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Abstract: Chemical derivatization of DNA stains such as ethidium bromide or DAPIwith 

tailored, photoresponsive caging groups, allows for “on demand” spatiotemporal control 

of their “in vivo” DNA binding, as well as for improving their cellular uptake. This effect 

was particularly noteworthy for a Nvoc-caged derivative of ethidium bromide that, in 

contrast with the parent stain, is effectively internalized into living cells. The activation 

strategy works in light-accessible, therapeutically relevant settings, such as human 

retinas, and can be even applied for the release of active compounds in the eyes of living 

mice. 
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The development of nucleic acid-targeted drugs continues to be a major research endeavor at 

the interface between chemistry and biomedicine. A large variety of DNA-binding agents, have 

been developed, and many of them have found application as drugs or as DNA stains.1,2,3,4,5 

Unfortunately, many of these molecules present selectivity and toxicity problems that seriously 

restrict their therapeutic potential. In this context, derivatizing these molecules with photolabile 

appendages that confer advantageous physicochemical features while providing for external 

control of their activity might open important therapeutic avenues.6,7,8 Needless to say that the 

use of light-activated compounds in photodynamic therapy might greatly benefit from current 

technical advances that make possible to irradiate almost any tissue in the human body.9 

DAPI (4',6-diamidino-2-phenylindole, 1) and ethidium bromide (EtBr, 3,8-diamino-5-ethyl-6-

phenyl-phenanthridinium bromide, 2) are among the best known DNA stains,10,11,12,13,14 and have 

found wide and important applications in molecular and cell biology. Ethidium bromide binds 

DNA by intercalation, and has been extensively used for detecting double stranded DNA, mainly 

in gel electrophoresis assays. However, it cannot be used for direct staining of cellular nucleic 

acids, as it is poorly internalized. In contrast, the blue-fluorescent DAPI can be used to stain cell 

nuclei and, unlike the non-specific EtBr, it prefers to bind A/T-rich DNA sequences, inserting into 

their narrow minor groove. 

We have recently demonstrated that caging of the amidinium moieties of DAPI and other 

bisbenzamidinium DNA binders with suitable photoresponsive protecting groups suppresses 

their DNA binding.15 Importantly, irradiation with UV light removes the caging groups and 

regenerates the parent, active compounds, thus allowing the control of the in vitro DNA binding 

activity of these molecules by external stimuli (UV light). We were then challenged to 

demonstrate that such conditional activation strategy could also be used in living cells and 

tissues, a process that should be easily monitored by the increased fluorescence of these 
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molecules upon staining of the cell nuclei. In addition, we were also intrigued by the possibility of 

extending the caging strategy to other DNA binders lacking amidinium groups, such as ethidium 

bromide (EtBr). 

Herein we demonstrate that both, DAPI (1) and EtBr (2), can be efficiently caged using 

photolabile groups, and that their DNA binding can be restored in living cells and in 

therapeutically-relevant tissues such as retinas, in an spatially and temporarily-controlled 

manner. We also show that it is even possible to release the DNA stains in the eyes of living 

mice by using an external irradiation source. 

 

Figure 1.Structures of DAPI (1), its caged derivative (©1) and ethidium bromide (2). 

 

As expected from the relatively low pKa of the amidines and their propensity to act as leaving 

groups, the caging groups of DAPI derivative ©115 can be readily removed in presence of ds-

DNAs, in just 1.5-2 min, using a standard gel transilluminator lamp as irradiation source (λ = 300 

to 375 nm, see the supporting information, Figure S1). For the in vivo assays, we incubated 

independent samples of Vero cells,16 with 5 µM ©1 for 30 minutes, and monitored their evolution 

by fluorescence microscopy. Initial irradiation experiments were carried out using the 

transilluminator, but the UV light source from the microscope could also effectively photolyze ©1. 

This allowed an easy monitoring of the changes in fluorescence emission of the dye inside the 

cells in real time. Remarkably, the fluorescence emission is initially relatively weak and diffuse, 
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but apparently more intense on the perimeter (membrane) of the cells. Over time it becomes 

progressively concentrated in the cell nuclei, while growing fainter at the cell edges. Indeed, 

after 20 minutes under the microscope, the edges become barely distinguishable and only the 

nuclei are observed (see time-lapse video S1 in the supporting information). Control experiments 

with liposomes confirm that, as expected, ©1 is basically non-emissive, however addition of 

DAPI to a liposome solution results in a marked increase in its emission intensity (see 

Supporting Information, page S11). Therefore it can be safely stated that the fluorescence 

observed in the membrane is due to uncaged DAPI.  

In order to separate the effects of the uncaging and cellular redistribution, Vero cells were 

incubated with ©1 in PBS for 30 min, and irradiated for 2 min in the transilluminator (enough to 

uncage most of the stain). Comparison of photographs obtained immediately after the 

irradiation, and after five minutes, confirms that the uncaged dye requires some time to 

accumulate and stain the cell nuclei (see supporting information, page S16). All these results are 

consistent with the presence of the hydrophobic caged DAPI (©1) in the cytoplasmic membrane 

and probably also in other cell locations. Upon irradiation, photolysis of ©1 releases the 

fluorogenic DAPI, which is highly emissive in the hydrophobic phospholipid matrix. However, the 

uncaged DAPI is very hydrophilic (ACD/Labs LogD (pH 7.4) = −1.03),17,18 and is therefore driven 

out of the membrane and freely diffuse towards the cell nuclei, finally forming a stable, 

fluorescent DNA complex.  
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Figure 2. Left: Fluorescence microscopy of Vero cells incubated with 5.0 µM ©1 showing the 

fluorescence changes inside the cells (t = 0: brightfield and fluorescence; t = 4 min to t = 16 min: 

fluorescence); arrows highlight the brighter areas. Right: Schematic representation of the 

proposed activation dynamics of caged DAPI, which is, at least in part, stored in the cell 

membrane. Initial background fluorescence at t = 0, most probably results from non-specific 

interaction between uncaged DAPI and the hydrophobic polymeric Mowiol® matrix used as 

coverslip mounting solution. 

 

Once demonstrated the possibility of in vivo UV-controlled DNA interaction with a minor groove 

binder, we sought to extend this strategy to EtBr (2), which binds DNA by intercalation and lacks 

the amidinium groups of DAPI. Despite its wide use as an in vitro DNA stain, EtBr has very 

limited value for in vivo experiments due to its poor cell membrane permeability. We envisioned 

that masking the amino groups of EtBr with the non-polar Nvoc caging group might not only 

interfere with its DNA binding, but also improve the internalization properties of the stain by 

increasing its hydrophobic character. Therefore the bis-Nvocphenantridyl derivative ©2 was 

prepared by treatment of the commercial EtBr with nitroveratryl (Nvoc) chloride under basic 

conditions. 
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Scheme 1. Synthesis of Nvoc-caged ethidium bromide ©2. 

 

As expected, ©2 did not show any fluorescence in the presence of a short double stranded DNA 

oligonucleotide, and competition experiments with uncaged EtBr confirmed that ©2 is unable to 

bind DNA. Irradiation of a solution of ©2 in Tris-HCl buffer; 100 mM NaCl; pH 7.5, with UV light 

(standard transilluminator lamp, λ = 300 to 375 nm), promoted the cleavage of the phololabile 

groups, thus regenerating the active EtBr intercalator (2). Importantly, this can be achieved in 

the presence of DNA, leading to a large increase (60-fold) in the emission intensity at 600 nm, 

which is consistent with the intercalation of the released EtBr into the DNA (Figure 3). 

HPLC monitoring of the UV uncaging showed that the process generates temporary Nvoc-

monoprotected intermediates. Control experiments with a mixture of specifically synthesized C3 

and C8 Nvoc-monoprotected EtBr showed that these compounds are not fluorescent in 

presence of DNA, despite retaining some DNA binding affinity (see the supporting information, 

pages S9-S10). Therefore, uncaging of both groups is required for good DNA binding, and for 

DNA-dependent fluorescent staining. 
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Figure 3. Fluorescence emission spectra of a 0.8 µM solution of ©2 in Tris-HCl buffer at 

increasing irradiation times in the presence of a hairpin ds-oligonucleotide. No further increase in 

fluorescence is observed after 15 min. irradiation; therefore shining light for 10-15 min is enough 

for complete uncaging. 

 

Once the photocontrolled DNA binding of ethidium was confirmed, we studied whether the 

presence of the hydrophobic appendage could improve the cell transport properties of the dye. 

Therefore, independent samples of Vero cells were treated in parallel with 12.5 µM caged ©2 

and 20.0 µM of EtBr (2), and examined by fluorescent microscopy after 30 min (excitation filter 

530-550 nm/emission filter 590 nm). As shown in Figure 4A/C, in both cases the cells were 

essentially non-fluorescent, and only a very faint emission could be detected in the case of EtBr. 

Remarkably, UV irradiation of the cells incubated with ©2 (10 min) resulted in a very significant 

increase in the emission intensity in the cell nuclei (Figure 4B).19 This result must be correlated 

with photorelease of ethidium bromide from the inactive derivative ©2.Therefore, in contrast to 

the parent phenantridinium 2, the designed photoresponsive derivative ©2 seems to efficiently 

cross cell membranes, accumulating inside the cell in a latent form, until irradiation with UV light 

releases the active DNA binder. A control experiment at different irradiation times revealed a 

progressive increase in the fluorescence emission from the cells, reaching a maximum after 

approximately 10 min of irradiation (Figure 4, top). Interestingly, colocalization experiments with 
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DAPI and mitotracker dyes show that the uncaged ethidium is mainly located in the nucleoli, 

therefore cannot be really considered as a true nuclear stain (See the supporting information, 

pages S15 and S16). 

 

Figure 4. Top: Fluorescence microscopy of Vero cells (12.5 µM ©2) at increasing irradiation 

times. Bottom: 12.5 µM ©2, after 30 min incubation. A) before irradiation and uncaging; B) after 

uncaging by UV irradiation for 15 min; C) control experiment with 20.0 µM of ethidium bromide 2 

after 30 min incubation. Pictures were taken with a Olympus DP-50 digital camera mounted on 

an Olympus BX51 microscope, equipped with U-MNG2 fluorescence mirror unit.  

 

In addition to temporal activation, the caging strategy should also allow for the spatial control of 

the interaction. To demonstrate that, we prepared a cell monolayer on a 100 mm tissue culture 

plate (Figure 5A), and irradiated it through a cardboard cutout of our university acronym, USC. 

After 15 minutes of irradiation through the mask, we looked at the culture through a gel imaging 

system, observing the expected cellular photopatterning only for the cell populations that were 

irradiated (Figure 5B). Therefore, derivative ©2 is a light responsive, transport-efficient version of 

ethidium bromide, and should represent a significant addition to the yet short arsenal of nucleic 

acid stains that are effective in vivo. 
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A B

 

Figure 5. A) cell monolayer in the culture plate before irradiation; B) same culture after 

irradiation through a cardboard cutout. 

 

The above results encouraged us to evaluate the performance of both caged DAPI (©1) and 

caged ethidium (©2) in a more stringent, therapeutically-relevant setting. Therefore we 

incubated mice eye retinas with 5.0 µM ©1 and 12.5 µM of ©2 (PBS buffer) and analyzed the 

resulting cellular staining before and after irradiation. Before irradiation, no staining was visible, 

whereas after irradiation both ©1 and ©2 were effectively uncaged in the retina, and the cell 

nuclei became fluorescent (Figure 6a, 6b, see also time-lapse video S2 in the supporting 

information). Importantly, the same results were reproduced with human retinas (Figure 6d, 6e), 

confirming that these compounds can be activated in the complex cellular environment of human 

tissues. 

In a step forward, we also explored the possibility of in vivo activation of these molecules by 

direct external irradiation of the eyes in living mice. Therefore, live mice were treated with caged 

DAPI (©1) using a femoral vein injection, and a transpupillar irradiation of one of their eyes was 

made. The mice were sacrificed and the retinas extracted and flat mounted for study. As 

expected, only the retina of the irradiated eyes showed a clear fluorescence emission, which 

was mostly concentrated in the vascular walls (Figure 6c), possibly because the blood-retinal 

barrier prevented most of the molecules to enter the retinal cells.20 These results confirm that the 

designed compounds can be selectively activated in the posterior segment of eyes of living 
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animals using an external irradiation source, and suggest the eye as a suitable initial target 

organ for future therapeutic intervention using this type of light-activatable compounds. Delivery 

of drugs in a minimally invasive, safe and effective manner in the eye is still a major 

therapeutical challenge.21 Given the well-established use of lasers in ophthalmology, the 

uncaging tactic should open new opportunities to treat specific eye diseases that require the 

selective release of active drugs in specific areas of the eye.22,23 

a) b) c)

d) e) f)

 

Figure 6.Fluorescence microscopy of mouse and human retinas. a) Mouse retina incubated with 

5.0 µM of©1, after ~5 min irradiation. b) Mouse retina incubated with 12.5 µM ©2, after ~10 min 

irradiation. c) Retina extracted from a mouse previously injected with ©1 in the right femoral vein 

(100 µL, 5.0 µM), and transpupillary irradiated for ~10 min before sacrifying the animal; the 

nuclei of aligned cells forming a vessel image can be clearly observed. d) Human retina 

incubated with 5.0 µM ©1, after ~5 min irradiation. e) Human retina incubated with 12.5 µM of 

©2, after ~10 min irradiation. f) Human retina incubated with 12.5 µM of ©2 before irradiation. 

Control, non-irradiation experiments were carried in allcases and none of them showed traces of 

fluorescence. Images a and b were acquired with 1 s exposure time, images c-f with 400 ms. All 

images with ISO 400 sensitivity.  

 

In conclusion, we have demonstrated that the Nvoc caging strategy can be applied to classic 
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DNA intercalators like EtBr. Since these molecules are nucleic acid-dependent fluorescent 

probes, they provide an excellent opportunity for real-time monitoring of the activation process in 

living cells. For the Nvoc-DAPI (©1), we could observe the uncaging process and cell 

redistribution of the released stain in real time. Moreover, the caging strategy can be exploited 

not only for the “on demand” spatiotemporal control of the DNA-binding, but also for fine-tuning 

the physicochemical properties of the substrates. In the case of the Nvoc-caged derivative ©2, 

this allows for a rapid cell internalization, overcoming the poor cell transport ability of the parent 

ethidium bromide. Importantly, we have also demonstrated that this strategy can be successfully 

implemented in therapeutic-relevant tissues such as the retina, being even possible to activate 

them with external irradiation in the eyes in living mice. To the best of our knowledge, our results 

provide the first evidence on the use of caged compounds in eyes, and demonstrate that 

focalized release of drugs in the eye can be made with a minimally invasive technique, opening 

a new door for therapeutic and perhaps diagnostic applications. 

 

Materials/methods  

General: All reagents were acquired from commercial sources. Reactions were followed by 

analytical RP-HPLC with an Agilent 1100 series LC/MS using an Eclipse XDB-C18(4.6 x 150 

mm, 5 μm) analytical column. Standard conditions for analytical RP-HPLC consisted on a linear 

gradient from 5% to 95% of solvent B for 30 min at a flow rate of 1 mL/min (solvent A: water with 

0.1% TFA, solvent B: acetonitrile with 0.1% TFA). Compounds were detected by UV absorption 

at 220, 270, 304 and 330 nm. Final products were purified on a Büchi Sepacore preparative 

system consisting on a pump manager C-615 with two pump modules C-605 for binary solvent 

gradients, a fraction collector C-660, and UV Photometer C-635. Purification was made using 

reverse phase of water/acetonitrile 0.1% TFA, using a pre-packed preparative cartridge (150 x 
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40 mm) with reverse phase RP18 silica gel (Büchi order #54863). The fractions containing the 

products were freeze-dried, and their identity was confirmed by ESI-MS(+). NMR spectra were 

recorded using Varian Mercury 300orBrucker DPX 250 spectrophotometers, and processed 

using the MestReNova v6.1.1-6384 suite (Mestrelab Research). 1H NMR spectra were 

processed applying Global Spectrum Deconvolution (GSD). 

Synthetic procedures 

3,8-bis({[(4,5-dimethoxy-2-nitrobenzyl)oxy]carbonyl}amino)-5-methyl-6-

phenylphenanthridinium (Nvoc2-ethidium, ©2). To a solution of commercially available 

ethidium bromide (2), (100 mg, 0.253 mmol) in 25 mL of DIEA/DMF (0.195 M) was added 

Nitroveratryl chloride (209 mg, 0.759 mmol). The resulting mixture was stirred for 16 h under Ar 

and in the dark. After concentration, the residue was purified by preparative reverse-phase 

chromatography (Büchi Sepacore) (5 min isocratic 15% B, followed by linear gradient from 15% 

to 95 % B 30 during min, and 10 min isocratic at 95% B). The combined fractions were 

concentrated and freeze-dried to obtain the desired product (©2) as a trifluoroacetic salt (77 mg, 

0.086 mmol, 34%). 

In vitro fluorescence experiments with ©2: A fluorescence cuvette containing a 0.82 µM 

solution of ©2 in Tris-HCl buffer 20 mM; 100 mMNaCl; pH 7.5, and 0.136 µM hairpin DNA 

oligonucleotide AACGTT was irradiated with UV light, and fluorescence emission spectra were 

recorded after different irradiation times. Hairpin oligonucleotide: AACGTT: GGC AAGCTT CGC 

TTTTT GCG AAGCTT GCC. 

Cell uptake experiments. Vero cells were maintained in DMEM (Dulbecco Modified Eagle 

Medium) containing 10% of FBS (Fetal Bovine Serum). The day before the cellular uptake 

experiments, cells were seeded in twelve well plates containing glass coverslips (15 mm). Cells 

were then washed 3 times in PBS and overlaid with 1 mL of fresh PBS with no serum added. 
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Compound ©1 was added in order to obtain a final concentration of 5.0 µM, and in the case of 

©2 12.5 µM. Samples were incubated for 30 min at room temperature in the absence of light. 

For video recording and snapshots of Figure 2, after incubation the coverslips were mounted on 

glass slides with Mowiol4-88® [100 mg/mL in 100 mM Tris-HCl pH 8.5, 25% glycerol and 0.1% 

DABCO (as an antifading agent)]. Irradiation of selected samples was performed with a standard 

gel UV transilluminator (8 watt, exc 300-370 nm). Images were obtained with an Olympus DP-

50 (Olympus Corp., Tokyo, Japan) digital camera mounted on an Olympus BX51 fluorescence 

microscope (Olympus BX51, Olympus Corp., Tokyo, Japan) equipped with a 360-370 nm 

excitation filter, 420 nm emission filter for the cells treated with ©1 and were further processed 

(cropping, resizing and contrast global contrast and brightness adjustment) with Adobe 

Photoshop (Adobe Systems). In the case of ©2 we used a 530-550 nm excitation filter, and a 

590 nm emission filter. 

Experiments with retinas and with animals. Animal retinas were obtained from 3 month-old 

wild type SV129 mice originally adquired from Charles River Laboratories (Boston, 

Massachussetts, USA). The animals were terminally anesthetized, the eyes enucleated, the 

retinas dissected from the eyecup, and flat mounts prepared with the ganglion cell layer 

uppermost. Then they were incubated with a solution of caged ethidium (©2, 12.5 µM in PBS 

buffer), or caged DAPI (©1, 5.0 µM, PBS buffer). The uncaging was performed with a standard 

gel UV transilluminator for ©2 (λ = 300 to 375 nm). In the case of ©1, it was found that the light 

of the microscope (Olympus BX51) was intense enough to cleave the photolabile groups. The 

irradiated samples were observed in a fluorescence microscope (Olympus BX51, Olympus 

Corp., Tokyo, Japan) equipped with a 530-550 nm excitation filter, 590 nm emission filter for the 

cells treated with ©2, and a 360-370 nm excitation filter, 420 nm emission filter for the cells 

treated with ©1. Pictures were taken with an Olympus DP-50 camera (Olympus Corp., Tokyo, 

Japan) mounted on the microscope. The same procedure was followed in the case a human 
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retina obtained from a patient who underwent ocular evisceration because of a painful terminal 

glaucoma. Once the retina was removed from the eye, it was placed in DMEM (Dulbecco 

Modified Eagle Medium) containing 10% of FBS (Fetal Bovine Serum), 1% 

penicillin/streptomycin, and 1% glutamate, and cut into several pieces. Each piece was placed 

on a microscope slide and the incubation procedure described above was followed. Consent 

permission was obtained from the patient and the procedure was authorized by the Ethical 

Committee for Clinical Research of our local government (Xunta de Galicia). 

For in vivo experiments the animals were anesthesized by intraperitoneal injection of 4% chloral 

hydrate (400 mg/kg body weight) and a drop of tropicamide solution (10 mg/ml) was instilled on 

the eyes to produce mydriasis. The right femoral vein was canulated, and 0.1 ml of a solution of 

caged DAPI (©1, 5.0 µM in PBS) was injected. Then, the right eye was transpupillary irradiated 

(λ = 300 to 375 nm). Finally, the animals were sacrificed by cervical dislocation, the eyes were 

enucleated, and the retinas mechanically dissected out were mounted and viewed in the 

fluorescent microscope. All experiments involving animals were conducted according to the 

Bioethical Committee of our institution and adhered to the ARVO statement for the Use of 

Animals in Ophthalmic and Vision Research. 
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