesto que las propiedades de
tales problemas, y particularmente las de la funcién de Green asociada, determinardn
la mejor forma de abordar la bisqueda de soluciones de problemas no lineales.

Se incluye a continuacién un breve resumen de los resultados principales tratados
en cada capitulo.

Capitulo 1: Resultados Preliminares

Con el objetivo de escribir un trabajo autocontenido, este capitulo esta dedicado
a recopilar los resultados previos que se usardn a lo largo de la presente Tesis.

En primer lugar, en la Seccién 1.1 se introducen la definicién y las propiedades
de la funcién de Green. Como veremos, esta funcion resulta una herramienta muy
util para estudiar problemas diferenciales tanto lineales como no lineales. Esto se
debe al hecho de que todo problema diferencial se puede transformar en otro integral
equivalente, cuyo nucleo es precisamente la funcidén de Green.

De este modo, el problema de encontrar soluciones de problemas diferenciales
llevara de forma natural al marco mds general de encontrar puntos fijos de operado-
res integrales. Es en este contexto en el cual los resultados que aseguran la existencia
de puntos fijos de operadores compactos arbitrarios definidos en espacios de Banach
adquieren una gran importancia. Algunos de estos resultado se recogen en la Sec-
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cioén 1.2, entre ellos el bien conocido Teorema de punto fijo de Schauder y la teoria
clasica del indice de punto fijo (la cual, siguiendo la linea de [64], se introducira para
conjuntos abiertos arbitrarios, los cuales podrian ser no acotados).

Finalmente, otra herramienta importante que usaremos en esta Tesis para estudiar
propiedades de operadores lineales es la teoria espectral. En particular, la combina-
cién de esta teoria con los resultados de indice de punto fijo, permitird probar la
existencia de soluciones de ciertos problemas integrales. Algunos resultados basicos
de teoria espectral se recopilan en la Seccién 1.3.

Capitulo 2: Funciones de Green y Teoria Espectral para Pro-
blemas de Frontera de Orden Par

Este capitulo contiene un estudio detallado de los problemas de frontera lineales
de orden par. En particular, estudiaremos problemas asociados al siguiente operador
bajo diversas condiciones de frontera:

Lu(t) =u®) (1) + agna () u® V(@) + - + ar(t) ' (t)
+ap(t)u(t), tel=][0,T],

dondeay : I - R, ap € L¥(I), «>1,k=0,...,2n— 1.
A partir de este operador definiremos otros dos, concretamente

Lu(t) =u® () + a1 (8) w7V () + -2 (t) u®* ) (2)
+ota(t)u/ () +ao(t)ult), teJ=[0,2T],

donde agx, k =0,...,n—1, eslaextension parde agi a J y dog41,k =0,...,n—1
es la extension impar de asg 1 a J, y

Lu(t) =u™ () + don1 () u® D (1) + dgn_o(t) u®2)(¢)
o an ()W (t) + ao(t) u(t), te 0,47,

donde c:LQk y é2k+1, k =0,...,n — 1, son las extensiones par e impar al intervalo
[0,4T] de s y Gok+1, respectivamente.

La idea principal de este capitulo consiste en expresar la funcién de Green de
problemas de Neumann, Dirichlet y mixtos asociados al operador L como suma de
funciones de Green de problemas periddicos y antiperiddicos relativos a L. De esta
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forma se prueban las siguientes igualdades

Gn[T|(t,s) = Gp[2T|(t,s) + Gp[2T|(2T —t,s), V(t,s)elxI,
GplT](t,s) = Gp[2T](t,s) — Gp[2T)(2T —t,s), V(t,s) el xI,
G, [T)(t,s) = Gal2T|(t,s) — Ga[2T)(2T — t,s), V(t,s)elxI,
G, |T(t,s) = Ga2T|(t,s) + GaA2T)(2T — t,s), V(t,s) el xI,

donde GN [T, Gp[T], G, [T] y G, [T] denotan, respectivamente, las funciones de
Green de los problemas de Neumann, Dirichlet y mixtos asociados al operador L.
Andlogamente, Gp[2T] y G 4[2 T] denotan las funciones de Green de los problemas
periddico y antiperiddico asociados al operador L.

Del mismo modo, se puede ver que todas las funciones de Green anteriores se

expresan como combinacidn lineal de la relativa al problema periédico asociado a L
evaluada en diferentes puntos.

Puesto que la funcién de Green es una herramienta fundamental para el estudio
de problemas lineales y no lineales, poder relacionar de esta forma distintas funciones
de Green permite establecer también una relacién entre los distintos problemas, sus
espectros y sus soluciones.

En primer lugar, las expresiones anteriores dan una conexion directa entre los es-
pectros de los distintos problemas. En particular, deducimos varias descomposiciones
de algunos espectros como unién de otros. Ademads, se obtiene una cierta relacién de
orden entre los primeros autovalores de cada problema.

Por otra parte, también deducimos que el signo constante de una funcién de Green
implica el signo constante de otra.

Corolario 1 (Corollary 2.4.1). Para cualesquiera coeficientes ay, . . . , aap—1 € L' (1),
se tienen las siguiente implicaciones:

1. SiGp[2T]| < 0en J x J, entonces GN[T]| < 0en I x I.

2. SiGp[2T) > 0en J x J, entonces GN[T] > 0en I x I.

w

. SiGN[2T] < 0en J x J, entonces GN[T] < 0en I x I.

A

. SiGN[2T] > 0en J x J, entonces GN[T] > 0en I x I.

)

. SiGp[2T] < 0en J x J, entonces Gy, [T] <0en I x I.

6. SiGp[2T) > 0en J x J, entonces Gy, [T] > 0en I x I.

299



Resumen

Con respecto al corolario anterior, cabe indicar que se puede mejorar para orden
n = 1, lo cual se hace en el Capitulo 3. Por otra parte, se prueba en este capitulo que
el reciproco de las Afirmaciones 1 y 2 del Corolario 1 se cumple si los coeficientes
ap, - - -, A2,—1 SON contantes, mientras que el reciproco de las demds afirmaciones no
es cierto ni siquiera en este caso para n > 1. Por otra parte, se da un contraejemplo
para ver que el reciproco de 2 no es cierto en general para n > 1. Queda abierto el
problema de ver si la Afirmacién 1 es o no una equivalencia cuando n > 1.

Finalmente, en la Seccién 2.5, asumiendo que una funcién de Green tiene signo
constante, se obtienen desigualdades punto a punto entre otras dos funciones de
Green distintas. Esto permite deducir que la solucion del problema bajo ciertas con-
diciones de frontera es menor o igual en todo punto que la solucién de otro problema
en el que se considere el mismo operador pero condiciones de frontera distintas.

Los resultados de este capitulo se pueden encontrar en [31].

Capitulo 3: Ecuacion de Orden Dos

En este capitulo se considera el problema estudiado en el Capitulo 2 en el caso
particular de la ecuacién de orden dos (es decir, se consideraria n = 1).

El motivo por el cual se estudia este caso de forma independiente al general es que
al trabajar con ecuaciones diferenciales de orden dos es posible utilizar la teoria de
Sturm-Liouville. Esta teorfa, que no es valida para ecuaciones diferenciales de orden
superior, proporciona propiedades de oscilacion de las soluciones de las ecuaciones.
Tal hecho permitird obtener resultados mas fuertes que los del capitulo anterior.

En este capitulo se estudian dos problemas distintos. En primer lugar, en la Sec-
cidén 3.2, se estudia el problema asociado al operador de Hill

Lu(t)=u"(t) +a(t)u(t), tel,

el cual es un caso particular del operador L considerado en el Capitulo 3 paran =1y
aj = 0. Cabe observar que el hecho de considerar a; = 0 no supone una gran pérdida
de generalidad de los resultados obtenidos puesto que cualquier ecuacién diferencial
de orden 2 de la forma

u”(t) + a1 (t) ' (t) + ap(t) u(t) = 0,

puede transformarse en una ecuacién de Hill mediante un cambio de variable ade-
cuado, siempre y cuando los coeficientes ag y a; sean lo suficientemente regulares.

Los resultados obtenidos en esta seccion son, pues, mas potentes que los andlogos
obtenidos en el Capitulo 3. Un claro ejemplo de ello es el siguiente teorema en el cual
se relaciona el signo constante de distintas funciones de Green.
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Teorema 2 (Theorem 3.2.22). Para todo a € L(I) se tienen las siguientes implica-
ciones:

1. Gp[2T] < 0en J x J siy solo si GN[T] < 0 en I x I. Esto es equivalente a
GN[2T) < 0en J x J.

Gp[2T] >0en (0,2T) x (0,2T) siy solo si GN[T] > 0en (0,T) x (0,T).
SiGN[2T] > 0en (0,27) x (0,2T), entonces Gn[T] > 0en (0,T) x (0,7T).
SiGp[2T]) < 0o0n J x J, entonces Gp[2T] < 0en (0,2T) x (0,27T).

SO

SiGp2T] > 0en (0,2T) x (0,2T), entonces Gp[2T] < 0 en (0,2T) x
(0,27).

6. Si GN[T] (o, equivalentemente, Gp[2 T) tiene signo constante en I X I, enton-
cesGp[T] < 0en(0,7) x (0,T), Gpp, [T] < 0en [0, T)x[0,T) y Gpr,[T] < 0
en (0,T] x (0,77

7. Gp2T]) < 0en (0,2T) x (0,27T) siy solo si G, [T] < 0en (0,T] x (0,T.

8. Si Gup,[T] < 0en (0,T] x (0,T) 0 Gar, [T] < 0en [0,T) x [0,T), entonces
Gp|T) < 0en (0,T) x (0,T).

Del mismo modo, las desigualdades punto a punto entre distintas funciones de
Green son también mds precisas, lo cual supone una mayor precisiéon a la hora de
comparar las soluciones de distintos problemas. As{, mientras en el capitulo anterior
podiamos garantizar que la solucién de un problema era menor en todo punto que la
solucién de otro, para este caso particular también podremos garantizar que las dos
soluciones tienen signo constante.

Ademas, mientras que en el capitulo anterior solo podiamos establecer una rela-
cién de orden entre los primeros autovalores de cada problema, en este se establece
una relacién de alternancia entre todos los autovalores de todos los problemas.

Finalmente, para terminar esta seccidn, se consideran los criterios explicitos exis-
tentes en la literatura para garantizar el signo constante de la funcién de Green del
problema periddico y, utilizando las relaciones entre las distintas funciones de Green,
se adaptan a todos los demds problemas de frontera considerados.

Por otra parte, en la Seccion 3.3 se considera una ecuacién mas general dada en
forma autoadjunta, concretamente

(pu)'(t) + a(t) u(t) = o (t), c.t.p.tel,

conp >0c.t.p.t €1, %D € LY(I)yay o tales que &pQT_l, 5'paT_1 € L*(I), para
algin o € [1, 00].
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Se demuestra en esta seccién que la funcién de Green de cualquier problema de
frontera asociado a la ecuacion previa se puede expresar en términos de la funcion
de Green asociada al operador de Hill con las mismas condiciones de frontera. Como
consecuencia, todos los resultados obtenidos en la seccion anterior se pueden adaptar
en términos de este problema.

Este capitulo recoge resultados de [22] y [23].

Capitulo 4: Soluciones para Problemas de Frontera No Li-
neales de Orden Par con Funciones de Green de Signo Cons-
tante

En este capitulo se consideran por primera vez problemas de frontera no lineales.
En particular, se considerardn problemas que sigan el siguiente esquema:

Lu(t) = f(t,u(t), tel, wuelX,

siendo L el operador general lineal de orden 2n definido en el Capitulo 3.

Por otra parte, consideraremos X C W?2™!(I) como un espacio de Banach que
incluye las condiciones de frontera y en el cual L es no resonante.

En estas condiciones se tiene que las soluciones del problema de frontera anterior
se corresponden con los puntos fijos en X del siguiente operador integral

L u(t) = / GIT)(t,3) £(s,uls)) ds,
0

siendo G[T] la funcién de Green asociada.

El método utilizado para garantizar la existencia de puntos fijos de este operador
integral es el de sub y sobresoluciones.

La novedad principal de nuestra aproximacién frente a referencias previas pre-
sentes en la literatura es el hecho de que conseguimos garantizar la existencia de
solucién del problema mediante un par de sub y sobresoluciones de otro proble-
ma distinto (compuesto por el mismo operador sometido a condiciones de frontera
diferentes). Esto serd posible gracias a las relaciones punto a punto entre distintas
funciones de Green probadas en los Capitulos 2 y 3.

Cabe comentar también que una de las hipétesis basicas de este capitulo es la del
signo constante de las funciones de Green.

Los resultados de este capitulo se pueden ver en [31].
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Capitulo 5: Soluciones Positivas para Problemas de Frontera
No Lineales de Orden Dos con Funciones de Green de Signo
No Constante

Este capitulo esta dedicado a estudiar la existencia de soluciones de signo cons-
tante de un problema de frontera de orden dos asociado al operador de Hill en el caso
en que, al contrario de lo que ocurria en el capitulo anterior, la funciéon de Green
cambie de signo.

La idea basica de este capitulo se fundamenta en el hecho de que, pese a que la
funcién de Green cambie de signo, se puede asegurar que la integral de esta funcién
multiplicada por la autofuncién correspondiente al primer autovalor del problema es
positiva.

Expondremos el siguiente razonamiento en términos del problema periddico,
aunque resulta igualmente vélido para cualquier otra condicién de frontera.

Consideremos pues el siguiente problema periddico

u’(t) + at) u(t) = f(t,ut)), tel,
u(0) = u(T), w'(0) = u/(T),
y sean Gp su funcién de Green asociada y vp la autofuncién correspondiente al

primer autovalor. Entonces se tiene que

T
/ Gp(t,s)vp(s) ds >0, paratodot e I,
0

lo cual justifica que tiene sentido definir la siguiente constante:

M fOT G;S(t, s)vp(s) ds

1).
tel fOT Gp(t,s)vp(s) ds >1)

Supongamos que se cumplen las siguientes hipétesis:
(Hy) f:1x[0,00) — [0, 00) satisface las condiciones de L'-Carathéodory.
(Hs) Existen dos constantes positivas m y M tales que
mup(t) < f(t,x) < Mop(t)

M
<.

paratodot € I y x > 0. Ademas, estas constantes deben cumplir que

Hj) Existe un subintervalo |c,d] C I tal que e p(t,s) dt > 0, paratodo s € [
que j. p
y fcd Gp(t,s) dt > 0, paratodo s € [c,d].
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Entonces, si la funcién de Green cambia de signo, se demuestra que existe una solu-
cion del problema en el cono

T
K:{UEC(I,R): uZOenI,/ u(s)dsZaHuH},
0

donde
. n

mix {Gp(t )}

d
n = min {/ Gp(t,s) dt} > 0.
SE[C,d] C

Notese que esta solucidn es no negativa.
Todos los resultados de este capitulo se recogen en [27].

Capitulo 6: Resultados de Existencia y Multiplicidad de So-
luciones para Ecuaciones Generalizadas de Hammerstein con
un Parametro

En este capitulo estudiamos problemas integrales definidos en espacios de Ba-
nach que reciben el nombre de ecuaciones generalizadas de Hammerstein.

En particular, estudiamos la existencia y multiplicidad de puntos fijos del siguien-
te operador integral

T
Tu(t) =X /0 k(t,s) f(s,u(s),u/(s),...,u™(s))ds, tel,

donde A > 0 es un pardmetro positivo, k : I x I — R es una funcién nicleo que
verificard ciertas propiedades, m un entero positivo y f : I x R+ — [0, +00) es
una funcién L*-Carathéodory.

Este capitulo generaliza varios resultados presentes en la literatura al pedir con-
diciones menos restrictivas de lo habitual sobre el nicleo.

En concreto, se pedird que el ndcleo y algunas de sus derivadas (no necesaria-
mente todas) sean positivos Unicamente en un subintervalo de I. Este subintervalo
podria incluso llegar a ser degenerado, es decir, podria tratarse de un tinico punto.

Por otra parte, buscaremos nucleos para los cuales algunas de sus derivadas (de
nuevo, no necesariamente todas) satisfagan las siguientes desigualdades:

Ik

%(t, s)| < ¢;(s) paratodot € [¢;,dj]yc.t.p.s € I,
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Ik

%(t, s) > & ¢j(s) paratodot € [aj,b;]yc.t.p.s € I,
siendo ¢; funciones integrables y &; constantes. Cabe comentar que los intervalos
[aj, b;] y [¢j,d;] deben tener interseccién no vacia pero podrian ser distintos e, inclu-
s0, no comparables.

Bajo diversas hipétesis (véanse (H1)—(H7) en la Seccién 6.2), podemos demos-

trar entonces la existencia de puntos fijos del operador integral considerado en el
cono

we C™(I,R): D) >0, te[mini, i€ o

K = ' |
m uDE) >N DN 1 e T
tGI[ral;%j]u ( ) = 5] Hu H[c],d]}a J 1
donde | |
HU(])H[cj,dj] ‘= méx ‘U(J)(t”’

te[Cj ,dj]

J={0,1,...,m}yJi1 C Jy C J,J; # &.Este tipo de conos, hasta donde la autora
tiene conocimiento, es nuevo en la literatura.

En cuanto a las técnicas para demostrar la existencia de puntos fijos, se utilizan
dos diferentes.

En primer lugar, en la Seccién 6.3, se prueba la existencia de un punto fijo utili-
zando el indice de punto fijo para conjuntos abiertos arbitrarios (algunos de los cuales
son no acotados).

Por otra parte, en la Seccién 6.4 se dan resultados de existencia y multiplicidad
de soluciones. Estos resultados se basan también en el indice de punto fijo, esta vez
sobre conjuntos abiertos y acotados.

La diferencia principal entre ambas secciones es que las hipétesis que se le piden
alano linealidad f son diferentes y, de hecho, en la Seccién 6.5 se muestran ejemplos
en los que se ve que ambos métodos no son comparables.

A continuacién, la Seccién 6.6 presenta una aplicacién de los resultados previos
para garantizar la existencia de solucién de problemas de Dirichlet de orden par arbi-
trario

W@ (t) = £ (Lult),..., V@), te o],
u®P0) =u®¥ (1) =0, k=0,...,n—1.

Este estudio generaliza los existentes en la literatura puesto que en este tipo de pro-
blemas se suele considerar que la funcién f depende unicamente de las derivadas
de orden par, mientras que en este capitulo se admite la dependencia de cualquier
derivada hasta orden 2n — 1.
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Finalmente, la Seccién 6.7 considera el caso particular del siguiente problema
diferencial de orden tres

{ - u(s)(t) = A f(t, u(t), u/(t>v u”(t))a t €[0,1],
u(0) ='(0) =0, /(1) =au'(n),

siendo0<n<lyl<a< = 0 L constantes dadas.
Los resultados de este capitulo se pueden encontrar en [32] y [102].

Capitulo 7: Problemas Multipunto Resonantes en la Semi-
rrecta

En este capitulo consideraremos por primera vez un problema definido en un
dominio no acotado.

En particular, probaremos la existencia de soluciones acotadas para el siguiente
problema multipunto

u’(t) = f(t,u(t),v'(t), ¢ E€0,00),
m—1
(0) - 0 u Z a; U gz

siendoa; >0y 0 =¢& <--- < &n1 < +00. Asumiremos que los coeficientes ¢;
cumplen la siguiente condicion

la cual implica que nos encontramos ante un problema resonante.

Para resolver este problema consideraremos otro modificado (el cual se construird
afladiendo nuevos términos a ambos lados de la ecuacién) que serd equivalente al pri-
mero y no resonante. Este problema modificado lo transformaremos en un problema
integral cuyos puntos fijos se corresponderan con las soluciones del problema inicial.
En concreto, el problema integral con el que trabajaremos sera

= / G(t,s) (f(s, u(s),u'(s)) + ku'(s) + Mu(s)) ds,
0
donde G es la funcién de Green del problema

u’(t) + ku'(t) + Mu(t) =0, te€l0,00),

(0)_0 u Zal fz
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y k'y M son dos constantes positivas que cumplen ciertas condiciones.

Ademas, el problema modificado satisfara otra propiedad importante: su funcién
de Green estard en el espacio L![0, 00) N L>°[0, 0o). Esto permitira que el operador
integral sea compacto tanto si la no linealidad f satisface las condiciones L' o L>°-
Carathéodory. Nétese que este hecho permite garantizar la existencia de solucién
para un mayor nimero de casos puesto que, al estar considerando en este capitulo un
intervalo no acotado, los espacios L![0, o0) y L°°[0, c0) no son comparables.

Para probar la existencia de puntos fijos del operador integral utilizaremos el
método de sub y sobresoluciones. En particular, para demostrar que el operador inte-
gral es compacto utilizaremos el criterio de compacidad dado en el Theorem 1, que
involucra una cierta condicidon de equiconvergencia en infinito.

Los resultados de este capitulo se recogen en [103].

Capitulo 8: Existencia de Soluciones de Ecuaciones Integra-
les con Condiciones Asintoticas

En este capitulo estudiamos los puntos fijos de un operador integral definido sobre
la recta real.

En general, la mayor dificultad cuando se intenta probar la existencia de puntos
fijos de operadores integrales definidos en intervalos no acotados surge al demostrar
que el operador considerado es compacto. Estos problemas se deben principalmente
a la imposibilidad de utilizar el Teorema de Ascoli-Arzela para probar la compacidad
del operador.

La forma mads habitual de resolver este problema consiste en utilizar un cierto
criterio de compacidad (el cual hemos utilizado, precisamente, en el Capitulo 7), que
se recoge en el Theorem 1, en la pagina 181.

En este capitulo presentamos un método alternativo que tendrd un doble bene-
ficio: por una parte, nos permitird utilizar el Teorema de Ascoli-Arzela para probar
la compacidad del operador. Por otra, nos garantizard que las soluciones encontradas
tienen un cierto comportamiento asintético.

Para ello, definimos un espacio de Banach que incluya esas propiedades asint6ti-
cas. En particular, para n € N, consideramos el espacio de las funciones reales de
variable real que son de clase n y tienen limite en +oc:

C"(R,R) := {f:]R{—HR: flr €C"(R,R), 3 lim f(j)(t)eR,j—O,...,n},

siendo R = [—00, o0]. Se tiene que C"(R, R), n € N es un espacio de Banach con la
norma

1l = sup { [ £9 . - k=0,....n}.
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Entonces, dada una funcién ¢ € C"(R,R™), definimos el espacio de las -
extensiones de clase n a infinito como sigue:

Cp=CHRR) = {f €C"®RR) : If€C"RR), f= ¢ fl}.
En particular, este espacio es de Banach con la norma inducida
1Fle = 1Pl £ €Con

de donde se deduce que los espacios C"*(R,R) y C~Z son isomorfos.

De Ia existencia de dicho isomorfismo se deduce que, puesto que el Teorema de
Ascoli-Arzela se puede aplicar al espacio C"(R, R) (por ser R compacto), entonces
este teorema se puede aplicar también al espacio 5;

Buscaremos pues puntos fijos de operadores integrales de la forma

[ee]

Tu) =p(0) + [ K(tos)n(s) f(s,u(s))d s
—00

en el espacio de Banach cr, para una cierta funcién ¢ que representard precisamente

el comportamiento asintético de las soluciones. Dicho de otro modo, que los puntos

fijos del operador se encuentren en el espacio 52 implicard que tales funciones se

comporten asintéticamente de forma similar a ¢.

En cuanto al método empleado para garantizar la existencia de puntos fijos, consi-
deramos en este capitulo dos aproximaciones diferentes: la primera de ellas, desarro-
llada en la Seccién 8.4 se basa en el indice de punto fijo en conos y presenta hipdtesis
bastante restrictivas sobre la funcién no lineal f.

Por otra parte, la segunda aproximacidn, analizada en la Seccién 8.5, se basa en
definir una serie de operadores lineales auxiliares y estudiar sus propiedades espectra-
les. En particular, si el radio espectral de estos operadores y ciertos limites obtenidos
a partir de la funcion no lineal f satisfacen ciertas propiedades, serd posible probar
la existencia de puntos fijos. En este caso, las restricciones sobre la funcién f son
mucho menos restrictivas que las impuestas por el método anterior, pero a expensas
de pedir que el nicleo £ satisfaga condiciones mas fuertes.

Tal y como se muestra en el capitulo con ejemplos de los dos métodos, estos son
no comparables.

Todos estos resultados se pueden ver en [33] y [34].

Capitulo 9: Soluciones no Acotadas de Problemas de Valores

Iniciales Singulares con ¢-Laplaciano

En este dltimo capitulo se estudia un problema de valor inicial singular con ¢-
Laplaciano, prestando especial interés a la existencia de soluciones no acotadas del
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mismo.

En este caso, al tratarse de un problema singular, no es posible construir un pro-
blema integral equivalente, tal y como se hace en los capitulos anteriores. Conse-
cuentemente, las técnicas utilizadas en este capitulo difieren totalmente de las de
consideradas hasta el momento.

En particular, consideraremos el siguiente problema no lineal:

(p(t) p(' (1)) + p(t) f(d(u(t)) =0, ¢>0,
u(()) = Ug, ’U,I(O) =0, wugé€ [L(),L].

Comenzamos el capitulo definiendo tres tipos de soluciones posibles que pode-
mos obtener. Asi, si denotamos

Usup = sup{u(t): t € [0,00)},
diremos que
= Una solucién u del problema es “oscilante” (damped) si ug,p < L.

s Una solucién u del problema es homoclinica si g, = L.

= Una solucién u del problema serd “de escape” si ugyp > L.

Puesto que tanto las soluciones oscilantes como las homoclinicas estdn acotadas,
las soluciones no acotadas serdn un subconjunto de las de escape. Esto motiva la
division del capitulo en dos partes:

1. Busqueda de condiciones para garantizar la existencia de soluciones de escape.

2. Busqueda de condiciones necesarias o suficientes para garantizar que una solu-
cién de escape es no acotada.

Ademas, para la busqueda de condiciones que aseguren la existencia de solu-
ciones de escape tendremos que considerar dos casos diferenciados: el primero de
ellos, en el que tanto f como ¢! son funciones lipschitzianas, resulta bastante mas
sencillo puesto que en estas condiciones la unicidad de solucién del problema esta
garantizada.

Por el contrario, el segundo caso (con f y ¢! no lipschitzianas), presenta una
serie de complicaciones derivadas de la no unicidad de solucién. Para solventar estos
problemas se considera el método de sub y sobresoluciones.

Estos dos casos presentan ademads otra diferencia importante en cuanto a los resul-
tados obtenidos: mientras que en el primero se garantiza la existencia de una sucesion
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de soluciones de escape que toman diferentes valores iniciales, en el segundo podria
ocurrir que todas las soluciones tuvieran el mismo valor inicial L.

Finalmente, en la dltima seccidén del capitulo se recopilan todos los resultados
obtenidos y se enuncian explicitamente una serie de condiciones suficientes que ase-
guran la existencia de soluciones no acotadas del problema. Diversos ejemplos mues-
tran que todos estos resultados son no comparables.

Todos los resultados de este capitulo se pueden ver en [131].
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