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Abstract 

 

Avian reovirus non-structural protein muNS is partially cleaved in infected chicken 

embryo fibroblast cells to produce a 55-kDa carboxyterminal protein, termed muNSC, 

and a 17-kDa aminoterminal polypeptide, designated muNSN. In this study we 

demonstrate that muNS processing is catalyzed by a caspase 3-like protease activated 

during the course of avian reovirus infection. The cleavage site was mapped by site 

directed mutagenesis between residues Asp-154 and Ala-155 of the muNS sequence. 

Although muNS and muNSC, but not muNSN, are able to form inclusions when 

expressed individually in transfected cells, only muNS is able to recruit specific ARV 

proteins to these structures. Furthermore, muNSC associates with ARV factories more 

weakly than muNS, sigmaNS and lambdaA. Finally, the inhibition of caspase activity in 

ARV-infected cells does not diminish ARV gene expression and replication, but 

drastically reduces muNS processing and the release and dissemination of progeny viral 

particles. 
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Introduction 

 

Avian reoviruses (ARVs) are important pathogens that cause great economic losses 

in the poultry industry. Infection by these viruses has been associated with a variety of 

disease conditions, including viral arthritis, chronic respiratory diseases, and 

malabsorption syndrome (Jones, 2000; van der Heide, 2000). ARVs are members of the 

Orthoreovirus genus, one of the 12 genera of the Reoviridae family. They are non-

enveloped fusogenic viruses whose particles contain 10 double-stranded RNA genome 

segments enclosed within two concentric protein shells (Benavente and Martínez-

Costas, 2007). Viral genomic segments can be separated electrophoretically into three 

different size classes, named L (Large; three segments), M (Medium; three segments) 

and S (Small; four segments). The ARV genome expresses at least 8 structural and four 

non-structural proteins (Bodelón et al., 2001), but the protein repertoire of ARV is 

increased to at least 12 structural proteins and six non-structural proteins by post-

translational cleavage of some viral proteins (Busch et al., 2011; Ji et al., 2010; Varela 

et al., 1996).  

Genome replication and assembly of ARVs takes place in distinctive cytoplasmic 

globular inclusions called viral factories where viral components concentrate to increase 

the efficiency of these processes (Benavente and Martinez-Costas; 2006; Tourís-Otero 

et al., 2004a). The framework of the factories is thought to be formed by the non-

structural muNS protein, because it is the only viral protein that accumulates in factory-

like inclusions when expressed individually in transfected cells (Touris-Otero et al., 

2004b). Furthermore, the fact that viral core protein lambdaA and the non-structural 

protein sigmaNS redistribute to inclusions when individually co-expressed with muNS 
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in transfected cells, suggests that muNS is able to recruit these proteins to viral factories 

of infected cells (Tourís-Otero et al., 2004a). 

Similar to many other viruses, ARVs induce apoptotic cell death of infected cells, 

and the activation of the intracellular apoptotic program takes place during an early 

stage of the ARV life cycle (Labrada et al., 2002). Apoptosis is triggered by ARV in the 

absence of viral gene expression, but is no longer induced when intracellular viral 

uncoating is blocked, suggesting both that apoptosis does not depend on viral protein 

synthesis and that it is triggered from within the infected cell by viral products 

generated after intraendosomal uncoating of parental reovirions (Labrada et al., 2002). 

A previous report revealed that the M3 gene of ARV expresses three muNS isoforms in 

infected cells and that the two smaller isoforms originate by a specific post-translational 

cleavage near the amino terminus of muNS. This cleavage produces a 55-kDa 

carboxyterminal protein, termed muNSC, and a complementary 17-kDa aminoterminal 

polypeptide, designated muNSN. Cleavage of muNS occurs with ~30% efficiency, so 

precursor muNS and its cleavage products are all present in ARV-infected cells (Busch 

et al., 2011). In this study we show that muNS processing is indirectly promoted by 

ARV infection through activation of an effector caspase that cleaves muNS between 

amino acid residues 154 and 155. 

  



5 
 

Results 

Cleavage of ARV muNS is promoted by ARV infection  

 

We have previously shown that ARV muNS is cleaved in ARV-infected cells to 

produce the aminoterminal peptide muNSN and the carboxyterminal protein muNSC 

(Busch, et al., 2011). To assess whether muNS cleavage is promoted by avian reovirus 

proteins and/or by changes induced in the host during infection, we compared muNS-to-

muNSC conversion in ARV-infected cells with that in transfected cells and in insect 

cells infected with a muNS-expressing recombinant baculovirus (Fig. 1A). For this, 

extracts from CEF monolayers either mock-infected (lane 1) or infected with ARV 

S1133 (lane 2), from CEF monolayers transfected with either empty pCINeo plasmid 

(lane 3) or pCINeo-muNS plasmid (lane 4), and from Sf9 cells infected with either 

wild-type baculovirus (lane 5) or recombinant baculovirus AcNPV-S1133-muNS (lane 

6), were subjected to immunoprecipitation (upper panel) and immunoblot (lower panel) 

analysis. The results revealed that while a significant amount of muNSC was generated 

in ARV-infected cells (its position is marked with an asterisk at the left of lane 2), this 

protein was hardly detected in transfected cells (lane 4) or in insect cells infected with a 

muNS-expressing recombinant baculovirus (lane 6). These data strongly suggest that 

intracellular processing of muNS is promoted by ARV infection.  

Two additional experiments were subsequently performed to confirm this suggestion. 

In the first one, a plasmid expressing GFP fused to the amino terminus of muNS (GFP-

muNS) was lipofected into CEF monolayers and 10 h later the monolayers were mock-

infected or infected with ARV S1133 for 16 h. Extracts from these cells were analyzed 

by Western blotting using antibodies specific for both muNS and GFP. The results 

shown in Fig. 1B revealed that while cleavage products derived from GFP-muNS were 
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not detected in mock-infected cells (lanes 1 and 3), a ~45-kDa polypeptide that was 

recognized by antibodies against both GFP and muNS was present in ARV-infected 

cells (lanes 2 and 4). Its electrophoretic mobility and its capacity to interact with the two 

antibodies suggest that this polypeptide is GFP-muNSN. In the second confirmation 

experiment (Fig. 1C), 35S-labeled in-vitro-generated muNS (lane 2) was incubated with 

extracts obtained from either mock-infected cells (lane 3) or ARV-infected cells (lane 

4), and the resulting samples, as well as radiolabeled extracts from ARV-infected CEF 

that had been immunoprecipitated against muNS (lane 1), were analyzed by SDS-PAGE 

and autoradiography. The results revealed that muNS-to-muNSC conversion took place 

in the sample incubated with extracts from ARV-infected cells (lane 4), but not in the 

one incubated with extracts from mock-infected cells (lane 3). Taken together, these 

results indicate that muNS cleavage is promoted by ARV infection. 

 

 

ARV-triggered apoptosis causes muNS processing  

 

The muNS protein expressed by three different ARV isolates is processed to a 

similar extent in infected CEF cells (Fig. 1D, lanes 2-4), indicating that muNS 

processing is not a unique property of the ARV S1133 isolate, but a more general 

property of ARVs. To assess whether muNS cleavage is influenced by cell-type specific 

factors we examined muNS-to-muNSC conversion in cells other than CEF. The results 

revealed that partial cleavage of ARV muNS also takes place in ARV-infected monkey 

Vero cells (Fig. 1D, lane 5) and in human HeLa cells (Fig. 5A, lane 2). Surprisingly, the 

load of muNSC was highly reduced following infection with ARV S1133 of the CEF-
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derived avian cell line DF-1 (Fig. 1D, lane 6), suggesting that muNS processing is 

controlled by cell factors. 

The immortal DF-1 cell line was established spontaneously from Line 0 endogenous-

virus negative embryos and has been widely used for the propagation of various avian 

viruses (Bacon et al., 2000). A genome-wide transcription profile of DF-1 cells and a 

comparison of their global gene expression with that of primary CEF revealed that DF-1 

cells are characterized by enhanced molecular mechanisms for cell cycle progression 

and proliferation, suppressing cell death pathways, downregulation of caspase 3, altered 

cellular morphogenesis, and accelerated capacity for molecule transport (Kong et al., 

2011). The observation that reduced caspase activity of DF1 cells is accompanied by 

diminished muNS processing when ARV infects these cells raise the interesting 

possibility that caspase activation and muNS cleavage are interlinked events. This 

hypothesis is reinforced by our finding that muNS is not processed when expressed in 

baculovirus-infected cells (Fig. 1A), probably because baculoviruses express anti-

apoptotic factors that prevent caspase activation (Clem, 2007; Clem et al., 1991), 

although this awaits experimental confirmation. To explore whether there was a 

connection between caspase activity and muNS processing we first investigated the 

effect that two broad-spectrum caspase inhibitors, Z-VAD-FMK and Q-VD-OPh, exert 

on these processes when added to ARV-infected cells at the onset of the infection. The 

effect of these inhibitors on the apoptotic state of infected cells was monitored by two 

different approaches. In the first one, we used immunofluorescence analysis of histone 

H2AX phosphorylation to determine the percentage of cells containing damaged DNA 

(Cook et al., 2009; Yuan et al., 2010). For this, the cells were fixed, stained with a 

monoclonal antibody against phosphorylated H2AX and counterstained with DAPI. 

Polyclonal antiserum against the nonstructural muNS protein was also used to visualize 
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ARV-infected cells (Fig. 2A). Quantification of the stained cells revealed that, similar to 

staurosporine treatment (lane 5), ARV infection caused a 10 fold increase in the 

percentage of cells containing phosphorylated H2AX (compare lanes 1 and 4). 

However, this increase was highly attenuated when the infected cells were incubated in 

the presence of either of the two caspase inhibitors (lanes 2 and 3). In the second 

approach, we used the luminiscent Caspase-Glo 3/7 Assay kit (Promega) for measuring 

caspase-3/7 activities. The cells were lysed in Caspase-Glo 3/7 substrate and protease 

activity was measured as relative light units (RLU). The results shown at the bottom of 

Fig. 2B indicated that infection of CEF cells with ARV induced a 10 fold increase in 

caspase activity, but this increase was significantly reduced when the infected cells were 

incubated in the presence of either of the two pancaspase inhibitors.  

Once demonstrated that the two inhibitors were highly efficient in preventing ARV-

induced caspase activation, we next examined their capacity to prevent muNS 

processing in ARV-infected cells. Both immunoblotting and immunoprecipitation 

analysis of extracts from ARV-infected CEF revealed that muNS-to-muNSC conversion 

was dramatically reduced when the cells were incubated in the presence of either of the 

two inhibitors (Fig. 2C, compare lane 1 with lanes 2 and 3). In subsequent experiments 

we exclusively used the inhibitor Q-VD-OPh because it blocks apoptosis at very low 

nontoxic concentrations, and also because it inhibits caspase activity, but not cathepsin 

activity (Caserta et al., 2003; Kuželová et al., 2011). The results shown in Fig. 2D 

revealed that the ability of Q-VD-OPh to inhibit both apoptosis and muNS processing in 

ARV-infected CEF was dose-dependent, and further showed that the load of muNSC 

was drastically reduced at a Q-VD-OPh concentration as low as 5 M. A time course of 

muNS processing and caspase activation performed in ARV-infected cells in the 

presence or absence of Q-VD-OPh (Fig. 2E) revealed that even though the presence of 



9 
 

muNS was first detected at 3 hpi, muNSC was not detected until 6 hpi, coinciding with 

a large increase in caspase 3/7 activity. Furthermore, both muNS processing and an 

increase in caspase activity were not observed when Q-VD-OPh was present during the 

infection (Fig. 2E, +Q). Taken together, these results strongly suggest that there is a 

correlation between ARV-induced apoptosis and muNS processing.  

To confirm this suggestion additional experiments were performed. We first 

observed that the capacity of extracts of ARV-infected cells to cleave in-vitro-

synthesized muNS was largely abolished when the infected cells were incubated in the 

presence of Q-VD-OPh (Fig. 3A, compare lanes 1 and 2). Additionally, the reduced 

ability of ARV to induce muNS processing in DF-1 cells was significantly enhanced 

when the cells were incubated during the last 6 h of infection with the pro-apoptotic 

agents actinomycin D and staurosporine (Fig. 3B, compare lane 1 with lanes 2 and 4), 

but the ability of these compounds to enhance muNS processing was blocked in the 

presence of the apoptotic inhibitor Q-VD-OPh (Fig. 3B, lanes 3 and 5). Finally, these 

pro-apoptotic agents were also effective in promoting muNS processing in transfected 

cells (Fig. 3C). Our findings that caspase inhibitors prevent muNS processing in ARV-

infected cells and that apoptosis enhancers promote muNS cleavage in both transfected 

cells and ARV-infected DF1 cells indicate that muNS cleavage is catalyzed by an 

effector caspase activated during ARV infection. 

 

 

Mapping the muNS cleavage site  

 

In a first attempt to map the muNS cleavage site we compared the electrophoretic 

mobility of muNSC with that of several muNS amino-terminal truncations whose 
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translation initiates at different internal methionine codons (Fig. 4A). Plasmids 

expressing these truncations (lanes 3-5) and full-length muNS (lane 2) were transfected 

into CEF and the transfected cells, as well as ARV-infected CEF (lane 1), were 

incubated with [35S]amino acids at 24 h after transfection or 16 hpi. The cells were lysed 

with RIPA buffer, the extracts immunoprecipitated with muNS-specific antiserum and 

the resulting samples analyzed by SDS-PAGE and autoradiography. The results 

revealed that muNSC migrates slightly faster than the muNS truncation 140-635, 

suggesting that the cleavage site should be located several residues downstream of Met-

140 (Fig. 4A). A similar conclusion has been recently reached when comparing the 

electrophoretic mobility of muNSC with that of in-vitro-translated muNS truncations 

(Busch et al., 2011). A survey of the deduced amino acid sequence downstream of Met-

140 for an appropriate caspase cleavage motif revealed the presence of the sequence 

151DSPD↓A155 (Fig. 4B, underlined), which is a canonical cleavage motif for caspases 3 

and 7 (DXXD↓Y; “X” indicates any amino acid; “Y” indicates G, A, T, S or N) 

(Thornberry et al., 1997; Timmer and Salvesen, 2007). To verify that this putative 

caspase recognition sequence is a bona fide cleavage site we first examined whether the 

electrophoretic mobility of muNS, muNSC and muNSN matched that of transiently 

expressed polypeptides comprising muNS residues 1-635, 155-365 and 1-154, 

respectively (Fig. 4C). ARV-infected CEF (lanes 1 and 6), as well as cells lipofected 

with empty plasmid  (lane 2) or with plasmids expressing the muNS sequences depicted 

on top of Fig. 4C (lanes 3-5), were radiolabeled with [35S]amino acids and lysed in 

RIPA buffer. The resulting extracts were immunoprecipitated with polyclonal anti-

muNS serum and the imunoprecipitated proteins resolved on an electrophoresis gel 

system (8% tricine–SDS-PAGE gel) specifically designed to resolve small peptides 

(Schägger, 2006). The results revealed that the muNS, muNSC and muNSN proteins 
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present in ARV-infected cells (Fig. 4C, lane 1) have the same electrophoretic mobility 

as the muNS-derived recombinant polypeptides comprising residues 1-635, 155-635 

and 1-154, respectively (Fig. 4C, lanes 3-5). It should be however noted that partial 

conversion of muNS to muNSC took place in transfected CEF cells when the cell 

monolayers were kept in serum-free medium for more than 5 h during lipofection (Fig. 

4C, lane 3). This is probably due to the fact that apoptosis is induced when the cells are 

incubated for long periods of time in serum-free medium (not shown).  

To confirm that muNS is cleaved after Asp-154 we next mutated this residue to Ala 

and investigated abrogation of cleavage. To rule out the possibility that a function of the 

protein other than proteolysis could be modified by the mutation, we examined the 

capacity of the D154A mutant to form inclusions and to recruit the viral proteins 

lambdaA and sigmaNS to these structures. The immunofluorescent images shown in 

Fig. 4D revealed that the single site mutant D154A maintained the ability of wild-type 

muNS to form inclusions (lane 1) and to recruit the two ARV proteins to these 

structures (compare top and bottom rows of lanes 2 and 3). These observations suggest 

that the D-to-A mutation does not significantly alter the spatial conformation and 

activity of the nonstructural viral protein. We next compared the capacity of 

staurosporine to promote processing of both wild-type muNS and its D154A mutant in 

transfected cells. The results revealed that staurosporine promoted the cleavage of wild-

type muNS, but not of the mutant D154A, in transfected cells (Fig. 4E). Similarly, 

extracts of ARV-infected CEF promoted the cleavage of wild-type muNS, but not of the 

D154A mutant (Fig. 4F). Taken together, these observations indicate that ARV muNS is 

cleaved by caspases between muNS residues Asp-154 and Ala-155. 
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muNS cleavage is catalyzed by a caspase 3-like protease  

 

The results presented so far indicated both that muNS cleavage is catalyzed by a 

caspase and that caspase 3 and/or caspase 7 are activated in ARV infected cells. Our 

observation that muNS cleavage takes place in ARV-infected cells of both avian and 

mammalian origin indicates that muNS is a substrate for avian and mammalian 

caspases. To assess the role of caspase 3 in muNS processing we compared muNS-to 

muNSC conversion in ARV-infected HeLa and MCF-7 human cells. HeLa is a caspase 

3-competent cell line, whereas MCF-7 is a breast cancer cell line that does not express a 

functional caspase 3 due to a 125 bp deletion in exon 3 of the caspase 3 gene (Jänicke, 

2009). The results of the immunoblot analysis shown in Fig. 5A revealed that muNS-to-

muNSC conversion took place in ARV-infected HeLa cells (lane 2) and that this 

conversion was prevented by the pancaspase inhibitor Q-VD-OPh (lane 3). However, 

muNS-to-muNSC conversion did not occur in ARV-infected MCF-7 cells (lane 5), even 

when these cells were treated for the last 6 h of infection with pro-apoptotic 

staurosporine (lane 6). This result suggests that caspase 3 or a protease activated by 

caspase 3 is directly involved in the cleavage of muNS.  

We next examined whether a recombinant muNS protein purified from baculovirus-

infected insect cells is a substrate for active caspases 3 and 7 of human origin available 

commercially. The samples obtained when muNS was incubated with these caspases, 

either in the presence or absence of Q-VD-OPh, as well as an extract of ARV-infected 

CEF, were subjected to Western blot analysis with muNS-specific antiserum. The 

results shown in Fig. 5B revealed that partial muNS-to-muNSC conversion occurred in 

the samples incubated with caspase 3, and that this conversion was prevented by the 

pancaspase inhibitor Q-VD-OPh. Although the result shown in lane 5 of Fig. 5B 
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appears to suggest that muNS is not a substrate for caspase 7, a faint band with the same 

electrophoretic mobility as muNSC, which disappears in the presence of Q-VD-OPh, 

was detected in some caspase 7 incubations after long exposures of the membrane (not 

shown).  

 

 

Distinctive properties of muNS isoforms  

 

We first analyzed the capacity of the three muNS isoforms to form inclusions and to 

recruit other viral proteins to these structures. The pictures shown in Fig. 6A revealed 

that both muNS and muNSC, but not muNSN, collected into globular inclusions when 

individually expressed in transfected cells. Furthermore, all muNS truncations 

containing the intercoil region (residues 477-542) including muNSC, but not HA-tagged 

muNSN, collected into inclusions when co-expressed with muNS (Brandariz-Nuñez et 

al., 2010a). However, these results should be taken with caution, since the attached tag 

could modify the properties of the proteins. On the other hand, the immunofluorescent 

images presented in Fig. 6B showed that muNS, but not muNSC, was able to recruit 

lambdaA and sigmaNS to inclusions (compare lanes 2 and 3). This result suggests that 

the portion of muNS corresponding to muNSN contains sequences required for the 

interaction with each of the two ARV proteins. 

We next examined the strength with which muNS and muNSC associate with ARV 

factories. For this we compared the capacity of a	Triton-X-100-containing buffer (TX) 

to extract muNS and muNSC from ARV-infected cells. This buffer has been previously 

used to discriminate between soluble and cytoskeleton-associated mammalian reovirus 

proteins, as well as soluble and inclusion-associated ARV proteins (Mora et al., 1987; 
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Tourís-Otero et al., 2004a). In the first approach, mock-infected (Fig. 6C, lanes 1 and 3) 

and ARV-infected CEF (Fig. 6C, lanes 2 and 4) were lysed with the Triton-X-100-

containing buffer and the extracts resolved into TX-soluble (lanes 1 and 2) and TX-

insoluble (lanes 3 and 4) fractions. The resulting samples were subjected to Western 

blot analysis with muNS-specific antiserum. The results revealed that while similar 

amounts of muNS are present in the TX-soluble and -insoluble fractions, most muNSC 

was extracted by the TX buffer. In the second approach, ARV-infected cells were 

pulsed with [35S]amino acids for 10 min, then chased in nonradioactive medium for 

different time periods, and finally fractionated into TX-soluble and -insoluble fractions. 

The samples were immunoprecipitated with muNS-specific antiserum and analyzed by 

8% tricine–SDS-PAGE and autoradiography (Fig. 6D). The results revealed that newly-

synthesized muNS and sigmaNS distributed between the two fractions, with a slightly 

higher proportion in the TX-insoluble fraction. In contrast, most muNSC and almost all 

muNSN were extracted by the TX buffer at all chasing times. The reliability of the 

extracting procedure was evidenced by the finding that the structural protein lambdaA 

coimmunoprecipitated with muNS exclusively in the TX-insoluble fraction at all 

chasing times (lanes 6-8). These findings indicate that muNS, sigmaNS and lambdaA 

associate with ARV factories more tightly than muNSC, despite that muNSC, but not 

lambdaA or sigmaNS, collects into inclusions when individually expressed in 

transfected cells.  

 

 

Effect of caspase inhibition on ARV replication and spread  
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It was of interest to determine the role that muNS processing plays on ARV 

replication. In the absence of an established reverse genetics system for ARV that would 

allow us to generate a recombinant virus that expresses an uncleavable muNS protein, 

like D154A, we examined the effect of Q-VD-OPh on ARV replication in CEF cells, 

since this compound has been shown to block both apoptosis and muNS processing. 

The Western blot shown in Fig 7A revealed that although the presence of the inhibitor 

from the onset of the infection completely blocks muNS processing, it does not 

significantly alter the intracellular concentration of the ARV nonstructural protein 

sigmaNS. This result indicates that apoptosis and muNS processing do not have 

significant effects on ARV gene expression and on stages of the virus life cycle prior to 

gene expression. Furthermore, the inhibitor did not significantly change the production 

of infective ARV particles, as determined by a virus plaque assay (Fig. 7B, total virus), 

indicating that both apoptosis and muNS processing are not required for the production 

of infective progeny in cultured cells.  

We next investigated the effect of Q-VD-OPh on ARV release by titrating the 

infectious viral particles released into the incubation medium. The results showed that 

virus release was drastically reduced when the infected cells were incubated in the 

presence of Q-VD-OPh (Fig. 7B, released virus), suggesting that ARV-induced 

apoptosis enhances dissemination of progeny reovirions from infected cells. This 

suggestion was further supported by our finding that the presence of Q-VD-OPh during 

plaque assay of an ARV stock, where the agar overlay limits virus dissemination to 

neighboring cells, caused a significant reduction in the size of the viral plaques (Fig. 

7C), suggesting that the inhibitor reduces cell-to-cell viral spread over the different 

rounds of replication, release and re-infection that occur during plaque formation. 

  



16 
 

FIGURE LEGENDS: 

 

Fig. 1. Proteolytic processing of muNS occurs in ARV-infected cells, but not in 

transfected or baculovirus-infected cells (A) CEF monolayers were either mock-

infected (lane 1) or infected with 10 PFU/cell of ARV S1133 (lane 2) for 16 h. The 

same cells were transfected with either an empty pCINeo3.1 plasmid (lane 3) or with 

pCINeo-muNS plasmid (lane 4) for 24 h. Sf9 insect cells were infected with either wild-

type baculovirus (lane 5) or with recombinant baculovirus AcNPV-S1133-muNS (lane 

6) for two days. The cells in the upper panel were incubated for 1 h with 100 Ci/ml of 

[35S]amino acids, then lysed with RIPA buffer and immunoprecipitated with muNS-

specific antiserum. An immunoblot analysis of nonradiolabeled samples is shown in the 

lower panel. (B)  CEF monolayers were transfected with GFP-muNS for 10 h and then 

mock-infected (lanes 1 and 3) or infected with 10 PFU/cell of ARV S1133 for 16 h 

(lanes 2 and 4). The cells were then lysed in RIPA buffer and analyzed by Western blot 

with polyclonal antibodies against both GFP (lanes 1 and 2) and muNS (lanes 3 and 4). 

(C)  35S-radiolabeled in-vitro-synthesized muNS (lane 2) was incubated for 2 h at 37ºC 

with extracts from mock-infected cells (lane 3) or from ARV-infected cells (lane 4). 

These samples, as well as an immunoprecipitated extract of ARV-infected CEF (lane 1), 

were analyzed by 10% SDS-PAGE and autoradiography. Positions of protein markers 

are indicated on the left, and those of nonstructural ARV proteins on the right. The 

position of the muNSC band is marked with an asterisk. (D) Western blot analysis of 

extracts from CEF monolayers either mock-infected (lane 1) or infected for 16 h with 10 

PFU/cell of the ARV isolates 1733 (lane 2), 2408 (lane 3), and S1133 (lane 4). In lane 5 

the analysis was performed with an extract of Vero cells infected for 24 h with 50 PFU 

of ARV S1133, and in lane 6 with an extract of DF-1 cells infected for 16 h with 10 



17 
 

PFU of ARV S1133. The membranes in lanes 1-4 and 6 were exposed for 5 seconds and 

the one in lane 5 for 30 seconds. 

 

Fig. 2. Effect of apoptosis inhibitors on muNS processing. (A) Effect of apoptotic 

inhibitors on DNA damage. CEF monolayers were infected with 10 PFU/cell of ARV in 

the absence (lane 1) or presence of either 100 M Z-VAD-FMK (Z; lane 2) or 10 M 

Q-VD-OPh (Q; lane 3). Mock-infected cells either untreated (lane 4) or incubated for 6 

h in the presence of 0.5 M staurosporine (lane 5) were used as control samples. The 

cells were analyzed by indirect immunofluorescence with rabbit polyclonal antibodies 

against muNS (upper row; green), with a monoclonal antibody against phosphorylated 

H2AX (middle row; red), and nuclei were stained with DAPI (lower row; blue). The 

percentage of red-stained nuclei shown at the bottom of the figure is the mean of three 

independent experiments, and 100 cells were counted for each experiment. (B) Effect of 

the same concentrations of the two apoptotic inhibitors on caspase 3/7 activity. Caspase 

activity was determined with the Caspase-Glo® 3/7 Assay kit (Promega), as described 

in the Material and Methods section, and expressed as arbitrary RLU units. Each value 

is the mean of three independent experiments. (C) Effect of the two apoptotic inhibitors 

on muNS processing in ARV-infected CEF. Processing was monitored by both 

immunoprecipitation (IP; upper panel) and Western blotting (WB; lower panel) using 

muNS-specific antiserum. The sample in lane 1 was run in the same gel, but an internal 

lane was removed.  (D) Effect of Q-VD-OPh on muNS processing and caspase 3/7 

activity. ARV-infected CEF monolayers were incubated from the onset of the infection 

with the concentrations of the pancaspase inhibitor shown on top. At 16 hpi the cells 

were lysed and the resulting extracts were assayed for caspase 3/7 activity and muNS 

processing. Processing of muNS was monitored by Western blotting with polyclonal 



18 
 

antibodies against muNS and actin. The values of caspase activity shown at the bottom 

of the figure are the mean of three independent experiments. (E) Time course of muNS 

processing and caspase 3/7 activity in ARV-infected CEF cells. CEF cell monolayers 

were infected with 10 PFU/cell of ARV, either in the absence (top blot) or presence 

(bottom blot) of 10 M Q-VD-OPh. The cells were lysed at the infection times 

indicated at the top of the figure. The extracts were subsequently processed for both 

immunoblotting and caspase 3/7 activity, as for Fig. 2D.  

 

Fig. 3. Effect of apoptosis inhibitors/enhancers on muNS processing. (A) Effect 

of Q-VD-OPh on muNS processing. 35S-radiolabeled in-vitro-synthesized muNS was 

incubated for 4 h at 37ºC with extracts from ARV-infected cells that had been incubated 

(lane 2) or not (lane 1) with 10 M Q-VD-OPh from the onset of the infection. These 

samples, as well as an extract of ARV-infected CEF immunoprecipitated against muNS 

(lane 3), were analyzed by 10% SDS-PAGE and autoradiography. (B) Effect of 

apoptotic enhancers and inhibitors on muNS processing and apoptosis in DF1 cells. DF-

1 cell monolayers were infected with 10 PFU/cell of ARV S1133. The cells in lanes 3 

and 5 were treated from the onset of the infection with 10 M Q-VD-OPh. The cells in 

lanes 2 and 3 were treated from 10 to 16 hpi with 1 g/ml actinomycin D, and in lanes 4 

and 5 with 0.5 M staurosporine. Caspase 3/7 activity, DNA damage and muNS 

processing were determined at 16 hpi as for Figs. 2A-C. (C) Effect of apoptotic 

enhancers and inhibitors on muNS processing in transfected cells. CEF monolayers 

were transfected with the pCINeo-muNS plasmid and 24 h later the cells were incubated 

for 6 h with the same compounds as for Fig. 3B. The cells were then lysed and the 

resulting extracts subjected to Western blot analysis with anti-muNS serum. The 
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positions of nonstructural viral proteins are indicated on the left and that of protein 

markers on the right. 

 

Fig. 4. Mapping the muNS cleavage site. (A) CEF monolayers were infected with 

ARV S1133 (lane 1) or lipofected with plasmids expressing muNS versions comprising 

the residues shown on top of lanes 2-5. The cells were incubated with [35S]amino acids 

for 1 h at 16 hpi  or for 2 h at 24 h after transfection, then lysed with RIPA buffer. The 

resulting extracts were immunoprecipitated with muNS-specific antiserum and the 

samples analyzed by 8% SDS-PAGE and autoradiography. The position of a non-

specific protein band in transfected cells is marked with an arrow. (B) Deduced amino 

acid sequence of the ARV S1133 muNS region comprising residues 140-177. A 

potential consensus cleavage sequence for caspase 3/7 is underlined and the putative 

cleavage site marked with an arrow. (C) CEF monolayers were infected with ARV 

S1133 (lanes 1 and 6) or transfected with empty pCINeo plasmid (lane 2) and with 

plasmids expressing muNS versions comprising the amino acid residues shown on top 

of lanes 3-5. The cells were radiolabeled with [35S]amino acids for 1 h at 16 hpi  or for 5 

h at 24 h after transfection, lysed with RIPA buffer and  the extracts 

immunoprecipitated with muNS-specific antiserum. Immunoprecipitated proteins were 

resolved on an 8% tricine-SDS-PAGE gel and protein bands visualized by 

autoradiography. (D) The D154A muNS mutant (lane 1) and the ARV proteins shown 

on top (lanes 2 and 3) were transiently expressed in CEF cells, either individually (top 

row) or in combination with D154A (bottom row). At 24 h after transfection the cells 

were subjected to immunofluorescence analysis using, as primary antibodies, polyclonal 

antiserum against muNS (lane 1), ARV cores (lane 2),and sigmaNS (lane 3). (E) CEF 

monolayers were transfected with plasmids pCINeo-muNS (lanes 1-3) and pCINeo-
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D154A (lanes 4-5), and at 18 h post-transfection the cells in lanes 2, 3 and 5 were 

incubated for 6 h in the presence of 0.5 M staurosporine, and the cells in lane 3 were 

also supplemented with 10 M Q-VD-OPh. The cells were then lysed and subjected to 

Western blot analysis with anti-muNS serum. (F) 35S-radiolabeled in-vitro-synthesized 

muNS (lane 1) or its D154A point mutant (lane 2) were incubated for 4 h at 37ºC with 

extracts from ARV-infected cells. These samples, as well as an extract of ARV-infected 

CEF immunoprecipitated against muNS (lane 3), were analyzed by 10% SDS-PAGE 

and autoradiography. The positions of protein markers are indicated on the left and 

those of ARV nonstructural proteins on the right. 

 

Fig. 5. Identification of the caspase that catalyzes muNS cleavage. (A) 

Semiconfluent monolayers of HeLa (lanes 1-3) and MCF-7 (lanes 4-6) cells were mock-

infected (lanes 1 and 4) or infected with 50 PFU/cell of ARV 1733 (lanes 2, 3, 5 and 6). 

The cells in lane 3 were incubated with 10 M Q-VD-OPh from the onset of the 

infection and the cells in lane 6 were incubated with 0.5 M staurosporine during the 

last 6 h of infection. At 16 hpi the cells were lysed in RIPA buffer and the resulting cell 

extracts were analyzed by Western blotting with muNS-specific antiserum. (B) 1 g of 

recombinant muNS purified from baculovirus-infected insect cells (lane 2) was 

incubated with 1 unit of either caspase 3 (lanes 3 and 4) or caspase 7 (lanes 5 and 6) for 

4 h at 37ºC, in the presence (lanes 4 and 6) or absence (lanes 3 and 5) of 10 M Q-VD-

OPh. These samples, as well as an extract of ARV-infected CEF (lane 1), were 

subjected to Western blot analysis using polyclonal anti-muNS serum. The positions of 

protein markers are shown on the left and those of nonstructural ARV proteins on the 

right.  
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Fig. 6. Properties of muNS, muNSC and muNSN. (A) Plasmids expressing muNS 

versions comprising the amino acid residues shown on top were lipofected into CEF 

monolayers, and at 20 h post-transfection the cells were subjected to 

immunofluorescence analysis with muNS-specific antiserum as primary antibody 

(green), and counterstained with DAPI (blue). (B) Plasmids expressing the ARV 

proteins depicted on the left were transfected into CEF monolayers either individually 

(lane 1) or together with plasmids expressing full-length muNS (lane 2) or muNS(155-

635). At 20 h post-transfection the cells were processed for immunofluorescence using 

as primary antibodies polyclonal antisera against ARV cores (top row) and sigmaNS 

(bottom row), and counterstained with DAPI (blue). (C) CEF monolayers were mock-

infected (lanes 1 and 3) or infected with 10 PFU/cell of ARV S1133 (lanes 2 and 4) for 

16 h. The cells were then lysed with TX-buffer, incubated for 10 min on ice and the TX-

soluble fraction was removed (lanes 1 and 2). The plate-attached fraction was then 

solubilized with RIPA buffer (TX-insoluble fraction; lanes 3 and 4). The two fractions 

were analyzed by Western blotting with muNS-specific antiserum. (D) ARV-infected 

cells were labeled for 10 min with [35S]amino acids and then incubated in non-

radioactive medium for the indicated chasing times. The cells were subsequently 

processed as for Fig. 2C and the resulting TX-soluble and -insoluble fractions were 

immunoprecipitated with muNS-specific antiserum. Immunoprecipitated proteins were 

resolved by electrophoresis on an 8% tricine-SDS-PAGE gel and visualized by 

autoradiography. Positions of protein markers are indicated on the left and those of 

ARV proteins on the right. 

 

Fig. 7. Effect of Q-VD-OPh on ARV replication and dissemination. (A) CEF 

monolayers were mock-infected (M) or infected with 10 PFU/cell of ARV S1133 (I), in 
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the presence (+Q) or absence of 10 M Q-VD-OPh. The cells were processed for 

immunoblotting at 16 hpi and the membranes were probed with rabbit polyclonal 

antibodies against both muNS and sigmaNS. The positions of protein markers are 

indicated on the left and those of the non-structural ARV proteins on the right. (B) CEF 

monolayers were infected with 0.1 PFU/cel of ARV S1133, and the production of both 

total virus (intracellular + culture medium; filled bars) and released virus (cultured 

medium; open bars) was determined after 24 h of infection by plaque assay on CEF 

monolayers. (C) Plaque pictures obtained by titrating a stock of ARV S1133 on CEF 

monolayers in the absence (lane 1) or presence (lane 2) of 10 M Q-VD-OPh. The 

pictures in lane 1 correspond to a 106 dilution and the ones in lane 2 to a 105 dilution of 

the same virus stock. Plaques of two different plaque assays are shown.  

 

Fig. 8. Alignment of the deduced amino acid sequences of the muNS 140-177 region 

from different poultry reoviruses. Source of the host birds, virus strains, deduced amino 

acid sequences of the muNS region 140-177 and protein accession numbers are 

indicated. Putative consensus caspase cleavage sequences are boxed. 
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Discussion 

 

Activation of programmed cell death is one of the first protective defences set up by 

the host cell to restrict viral amplification and spread. When triggered early in infection 

apoptosis may limit both the time and the cellular machinery available for virus 

replication. Therefore, it is not surprising that many viruses try to overcome the 

apoptotic threat by using a battery of different strategies and by expressing a variety of 

antiapoptotic products aimed to block or delay the induction of apoptosis (Galluzzi et 

al., 2010). However, other viruses induce apoptosis actively at late stage of infection to 

facilitate virus release and spread with limited induction of inflamatory and immune 

host responses (Teodoro and Branton, 1997). The results shown in Fig. 2 E confirmed 

previous findings from our laboratory that ARV infection triggers apoptosis in cultured 

cells at an early stage of the viral life cycle (Labrada et al., 2002), yet the results of this 

study demonstrate that early apoptosis triggering does not have adverse effects on either 

ARV gene expression or infectious progeny production. These apparently conflicting 

results can be reconciled considering that ARV has a short replication time (Benavente 

and Martínez-Costas, 2006), which would allow the virus to proceed its life cycle 

successfully until completion and to reach a satisfactory intracellular production of 

progeny viral particles before the infected cell dies or is severely damaged by the 

execution of apoptosis.  

A growing number of viruses have been documented to take advantage of apoptosis 

induction and caspase activation to promote their own replication. For instance, viruses 

as diverse as mammalian reovirus, human astrovirus, measles virus, porcine circovirus 

2, African swine fever virus, bovine herpesvirus 1, coronavirus, influenza virus and the 

Moscow strain of Ectromelia virus, all have been reported to usurp apoptosis for 
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facilitating the release of progeny viral particles from infected cells (Best, 2008; 

Galluzzi et al., 2010). The results of the present study suggest that ARV should be 

included in that list, since this virus activates rather than suppress caspases and this 

activation is necessary for efficient virus release and spread. On the other hand, many 

apoptosis-inducing viruses express proteins that are processed by caspases to generate 

cleavage products with novel properties, ranging from apoptosis downregulation to 

enhancement or attenuation of viral replication (Richard and Tulasne, 2012). Still, the 

functional consequences of many protein caspase cleavages remain elusive so far, yet 

the conservation of caspase targets in many viral proteins and the stability of their 

processed products suggest that caspase cleavage of viral polypeptides could constitute 

an evolutionary advantage that benefits virus replication. In this study we have provided 

compelling evidence that caspases activated during ARV-induced apoptosis catalyze the 

cleavage of ARV nonstructural muNS protein to produce the 17-kDa N-terminal peptide 

muNSN and the 55-kDa C-terminal protein muNSC. In the literature to date, there are 

several examples of other non-structural viral proteins that are caspase targets, like the 

NS1 protein of Aleutian mink disease parvovirus, the NS5A protein of hepatitis C virus, 

the NS1’ protein of Japanese encephalitis virus, and the EIA protein of adenovirus 12 

(Best et al., 2003; Grand et al., 2002; Satoh et al., 2000; Sun et al., 2012). We also 

observed that a substantial amount of full-length muNS remains uncleaved both in 

infected cells and after 6 h of incubation with recombinant caspase 3, implying that 

caspase-catalyzed muNS cleavage is a regulated process, as has been reported for 

several cellular and viral proteins (Best et al., 2003; Chaudhry et al., 2012; Cheng et al., 

2010; Mashima et al., 1999; Sun et al., 2012). Incomplete processing of a precursor 

viral protein could be a strategy to reduce the activity of the intact protein or it could be 
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used to increase the protein repertoire encoded by size-limited viral genomes, thus 

generating cleaved viral products with novel properties/activities.  

 That avian and mammalian reoviruses use different mechanisms to express their 

muNSC isoforms (Busch et al., 2011), and that both the muNS precursor and its 

truncated forms coexist in avian/mammalian reovirus-infected cells suggest that there 

should be distinct functional roles for both the precursor and its truncated proteins. It 

should be noted however that avian and mammalian reovirus muNSC proteins display 

different properties. Thus, while mammalian reovirus muNSC still maintains its 

precursor’s ability to associate with the major core protein lambda1 (Miller et al., 2010), 

this ability is not shared by its ARV counterpart (Fig. 6B), because sequences of ARV 

muNS required for binding to lambdaA are lacking in muNSC. It has been reported that 

the release of astrovirus from infected cells depends on both the processing of the capsid 

precursor polypeptide VP90 and the activities of executioner caspases (Banos-Lara and 

Mendez, 2010). Accordingly, the possibility exists that muNS processing is required for 

enhanced release and dissemination of ARV, although it is unlikely, since apoptosis has 

also been reported to promote the release of mammalian reovirus from infected cells 

without enhancing the production of its muNSC protein (Marcato et al., 2007). In the 

absence of an established reverse genetics system for avian reoviruses, the 

consequences of muNS cleavage on viral replication and spread remain unclear.  

Despite the facts that ARV muNSC is able to form inclusions when expressed in 

isolation and that it collects into inclusions when co-expressed with muNS (Brandariz-

Nuñez et al., 2010), muNSC associates with factories of infected cells more weakly than 

full-length muNS, sigmaNS or lambdaA, as evidenced by extraction with TX buffer 

(Figs. 6C and 6D). This observation suggests that ARV factories are complex structures 

formed by a diverse array of protein-protein and protein-RNA interactions and that 
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these entities are much more complex than muNS-derived inclusions. This is supported 

by our observation that the inclusions formed by expressing muNS versions in 

baculovirus-infected insect cells can be easily purified (Brandariz-Nuñez et al., 2010a), 

whereas we were unable to purify the factories formed in ARV-infected cells. 

The results shown in Fig. 5 demonstrate that muNS is a substrate for mammalian 

caspase 3, yet the absence of both commercial recombinant caspases of avian origin and 

caspase 3-deficient avian cells did not allow us to identify the avian caspase that 

catalyzes ARV muNS cleavage in infected avian cells. Nevertheless, this cleavage is 

probably catalysed by an avian caspase 3-like protease, since caspase sequences and 

targets are highly conserved in different species (Sakamaki and Satou, 2009), and since 

we found both that caspase 3/7 is active in ARV-infected avian cells and that muNS-to-

muNSC processing is promoted by the caspase 3 activator staurosporine (Chae et al., 

2000). The presence of a caspase 3/7 consensus sequence (151DSPD↓A155) within the 

muNS cleavage region allowed us to map the muNS cleavage site between residues 

Asp-154 and Ala-155, by using site-directed mutagenesis. This finding suggests that 

this region of muNS is placed in a flexible and exposed loop accessible to caspases. 

Interestingly, the caspase 3/7 consensus sequence found in ARV S1133 muNS is not 

fully conserved among avian reoviruses isolated from chickens, since it is only present 

in 8 isolates, and in one quail isolate, but not in other 9 chicken isolates. Thus, in the 

muNS protein from 4 chicken isolates Asp-151 is replaced by His, while in the protein 

from another 5 isolates Asp-151 and Ser-152 are replaced by His and Glu, respectively 

(Fig. 8). If cleavage of these “nonconsensus” ARV muNS proteins still occurs between 

Asp-154 and Ala-155 would imply that accessibility is more important than the 

presence of specific amino acids at positions 3 and 4 of the caspase consensus sequence, 

which is in agreement with previous reports indicating that caspases do not have a strict 
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requirement for positions 2-4 of the consensus cleavage site (Timmer and Salvesen, 

2007; Thornberry et al., 1997). Curiously, the muNS protein encoded by both duck and 

goose reoviruses does not contain a caspase 3/7 consensus sequence spanning residues 

151-155, because Asp-154 is replaced by a Gly residue. However, these muNS proteins 

contain two putative caspase targets, one spanning residues 142-146 (142GTMDA146), 

and the other comprising residues 156-160 (156SVPDV160). Surprisingly, the former 

caspase target is also present in the muNS protein from four chicken isolates (Fig. 8). It 

should be of interest to check whether duck/goose reoviruses induce apoptosis, whether 

the muNS protein of these viruses is cleaved in infected cells and whether its cleavage 

takes place at one or both of these caspase consensus sequences. Nevertheless, the 

presence of specific residues in the muNS 140-177 region could serve to assign a 

poultry reovirus as an avian/quail or a goose/duck reovirus. Thus, the muNS from 

reoviruses of avian/quail origin has leucine in position 144, alanine or valine  in 150, 

aspartic acid in 154, cysteine in 156 and valine in 159, whereas the muNS from 

reoviruses of duck/goose origin has methionine, glycine, glycine and aspartic acid in 

those positions. 
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Methods 

Cells, viruses, antibodies and reagents  

 

Primary cultures of CEFs were prepared from 9- to 10-day-old chicken embryos and 

grown in monolayers in medium 199 supplemented with 10% tryptose phosphate broth 

and 5% calf serum. Avian DF-1, human HeLa and MCF-7, and monkey Vero cell lines, 

all were grown in monolayers in Dulbecco’s modified Eagle’s medium (DMEM; 

Invitrogen) supplemented with 10% fetal bovine serum (FBS). MCF-7 cells were a kind 

gift from María Dolores Blanco (Universidad Complutense de Madrid). Sf9 cells were 

grown in suspension culture in serum-free Sf-900 II media at 27º C. Strains S1133, 

1733 and 2408 of avian reovirus were grown in semiconfluent monolayers of primary 

CEFs. Conditions for growing and titrating these viruses have been described 

previously (Grande and Benavente, 2000). The recombinant baculovirus AcNPV-

S1133-muNS was grown in Sf9 cells as previously described (Brandaríz-Nuñez et al., 

2010b).  

Rabbit polyclonal sera against ARV S1133 reovirions and cores, as well as ARV 

S1133 proteins muNS and sigmaNS were raised in our laboratory (Touris-Otero et al., 

2004b). Monoclonal anti-gamma histone H2A.X (phospho S139) antibody was 

purchased from Abcam plc. Rabbit anti-actin polyclonal antibody was purchased from 

Santa Cruz Biotechnology. Peroxidase-conjugated goat anti-rabbit antibody was 

purchased from Sigma. Pancaspase inhibitors Z-VAD-FMK and Q-VD-OPh were from 

Calbiochem. Caspases 3 and 7 were from Enzo Life Science (Cat. # C-3: ALX-201-059; 

C-7: ALX-201-061-U025). All other reagents were purchased from Sigma.  
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Viral infections and protein analysis  

 

Semiconfluent monolayers of cells were infected with 10 PFU/cell of ARVs for the 

times indicated for each experiment. In all experiments, except for some of Fig. 1 and 

those of Fig. 5A, CEF cell monolayers were infected with the ARV S1133. For 

metabolic radiolabeling, the cultured medium was removed and the cells were incubated 

for the indicated times in methionine/cysteine-free medium containing 100 Ci/ml of 

[35S]methionine-cysteine. For immunoprecipitation and Western blot analysis the cells 

were lysed in RIPA buffer (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 1% NP40, 0.5% 

DOC, 0.1% SDS, supplemented with “Complete protease inhibitor cocktail” from 

Roche Diagnostics), and muNS-derived proteins were detected with a muNS-specific 

antiserum (Touris-Otero et al., 2004b).  

To isolate TX-soluble and -insoluble fractions, 2 x 106 cells were lysed in 200 l 

of TX buffer (10 mM Pipes pH 6.8, 3 mM MgCl2, 100 mM KCl, 300 mM sucrose, 1% 

Triton X-100, supplemented with “Complete protease inhibitor cocktail” from Roche 

Diagnostics) and the soluble fraction was removed. The plates were washed again with 

TX buffer and the insoluble fraction that remained attached to the plates was directly 

solubilized in 200 l of RIPA buffer (Tourís-Otero et al., 2004a). For pulse–chase 

analysis, mock-infected and reovirus-infected cells were incubated for 2 h at 12 h p.i. in 

medium lacking methionine and cysteine, and then incubated for 10 min in the same 

medium supplemented with 500 Ci/ml [35S]amino acids. The cells were chased for the 

indicated times in non-radioactive medium supplemented with an excess of 

nonradiolabelled methionine and cysteine. Infection of Sf9 insect cells with the 

recombinant baculovirus AcNPV-S1133-muNS and purification of recombinant muNS 

have already been described (Brandaríz-Nuñez et al., 2010b). 
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Plasmid construction and cell transfection  

 

The construction of recombinant plasmids expressing full-length ARV S1133 muNS, 

GFP-muNS, and the aminoterminal truncations comprising muNS residues 84-635, 127-

635 and 140-635 has already been described (Brandaríz-Nuñez et al., 2010b). Plasmid 

pCINeo-muNS was used as template to generate constructs expressing the following 

proteins. The D154A muNS point mutant was generated with the QuikChange site-

directed mutagenesis kit (Stratagene), according to the manufacturer’s specifications. 

The forward primer was: 5’ 

CCACCGCTGATTCCCCCGCTGCCTGCGTCCCAGTCACC 3’; and the reverse 

primer was: 5’ GGTGACTGGGACGCAGGCAGCGGGGGAATCAGCGGTGG 3’. To 

generate the construct expressing muNS(1-154), the forward primer was: 5’ 

GCGGAATTCATCATGGCGTCAACCAAGTGG 3’; and the reverse primer was:  5’ 

GCGTCTAGATTAATCGGGGGAATCAGCGGTGG 3’. To generate the construct 

expressing muNS (155-635), the forward primer was: 5’ 

GCGGAATTCATCATGGCCTGCGTCCCAGTC 3’; and the reverse primer was: 5’ 

GCGTCTAGATCACAGATCATCCACCAATTCTTC 3’. The correctness of the 

recombinant plasmids was confirmed by nucleotide sequencing.  

Transfection of preconfluent cell monolayers was done using Lipofectamine Plus 

reagent (Invitrogen) following the manufacturer´s instructions, with 1 g of DNA per 

well of a 12-well dish. Transfected cells were incubated at 37ºC for 24 h, unless 

otherwise stated.  
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Indirect immunofluorescence microscopy  

 

Cell monolayers grown on coverslips were infected or transfected as indicated in the 

figure legends. At the indicated times, the monolayers were washed twice with PBS and 

fixed in paraformaldehyde for 15 min at 4ºC. Fixed cells were washed twice with PBS, 

incubated for 10 min in permeabilizing buffer (0.1% Triton X-100 in PBS), incubated 

20 min with blocking buffer (2% BSA in PBS), and then incubated for 1 h at room 

temperature with primary antibodies diluted in blocking buffer. The cells were washed 

three more times with PBS and then incubated with secondary antibodies and DAPI 

(4,6-diamidino-2-phenylindole) for 1 h at room temperature. Coverslips were then 

washed six times with PBS and mounted on glass slides. Images were obtained with an 

Olympus DP-71 digital camera mounted on an Olympus BX51 fluorescence 

microscope. Images were processed with Adobe Photoshop (Adobe Systems). 

 

 

In vitro transcription and translation  

 

The recombinant plasmids used as templates were linearized with NotI, purified by 

extraction with phenol/chloroform, precipitated with ethanol and resuspended in sterile 

water at a final concentration of 1 mg/ml. In vitro transcription from the T7 promoter 

was performed by using a RiboMAX Large Scale RNA Production System (Promega). 

In vitro translation was carried out by using a Rabbit Reticulocyte Lysate System 

(nuclease-treated; Promega) following the manufacturer’s instructions, for 90 min at 30º 
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C in the presence of 50 mg/ml RNA and 0.4 mCi/ml  [35S]methionine (Hartmann 

analytic KSM-01). 

 

 

Intracellular caspase activity and in vitro protease cleavage assays  

 

The intracellular activity of caspases 3/7 was determined with the Caspase-Glo® 3/7 

Assay kit from Promega, following the manufacturer’s instructions.  

In vitro caspase cleavage assays were performed by mixing 1 g of muNS purified 

from baculovirus-infected insect cells, as described previously (Brandariz-Nuñez et al., 

2010a), with 1 unit of recombinant caspase in 10 l of caspase buffer (20 mM Hepes pH 

7.4; 100 mM NaCl; 0.05% NP-40). In some samples 10 M of the pancaspase inhibitor 

Q-VD-OPh was also included. Mixtures were incubated for 4 h a 37ºC, mixed with 5 l 

of 3x Laemmli electrophoresis sample buffer and boiled for 5 min at 100ºC. Cleavage 

of muNS was analyzed by Western blotting. 

To evaluate the capacity of extracts of ARV-infected cells to promote muNS 

cleavage, extracts from mock-infected and infected cells were prepared as follows. 

Samples of 2 x107 CEF cells, mock-infected or infected with 0.1 PFU/ml of ARV 

S1133, in the presence or absence of 10 M Q-VD-OPh, were washed twice with PBS 

at 24 hpi and overlayed with 1 ml of caspase buffer. The cells were then collected by 

scrapping and lysed by one cycle of freezing and thawing.  A typical protease cleavage 

assay was performed by mixing 5 l of cell extract with 5 l of reticulocyte lysate 

containing 35S-radiolabeled muNS or its D154A mutant. Samples were incubated for 2 h 

at 37ºC, then supplemented with 5 l of 3x Laemmli sample buffer and boiled for 5 min 

at 100ºC. Processing of muNS was monitored by SDS-PAGE and autoradiography. 
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