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Alkyne tethered benzamides undergo rhodium(III)-catalyzed intramolecular annulations to give tricyclic 
isoquinoline derivatives in good yields. DFT calculations suggest that the reaction mechanism involves a 
migratory insertion of the alkyne into the rhodium-nitrogen bond of the rhodacycle intermediate that 
results from the initial C-H activation. This contrasts with the pathway proposed for intermolecular cases, 
which considers an insertion into the rhodium-carbon instead of the rhodium-nitrogen bond. The 10 

annulation is also effective with acrylamides; and, while anilides fail to participate in the process, 
napthylamides do undergo the intramolecular annulation, albeit the chemoselectivity is different than for 
the intermolecular reactions. 

Introduction 

In recent years there has been a burst on the development of 15 

synthetic transformations relying on transition-metal catalyzed C-
H bond activation processes.1 These reactions are particularly 
appealing in terms of simplicity and atom economy, as they can 
be directly performed on readily available, non-activated 
precursors. Although most transformations so far developed 20 

consist of cross-coupling reactions,2 there have been an 
increasing number of reports on C-H activation/annulation 
processes.3 These strategies represent a powerful alternative to 
classical cycloadditions of unsaturated substrates.4 In this regard, 
it has been shown that benzamides participate in formal 25 

intermolecular (4+2) annulations with different alkynes when 
treated with Rh(III)5 or Ru(II)6 catalysts in the presence of 
external oxidants. Mechanistically, these annulations have been 
explained in terms of an initial N-H/C-H activation to generate 
intermediate I, followed by carbometallation leading to the 30 

seven-membered intermediate II, which upon reductive 
elimination yields the isoquinolone products (Scheme 1).7  Using 
N-alkoxybenzamides the external oxidant is not needed.8 

Scheme 1 Mechanistic proposal for intermolecular reactions of 
benzamides and alkynes. 35 

 

As in classical cycloadditions, it would be highly desirable to add 
the bonus of intramolecularity to this C-H activation/annulation 
process. This could be readily achieved by tethering the alkyne 
component to the nitrogen of the amide (Figure 1). The 40 

annulation of the resulting substrates would allow a direct 
assembly of interesting tricyclic isoquinolines, a type of skeletons 
which form the basic core of a large variety of natural products. 

Figure 1 Some examples of natural products with a tricyclic 
isoquinoline core. 45 

Although translation of the benzamide annulation chemistry to 
intramolecular cases might appear obvious, a quick inspection of 
the hypothetical reaction mechanism raises serious doubts on the 
viability of the reaction, as it would require the generation of 
strained bridged systems like III (Figure 2). Alternatively, and 50 

although it has not been generally considered in intermolecular 
cases,6c the reaction might involve a migratory insertion of the 
alkyne into the rhodium-nitrogen instead of the rhodium-carbon 
bond of the rhodacycle, leading to the intermediate IV. Given this 
mechanistic uncertainty, and considering the synthetic relevance 55 

and methodological novelty of the intramolecular processes, we 
decided to explore the Rh-catalyzed cycloaddition of N-
alkynylbenzamides. 
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Figure 2 Two plausible intermediates resulting from a metal-
carbon or a metal-nitrogen migratory insertion. 

While our research was ongoing, Park and coworkers reported the 
reaction of substrates 3, in which the alkyne is connected to the 5 

amide through an N-O linker (Scheme 2).9 The process can be 
considered intramolecular, however the N-O bond is cleaved 
during the reaction, and therefore the preparation of tricyclic 
isoquinoline products requires additional steps. In consonance 
with previous mechanistic hypothesis for the intermolecular 10 

cases, the authors suggest that the annulation involves a 
carbometallation step to give Rh-bridged intermediates of type 
III. 

Scheme 2 Annulation of benzamides reported by Park. 

Herein we demonstrate that benzamides (and acrylamides)10 15 

equipped with carbon-tethered alkynes undergo the 
intramolecular cycloaddition in good yields. We present DFT 
studies that support a reaction mechanism involving the 
formation of intermediates of type IV over the alternative bridged 
systems III.  We also demonstrate that a similar tethering of the 20 

alkynes to anilides or naphtanilides provide different outcomes 
than in the intermolecular reactions.  

Results and discussion 

Initially we studied the reaction of substrate 1a with [*CpRhCl2]2 
under different conditions. As shown in the Table 1, heating a 25 

mixture of 1a with this catalyst and Cu(OAc)2, at 110 ºC in 
toluene, leads to the desired tricyclic product 2a.  

Table 1 Screening of the reaction conditions.a 

The reaction is more efficient when t-AmOH is used as solvent, 
which allowed to obtain 2a in 98% of yield (entry 2). Other 30 

solvents such as DMF or acetone were less effective, leading to 
lower yields of the products. Curiously, cationic catalysts 
[RhCp*(MeCN)3](SbF6)2

10b or [CpRhCl2]2/AgSbF6
5b which had 

been reported to work in intermolecular cases, failed to give the 
cycloadducts (entries 5 and 6).  We also checked the performance 35 

of other metals; thus, whereas [Ru(p-cymene)Cl2]2 works, 
although not full conversion is achieved with 2.5 mol% of the 
catalyst (entry 7), an analogous iridium complex [*CpIrCl2]2 led 
to poor conversions (entry 8). We also tested Pd(OAc)2 in 
combination with p-TsOH, but in this case we recovered the 40 

starting material (entry 9). 
With the optimized conditions in hand, we next examined the 
scope of the reaction with other substrates (Table 2). 

Table 2 Scope of the intramolecular cycloaddition of benzamides 
or acrylamides and alkynes.a,b 

45 

As shown in the table, the reaction tolerates electronically distinct 
substituents in the aryl moiety of the benzamide; therefore good 
yields could be obtained with either electron-rich (1b) or electron 
poor substituents such as trifluoromethyl (1c). The reaction is 
compatible with the presence of bromide atoms in the benzene 50 

ring, leading to products (2d) amenable for subsequent 
modifications.  

 
 
 
 

Entry Catalyst Oxidant Solvent Yieldb 

1 [*CpRhCl2]2 Cu(OAc)2 Toluene 57 
2 [*CpRhCl2]2 Cu(OAc)2 t-AmOH 98 
3 [*CpRhCl2]2 Cu(OAc)2 acetone 35 
4 [*CpRhCl2]2 Cu(OAc)2 DMF 58 
5 [*CpRh(CH3CN)3](SbF6)2 Cu(OAc)2 t-AmOH -c 
6 [*CpRhCl2]2/AgSbF6 Cu(OAc)2 t-AmOH - c 
7 [Ru(p-cymene)Cl2]2 Cu(OAc)2 t-AmOH 50 

8 [*CpIrCl2]2 Cu(OAc)2 t-AmOH 23 
9 Pd(OAc)2 Benzoquinone  t-AmOHd -e 

a Reaction conditions: 1a (0.25 mmol), catalyst (2.5 mol%), oxidant (0.5
mmol), solvent (2.0 mL), 110 ºC, 12 h. b isolated yield.  c Complex mixture
of products. d 0.15 equiv. of p-TsOH·H2O were added. e The starting
material was mostly recovered. 

 

  

  

  

  

  

a Reaction conditions: 1 (0.25 mmol), catalyst (2.5 mol%), Cu(OAc)2

(0.5 mmol), t-AmOH (2.0 mL), 110 ºC. b Isolated  yields. c The 
starting material was  mostly recovered. d 1.2 equiv. of CsOAc were
added.  
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Figure 3 Mechanistic pathways investigated by DFT calculations 
for standard substrate 1a.   

We also tested the reaction in substrates containing a methyl (1e) 
or methoxy (1f) group in the meta position of the phenyl ring. 
Both gave good yields of the cycloadducts, but while the reaction 5 

of 1e was totally selective to give 2e, the methoxy derivative led 
to a mixture of regioisomers. Napthylbenzamides are also 
productive substrates, leading to interesting tetracyclic adducts 
like 2g (82% yield).   
Substrates featuring a longer carbon tether between the 10 

benzamide and the alkyne also participate in the cycloaddition, 
leading to products containing either a six- (2h, 67% yield) or a 
seven-membered ring (2i, 62% yield). 
The cycloaddition also tolerates a great variety of groups in the 
phenyl substituent of the alkyne, including electron donating 15 

moieties, like methyls, methoxy, or naphtyls (1j-1n), or electron 
withdrawing substitutions like trifluoromethyl (1o). Finally, 
although substrates bearing a terminal alkyne led to recovery of 
most of the starting material (1p), the reaction works efficiently 
with alkyl substituted alkynes, as shown for the case of 1q (65%). 20 

Interestingly, we also found that the cycloaddition also works 
with several alkyne-tethered acrylamides, to produce interesting 
indolizinones 2r-t in good yields. In this case, the reaction was 
more efficient when carried out in presence of 1.2 equiv. of 
CsOAc.11 25 

The above results confirm that the Rh(III)-catalyzed 
intramolecular annulation of N-alkynyl tethered benzamides is 
not only viable, but a quite robust and synthetically attractive 
reaction. The quest on whether the reaction proceeds through a 
N- or a C-metallation step was now in the air (Figure 2). In order 30 

to shed light into this issue, we decided to do a computational 
study of the reaction mechanism using DFT calculations,12 and 
compare the activation energies required to make intermediates of 
type III or IV. Therefore we  
The study was accomplished using Cp*Rh(OAc)2 as active 35 

catalytic species, which would be presumably formed by 
dissociation of the rhodium dimer precatalyst into a 
coordinatively unsaturated monomer, followed by ligand 
exchange with acetates.13 Therefore, the catalytic cycle starts 
when Cp*Rh(OAc)2 coordinates to the starting material 1a, with 40 

concomitant loss of acetic acid (Figure 3). Next, a C-H bond 
cleavage would occur via a concerted metallation-deprotonation 
(CMD) transition state (TS1), leading to intermediate B, in which 
acetic acid is still bound to rhodium.14 CMD TS1 exhibits a 
relative Gibbs free energy of 35.6 kcal·mol-1, and structural 45 

features very similar to those reported for similar processes in 
intermolecular reactions (the C-H and O-H distances for the 
proton transfer are 1.33 and 1.31 Å, respectively, and the Rh-C 
distance is 2.22 Å).7b At this point, dissociation of the acetic acid 
ligand and coordination of the alkyne to Rh(III) gives 50 

intermediate C,15 which could now evolve either through a C- or 
N-metallation step. The first possibility, which is usually invoked 
in the intermolecular cases, involves insertion of the alkyne in the 
Rh-C bond to give intermediate D1, and occurs via TS2 (pathway 
1, in red, Gibbs energy: 39.2 kcal mol-1). Reductive elimination 55 

via TS3 (ΔG: 29.8 kcal·mol-1) delivers the products and a Rh(I) 
complex. It is interesting to note that the C-Rh-N angle in D1 
(76.5º) is not very different to that in C (79.3º) or TS2 (74.2º), 
which suggests a relatively comfortable transformation despite 
the generation of a presumably tense bridged system. This tension 60 

seems to be responsible of the relatively low barrier for the 
ensuing reductive elimination.  
Importantly, the pathway involving an N-metallation via TS4 to 
give intermediate D2 (pathway 2, in blue), is 2.8 kcal·mol-1 less 
costly than the above route via TS2. The distances of the bonds 65 

being broken and formed in TS4 are relatively large (Rh-N: 2.148 
Å, and N-alkyne: 2.127 Å, respectively), suggesting an early TS. 
The reductive elimination steps, either through TS3 or TS5, lead 
to the product and Rh(I) which is subsequently reoxidated to 
Rh(III) by Cu(OAc)2.  70 
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We have also calculated the potential energy surface for a 
substrate containing one additional methylene group between the 
amide and the alkyne. The resulting computational data indicate 
that there is a drop in the energies of the migratory insertion step, 
but the insertion of the alkyne into de N-Rh bond is still favoured 5 

by 1.8 kcal·mol-1 (see the supporting information).  
All the above calculations suggest that, as might be expected, the 
formation of a Rh-bridged structure is penalized, and pathway 2, 
is slightly more favourable. This might be also the case in the 
annulation reaction described by Park and coworkers (scheme 2).  10 

Consistent with the computational results, which suggest that the 
C-H cleavage is a turnover limiting step, we found a noticeably 
deuterium kinetic isotope effect (DKIE: 2.5), as deduced from the 
comparison of initial rates for the reaction of precursors 1a and 
1a-D5 (scheme 3).  15 

Scheme 3 DKIE measurements 

 Since the above computational data suggest that the migratory 
insertion of the alkyne onto the Rh-N is preferred over the 
carbometallation process, we were curious to know the viability 
of a similar pathway for the intermolecular cases. We therefore 20 

carried out similar DFT calculations, which indicated that the N-
metallation is slightly more costly, but the differences in 
activation barriers are not high enough to fully discard this 
pathway (figure 4). 

Figure 4 Relative energy values of the migratory insertion 25 

pathways for the intermolecular reaction. 

Intermolecular metal-catalysed annulations to alkynes relying on 
C-H activation processes have also been studied with anilides 
instead of benzamides. In this case the process formally consists 
of a (3+2) cycloaddition, and leads to indole skeletons (equation 30 

1, scheme 4).16 Hypothetically, this reaction might also be 
implemented in an intramolecular manner by using N-tethered 
alkynes. However, treatment of substrate 5 with [RhCp*Cl2]2 
/AgSbF6, conditions previously used in intermolecular cases, led 
to decomposition of the starting material (equation 2, scheme 35 

4).17 Although at a first sight this could appear surprising, the 
lack of reactivity can be explained by invoking the formation of a 

death intermediate V, in which the alkyne is not able to 
coordinate appropriately to the metal for geometrical reasons, and 
therefore cannot undergo the required migratory insertion.18 40 

Interestingly, in the case of napthanilide 6 (equation 3), the 
annulation reaction does take place, but not to give the indole 
product, but an alternative adduct (7), formally arising from a 
(4+2) annulation. The formation of this product can be easily 
explained through the formation of metallacycle intermediate VI, 45 

which in this case is geometrically accessible.  

Scheme 4 C-H/N-H activation/cycloaddition of acetanylides and 
naphtylamides. 

These examples with anilides confirm that translating 
intermolecular annulations based on C-H activation protocols to 50 

the intramolecular arena is not as straight as in the case of 
standard metal-catalyzed cycloadditions involving -unsaturated 
substrates. 

Conclusions 

In summary, we have demonstrated that benzamides or 55 

acrylamides bearing N-tethered alkynes undergo rhodium(III)-
catalyzed intramolecular annulations to produce interesting 
polycyclic isoquinolones or indolizinones in a straightforward 
manner. DFT calculations suggest that the migratory insertion of 
the alkyne into rhodacycle resulting from the initial CH-60 

activation step takes place into the Rh-N instead of the Rh-C 
bond. We have also found that while anilides do not react, 
napthylamides undergo a formal (4+2) cycloaddition to amide 
tethered alkynes. 
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