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Introduction

The cosmic radiation that arrives to the Earth surface is the result of multiple collisions of
primary cosmic rays with the atmospheric components at a mean altitude of approximately
15 km. This primary radiation is mainly composed by protons and hydrogen nuclei, together
with a very low fraction of heavy elements. The origin of these heavy elements is not well
known, but they might be produced in astrophysical processes at the final stages of the
stellar nucleosynthesis. After these collisions, the produced secondary cosmic radiation is
composed, most importantly, by protons, kaons, pions, and electrons. The pions and kaons
are not stable and they decay. Muons are produced as a product of these decay reactions. The
muons travel along the atmosphere and can be detected at ground level.

The study of this secondary radiation could provide the key of understanding the structure
of extragalactic objects and atmospheric phenomena. Observatories such as AUGER [3]
are devoted to the study of the properties of cosmic rays for years. Since this secondary
radiation is produced by collisions at the atmosphere, it seems to be reasonable to study if
the muon flux is affected by atmospheric conditions such as temperature and pressure. These
effects are currently being studied in several PhD. theses at the University of Santiago de
Compostela [5, 6]. The conclusions of these studies could provide information about the
layer structure of the terrestrial atmosphere.

The experiments of E.P. George in the 1950s can be considered as the starting point in
the study of matter by the use of cosmic muons [35]. In that particular work, the cosmic
ray muons were used to estimate the depth of overburden of a tunnel in an Australian mine.
George measured the flux of cosmic rays inside and outside the tunnel and using the ratio
of both signals inferred the amount of rock above the tunnel. With this experiment, the
attenuation properties of materials were first use to perform a radiography of large objects.

After this experiment, in 1970, Luis Alvarez used the same technique as George and
explored the Giza pyramids to search hidden chambers inside them [17]. These experiments
became very important in understanding and develop the muon radiography techniques and
in subsequent years were extended to other fields of science.



2 Introduction

It is possible to obtain three dimensional images of objects by the use of cosmic ray
muons. When these muons pass through a material medium they are affected by the Coulomb
scattering. This process causes a deviation in the muon trajectory and depends on the nature
of the material. The measurement of the deflection angle of muons and other particles can
be used to obtain information about the properties of the material and even reconstruct their
shapes. These images can be obtained using muon tomography or muon radiography.

Muon tomography and muon radiography have become great imaging techniques and
they are applied in several research fields. A recent experiment tried to improve the first
Alvarez investigation in the Egypt’s pyramids [42]. In that work, using muon radiography, a
secret chamber inside great pyramid was found. The muon tomography technique is also
used to produce images of nuclear reactors, as the case of Fukushima’s nuclear plant [38].
Also, it is used to determine the volcanic activity [39] or in homeland security applications
[12].

The improvement in security on the borders against illegal traffic of radioactive materials
has become a homeland security priority. This has motivated that many countries are
interested on the development of new technologies that allow, with a high level of confidence,
the detection of that kind of substances. It is believed that one of the most likely ways of
entrance of those materials is by the use of containers transported by ships. This is one of
the main reasons why most of the current research works are devoted to the development
of facilities that are able to analyse those containers directly in the docks. Due to the huge
number of containers that can be transported in a dock every day, they should be able to
analyse a container in a short period of time. A little change in this processing time can cause
a high delay time in traffic, and consequently the process can cause a non-desired chaotic
situation.

A first approach to the problem would be to take a radiography of the container by the
use of X-rays. Taking into account that not only the radioactive elements, but also their
shielding material have high charge number, the electromagnetic radiation would show a
high deviation inside the container. Therefore, this method could be a very good candidate.

However, the containers have typically a large volume and this method would be ex-
tremely inconvenient for several reasons. In one hand, it is necessary to develop a radiography
system based on X-rays, high energy gammas, or even electrons by the use of an accelerator
and cover a large surface. In the other hand, the price of that infrastructure would be very
expensive.

An alternative to the X-rays would be the natural cosmic radiation. The cosmic rays are
a permanent, free, and harmless source of high energy particles. The cosmic radiation at
sea level is mostly composed by muons, electrons, and gammas. Due to the low intensity
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of cosmic electrons and gammas, to perform a good quality radiography of the container
would require high exposure times. This can cause a non-desired problem in the traffic of
containers at the facility.

It seems to be obvious that the key of the problem is on the high energetic cosmic muons
that are able to arrive to the Earth surface. The probability of these muons to be absorbed by
a high Z material is almost zero. Therefore, the study of the Coulomb scattering properties
of the muons could give information about the nature of the target material.

The other key part of the tomography system is the detection of particles. The Resistive
Plate Chambers (RPCs) are gaseous detectors that are widely used for detecting muons.
They provide good spatial and time resolutions and therefore they are well suited to perform
tracking of muons. The RPCs are easy to set-up and have a good ratio price per channel,
compared to other detectors.

The goal of this thesis is to develop the simulation software, the mathematical algorithms,
and the analysis tools needed to construct a scanner formed by several RPC detectors. This
system is based on the cosmic muon tomography to produce images of heavy materials inside
a container.

The thesis is divided in three main blocks. The first block is a general description of the
system. In Chapter 1 we make a brief introduction on the cosmic radiation. We will describe
their composition, flux, and other properties. The cosmic rays are the source of radiation in
our scanner.

In Chapter 2 we present the TimTrack algorithm [32]. As we will see, this mathematical
tool is used to identify the trajectory of particles and perform the reconstruction of images.

The last chapter of the first block is devoted to the RPC detectors. In Chapter 3 we
will describe a new model of RPC designed and constructed by the LIP group in Coimbra
(Portugal). This new model, called muTT, is the detector that was used in the prototype of
the scanner.

The second block of the thesis is fully devoted to the software simulations. First, in
Chapter 4 we present the tools that we implemented to simulate a faithful representation
of our experimental set-up. All simulations were done using the EnsarRoot framework,
developed in the Universidad de Santiago de Compostela [26]. This software provides a
Monte Carlo simulation and analysis tools, together with a easy implementation of the
detector geometry. With EnsarRoot, we first simulated the general scattering properties
of cosmic radiation in several materials. After that, in Chapter 5 we simulated physical
observables that could help in the material identification.

The third block consists on the analysis of the real data provided by the scanner. These
real information was used in Chapter 6 to perform a calibration of the RPC detectors and
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make further corrections on data. After the calibrations were done, in Chapter 7 we present
the analysis of the experimental data together with the images produced in the scanner.

A final summary of the thesis, with conclusions and remarks is done in Chapter 8.



Chapter 1

Cosmic Rays

1.1 Discovery of the cosmic radiation

It can be said that the first observations of the cosmic radiation were accidental. In the
experiments performed by Coulomb and Faraday, it was observed an spontaneous discharge
of their electroscopes. After the experiments carried out by Crookes, it was admitted that
this discharge was a consequence of the ionisation of the surrounding air. But, what was the
origin of this ionisation?

Before continuing with the chapter, we briefly quote a passage of J.J. Thompson about
the works of C. Wilson and the discovery of the cosmic rays:

During the period 1896-1900, 104 papers were published by workers in the
Cavendish Laboratory. I have not space even to give their titles: one, however, I
must refer to. It was the one in which C.T.R. Wilson showed that an electrified
body lost its charge in dust-free-air, when he had arranged the experiment so that
a defect in the insulation of the body would diminish the leak. This occurred
when there were not Röntgen rays passing through the gas, and when it was
shielded by thick metal from radiation from outside. It was the study of this
“residual leak”, so called because every known source had been eliminated, that
led to the discovery of the “cosmic rays”. It is one of the romances of science
that the study of these very minute, and, what might seem trivial, effects should
have led to results which threw much light on a subject of such great importance
as the structure of the atom.

J.J. Thompson. Recollections and Reflections. G. Bell & Sons, Ltd. 1936

Becquerel, Pierre and Marie Curie shown that the radioactive substances emit charged
particles; and those can be the cause of that discharge in the devices. It was shown that a
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charged electroscope discharge when a radioactive element is present. So it was assumed for
a long time that the ionisation of air was only caused by the radiation of substances present
on the Earth surface, like radon. However, later experiments in tunnels shown that the level
of radiation underground was the same as in the Earth surface. Later, Rutherford surrounded
an electroscope with metal and shown that there was no significant reduction of ionisation.
Therefore, there must be another explanation to the ionisation of the air beyond the natural
radiation.

In 1909, Theodor Wulf invented a new model of a very sensitive electrometer. He used it
to study the behaviour of the ionisation of air with altitude. If the radiation was produced
by substances on the Earth surface, the radiation must decrease with height. To check this,
he performed several measurements in the Eiffel tower [1]. He observed that the levels of
radiation at the base of the tower are lower than in the top. This result is inconsistent with
the hypothesis that the ionisation is produced by radiation on Earth surface. Despite of these
results, no solid conclusion was accepted as valid.

After the experiments of Pacini, it was admitted the hypothesis that there is a source of
radiation independent of the originated on the Earth surface. He concluded this after the
study of the ionisation when the electroscopes are placed underwater. For the first time the
hypothesis was that there is a source of radiation that might be from above and not from the
soil.

In 1912, Victor Hess performs different experiments using several Wulf electrometers
in balloon flights [2]. He observed that there is an increase of air ionisation above 1 km of
altitude. One of the flights took place during a total solar eclipse. Hess observed the same
increase in radiation rate as in previous flights. He then concluded that the source of this
radiation is not the Sun and if the come from outer space they must have a great penetration
power, because they are able to reach Earth surface.

The hypothesis of Hess was later confirmed by Kolhörster after flights beyond 9 km
above sea level. For this contribution, Hess was awarded with the Nobel prize in Physics in
1936.

Cosmic rays have been studied deeper during the 20th century. Nowadays, there are
many cosmic ray detectors in the world that provide information about the Universe by the
study of this radiation. Large array detectors, such as in Auger observatory [3], are designed
to cover large areas and collect information about high energy showers.

Other detectors, such as TRAGALDABAS [4] perform another approach to the study of
cosmic rays. By the study of some observables it is possible to perform a deeper analysis on
the relation between the cosmic ray flux and atmospheric properties [5, 6]. Although this
radiation has been studied for more than one hundred years, there are still many unknowns
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related with their origin and with all the processes affecting them before they arrive to Earth
atmosphere.

This thesis studies how the cosmic rays can be used to develop a tomography system.
We will briefly describe the physics behind the cosmic radiation and how it will be used in
our studies. In particular, since our system it is located on Earth surface, it is important to
understand the flux of the radiation that we expect, as well as its nature.

1.2 Sources of cosmic rays

It is common in literature to find the nomenclature primary and secondary cosmic rays. This
is actually the notation used in the references [7, 8] and we will keep it along this chapter.
However, as it is also mentioned in [7], this notation can be confusing because the same terms
are also used (in a different sense) when referring to cosmic rays in atmosphere. For that
reason, we believe it is convenient to use those terms only when describing the interactions
between particles in atmosphere. Apart from that variation, we will adopt the same structure
as in the cosmic ray chapter in [7]. For that reason, we will describe the cosmic radiation
separating in different regions.

1.2.1 Extragalactic and Solar cosmic rays

Most of the cosmic radiation is mainly produced outside the Solar System. When the life of
a star comes to an end, the materials produced during the nucleosynthesis processes can be
ejected to the interstellar medium. For example, after a Supernova explosion the particles
gain energy inside the remnant and they can scape. This radiation will be composed by
carbon, iron, protons or helium; nuclei that are typically produced in stars.

The Supernovae are not the only source of cosmic rays. Quasars, galactic nuclei or
gamma ray bursts are candidates to be cosmic rays sources. Further studies made by large
observatories, such as Auger [3] or the data taken by the PAMELA satellite [9] could have
the key of understanding the cosmic ray sources. New data from the IceCube observatory
[10] propose star forming galaxies as a significant source of cosmic neutrinos [11]

This ejected material is affected by the presence of magnetic fields and also can interact
with the interstellar medium. After those interactions, nuclei such as lithium or boron are
obtained beside antimatter. The presence of magnetic fields in our Galaxy, the Earth or in the
outer space affects significantly to the path of these particles. This fact makes very difficult
the location of the cosmic ray sources.
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The Sun is the closest source of cosmic radiation that we have. The solar flares and
coronal mass ejections are produced when there is a reconfiguration of the magnetic field of
the Sun or by a shock. The energy of this radiation is around 1010 eV. There is a correlation
between the solar and galactic cosmic rays, known as Forbush decrease: when the ejections
from the Sun displace a part of the galactic cosmic rays and therefore there is a decrease in
the detection rate.

The intensity of these primary nucleons at top atmosphere level is given by the approxi-
mation [7]:

IN(E)≈ 1.8 ·104
(

E
1 GeV

)−α nucleons
m2 sr sGeV

(1.1)

where E is the energy-per-nucleon, and α = 2.7 is called the differential spectral index. This
equation is valid for an energy range from several GeV until 100 TeV. Figure 1.1 shows the
flux of primary cosmic radiation. As it can be seen in this figure, most of the particles have
an energy greater than 10 GeV. This is a consequence of the interaction between the cosmic
rays and the solar wind. The charged particles that are ejected from the Sun decelerate the
primary radiation. Therefore, these primary particles are screened and this produces an
anti-correlation between solar activity and intensity at low energy range.

1.2.2 Atmospheric cosmic rays

The cosmic radiation that is ejected from the Sun, the Milky Way or from other galaxies
is constantly arriving to the Earth. During its travel, the radiation is exposed to magnetic
fields, further interactions with other particles or by decay processes. When it arrives to
our atmosphere this radiation is mostly composed by protons, electrons, positrons and some
nuclei as shown in Fig.1.1. After these primary particles interact with the atmosphere, other
particles are produced. These other products, that are the result of the interaction of the
primary radiation with the atmosphere or by the decay of particles, are called secondary
cosmic rays.

The primary cosmic rays interact with the nuclei and molecules present in the air, mainly
oxygen and nitrogen. The probability of interaction depends on the air density and the energy
of the primary cosmic rays. The most energetic primary particles will travel longer, and along
their paths more secondary particles can be produced. The collisions between hadrons and
the air molecules are mediated by the strong interaction. Most of the secondary particles are
pions, and they also can decay to produce more secondary particles. As a numerical example,
a charged pion with an energy of the order of 1 GeV travels 60 m and lives only 26 ns [12].
Therefore, most of the pions decay close to the altitude they were produced. In Fig.1.2 it
is shown how the primary cosmic rays interact with the air molecules in the atmosphere.
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Fig. 1.1 Flux of primary cosmic rays as a function of energy. It is observed that below 10
GeV the flux is low. This is due to the fact that low energy cosmic rays are screened by the
solar plasma.

The secondary particles (pions) also decay to produce muons and photons, depending on the
charge of the pion:

π
± → µ

±
νµ (ν̄µ)

π
0 → 2γ
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Fig. 1.2 Secondary cosmic rays produced at the Earth atmosphere. When a primary cosmic
ray interacts at the top atmosphere several physical processes produce a cascade of particles
that reach the sea level. Figure taken from www.antarticglaciers.com

On the other hand we have also the photons. If they have an energy above 1 MeV and are
inside a nuclear medium, they can produce an electron-positron pair:

γ → e+e−

These electrons and positrons are losing their energy by bremsstrahlung, producing a new
photon that can produce a new electron-positron pair.

We have then several physical processes that contribute to the production of secondary
cosmic rays. We can find particle decays, collisions, pair productions, or bremsstrahlung.
As a result, primary cosmic rays produce a cascade of particles when they interact with the
Earth atmosphere and these products can reach the Earth surface.
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1.2.3 Cosmic rays at Earth surface

In Fig.1.2 it is summarised schematically the composition of the cosmic rays showers that
are produced in the atmosphere. Muons constitute the main component of our detected
cosmic radiation. Beside the contribution of muons, there is an electromagnetic part that also
arrives to ground. As it was mentioned, the photons produced in the π0 decay can produce
an electromagnetic cascade as the result of an electron-positron pair production combined
with bremsstrahlung.

As a summary, we can assume that the cosmic radiation at sea level is formed by two main
components: in one hand we have the muons and in the other hand the electromagnetic part,
composed by electrons, positrons and photons. The Figure 1.3 summarises the information

Fig. 1.3 Schematic representation of the energy spectrum of cosmic rays and most of the
typical detection methods.

about the energy, sources, and detection methods of the cosmic rays.
In this figure, the blue line represents the cosmic ray flux as a function of the energy. It

has a characteristic leg shape and it is common to distinguish between the knee and the ankle
regions.
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In the top part of the figure are represented different sources with their associated energies.
We then have the solar cosmic rays, the radiation that comes from the galaxy, and the extra
galactic sources such as supernovae, quasars, and others.

On the right part of the figure it is represented the altitude, the density, and the structure
of the Earth atmosphere. The combination of all of these parameters can provide a good
description of the cosmic radiation.

As we see, the Solar cosmic rays are the most abundant. However, they have affected by
the magnetic fields and have low energy. Consequently, they extinguish at the top levels of
the atmosphere. The most energetic solar cosmic rays (10 GeV) can produce a secondary
cascade at around 35 km of altitude. The detection of this secondary cosmic rays is only
possible by the use of balloons, satellites, or ground-based detectors at very high altitude.

The galactic cosmic rays have an energy range between 1010 −1017 eV. They interact
with the atmosphere around the troposphere limit and produce secondary cascades that can
be detected at sea level. Several detectors, such as Sierra Negra (Mexico) [13] or Tibet [14]
are located at around 4.000 m of altitude and are devoted to the study of these secondary
cascades.

Very energetic cosmic rays coming from extra galactic sources produce large cascades
on the Earth surface. The flux of these cosmic rays are 1 per km2 and century, but they are
the most energetic cosmic rays. Due to the huge amplitude of the cascades, their detection is
only possible by the use of big arrays of detectors. Observatories such as Auger [3], cover
large detection areas and study the possible origin of these cosmic rays.

In Fig.1.4 is presented a table that summarises the composition and flux of the cosmic
radiation at sea level.

In the figure, are represented integrated fluxes of muons, photons, electrons, and neutrons
as a function of the energy. As we see, muons are the main component for an energy up to 5
GeV.

The intensity of muons at sea level depends on the zenith angle. If we assume that the
curvature of the Earth does not contribute to the angular dependency and we neglect it, the
intensity follows the equation [15]:

I(θ ,Xh) = I(0°,Xh)exp
(

Xh

Λ
(1− secθ)

)
(1.2)

where in this equation Xh is the vertical depth (expressed in g/cm2) and Λ is the attenuation
length (also in g/cm2). The general dependency of the intensity with angle and energy is
given by:

I(θ ,Xh,E) = I(0°)cosn(E,Xh) (θ) (1.3)
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Fig. 1.4 Cosmic ray flux at sea level. The fluxes of the different components are shown. As
seen, muons are the dominant particles at sea level.

Experimentally, it is known that for typical energies of 3−4 GeV, the value of n is inside
the interval

n ∈ [1.7,2.3] (1.4)

and as an approximation it is commonly accepted that the angular distribution follows a
cos2 θ law.

If the muon decay is negligible, it holds the empirical formula for muons [7]:

dNµ

dEµdΩ
≈

0.14E−2.7
µ

cm2 s sr GeV

(
1

1+ 1.1Eµ cosθ

115 GeV

+
0.054

1+ 1.1Eµ cosθ

850 GeV

)
(1.5)

An overview of the spectrum of muons at sea level is shown in Fig.1.5. In this figure are
represented muons for two different angles.
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Fig. 1.5 Spectrum of muons at two angles. The ⋄ corresponds to an angle of θ = 75°. The
other points correspond to different measurements for θ = 0°. Figure taken from [7]

The ⋄ symbol represents the muons with an angle of θ = 75°. The rest of points are for
muons at θ = 0°.

For the purpose of this thesis, we focus on the study of the cosmic muons at sea level. The
values presented in this chapter will define the structure of the simulations of the experimental
set-up. The role of the electrons and gammas is not as important as for muons, and we will
study them in a different manner.



Chapter 2

The TimTrack algorithm

2.1 Introduction and motivation

One of the key parts in data analysis is the reconstruction of the trajectories of the particles
associated to a particular event across the experimental set-up. When a charged particle
passes through a material medium, it loses part of its energy by ionisation of the medium.
Therefore, it might be possible to get a signal confirming that the particle was detected. This
is the basic way that a particle detector works. For each event we have a collection of all
registered interactions of the particles with our detectors. This information is crucial to
describe the trajectory of the particles. Knowing these trajectories is important not only to
estimate the physical features of our detectors (calibration, efficiency, acceptance) but also to
identify the nature of particles and then perform a more detailed physics analysis.

Not all detectors are designed to provide the same type of information. For example,
we can have detectors in our experimental set-up that provide a good information about the
velocity of the particle. Also, there are detectors that provide information about the position
where the interaction took place. In a typical experimental set-up it is common to find a set
of several types of detectors collecting different type of information. This is the starting point
of the data analysis, and this information needs to be processed in order to obtain a good
description of the trajectories or other variables.

There are many techniques and algorithms that provide information of the trajectory
of particles. Traditionally, these tracking analysis are made in two steps: first, the spatial
information is taken to determine all possible trajectories that the particle could have in the
detector. After this first discrimination, the time information is used to cut the events that
are not compatible in time. This two-step process, in which time and space variables are
treated separately, has been used since decades. One of the main reasons to do this is because
first detectors had a very poor (or even null) temporal resolution. In that case, it is not worth
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performing a combined analysis of the variables. The lack of information about the time
resolution makes not possible an analysis of correlations between space and time variables.

Modern RPC detectors are able to provide space and time information with good accuracy.
Therefore, it seems to be reasonable to propose new tracking methods that abandon the
previous two-step strategy and perform this analysis in one step.

This chapter is devoted to the description of the TimTrack algorithm. The method was
developed by J. Garzón and P. Cabanelas [31, 32] and it has been adopted as the reference
reconstruction method for the Trasgo family of detectors. Unlike the above mentioned
methods, TimTrack performs the reconstruction of trajectories using both spatial and temporal
variables together, all in one step. This point is very important since this means that the
method is able to manage information from different detectors, independently of the variable
that they measure. If, for example, our set-up consists on a combination of RPCs and plastic
scintillators, the method is capable of unifying all information and provide a summarised
description of the system.

From the mathematical point of view, one of the main advantages of the algorithm is that
TimTrack is based on the least squares method. This fact makes possible a more comfortable
formulation of the equations because a full matrix description of the method is possible.

This chapter is divided in three main parts. First, we present the general formulation
of the TimTrack method. Second, there is a description of the models used in real physics
environments. Third, numerical examples of the method.

2.2 General description of the method

The TimTrack algorithm is based on the least squares method. The work of G. Audi [18]
shows a full matrix description of this method, and is taken as the starting point of the
mathematical formulation of TimTrack.

The goal of TimTrack is to determine all the parameters that are related to the propagation
of the particle taking as an input a collection of experimental data. These parameters are
stored in an object called saeta1, and therefore a saeta is a vector that contains all the
kinematical information of the particle. The minimum set of parameters are contained in a
saeta of the kind:

s =
(
X0,X ′,Y0,Y ′,T0,S

)
(2.1)

where in this equation

1The name saeta stands for Set of All paramETers Available
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Fig. 2.1 Geometrical representation of a saeta in a generic strip detector. A saeta (blue line)
contains different kinematic parameters related to the propagation of the particle trough the
components of our experimental set-up. The figure was taken from [32].

• X0,Y0 are the x and y coordinates of the origin.

• X ′,Y ′ are the projections of the propagation along the z-axis, ∆x/∆z and ∆y/∆z.

• T0 is the arrival time referred to an external counter.

• S is the slowness, that is, the inverse of the velocity of the particle, S = 1/v.

With these six parameters the trajectory of a particle can be fully described. The equation (2.1)
shows the simplest form of a saeta that describes the propagation of a particle. Depending on
the situation the parameters can be different and other parametrisations of the problem can
be done.

As an example, figure 2.1 shows an experimental set-up consisting in four plane parallel
detectors. A particle is crossing the set-up and with each detector we obtain spatial and
temporal coordinates. After the reconstruction is made with TimTrack, the propagation of
the particle is given by the parameters presented in equation (2.1) as a saeta vector. As
shown in the figure, the X ′ and Y ′ parameters represent the slope of the trajectory along the
propagation direction, z.

Essentially, the TimTrack method provides a connection between two different spaces:
data parameters. This connection is done assuming that our measured data follow a certain
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model that depends on our parameters. As a summary, to apply the TimTrack method we
need:

1. A set of experimental data. They are grouped in a vector called d.

2. A set of parameters. They are presented as a saeta s.

3. A model that connects both spaces: d = m(s).

From the above it is obvious that the dimension of m equals the dimension of d. We called
nd the dimension of both spaces. It is important to note that nd is not the size of the space,
but the number of coordinates that form each element. In general, we have a total number of
parameters ns that should fulfil nd ≥ ns.

The parameters grouped in a saeta are obtained by the minimisation of a mathematical
functional, S. This operator, in the least squares method, is related to the statistical distance
between the measured data and the model. Therefore, the values of the parameters should
satisfy that the distance between the model and the experiment, which is called residual, is
minimal.

The mathematical form of the functional that we propose is:

S =
nd

∑
i

(
di −mi(s)

σi

)2

(2.2)

where σi is the uncertainty associated to the i variable. The goal of the method is to calculate
the values of the parameters that make this observable reach a minimum.

It is convenient, from a mathematical point of view, to write this functional in a matrix
form [18, 58] as

S = (d−m(s))′ ·W · (d−m(s)) (2.3)

where W is the matrix that contains the statistical weights of the variables (σi) and the
apostrophe represents the transpose operation over a vector or matrix.

The model that follow the data can be written as a linear expansion:

m(s) = G · s+g0(s) (2.4)
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where G is the Jacobian matrix:

G =
∂m(s)

∂ s
=


∂m1(s)

∂ s1

∂m1(s)
∂ s2

· · · ∂m1(s)
∂ sns

∂m2(s)
∂ s1

∂m2(s)
∂ s2

· · · ∂m2(s)
∂ sns

...
... . . . ...

∂mnd (s)
∂ s1

∂mnd (s)
∂ s2

· · · ∂mnd (s)
∂ sns


From the previous equation it follows that

g0(s) = m(s)−G · s

and with these objects, the functional S takes the form:

S = (Gs)′ ·W · (Gs)−2(Gs)′ ·W · (d−g0)+(d−g0)
′ ·W · (d−g0) (2.5)

At this point, it is convenient to define new objects that are characteristic and that allow us to
expressed the observable S in a more comfortable way:

K = G′ ·W ·G (2.6)

a = G′ ·W · (d−g0) (2.7)

s0 = (d−g0)
′ ·W · (d−g0) (2.8)

With these definitions the functional takes the form:

S = s′ ·K · s−2 · s′ ·a+ s0 (2.9)

So far, we only have rewritten the functional S, that is nothing else than the χ2 variable.
The set of parameters that best describes the model is given by the minimisation of the
chi-square functional S:

∂S
∂ s

= 0 (2.10)

This condition leads to the equation
a = K · s (2.11)

and therefore
s = K−1 ·a (2.12)
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If we call E to the inverse of the K matrix, we arrive to the called sea equation:

s = E a (2.13)

At this point it is important to do some remarks:

1. The K matrix is called the configuration matrix. It is always a squared symmetric
matrix of the same dimension that the set of parameters, ns. If the model is linear it
depends only on the intrinsic characteristics of the detectors and the uncertainties of
the experimental data.

2. The inverse of K is the matrix that contains the uncertainties of the parameters s. For
that reason it is called error matrix:

E =

(
1
2

∂ 2S
∂ s2

)−1

= K−1

3. Since nd ≥ ns it is always possible to invert the K matrix and therefore the minimisation
problem can be solved. If nd = ns the problem has an unique and exact solution.

4. The a vector is called reduced data vector. It translates the nd data in a vector of
dimension ns.

5. The quantity s0 is always a scalar.

After the collection of all experimental data is reduced to the vector a, the connection
between the data and parameter spaces is done with the K matrix.

One of main the advantages of the TimTrack method is that it can be used even if we have
a collection of different detectors at the same time. Every experiment consists on a group of
detectors that measure different variables. For example, we can have Cherenkov detectors
that are able to measure velocity with good accuracy together with a Time-Of-Flight detector
measuring time. Each of these detectors are described by one model mi.

The TimTrack algorithm allows us to describe the whole array of detectors by solving a
more general sea equation. There are some considerations to be taken into account:

1. We suppose that we have n detectors in our experimental setup. Each detector is
described by an individual model mi.

2. The models can be different, because they describe different experimental data. In a
general case, each detector has its own Ki matrix and ai vector.
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3. The total K matrix and the total a vector that describe the whole set-up are the sum of
the individual vectors and matrices.

4. The general sea equation is therefore:

s =

(
n

∑
i

Ki

)−1

·

(
n

∑
i

ai

)
(2.14)

An schematic overview of the TimTrack applied to several detectors can be seen in Fig.2.2
Each detector of the Figure is measuring different types of data. Detector number 1 measures

Fig. 2.2 Example of TimTrack method applied to a detector array. In this particular experi-
mental set-up we have N different detectors each of them following a particular model for
their measurements.

position (x,y), the detector number 2 (x, t), and so on. As a result, each model generates a
matrix K and a vector a for each set of data. The saeta that represents the trajectory through
all the detectors is the solution of the general sea equation (2.14).

2.3 Non-linear TimTrack

If we consider a non-linear model that describes the data, the solution to the problem should
be found by an iterative method. In the linear case, the vector g0 has no dependency on
the parameters. This vector, roughly speaking, is quantifying how different are our data
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from linearity. The derivatives of the model, since it is linear, are constant and therefore the
elements of the Jacobian matrix are constant numbers. As a consequence, these mathematical
objects do not depend on the solution.

In contrast, in the non-linear case this dependency exists. We have to find the global
minimum by iteration until a convergence is found. Figure 2.3 shows a simple illustration of
this iterative process, where a solution is proposed at each step.

Fig. 2.3 Schematic representation of the search of a solution for a non-linear model with the
TimTrack method. An initial solution s0 is proposed. This initial vector is modified at each
step until a converged vector sm. For those values of the parameters, a global minimum of
the functional S(s)min is reached.

The strategy is the same as the used to find the global minimum of a function with several
variables. At this point we follow the description and notation of the non-linear case given
by G. Kornakov [54]. The form of the functional that has to be minimised is almost the same,
the difference is found in the dependency of the objects:

S(s) = s′ ·K0 · s−2 · s′ ·a0 + k0(s) (2.15)
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where now the objects have the dependency in s:

K0 = G′
0 ·W ·G0 (2.16)

a0(s) = G′
0 ·W · (d−g0(s)) (2.17)

k0(s) = (d−g0(s))′ ·W · (d−g0(s)) (2.18)

The iterative process begins when an initial set of parameters is proposed as solution.
Let’s assume that the set s0 is close to the global minimum that solves our problem. Hence, a
Taylor expansion around s0 can be done:

S(s)≈ S(s0)+
∂S(s)′

∂ s

∣∣∣∣
s0

δ s+
1
2

δ s′
∂ 2S(s)

∂ s2

∣∣∣∣
s0

δ s+ . . . (2.19)

with s = s0+δ s. The condition that the minimum must satisfy is that S(δ s) = 0, so therefore:

K0δ s+(K0 · s0 −a0) = 0 (2.20)

and then
δ s = K−1

0 ·a0 − s0 (2.21)

The new set of parameters are:

s1 = s0 +δ s = K−1
0 a0 (2.22)

and we can see that this equation has the same form as (2.13). With these new values of
the parameters we can recalculate the new K matrix, the new a vector, and so on. The new
values are closer to the minimum and then the iterative process begins until a convergence is
achieved. This process can be summarised in a more general equation that accounts for the
recursive method:

si = K−1
i−1 ·ai−1 (2.23)

After a few iterations a convergence is reached, and the difference δ s should decrease at each
iteration.

As a summary, to find a solution of a non-linear TimTrack we need to follow the next
steps:

1. First, we propose a set of parameters s0 as initial vector. In principle, this vector must
be close to the global minimum of the functional S.

2. We calculate the Jacobian matrix G0. With it, we calculate the vector g0(s).
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3. With these two objects, we calculate the values of K0 and a0 as the value of K and a
evaluated at s0.

4. We apply the sea equation to find a new set of parameters s1.

5. The process is repeated iteratively until a convergence is reached.

2.4 Non-linear TimTrack with constraints

There are many physical situations in which the set of parameters s are constrained. They
might satisfy some geometrical or physical conditions, as for example, energy-momentum
conservation.

These boundary conditions among the parameters can be included in different ways. One
possible way is to superimpose the restrictions to the parameters before the calculations
are made. This redefinition could lead to a complicate calculation of the Jacobian matrix,
specially if the constraints are not lineal. Using this method, the covariances between the
individual parameters are lost.

Another possible way to introduce the constraints consists on the extension of the model.
The boundary conditions among the parameters are defined in additional equations. This
method needs an arbitrary weight factor in the W matrix that is related to the uncertainties of
the physical problem.

The third possibility consists on a redefinition of the functional S including a set of nc

functions that contain the constraints of of the parameters. The minimisation of the functional
is done by the use of the Lagrange multipliers. The constraints are always presented in the
form:

fi(s) = 0 (2.24)

where the index i runs to nc. If we apply the Lagrange multipliers method, we first need to
construct the functional:

L(s) = S(s)+2
nc

∑
i

λi fi(s) (2.25)

where λi are the set of Lagrange multipliers and the 2 is introduced for later convenience.
Since the multipliers are arbitrary, an additional will not affect the final solution and in this
case will simplify the final equations.

The minimum of the functional is found by the condition:

∂S
∂ s

=
∂

∂ s

[
(d−m(s))′ ·W · (d−m(s))+2

nc

∑
i

λi fi(s)

]
= 0. (2.26)
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This equation can be solved using the general non-linear method explained in the previous
section. We can assume that the model and the constriction functions can be expanded as
Taylor series of first order:

m(s) ≈ m(s0)+
∂m(s)

∂ s

∣∣∣∣
s0

ds = m(s0)+G0 ·ds (2.27)

f(s) ≈ f(s0)+
∂ f(s)

∂ s

∣∣∣∣
s0

ds = f(s0)+R0 ·ds

where f is the array of functions with the boundary conditions, and R0 is the Jacobian matrix
of the constraints evaluated at s0.

Using the definitions of a0 and s1 we can rewrite the condition of minimum (2.26) as

K0s1 +R0λ = δa0 (2.28)

where δa0 = a0 −K0s0. If we follow the same procedure as in the non-linear case we arrive
to a sea equation of the form

s = K−1
i−1hi−1 (2.29)

where hi = δai−Riλ . As we can see, the solution of the parameters depends on the Lagrange
multipliers. Therefore, we need to obtain their values. Otherwise the solution is useless.

The definition of the constraint functions and the form of the Lagrangian at minimum
allow us to propose the set of equations:

δa0 = K0 ·ds+R0λ

−f0 ≈ R0 ·ds

If we rewrite these equations in a matrix form:(
K0 R′

0

R0 0

)
︸ ︷︷ ︸

K̂0

·

(
ds
λ

)
︸ ︷︷ ︸

dŝ

=

(
δa0

−f0

)
︸ ︷︷ ︸

δ â0

(2.30)

we have an extension of the objects that includes the Lagrange multipliers. Again, if we
apply the non-linear method, we arrive to the sea equation

δ ŝi = K̂−1
i−1 ·δ âi−1 (2.31)

with ŝi = ŝi−1 +δ ŝi.
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The errors associated to the parameters are contained, as in the other cases, in the inverse
of the K matrix.

In the figure 2.4 it is shown how the iterative process works. An initial solution of the

Fig. 2.4 Search of a solution of a non-linear model with constraints in the parameters. The
problem is solved iteratively as the standard non-linear case, but the final values of the
parameters sm must fulfil the conditions of a constraint function (blue-line).

parameters is proposed and the new set of values is obtained after the restricted sea equation
is applied. The solution must satisfy the restrictions contained in the constraint functions.

As a final remark, the non-linear TimTrack with restrictions can be summarised in the
algorithm:

1. We add to the our model a set of nc equations that describe the constraints of our
parameters. Each constraint has the form fi = 0.

2. The Lagrangian to be minimised is constructed as the equation (2.25).

3. We calculate the Jacobian matrix R = ∂sf(s).
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4. An initial solution s0 is proposed. We evaluate the objects with these parameters.

5. The iterative process begins. We solve(
δ s1

λ

)
=

(
K0 R′

0

R0 0

)′

·

(
a0 −K0s0

−f0

)

6. The new solution has the form s1 = s0 +δ s1.

7. The iteration process continues until convergence.

2.5 TimTrack as a calibration method

The detectors present in an experimental set-up are not perfect. There are many external
factors that can affect to the measurements. It is usual to apply further corrections to the
experimental data because of these imperfections.

The TimTrack algorithm can be used to determine these calibration constants of our
detectors. We assume that the parameters related to the calibration are present in the
mathematical model together with the kinematic parameters. In our formulation we denote
these calibration constants by the vector α .

These parameters can represent a spatial displacement that has to be applied to our
detector, or a temporal shift due to the length of the cables, among other quantities. In
terms of the TimTrack method, the α values are treated exactly the same way that the other
parameters. Therefore, all the objects, as the Jacobian matrix, must include the derivatives
respect to them and the sea equation provides their values.

Mathematically, the model that describes the set of experimental data that are influenced
by calibration parameters is :

m(s;α) = GA · sα +g(s;α) (2.32)

where
GA =

(
∂m
∂ s

∂m
∂α

)
and

sα =

(
s
α

)
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Note that this equation is the same as (2.4). The only difference is that we added the
parameters as new set of variables. We follow the same procedure as in the previous cases to
arrive to an equation that has to be solved.

The forms of the configuration matrix and the reduced data vector are:

KA = G′
A ·W ·GA (2.33)

aα = G′
A ·W · (d−g(s;α)) (2.34)

where it can be seen that they include the dependency on the parameters.
Finally, we have to solve the sea equation with calibration parameters:

sα = K−1
A ·aα . (2.35)

One of the main advantages of the TimTrack method, and in particular when is applied as
a calibration tool, is that the objects (K matrix, Jacobian or the reduced data vector) can be
decomposed in blocks. This makes the mathematical description more clear and compacted,
and it is particularly useful when several parameters are used. For example, we can have four
RPC detectors and each detector has their own calibration parameters. The global description
of the array is done with a general sea equation as (2.14). In this case, the algebraic sum
would mix spaces and provide a wrong global description. To avoid this problem we work
with sparse matrices and treat each parameter individually.

2.6 Example of models and their applications

In this section we define the models that are used along the thesis for calibration and
reconstruction tasks. The models are based on an experimental set-up that consists on four
parallel planes, each of them providing (x,y, t) coordinates, as the schematic set-up shown
in Fig.2.1. Each plane is located at zi. Since the particle is propagating along the positive z
coordinate, we considered z as a free independent variable.

The measured quantities have associated an intrinsic uncertainty, and their values are
grouped in the W matrix as statistical weights. In this particular case, the uncertainties are
σx, σy and σt . Therefore, the W matrix has the form:

W =

wx 0 0
0 wy 0
0 0 wt
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with wi = 1/σ2
i . This matrix will be the same in all the models presented in this section.

2.6.1 Linear model

The linear model is the most simple representation of a particle that propagates following a
straight line. The equations that define the model, m(s), are:

mx = X0 +X ′ · z
my = Y0 +Y ′ · z
mt = T0 +S · z

As it can be seen, the x,y coordinates are the parametric representation of a straight line,
where the free parameter is the z coordinate. We also assumed a linear dependency in time.
This is an approximation and only true if we have vertical particles.

The unknown parameters are grouped in the saeta:

s = (X0,X ′,Y0,Y ′,T0,S).

as defined in Fig.2.1. To calculate the values of the parameters we need to solve the sea
equation (2.13). For this, we need the configuration matrix (K) and the reduced data vector
(a). Following the definition of the objects given in the array of equations (2.6), the K matrix
has the form, for each plane:

Ki =



wx wx · zi 0 0 0 0
wx · zi wx · z2

i 0 0 0 0
0 0 wy wy · zi 0 0
0 0 wy · zi wy · z2

i 0 0
0 0 0 0 wt wt · zi

0 0 0 0 wt · zi wt · z2
i


As we can see, the configuration matrix does not depend on the parameters s. It only depends
on the position of the plane zi and the uncertainties of the experimental data wi.
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The follow the same definition to construct the a vector:

ai =



wx · xi

wx · xi · zi

wy · yi

wy · yi · zi

wt · ti
wt · ti · zi


where (xi,yi, ti) is the experimental measurement at plane i. As for the K matrix, this vector
is not depending on the parameters.

The number of unknowns (i.e.,the parameters to be solved) is six. Since each plane
contributes with three data this problem has an exact solution for two planes (we have
nd = 3× 2 = 6 data for 6 parameters). The fact that we have two extra data vectors is
contributing to get a better solution, since they are providing more information to the system.

The total K matrix and the total a vector are the sums of the four individual Ki and ai.
Since these objects are not dependent on the parameters, the solution is found without an
iterative process. The parameters are found by the direct application of the sea equation
(2.13).

2.6.2 Non-linear model

The linear case is an idealisation of the trajectory of the particle across our detector. A more
realistic description can be made by the use of a non-linear model:

mx = X0 +X ′ · z
my = Y0 +Y ′ · z
mt = T0 +S · k · z

where
k =

√
1+X ′2 +Y ′2

and the kinematical parameters are the same as in the linear case:

s = (X0,X ′,Y0,Y ′,T0,S).
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This non-linear model takes into account the non-vertical displacement. The quantity k
represents the module of the direction vector, i.e., the actual distance travelled by the particle
in a vertical step of ∆z. The x,y components follow also the equation of a straight line, as in
the linear case.

In contrast to the linear model case, the different objects will depend on the values of the
unknown parameters. The form of each Ki matrices and the ai vectors are:

Ki =



wx wxzi 0 0 0 0
wxzi wxz2

i +S2wtX ′2z2
i /k2 0 S2wtX ′Y ′z2

i /k2 SwtX ′zi/k SwtX ′z2
i

0 0 wy wyzi 0 0
0 S2wtX ′Y ′z2

i /k2 wyzi wyz2
i +S2wtY ′2z2

i /k2 SwtY ′zi/k SwtY ′z2
i

0 SwtX ′zi/k 0 SwtY ′zi/k wt wtkzi

0 SwtX ′z2
i 0 SwtY ′z2

i wtkzi wtk2z2
i


and

ai =



wxxi

wxxizi +SwtX ′ziT/k
wyyi

wyyizi +SwtY ′ziT/k
wtT

wtkziT


with

T = t +SX ′2zi/k+SY ′2zi/k

As we can see these objects depend on the parameters S, X ′, and Y ′. We also can see that
in the K matrix appear correlations between the variables that are not present in the linear
model case.

The total K matrix and the total a vector are found as in the linear case. The sea equation
must to be solved iteratively. For that, we propose an arbitrary initial solution 2 s0 and we
modify it solving iteratively the sea equation. The process stops when a convergence criteria
is reached. In this thesis, we used the difference in Euclidean modules of the solutions:

(|si+1|− |si|)< ε

to stop the iterative process. Here, ε is arbitrary. In our case, we used ε = 10−3 as a
convergence value in this difference of modules criteria.

2It is convenient to propose an initial vector as close as possible to the global minimum.
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2.6.3 Supersaetas

When the muons interact with materials they scatter due to the Coulomb multiple scattering.
The shape of the material can be formed by the reconstruction of the interaction vertices. We
define now a new object named supersaeta. A supersaeta consists on the union of two saetas
that share a common point: the vertex.

We consider two models that describe the data: one for the two upper planes and another
for the two lower planes. Each model generates a saeta and we impose the condition that both
trajectories cross at the interaction vertex. For the calculations, we take the vertex (X0,Y0,Z0)

as the reference point.
The two models are:

mxu = X0 +X ′
1 · (z−Z0)

myu = Y0 +Y ′
1 · (z−Z0)

mtu = T0 +S · (z−Z0)

mxd = X0 +X ′
2 · (z−Z0)

myd = Y0 +Y ′
2 · (z−Z0)

mtd = T0 +S · (z−Z0)

where we used the notation u and d to denote up and down. The parameters of the supersaeta
are:

s = (X0,X ′
1,X

′
2,Y0,Y ′

1,Y
′
2,T0,S,Z0).

In this supersaeta are included the parameters of both trajectories, since X ′
1,Y

′
1 are the slopes

of the reconstructed trajectory in the upper planes and in a similar manner X ′
2,Y

′
2 for the lower

planes. The point (X0,Y0,Z0) is the vertex, T0 is the time related to an external reference and
S is the slowness. In this model we assume that the velocity of the particle is a free parameter,
i.e., not constant.

The non-zero elements of the configuration matrix Ku are shown in the newt array of
equations. To make the notation easier we defined the quantities

k =
√

1+X ′2
1 +Y ′2

1 and dZ = zi −Z0
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with dZ2 = (zi −Z0)
2. Since we have nine parameters, the configuration matrices are 9×9

squared symmetric matrices kui j = ku ji. These are the elements of Ku:

ku11 = wx

ku12 = wx ·dZ

ku19 = −wx ·X ′
1

ku22 = wx ·dZ2 +
wt ·S2 ·X ′2

1 ·dZ2

k2

ku25 =
wt ·S2 ·X ′2

1 ·dZ2

k2

ku27 =
S ·wt ·X ′

1 ·dZ
k

ku28 = S ·wt ·X ′
1 ·dZ2

ku29 = −S2 ·wt ·X ′
1 ·dZ −wx ·X ′

1 ·dZ

ku44 = wy

ku45 = wy ·dZ

ku49 = −wy ·Y ′
1

ku55 =
wt ·S2 ·Y ′2

1 ·dZ2

k2 +wy ·dZ2

ku57 =
wt ·S ·Y ′

1 ·dZ
k

ku58 = S ·wt ·Y ′
1 ·dZ2

ku59 = −S2 ·wt ·Y ′
1 ·dZ −wy ·Y ′

1 ·dZ

ku77 = wt

ku78 = wt · k ·dZ

ku79 = −S ·wt · k
ku88 = wt · k2 ·dZ2

ku89 = −S ·wt · k2 ·dZ

ku99 = wx ·X ′2
1 +wy ·Y ′2

1 +wt ·S2 · k2
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The reduced data vector au for a measurement (xi,yi, ti) at the plane located at zi has the
form:

au =



wx ·∆xi

−Z · wx·k2·∆xi+S·wt ·X ′
1·[−ti·k+S·(Z0·k′−zi·q′)]

k2

0
wy ·∆yi

−Z · wy·k2·∆yi+S·wt ·Y ′
1·[−ti·k+S·(Z0k′−zi·q′)]

k2

0
wt · ti · k ·S · −Z0·k′+zi·q′

k
wt ·Z · ti · k ·S (Z0 · k′− zi ·q′)

−S · ti ·wt · k+wx ·X ′
1 ·∆xi +wy ·Y ′

1 ·∆yi +S2 ·wt (k′ ·Z0 −q′ · zi)


where in this vector

∆xi = xi −X ′
1 ·Z0, ∆yi = yi −Y ′

1 ·Z0, k′ = 1+2X ′2
1 +2Y ′2

1 , q′ = X ′2
1 +Y ′2

1

The same procedure is made for the model describing the data of the two lower planes.
The non-zero values of the Kd matrix have the same form as in Ku, but as a function of X ′

2,Y
′
2.

The definition of the variables k and dZ are equivalent as in the upper case:

k =
√

1+X ′2
2 +Y ′2

2 and dZ = zi −Z0
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kd11 = wx

kd12 = wx ·dZ

kd19 = −wx ·X ′
2

kd33 = wx ·dZ2 +
wt ·S2 ·X ′2

2 ·dZ2

k2

kd36 =
wt ·S2 ·X ′

2 ·Y ′
2 ·dZ2

k2

kd37 =
S ·wt ·X ′

2 ·dZ
k

kd38 = S ·wt ·X ′
2 ·dZ2

kd39 = −S2 ·wt ·X ′
2 ·dZ −wx ·X ′

2 ·dZ

kd44 = wy

kd45 = wy ·dZ

kd49 = −wy ·Y ′
2

kd66 =
wt ·S2 ·Y ′2

2 ·dZ2

k2 +wy ·dZ2

kd67 =
wt ·S ·Y ′

2 ·dZ
k

kd68 = S ·wt ·Y ′
2 ·dZ2

kd69 = −S2 ·wt ·Y ′
2 ·dZ −wy ·Y ′

2 ·dZ

kd77 = wt

kd78 = wt · k ·dZ

kd79 = −S ·wt · k
kd88 = wt · k2 ·dZ2

kd89 = −S ·wt · k2 ·dZ

kd99 = wx ·X ′2
2 +wy ·Y ′2

2 +wt ·S2 · k2
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The same is done for the ad vector:

ad =



wx ·∆xi

0

−Z · wx·k2·∆xi+S·wt ·X ′
2·[−ti·k+S·(Z0·k′−zi·q′)]

k2

wy ·∆yi

0

−Z · wy·k2·∆yi+S·wt ·Y ′
2·[−ti·k+S·(Z0k′−zi·q′)]

k2

wt · ti · k ·S · −Z0·k′+zi·q′
k

wt ·Z · ti · k ·S (Z0 · k′− zi ·q′)
−S · ti ·wt · k+wx ·X ′

2 ·∆xi +wy ·Y ′
2 ·∆yi +S2 ·wt (k′ ·Z0 −q′ · zi)


where we introduced the same variables as in the upper case:

∆xi = xi −X ′
2 ·Z0, ∆yi = yi −Y ′

2 ·Z0, k′ = 1+2X ′2
2 +2Y ′2

2 , q′ = X ′2
2 +Y ′2

2

The total K matrix is the sum of the contributions of both models, as for the a vector:

K =
2

∑
i=1

Kui +
2

∑
j=1

Kd j

a =
2

∑
i=1

aui +
2

∑
j=1

ad j

and therefore the values of the parameters are obtained as the solution of the sea equation
(2.13).

A variation of these models can be done by assuming that the velocity of the particle
is constant. In that case, the total number of parameters grouped in the supersaeta is eight
instead of nine:

s = (X0,X ′
1,X

′
2,Y0,Y ′

1,Y
′
2,T0,Z0).

Therefore, the K matrices are 8×8 and the objects have a different form.

2.6.4 Time calibration parameters

The TimTrack method can be used to determine the relevant calibration constants in our
detector. In this case, we consider an example of TimTrack as a time calibration tool for an
RPC with a detection area made by strips. In the figure 2.5 we show the time measurement
in a RPC plane. Each plane is divided in two parts, that we called left and right. When a
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Fig. 2.5 Example of an RPC detector based on strips (orange band) and divided in two
regions: left and right. Each region has an individual time readout electronics and therefore
there is a shift in time depending on the position of the hit.

particle leaves a signal in a particular strip (red rectangular region) the signal travels through
the strip until is collected in both extremes, providing a tup and tdown. The measurement of
time is obtained as the mean value of them:

t =
tup + tdown

2
. (2.36)

Each left and right parts have their own cables and detection systems independent to each
other. This means that the measurement of time will be different depending on the fact
that particle interacts on the left or right side. Thus, there is a shift in time that needs to be
introduced in order to compensate both sides.

The whole calibration process is explained in more detail in Chapter 3. Here we present
only the mathematical structure of the models.
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In this model, we assume that the experimental set-up consists on four parallel RPCs
detectors. The shift in time is done only for the first RPC. The mathematical model is:

m1x = X0 +X ′ · z1

m1y = Y0 +Y ′ · z1

m1t = T0 +S · k · z1 + τ

m2x = X0 +X ′ · z2

m2y = Y0 +Y ′ · z2

m2t = T0 +S · k · z2

m3x = X0 +X ′ · z3

m3y = Y0 +Y ′ · z3

m3t = T0 +S · k · z3

m4x = X0 +X ′ · z4

m4y = Y0 +Y ′ · z4

m4t = T0 +S · k · z4

with k =
√

1+X ′2 +Y ′2 and the shift im time is represented with τ . As mentioned, the
planes 2,3, and 4 are not affected by the right-left time shift.

The parameters contained in the saeta are then:

s = (X0,X ′,Y0,Y ′,T0,τ)

where we consider that the velocity of the particle is fixed.
As described in Equation (2.32) the Jacobian matrix, GA, is formed as a the union of the

derivatives of the model respect to the parameters and the calibration variables. We write
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both matrices individually and then we construct the final Jacobian:

∂m
∂ s

=



1 z1 0 0 0
0 0 1 z1 0
0 γx · z1 0 γy · z1 1
1 z2 0 0 0
0 0 1 z2 0
0 γx · z2 0 γy · z2 1
1 z3 0 0 0
0 0 1 z3 0
0 γx · z3 0 γy · z3 1
1 z4 0 0 0
0 0 1 z4 0
0 γx · z4 0 γy · z4 1



∂m
∂α

=



0
0
1
0
0
0
0
0
0
0
0
0



→ GA =



1 z1 0 0 0 0
0 0 1 z1 0 0
0 γx · z1 0 γy · z1 1 1
1 z2 0 0 0 0
0 0 1 z2 0 0
0 γx · z2 0 γy · z2 1 0
1 z3 0 0 0 0
0 0 1 z3 0 0
0 γx · z3 0 γy · z3 1 0
1 z4 0 0 0 0
0 0 1 z4 0 0
0 γx · z4 0 γy · z4 1 0


(2.37)

where we defined the quantities

γx =
S ·X ′

k
and γy =

S ·Y ′

k
(2.38)

using the previously defined k. The weight matrix, W , is now a 12× 12 diagonal matrix
containing the wx,wy,wt of each plane. In this description we assumed that the uncertainties
are the same for all planes.

The K matrix of this model is:

K =



4 ·wx wx ·Zt 0 0 0 0

k12
(S2·wt ·X ′2+wx·k2)·Z2

t
k2 0 S2·wt ·X ′·Y ′·Z2

t
k2 γx ·wt ·Zt γx ·wt · z1

k13 k23 4 ·wy wy ·Zt 0 0

k14 k24 k34
(S2·wt ·Y ′2+wy·k2)·Z2

t
k2 γy ·wt ·Zt γy ·wt · z1

k15 k25 k35 k45 4 ·wt wt

k16 k26 k36 k46 k56 wt


where we defined

Zt = z1 + z2 + z3 + z4 with Z2
t = z2

1 + z2
2 + z2

3 + z2
4

the γx,γy defined as before and since the matrix is symmetric we only wrote half of its
elements.
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With this elements we can build the reduced data vector for a set of measurements
(xi,yi, ti) (where i denotes the plane number):

a =



wx ·Xt

wx · (x1z1 + x2z2 + x3z3 + x4z4)+S ·wt ·X ′ · t1kz1+k·(t2z2+t3z3+t4z4−S·Z2
t )

k2

wy ·Yt

wy · (y1z1 + y2z2 + y3z3 + y4z4)+S ·wt ·Y ′ · t1kz1+k·(t2z2+t3z3+t4z4−S·Z2
t )

k2

wt ·
(
Tt −S · Zt

k

)
wt ·
(
t1 −S · z1

k

)


where in this equation

Xt = x1 + x2 + x3 + x4 Yt = y1 + y2 + y3 + y4 Tt = t1 + t2 + t3 + t4

and the parameters are found solving the sea equation.
In this model, the total matrices are not obtained like in the other models as the sum of

the individual contributions of the planes. We used this particular model to illustrate another
way to find the parameters by the use of matrices build in blocks. This way of proceed is
particularly useful when the calibration parameters are not global and only are present in
some parts of the model.

Similar to this model, we can consider the case in which the first RPC is already calibrated
in time but not the others. Again, it is convenient to express the matrices in block form.
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This new model can be written as:

m1x = X0 +X ′ · z1

m1y = Y0 +Y ′ · z1

m1t = T0 +S · k · z1

m2x = X0 +X ′ · z2

m2y = Y0 +Y ′ · z2

m2t = T0 +S · k · z2 + τ2

m3x = X0 +X ′ · z3

m3y = Y0 +Y ′ · z3

m3t = T0 +S · k · z3 + τ3

m4x = X0 +X ′ · z4

m4y = Y0 +Y ′ · z4

m4t = T0 +S · k · z4 + τ4

where we introduced a shift τi for each plane. Therefore, the parameters are grouped in the
saeta:

s = (X0,X ′,Y0,Y ′,T0,τ2,τ3,τ4)

As in the previous case, we considered that the velocity of the particle is constant.
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The Jacobian matrix is calculated as in equation (2.37). The first part, ∂m/∂ s is exactly
the same. As we have three calibration parameters, the derivatives respect to them are:

∂m
∂α

=



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1


where the horizontal lines are drawn just for visual orientation. The lines separate the matrix
in four blocks, one per plane.

The procedure to obtain the K matrix and the a vector is the same as in the previous
model.

K =



4 ·wx wx ·Zt 0 0 0 0 0 0

k12
(S2·wt ·X ′2+wx·k2)·Z2

t
k2 0 S2·wt ·X ′·Y ′·Z2

t
k2 ηx ·Zt ηx · z2 ηx · z3 ηx · z4

k13 k23 4 ·wy wy ·Yt 0 0 0 0

k14 k24 k34
(S2·wt ·Y ′2+wy·k2)·Z2

t
k2 ηy ·Zt ηy · z2 ηy · z3 ηy · z4

k15 k25 k35 k45 4 ·wt wt wt wt

k16 k26 k36 k46 k56 wt 0 0
k17 k27 k37 k47 k57 k67 wt 0
k18 k28 k38 k48 k58 k68 k78 wt


where we introduced the variables

ηx =
S ·wt ·X ′

k
and ηy =

S ·wt ·Y ′

k
.
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The a vector has the form:

a =



wx ·Xt

wx · (x1z1 + x2z2 + x3z3 + x4z4)+S ·wt ·X ′ · t1kz1+k·(t2z2+t3z3+t4z4−S·Z2
t )

k2

wy ·Yt

wy · (y1z1 + y2z2 + y3z3 + y4z4)+S ·wt ·Y ′ · t1kz1+k·(t2z2+t3z3+t4z4−S·Z2
t )

k2

wt ·
(
Tt −S · Zt

k

)
wt ·
(
t2 −S · z2

k

)
wt ·
(
t3 −S · z3

k

)
wt ·
(
t4 −S · z4

k

)


with the values of Xt ,Yt ,Tt ,Zt ,and Z2

t as defined before. The parameters are then obtained
solving the sea equation.

A variation on this model can be done. In this case, the velocity is fixed, but it is possible
to leave it as a free parameter. The sizes of vectors and matrices are obviously different. The
number of degrees of freedom makes possible a solution of the problem. We would have
nine parameters and twelve equations.

2.6.5 TimTrack with drift velocity inside a pad

We treat now the example of several RPC planes whose detection area is divided in rectangular
pads. This is the case, as we will see in Chapter 3, of the TRAGALDABAS detector [4]. In
the figure 2.6 is shown an example of a particle crossing two RPC planes. Each RPC plane is
divided in rectangular detection areas or pads. When a particle interacts with the detector at
some pad, the signal propagates inside the detection area until it is read at the centre of the
cell. It is known that the velocity of the signal inside the pad (drift velocity) is around 60%
of the speed of light.

Therefore, a model that describes the propagation of a particle including the drift velocity
is:

mx = X0 +X ′ · z
my = Y0 +Y ′ · z
mt = T0 +S · k · z+Ss · r

where in this equation Ss is the inverse of the velocity of the signal, k =
√

1+X ′2 +Y ′2, and
r is the distance that the signal covers inside the path from the interaction point until the
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Fig. 2.6 Schematic representation of a particle detected in two pads. The detection areas of
the planes are divided in rectangular regions. The signal readout is located at the centre of
the pad (Xc,Yc) and must travel from the hit (xi,yi, ti) to the centre of the pad. Therefore, the
model of the data includes the drift velocity of the signal inside the pad.

detection point at the centre of the pad:

r =
√
(mx −Xc)2 +(my −Yc)2

This is a non-linear model and has to be solved iteratively. The parameters are grouped in the
saeta:

s = (X0,X ′,Y0,Y ′,T0,S)

where we considered that the drift velocity is constant for all planes.
The uncertainties of the measurements σx,σy are calculated from the uniform distribution

of probability. Since one pad has dimensions lx, ly and the signal is read out at the centre, x
and y are random variables distributed uniformly. Therefore:

σx =
lx√
12

and σx =
ly√
12
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The elements of the K matrix are:

k11 = wx +
S2

s ·wt ·∆2
x

r2

k12 = zi ·
(

wx +
∆x ·Ss ·wt(∆x · k ·Ss + r ·S ·X ′)

k · r2

)
k13 =

S2
s ·wt ·∆x ·∆y

r2

k14 = zi ·
∆x ·Ss ·wt(∆y · k ·Ss + r ·S ·Y ′)

k · r2

k15 =
∆x ·Ss ·wt

r

k16 =
∆x ·Ss ·wt · k · zi

r

k22 = wx · z2
i +wt ·

(
∆x ·Ss · zi

r
+

S ·X ′ · zi

k

)2

k23 = zi ·
∆y ·Ss ·wt(∆x · k ·Ss + r ·S ·X ′)

k · r2

k24 = wt ·
(∆x · k ·Ss + r ·S ·X ′)(∆y · k ·Ss + r ·S ·Y ′)

k2 · r2

k25 = wt ·
(

∆x ·Ss · zi

r
+

S ·X ′ · zi

k

)
k26 = wt · z2

i ·
∆x · k ·Ss + r ·S ·X ′

r

k33 = wy +
S2

s ·wt ·∆2
y

r2

k34 = zi ·
(

wy +
∆y ·Ss ·wt(∆y · k ·Ss + r ·S ·Y ′)

k · r2

)
k35 =

∆y ·Ss ·wt

r

k36 =
∆y ·Ss ·wt · k · zi

r

k44 = wy · z2
i +wt ·

(
∆y ·Ss · zi

r
+

S ·Y ′ · zi

k

)2

k45 = wt ·
(

∆y ·Ss · zi

r
+

S ·Y ′ · zi

k

)
k46 = wt · z2

i ·
∆y · k ·Ss + r ·S ·Y ′

r
k55 = wt

k56 = wt · k · zi

k66 = wt · k2 · z2
i
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where we defined the quantities

∆x = mx −Xc = X0 +X ′ · zi −Xc and ∆y = my −Yc = Y0 +Y ′ · zi −Yc.

The reduced data vector, a is:

a =



wx · xi +∆x ·Ss ·wt ·
r·S(X ′2+Y ′2)zi+k[−r2Ss+r·ti+Ss(∆x·mx+∆y·my)]

k·r2

wx · xi · zi +wt(∆x · k ·Ss + r ·S ·X ′)zi ·
r·s(X ′2+Y ′2)zi+k[r(−Ss·r+ti)+Ss(∆x·mx+∆y·my)]

k2·r2

wy · yi +∆y ·Ss ·wt ·
r·S(X ′2+Y ′2)zi+k[−r2Ss+r·ti+Ss(∆x·mx+∆y·my)]

k·r2

wy · yi · zi +wt(∆y · k ·Ss + r ·S ·Y ′)zi ·
r·s(X ′2+Y ′2)zi+k[r(−Ss·r+ti)+Ss(∆x·mx+∆y·my)]

k2·r2

wt ·
r·S(X ′2+Y ′2)zi+k[−r2·Ss+r·ti+Ss(∆x·mx+∆y·my)]

k·r

wt · zi ·
r·S(X ′2+Y ′2)zi+k[−r2·Ss+r·ti+Ss(∆x·mx+∆y·my)]

r


used the definitions as before. The parameters are obtained from the iterative solution of the
sea equation.

Despite this model seems to be quite complete, it has some limitations related to the
calculation method. If the particle comes vertically, the final solution tends to provide the
centre of the pad, as if the drift velocity would be zero. One possible solution is to make
a perturbation on the saetas at each iteration. With this, the process will avoid local stable
solutions and will look for the global minimum.

2.7 Numerical examples of the models

In this section we present numerical examples of some models defined before. This will help
the reader to understand in more detail how the TimTrack method works.

For these examples we used a fictitious set-up consisting on four RPC planes as in Fig.2.7.
Each RPC measures (x,y, t). The origin of the spatial components is taken at the central point
of each RPC. We adopted the units of cm and ns for the space and time magnitudes.

We assumed that the uncertainties in x,y, and t are the same for each plane. The values
that we assigned to them are:

σx = σy = 0.5 cm and σt = 0.2 ns
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Fig. 2.7 Fictitious experimental set-up used to illustrate numerical examples of the TimTrack
method. The distances are in cm. The origin of x,y is at the central point of each plane. The
numbers on the left part indicate the plane number.

Therefore, the weight matrix is always constant:

W =

1/0.52 0 0
0 1/0.52 0
0 0 1/0.22


and even if it is build as a block matrix it will contain the same values.

2.7.1 Example of linear model

We will evaluate a numerical example of the linear model described in subsection 2.6.1. We
generate a collection of hits:

(x1,y1, t1) = (−10,20,1.1) at z = 0

(x2,y2, t2) = (0,17,1.45) at z = 10

(x3,y3, t3) = (10,14,1.8) at z = 20

(x4,y4, t4) = (20,11,2.15) at z = 30

These numbers are based on a particle crossing the detector at the speed of light. The x
coordinates are increasing as the y decrease.
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Using the definition of the objects, we calculate the K matrix for each plane:

K1 =



4 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 25 0
0 0 0 0 0 0


k2 =



4 40 0 0 0 0
40 400 0 0 0 0
0 0 4 40 0 0
0 0 40 400 0 0
0 0 0 0 25 250
0 0 0 0 250 2500



K3 =



4 80 0 0 0 0
80 1600 0 0 0 0
0 0 4 80 0 0
0 0 80 1600 0 0
0 0 0 0 25 500
0 0 0 0 500 10000


k4 =



4 120 0 0 0 0
120 3600 0 0 0 0
0 0 4 120 0 0
0 0 120 3600 0 0
0 0 0 0 25 750
0 0 0 0 750 22500


and then the total K matrix is:

K =
4

∑
i=1

Ki =



0.175 −0.0075 0 0 0 0
−0.0075 0.0005 0 0 0 0

0 0 0.175 −0.0075 0 0
0 0 −0.0075 0.0005 0 0
0 0 0 0 0.028 −0.0012
0 0 0 0 −0.0012 0.00008


The same procedure is made with the a vector:

a1 =



−40
0

80
0

27.5
0


a2 =



0
0

68
680

36.25
362.5


a3 =



40
800
56

1120
45

900


a4 =



80
2400
44

1320
53.75

1612.5
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and the total vector:

a =
4

∑
i=1

ai =



80
3200
248

3120
162.5
2875


The values of the parameters are obtained by solving the sea equation. Then, we invert

the total K matrix and multiply it by the total reduced data vector:

s = K−1 ·a =



−10
1

20
−0.3
1.1

0.035


So the parameters are:

X0 =−10 X ′ = 1 Y0 = 20 Y ′ =−0.3 T0 = 1.1 S = 0.035

The interpretation of these parameters are:

1. The initial point, at plane 1, is (−10,20). This is the point where the particle begins its
propagation.

2. The slopes are X ′ = 1 and Y ′ =−0.3. This means that the x variable changes 1 cm per
z unit. The negative value in Y ′ means that the variable is decreasing in z.

3. The initial time is 1.1 ns, the same as the measured in plane 1.

4. The velocity of the particle is v= 1/S= 28.6 cm/ns. The speed of light is c= 30 cm/ns,
so the velocity of the particle is compatible with the speed of light.
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The other important object is the inverse of the K matrix. This is what we called error
matrix:

E = K−1 =



0.175 −0.0075 0 0 0 0
−0.0075 0.0005 0 0 0 0

0 0 0.175 −0.0075 0 0
0 0 −0.0075 0.175 0 0
0 0 0 0 0.028 −0.0012
0 0 0 0 −0.0012 0.00008


The diagonal elements give information about the uncertainties associated to the parameters
of the saeta:

σi =
1√
K−1

ii

The non diagonal terms contain the covariances and therefore provide information about the
correlations between the parameters. In this matrix, there is a negligible correlation between
X0 and X ′ given by the −0.0075 coefficient.

2.8 Track finding and reconstruction algorithm

Using the models presented in previous sections it is possible to implement a global recon-
struction algorithm. The cosmic rays will arrive to our experimental set-up and will produce
several interactions in it. When the event finishes, it is possible to describe and sketch the
cascade that they produced.

We propose here an algorithm to describe and classify the particles that produced a
cascade in our set-up. This algorithm is based on the structure of the TRAGALDABAS
detector, but can be extended to other experimental configurations. This algorithm is a first
approach to the reconstruction of cascades with production of secondary particles.

In Fig.2.8 we present an example of a hypothetical cascade produced during a particular
event. As we can see in the figure, there are different objects present. It is possible that some
of the tracks are a consequence of false information produced by noise inside the detector or
by some other effects.

The goal of the algorithm is to construct a representation as indicated in Fig.2.8 taking as
input all the hits registered in one event.

We divided the algorithm in several steps. The strategy is to remove at each step the
information that has no physical meaning. For that purpose, we present some discrimination
criteria for the hits.
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Fig. 2.8 Example of a geometrical distribution of hits registered in one event. We can find
different objects depending on the nature of the particles. We propose an algorithm of
identification and classification of cascades.

The algorithm is presented using an experimental set-up consisting in four parallel planes.
The generalisation to n planes is straightforward.

Step1: compatibility between two planes

This first step of the algorithm tries to remove all trajectories that are not compatible with the
speed of light. Since we are affected by the experimental uncertainties it is not convenient
to impose the exact value of the speed of light. Therefore, the boundary condition can be
written as:

v ≤ c+δ (2.39)

where δ is fixed and can be related to the temporal resolution of our detector.
We start considering a distribution of hits as shown in Fig.2.9. To study if a couple of

hits fulfil our boundary condition (2.39), we first take all the possible combinations of hits
between two planes. With those two hits we construct a saeta between them that describes a
virtual trajectory. This saeta can be build using whether a linear or non-linear model.

The velocity of the particle is obtained from the analysis of the virtual trajectory between
those hits, since this information is given by the saeta. Therefore, the virtual trajectory
between two hits is only possible if the condition (2.39) is fulfilled. Otherwise, we discard it
and conclude that the particle did not follow this trajectory.

In Fig.2.9 it is shown schematically this first selection process. The red dots in the figure
represent all the hits registered in one event. The algorithm takes the first hit in the first plane
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Fig. 2.9 The saetas between two planes are used to discard trajectories that are not compatible
with the speed of light. The solid line represents a possible trajectory and the dashed lines
are not compatible trajectories. We numbered the hits to make the description of the process
easier.

and connects it with other hit in the next plane. A saeta between them is build. The solid
line indicates that the trajectory is possible according to the speed of light. On the contrary,
dashed lines indicate that the trajectory is not possible.

After all the combinations between plane number one and plane number two are evaluated,
we proceed in the same manner between the second and third, the third and the fourth, and
so on.

When all impossible trajectories are removed, we proceed to the next step.

Step 2: compatibility between three planes

We store all the information related to the virtual trajectory of the particle. This is very
important from the computational point of view. When the algorithm was coded, we created
a C++ class that indexes all the hits contained in a saeta. This makes possible to get access
to this information at any point. Thus, we exclude already evaluated combinations or other
objects.

Using the information obtained in the previous step between two planes, we extend the
trajectory and propose saetas at three planes. To do that, we consider only the saeta in, saeta
out hits. That is to say, the hits that connect and are connected by a saeta. Obviously this is
not possible for the first and last planes: the hits in the first plane only can connect, and the
hits in the last plane only can be connected.

When the candidate hits are selected, we construct a saeta of size three (with three hits)
between them. For example, if we see Fig.2.9, these saetas will include de hits (1,4,6), (4,6,8),
(2,4,6), (3,5,7), and (5,7,9). Since there is no saeta connecting (4,7), the hypothetical (1,4,7)
is not considered.
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One possible criteria to evaluate the trajectory consists on comparing the behaviour of the
slopes of the saetas. With this, we can see if the trajectory is a straight line or if it presents a
zig-zag pattern. As an example, we can compare the slope of the saeta formed by (1,4,6) with
the slope of (4,6,8). These trajectories, according to the slopes, the particle clearly followed a
zig-zag path. On the contrary, if we compare (3,5,7) to (5,7,9) we conclude that the trajectory
is a straight line. The slope can be a good first discriminator. As in the previous step, the hits

Fig. 2.10 By the study of the slopes of the saetas between three planes it can determined
whether the trajectory of the particle is a straight line or not. On the right side of the figure,
the different saetas between three planes provide similar slopes. However, on the left side the
trajectory is not clear because the three-plane saetas have very different slopes.

that form a saeta are stored and identified by the use of an index.
If necessary, further combinations can be done to make a better discrimination. For

instance, a saeta (2,6,8) could be of interest and can be compared to (2,4,8). This depends on
the selection criteria that is followed.

Step3: compatibility between four planes

In our example set-up this would be the last step. After all the connections between hits are
stored, we build a final object: a saeta of size four, i.e., formed by four hits.

Following the example of Fig.2.9, the possible saetas are (1,4,6,8), (2,4,6,8) and (3,5,7,9).
The evaluation of the trajectory is made by a quantity related to the quality of the fit: the χ2

value. A trajectory with a good χ2 represents a straight line, and therefore that trajectory
could correspond to a muon. On the contrary, if this value is not so good it is possible that
represents an electron. In Fig.2.11 we show an schematic representation of the trajectories and
their possible physical meaning. After the process is finished, we can have some trajectories
that are physically possible, but that do not fit in the muon-electron pattern. For this reason,
we define some objects that will help us to classify and label the cascade produced by one
event.
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Fig. 2.11 After the formation of a saeta between the four planes, the quality of the fit can be a
clue to determine the nature of the particle. On the right side, the trajectory is compatible with
a straight line, and this indicates that the particle is a muon. On the left side, the trajectory is
erratic and it might be an electron.

Components of a cascade

We present here some objects that are physically possible and that can be found in a cascade.
As a final remark, we also proposed a nomenclature for the topology of a cascade.

In a cascade, we distinguish between a kink, a vertex and a saeta.

1. Kinks. A kink is defined as a trajectory that is straight but in some point of its path a
new trajectory appears. Examples are shown in Fig.2.12. We denote the kinks by the

Fig. 2.12 Charged vertex or kink. In a kink, two straight trajectories share a common
point.The number indicates the size of the longest trajectory.

letter C and a number that indicates the amount of hits in the longest trajectory.

2. Vertex. A vertex is the trajectory that represents a typical "V" shape. As for the kinks,
the number indicates the amount of hits in the longest trajectory. It is denoted by the
letter V as shown in Fig.2.13.

3. Saeta. A saeta is the standard object that is obtained by the TimTrack method. It is
denoted by the letter S and the number indicates the number of planes and hits used to
construct them. The saeta objects are shown in Fig.2.14.
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Fig. 2.13 Neutral vertex. The number indicates the size of the longest trajectory.

Fig. 2.14 Saetas. The number indicates the size of the object.

Cascade codification

To describe the composition of a cascade, we propose a system based on the elements that are
present during one event. It is possible, for every cascade, to form a mathematical word that
denotes and describes all the objects that form it. Therefore, this word contains the number
of saetas, kinks and vertex that were formed. This word has the following composition:

s4 s3 s2

v4 v3 v2

c4 c3 c2

when we denote the number of saetas, vertices and kinks in a particular order. The total
number of each component is limited to 99. Since we have nine elements in total, it is
possible to form a 18-bits chain with the defined structure.

There are several cascades that can be described by the same word. We say that these
cascades have the same topology or that are topologically equivalent. It is not possible with
this method to sketch a cascade from its mathematical word. Maybe a future modification of
the method could make possible this distinction.





Chapter 3

Resistive Plate Chambers detectors

3.1 Introduction

One of the most used detectors nowadays in particle physics experiments are the Resistive
Plate Chambers (RPCs). These detectors were first developed in the early ’80s [27, 45] and
they are suitable for covering great detection areas with a relative low cost per information
channel. Traditionally, RPCs have been used as counter trigger detectors in experiments such
as ATLAS [28]. But a redefinition in the RPC technology permits nowadays that they can be
used as timing detectors. Therefore, it is possible to use RPCs to perform particle tracking.

Muon tomography requires the use of a detector fulfilling some special features. For
example, the time resolution must be in the order of a nanosecond. With this resolution
we will be able to identify and assign an individual track to each muon and reject possible
random coincidences [19].

In this chapter it will be described the basics of the RPC detectors, their main features and
why they are the perfect candidates to be the standard detector in cosmic muon tomography.
There are many works that perform an exhaustive description of the physics behind RPC
detectors, as for example the thesis of Lippmann [55]. Here we only present general concepts
that will be used in simulation, calibration, and analysis of the detector.

In section 3.3 we will introduce the timing RPC detectors (tRPC). A part of this thesis
was devoted to the development of two different tRPC: TRAGALDABAS [49, 4] and muTT.
As it will be mentioned, these detectors are part to the Trasgo family. Many of the simulation
and reconstruction algorithms were performed in parallel for all detectors of the Trasgo
family.

The new muTT model of RPC was chosen to be the reference detector in the cosmic
ray tomography system. It was designed by the LIP-Coimbra group (Portugal) and is
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an improvement of the RPC technology. This detector permits to obtain better detection
techniques reducing the monetary cost.

The study of the muTT detector is divided in two chapters. Here we make a descrip-
tion of the system and in Chapter 6 we present the calibration parameters, such as spatial
displacement, time correction, and resolutions.

3.2 Basics of the RPC detectors

The RPCs belong to the family of the gaseous detectors. This means that the interaction of
the particles with our detector occurs in a gaseous medium. After this interaction takes place,
a signal is produced.

An RPC detector consists on two parallel plates filled with a gas that is ionised when
a particle passes trough the detector. Between the two parallel plates there is an uniform
electric field created by two parallel electrodes. To avoid discharges or perturbations in
ionisation of the gas, at least one electrode must be covered with a high resistivity material.

When the gas is ionised, the electrons and ions are accelerated by a high voltage between
the anode and cathode. When these particles are travelling inside the gas, more secondary
particles can be created. This is called avalanche. A signal is then induced to the electrodes
and is sent to the readout system.

The high resistivity material (of the order of 1010Ω ·cm) also avoids the creation of sparks
and the avalanche is not spreading all over the gas. Therefore, it helps to clean the gas after
the avalanche finishes.

The main limitation of the RPC detectors, specially in the first models of Cardarelli [27],
is the time needed by the high resistivity material to recover its properties. When a particle
interacts with the gas and produces a signal, the detection area needs some time to clean the
avalanche. This time varies depending on the material, but is on the order of milliseconds.
During this time the effective electric field is weaker due to the avalanche. As a consequence,
the detector has some dead time that is affecting to the time resolution. In fact, if the flux of
particles is high compared to the dead time of the RPC some interactions would be lost and
this affects to the efficiency of the detector as well. Modern RPCs use multiple gas gaps to
increase the probability of interaction particle-gas and then improve the efficiency and time
resolution. The increase in efficiency is expected to be [51, 54]

ε = 1− (1− εn)
n (3.1)
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Fig. 3.1 Schematic overview of an RPC detector. In this example, we have two gaps of gas, 1
mm each. Electronic avalanches are produced by ionisation of the gas and they produce a
signal that is sent to the read-out electronics.

where n is the number of gaps and εn is the efficiency of one gap. Typical values of the single
efficiency, εn are of the order of 75% as shown in [53].

On the other hand, the time resolution can be estimated by [53]

σt =
σt,n√

n
(3.2)

where it is assumed that the behaviour of the contributions to the total fluctuations are
infinitesimal and therefore the time response has a Gaussian behaviour.

The first RPC models used different gases as active medium, like Argon mixtures.
Nowadays, the most used gas in the modern RPC detectors is the tetrafluorethane (C2H2F4)1

mixed with another gases as isobutane or sulphur hexafluoride. The proportions of the
mixture is important to control the avalanches and the efficiency of the detector. As an
example, the RPC detectors used at the ATLAS and CMS experiments have a gas mixture
of 95.2% C2H2F4, 4.5% i-C4H10, and 0.3% SF6 [29]. One of the major disadvantages of this
gas mixture is the presence of not environmentally friendly gases, such as SF6 and C2H2F4.
Recent works have presented alternative gas mixtures based on Helium [16]. Another possible

1Freon is a trademark and sometimes we will use it as a generic name to any fluorocarbon. The Freon-134a
(R-134a) The chemical formula of the Freon-134a is C2H2F2.
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solution is the use of a closed-circuit gas system. With this mechanism, the impurities of the
gas are removed and it is not emitted to the atmosphere [44].

3.2.1 Operation modes

The RPC detectors are able to work in two different modes: avalanche or streamer. The
difference between both modes stays in how intense the avalanche is.

1. Streamer mode: the voltages are very high and they will produce a strong avalanche
that distorts the electric field. Since the induce signals are strong, no additional
amplification systems are needed. This simplifies the readout electronics. This mode
of operation is traditionally used when the RPC works as a trigger in a experiment.

2. Avalanche mode: the charge released in one avalanche is small compared to the
streamer mode. In this case, the readout electronics is different because the signal must
be amplified. This is the mode used for timing purposes.

The modern RPC detectors operate in the avalanche mode with a multigap configuration.
With these detectors it is possible to reach time resolutions of the order of 90 ps and below.
This time resolution makes the RPC detectors be a perfect candidate to perform particle
tracking.

As an example, the Fig.3.1 shows an schematic overview of an RPC detector. This
particular case corresponds to a two-gap configuration operating in avalanche mode. Each
gas gap has 1 mm width and they are filled with R-134a. The gas gaps are isolated with 2
mm of glass. The two gaps are inside a high voltage created by two parallel planes. When a
charged particle crosses the RPC it induces an ionisation inside the gas gaps. This produces
an avalanche. If the size of the avalanche is large enough, it produces an influence on the
electric field in the gas gap. The electrons inside the gas will move to the anode and the
ions to the cathode. As a result, a perturbation in the electric field is produced around the
zone where the avalanche was developed. This induces a signal that is read-out. In this
case, the induction is produced in a rectangular region. Other detection techniques divide the
detection region in layers of strips. This signal is processed by the electronic devices and its
transformed to relevant physical information.

3.3 Timing RPC detectors (tRPC)

The use of the RPCs as a timing and tracking detector was possible after a reconfiguration
of the features of the traditional RPCs. First, to work in avalanche mode it is necessary
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to integrate to the electronics an amplification method for the signal. Second, the use of
multi-gap structures allow to achieve time resolutions of the order of 90− 100 ps. It is
common to find RPCs with gaps of 0.3 mm in avalanche mode.

Another modifications in the mechanical structure of the RPCs are related to the high
resistivity material. Originally it was used bakelite electrodes to avoid sparks inside the gas.
Nowadays it is preferred to use window glass as a standard (its resistivity is of the order of
1012 −1013Ω · cm)

A high voltage must to be applied to the parallel plates. It must be strong enough to
obtain a good efficiency but not as high to produce streamers and break the avalanche mode.
There are tRPCs that work with voltages of 100 kV/cm in the avalanche mode with low
probability of streamers.

3.4 The Trasgo family of detectors

The detection of high energetic cosmic rays is made indirectly by the use of large detector
arrays at the Earth surface. Only a small fraction of these high energy cosmic rays arrive to
the ground. Therefore, the study of the primary radiation makes the event-by-event analysis
very complicated.

The Trasgos(acronym of TRAcksreconStructinGmOdule) were proposed after the ob-
servations of cosmic rays in the HADES spectrometer at GSI [20]. The idea was to build a
high performance affordable cosmic ray detector, sensitive to the muons and electromagnetic
showers, and based on RPC detectors. The Trasgos are designed to perform studies of the
cosmic rays properties because the provide a good time and spatial resolutions. Therefore,
they are ideal detectors for particle tracking purposes and allow a better reconstruction of the
secondary cascades.

In general, the Trasgo family is formed by the multi-gap timing RPCs. In this thesis we
worked in parallel with two different detectors of this family. First, we have the TRAGALD-
ABAS detector [4], that is used to study cosmic ray properties. In the other hand, we have
the new muTT model, that is used in the muon tomography system.

3.4.1 The TRAGALDABAS detector

The TRAGALDABAS detector is located at the University of Santiago de Compostela [49, 4].
The detector is taken data since 2013 and it is devoted to the analysis of the structure of
the cosmic rays, the solar activity, and atmospheric properties. In Fig.3.2 is presented an
schematic overview of the TRAGALDABAS detector. It consists on four RPC planes with
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Fig. 3.2 Schematic representation of the TRAGALDABAS detector. It consists on four RPC
planes divided in rectangular detectiton pads. Nowadays, the detector has three operative
RPCs.

an exteranal size of 1.285×1.650 m2 divided in rectangular pads. Nowadays, only three of
the four detectors are fully instrumented and operative.

The RPCs of TRAGALDABAS were built at the LIP-Coimbra with the same technology
as the used in the P. Auger observatory. The internal structure of the RPC are similar to the
described in Fig.3.1. They consist on two gaps of 1 mm each filled with R-134a gas.

Between the external sides of the RPC there is a high voltage of ±5600 V at each plate,
equivalent to 5600 V/mm in each gap. This voltage induces an electric field to work in the
avalanche mode. The induced signals are read-out by copper pads.

The front end electronics of TRAGALDABAS was developed at GSI for the HADES
experiment[52]. In consists on the Mambo-Dumbo (MB-DB, mother board-daughter board)
amplification system. The signals induced in the pads are first amplified, integrated, and
digitalised in 4-channel daughter boards (DB). The DB are then connected to a mother board
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(MB) that provide the output of the signal and triggers. The signals are then sent to a read-out
board (TRB.V2) [30] and then to a computer to be registered.

Most of the software tools developed for the TRAGALDABAS detector were use for the
develop of the new muTT model. As we will explain in more detail in Chapter 4 the new
libraries for the simulation of the muTT features are a modification of the already made work
in TRAGALDABAS.

3.4.2 The muTT detector

A new model of RPC, the muTT, was designed and built by the LIP-Coimbra group. This
new detector belongs to the Trasgo family. It was designed to be the reference detector in the
muon tomography system.

The new muTT is an improvement of the planes used in TRAGALDABAS. First, the
detection region is divided in strips, instead of rectangular pads. Second, the electronic
design makes the price per channel more affordable compared to previous RPC models.

The prototype of the muon scanner was set-up inside an industrial hangar located at O
Porriño (Pontevedra). Several tests of the muTT were performed before install them in the
final structure of the scanner. As we will see in Chapter 6, this previous tests were used to
estimate the calibration constants of the detector.

In this chapter we provide a description of the general properties of the new muTT
detector. We present the structure of the planes, their main features, and a brief description
of the electronics.

3.5 Description of the muTT detector

3.5.1 Disposition of the planes and nomenclature

Before the muTT detector was installed in the final scanner structure, it was tested in a
simplified disposition.

In Fig.3.3 it can be seen the initial disposition of the muTT planes. This structure was used
to perform tests on the integrity and other features of the RPC planes. After the calibration
tests were done, they were placed at the final scanner structure.

The planes were numbered according to their relative position in space. We divide the
detector in two different zones: up and down. As it can be seen in Fig.3.3 there is an
aluminium plate located at the centre of the detector that divides up and down zones. Each
plane has a name that provides information about the region and the relative position inside
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Fig. 3.3 Schematic representation of the muTT detector. On the right side it can be seen a
picture of the structure. On the left, a summary of the distances and names of the planes.

that region. For example, U1 means the first plane in the upper region. This system can be
useful in case other planes are added in future.

The distances between planes are taken relative to the U1 plane, i.e., the origin of the
vertical z-component is set at U1 and we defined it as positive with the propagation of
particles. The relevant information is carried by the relative distance between two planes. As
we will see in other chapters, the origin of the z-component is not fixed in U1 and sometimes
we will refer to the centre of the detector.

As a convention, it was decided that the standard units for the muTT detector are: distances
given in mm and time in ns.

3.5.2 Description of the RPC planes

The new muTT model has significant differences compared to previous tRPC models, such
as the used in TRAGALDABAS. The design of this detector is somehow similar to another
RPC designed also by LIP-Coimbra [23].

Each muTT plane has an effective area of 1500× 1200 mm2. This detection area is
covered by two layers of strips2, one at the top and the other on the bottom part of the plane.
Both sets of strips are perpendicular to each other.

In the Fig.3.4 there is a representation of the internal structure of a muTT plane. This
RPC presents a multi-gap configuration.

2We will refer with the word strip to a group of wires. Traditionally, strip is used to denote the individual
wires. Since we will apply corrections to individual wires, we decided to make this distinction to avoid
ambiguous meanings.
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Fig. 3.4 Internal structure of the muTT detector. Each plane is 26 mm thick and inside there
are six gas gaps of 0.3 mm each. The gaps are separated by 1 mm of glass foils.

The RPC mother structure is an aluminium box with a total thickness of 26 mm. Inside
this mother volume there are six gaps of R-134a gas (0.3 mm each) separated by 1 mm of
glass foils.

As usual in the RPC designs, there are other materials such as foam or polycarbonate,
that are used for a better isolation of the plane. The gas gaps are inside an electric field
created by a high-voltage over the acrylic electrode layers.

In this particular detector, there are two layers of copper electrodes that collect the
induced signal inside the gaps. This is a typical design for the RPCs using strips as element
of detection [45, 27].

In Fig.3.5 is shown the disposition of the detection strips. There are two different layers,
named as up and down, that are perpendicular to each other. The detection area is then
represented as a grid created by the strips.
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Fig. 3.5 Distribution of the detection wires and strips in a muTT detector. There are two
layers of strips that are perpendicular to each other. The up set of strips measures charge and
time, and the down set measures only charge.

In the figure, the strips are coloured in orange and each strip is formed by a set of 24
wires. The up layer consists on 20 strips and the down has 25.

The relevant physical information is obtained from the measured charge and time. When
a particle crosses the detector it interacts with the gas and induces a signal in our strips. This
information is grouped in channels.

Each plane is divided in two sides: left-right and front-left. As it is shown in Fig.3.5
the up layer collects the temporal information depending on the region where the particle
was detected. Therefore, we can have four different time channels: front-left, front-right,
back-left, and back-right. This time information is only obtained in the up layer. On the other
hand, the charge is measured at both sides of the interaction strip. In the Fig.3.5 are labelled
as Q1,Q2, . . . As the up layer has 20 strips, the total charge channels are 21; and in the down
layer are 26. As a result, we have 4 time channels and 21+26 charge channels.

The information collected at each charge readout channel is processed to provide the hit
coordinates (x,y) based on the centre of mass of the charge distribution. The algorithm that
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processes the raw information of charge and time and gives a final (x,y, t) hit coordinate was
done by A. Blanco at LIP-Coimbra.

A further optimisation in processing the raw data can be done by the use of TimTrack
algorithm (Chapter 2). We can propose a model for the raw data at each plane:

Tf ,m = t + x ·S
Tb,m = t +(L− x) ·S+ τ

Q j,m = k · ( j ·∆y− y)

Q j+1,m = k · [y− ( j−1) ·∆y]

Qi,m = k · (i ·∆x− x)

Qi+1,m = k · [x− (i−1) ·∆x]

where in these equations i and j are the number of strip where the particle interacted in the up
and down layer, Tf ,m and Tb,m are the models for the front and back times, Q j,m and Q j+1,m

are the models for the charges left and right at the up layer, Qi,m and Qi+1,m are the charges
left and right at the down layer, L is the length of a strip in the up layer, τ is a constant related
to the time shift between both sides, and ∆x, ∆y are the widths of the strips on the up and
down layers. As a result, we obtain the parameters:

s = (x,y, t,k) (3.3)

where k is a constant characteristic of the detector an x,y, t is the hit. Therefore, with the
TimTrack method the internal parameters of the RPC design can be optimised.

For an experimental set-up formed by a lot of planes it has to be taken into account
the propagation of the particle. As a consequence, in the equations should be included the
dynamical parameters X0,X ′, . . .





Chapter 4

General cosmic ray simulations

4.1 Introduction

A computer simulation is a process that can be defined as the run of a software program
by a machine (or several machines as a node) that tries to reproduce an abstract model of
a particular physical system [61]. This mathematical model is proposed to be a faithful
representation of a real-world situation.

A simulation is therefore a controlled environment in the sense that we can set, adjust or
decide the values of the parameters that play a key role in the system. A simulation should
be as realistic as possible in the sense that have to describe its equivalent in the real-world
scenario. This is sometimes very difficult to achieve and in many cases it is directly impossible
due to the large number of parameters involved in a certain problem. In other cases, the
model may include equations that are not possible to solve with a computational method or
algorithm, or in other cases the model may have very restrictive boundary conditions and no
representative solution can be found.

One possible way to solve these problems is to find a simplified physical system with a
similar behaviour as the real one. This reduction would help us to find out the relationship
between the system variables and to write a computer code that describes them [64]. As
it is shown in Fig.4.1 simulations can be used to improve our models by comparison to
experimental results. If the results of the simulations are significantly different, it might be
an indicator that our model is not describing the real system correctly. Therefore we have to
modify our model by changing the equations or the boundary conditions.

Computer simulations are widely used in science, industry or economy. For example,
simulations in physics are common in meteorology, fluid mechanics or electrodynamics,
among others, and are essential in the construction of mathematical models of natural
systems.
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Fig. 4.1 Schematic representation of computer simulation process. Figure taken from the
lectures of Álvarez [61].

Nuclear and particle physics experiments involve several types of detectors and elec-
tronics. A lot of elements must interact and work together, and therefore there are many
experimental details, effects and features that must be to taken into account. Even small size
experiments require a previous simulated analysis that provides a good check of our models,
detectors or observables.

The Monte Carlo method [40] supposed an improvement in the study of different physical
problems by the use of a new mathematical algorithm based on probabilities. A Monte Carlo
simulation is, in essence, a statistical approach to a problem by the use of integro-differential
equations and random numbers. Roughly speaking, we can say that a Monte Carlo simulation
is like repeating the same experiment a large number of times but including random effects
at each step. It generates an initial state, applies our model a large number of times to that
initial state of the system and then evaluates the final stage. By the law of large numbers it is
possible to give a probabilistic interpretation of the variables and then connect them to the
parameters of the real system model.

Since, in principle, every stochastic process can be solved with the Monte Carlo method,
it is widely used in many physical branches such as meteorology or particle physics. As an
example, in 1950 are published the first Monte Carlo simulations for electron transport, that
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are of special importance in medical physics. We only make a brief remark about the works
of B. Wilson [50] that is one of the pioneers in tumour radiotherapy.

Monte Carlo simulations are also important in particle physics experiments. Nowadays,
the experimental setups in high energy physics require a lot of manpower and infrastructures.
It is therefore important to perform a previous study on the design of the facilities. These
studies can cover from the behaviour of our detectors to the influence of the building in the
experiment.

In the other hand, simulations can be used beyond the structural analysis. There are
many situations in which we are interested on a particular theory or maybe we are studying a
physical observable. The previous analysis of such variables are made by the use of a proper
simulation.

These analysis seem to be necessary since they provide previous information of the
experiment before it is set, and they help to understand the physics behind it.

A typical simulation in physics can involve millions of events and the only way to perform
it is by the use of computers. Computer simulations are nowadays one of the best tools that
we have to control all the information related to experiments in physics. The improvements
in hardware and software technologies allow us to perform simulations by the use of a laptop
or desk computer in a reasonable period of time. For example, a Monte Carlo simulation of a
million muons hitting a material can be done and analysed in approximately ten minutes.

There are a lot of computer codes in the market that are capable of performing Monte
Carlo simulations. Usually, they are written in many different languages such as C++, Python
or Fortran. Beside the simulation of data we need an analysis code to extract the information
of interest.

In this thesis we adopted the EnsarRoot code [26] as the standard tool for simulation and
analysis. As we will explain later, EnsarRoot is an official flavour of the FairRoot framework
that provides a collection of software to simulate the detectors, the experimental setup, run a
Monte Carlo simulation and perform an analysis of the results. Next section is devoted to the
description of the internal structure of the code and the improvements that were done during
this thesis.

The implementation of the EnsarRoot simulation and analysis software was made taking
as a reference two different experiments. Both of them use detectors of the Trasgo family,
but they operate in different ways. Along this chapter we will present the implementations in
the TRAGALDABAS [4] and muTT detectors [62]. In particular, it will be explained how
we simulated their structure and the way that simulated data are managed.

The physics behind our simulations is directly related to the interaction of the secondary
cosmic radiation with matter. This radiation is the result of interaction of particles at Earth
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atmosphere. After these interactions there are several processes that compete between them,
such as Bremsstrahlung and pair production. As a result, it can be said that the cosmic
radiation arriving to our detector has two main components: in one hand we have muons and
in the other electrons-photons. For that reason, in this chapter we will describe the multiple
Coulomb scattering and the creation of electromagnetic showers as two separated pieces, but
they are part of the same radiation. The observables of interest are therefore related to the
scattering angle of muons due to the presence of a heavy material.

4.2 The EnsarRoot simulation and analysis framework

One of the most common software tools used to simulate geometrical structures (detectors)
and then perform Monte Carlo simulations is the Geant package developed at CERN [33, 34].
The results of a Monte Carlo simulation are stored in files that usually are of several gigabytes.
Thus, it is necessary to use a proper software that it is able to analyse big files of data with an
efficient computer memory management.

There are also a lot of software tools designed and oriented to the analysis of great
volumes of data. The ROOT package [25] is an object oriented framework developed at
CERN that provides a good analysis environment. It is written in C++ and one of the
advantages of Root, since it is object oriented, is that it can encapsulate the information in a
more efficient way. With Root it is possible to manage huge amount of data and with them
create nice editable histograms. The TClonesArray data type permit to store and manage a
large number of objects optimising the use of computer memory.

It can be seen that every simulation process has two main parts: one part is devoted to
generate the simulated data and the other is related to the analysis of those data. The FairRoot
framework [21] was created as an interface between the information provided by the Geant
simulation package and the Root analysis tools. The idea is that the user has access to the
geometry of the experiment, can adjust and set the simulation parameters and at the end of
the process obtains a file that can be understood by Root.

The reader could now ask why it is more convenient to use a new structure such as
FairRoot and not a pure Geant simulation combined with Root (or another analysis tool)
instead. FairRoot is a software framework. This means that have access to a collection of
services and we can use them anytime we need them. In this case, there is a service that
creates a geometry, other that sets the simulation parameters, and others.

As an example, consider a RPC detector. It is always possible, of course, to implement
the geometry using only the Geant package: we build an Aluminium box, we design the gaps
inside, we fill them with gas and we can add more elements if necessary, such as foam or
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methacrylate. After that, we run a Monte Carlo algorithm. The Geant simulation engines
include the information about the cross sections of radiation with matter. This means that
the particles are leaving information during the whole event. In our particular example, the
information is provided by the amount of energy accumulated in our RPC, according to the
physical information inside the Geant algorithm. This information it is not the real world
situation, because at the end of the day what we detect is an electric signal lately translated
to position, time or other magnitudes of interest. All this information must to be structured
because it might be that we are not interested on every single interaction with the active
volume. This process is made by FairRoot and the user can control the whole process without
any external import-export executable.

The simulations are run in FairRoot by the execution of a task list file. In this file, that
the user can modify and set the parameters, choose a particle generator, select a particular
geometry or perform reconstruction of the trajectories.

Since the beginning of FairRoot, in 2004, many experiments have adapted the framework
to their particular detectors and geometries. For example, Panda, R3B or CBM decided to join
the FairRoot structure and implement their own geometries, detectors and data management.
All these flavours share the main structure of the framework but the simulated data are treated
in a different way.

Other official flavour of FairRoot is EnsarRoot. As the other flavours, it shares the main
structure of the code, but readapted to other experiments. These new code includes the
representation of our experimental setups. The EnsarRooot code, since is a direct legacy of
the FairRoot structure, allows to perform this adaptations in a simple way. This fact reduces
the programming time and effort drastically, since it is based on already tested codes.

EnsarRoot was chosen as our standard framework because the configuration of the
TRAGALDABAS detector was implemented as a module inside its structure. In the next
subsection we will explain how a simulation with EnsarRoot is done. We can summarise the
ingredients that we need to combine in a simulation process:

1. The geometry. The description of the detectors, the detection materials, the disposition
and other components must be specified.

2. A script to run the simulation. This script includes all the tasks that must be per-
formed in the process. The type of particles, how must be generated and the rest of
specifications must be contained in this script.

3. We need to structure the data. The results of the simulation must be organised.
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4. Provide a real description of the simulated data. Usually, the simulated data are not
a real-world description. In this stage we need to transform the simulated data into
simulated measurements.

5. Proceed to the analysis of the data.

In the next subsection it will be explained how the items above are defined inside the
EnsarRoot framework. As it was mentioned, the Trasgo families of detectors are taken as
standard for our simulations. We will describe the details of the code implementations.

4.2.1 EnsarRoot structure

Before explaining the details of the simulations we will give some general considerations
about the internal structure of the EnsarRoot code. After this introduction and to illustrate
how the ingredients of the simulations combine to each other, we will describe how a detector
of the Trasgo family is simulated. A particular case of these detectors is the RPC plane
detector used in the TRAGALDABAS detector at USC. The EnsarRoot code provides the
classes that enable us to create the simulate the detector features and perform a further
analysis of the simulations.

Fig. 4.2 Example of TTree produced after a simulation in EnsarRoot. All the variables
resulting from the Monte Carlo simulation are structured in different data levels.

Since the EnsarRoot structure uses all the FairRoot base libraries, the required software
dependences can be installed almost automatically. This means that all the classes distributed
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with the Root framework can be used in a standard way by default. For example, we can
group our data levels using TClonesArray or TTree structures of Root, which reduces the
memory usage and execution time of the process. We enumerate the general characteristics
of EnsarRoot:

1. The simulations and analysis are performed by scripts. This means that it is not
necessary to create executables, everything can be done running a script with Root.

2. The TGeo class from Root is used to create the geometry of our detectors. The set up
is encapsulated in a root file and it is called by the execution script.

3. Geant3 and Geant4 simulation engines can be used. Inside EnsarRoot exists the
interface that connects the simulated events with the analysis tools: VMC (Virtual
Monte Carlo) It is possible to use Ascii generators as well. The events are stored in a
text file and are read by the code to generate the tracks.

4. Simulation results can be structured by the use of TClonesArray. This is particularly
useful since we can simulate millions of events. It is convenient to store all this
information in a binary format and not in a text file. The variables provided by the
simulation (used by Geant, Ascii file or with other method as generator engine) are
presented in a Root file and displayed in a TTree, as shown in Fig.4.2.

5. All the events can be visualised using the TEve viewer, providing a modern and
interactive interface based on OpenGL libraries. The viewer displays the tracks of the
particles, detectors and the information of the particle, such as energy and particle
type. The figures shown in this chapter that are related to the simulated geometry are
produced by the TEve viewer.

As it can be seen, the EnsarRoot code is nothing less and nothing more than an interface
between the simulated data and its translation to a Root file, where the data are structured
and presented in a more efficient way by the use of trees.

At this point, we will describe the characteristics of the TRAGALDABAS detector inside
the EnsarRoot structure. It was mentioned that the TRAGALDABAS classes are distributed
with EnsarRoot as an independent module.

4.2.2 TRAGALDABAS detector as a module inside the EnsarRoot struc-
ture

The EnsarRoot code is ideal for small and medium scale particle physics experiments.
TRAGALDABAS [4] is a high resolution muon telescope devoted to the understanding of the
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cosmic ray showers arriving to the Earth surface. It is located at the University of Santiago
de Compostela and is based on RPC detectors of the Trasgo family. TRAGALDABAS
is included as a part of the EnsarRoot framework as an independent module. This means
that all the classes and other source code involving the experiment is located in a separated
folder. Therefore, TRAGALDABAS has its own software libraries and specific paths to them,
without any other dependence.

Simulation of the geometry

A cross sectional view of the RPC detectors used in the TRAGALDABAS detector is shown
in Fig.4.3. The simulation of the RPC plane is made by the use of the TGeo geometry classes
distributed with Root. As a result, the final representation of the geometry is encapsulated in
a root file.

Fig. 4.3 Cross sectional view of the RPC used in TRAGALDABAS. It has two gas gaps
that are the sensitive volume. Induced pulses are read out by the Front End Electronics
daughter-board (DBS).

In the construction of the code that represents the geometry we are not interested on
the physics of the detector, but only on the forms and materials of its components. All the
elements are set inside an aluminium box. This is considered by Root as the mother volume
of the detector, and the rest of volumes are embed inside the mother volume. One of the
advantages of using the TGeo classes is that typical geometrical operations can be applied to
the volumes. A volume can be easily rotated, translated and copied by the use of the methods
implemented in the class. This is a of particular interest. Imagine that we need to set in our
experiment the same detector several times. For example, in TRAGALDABAS we need to
place four identical RPCs. It is not necessary to code the same thing four times: it is done
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only once and then we copy it as times are necessary. The code sets a label to each copy of
the volume and this number is an unique identifier of the detector. When a particle interacts
with a particular RPC, there is no possible confusion to the code, since the identifier contains
the information of the plane number.

In Appendix A we provide the code that simulates a RPC detector as the used in TRA-
GALDABAS. As it can be seen, several material media are needed to construct the RPC:
aluminium, foam, methacrylate, and several more. The physical properties of these materials,
such as atomic mass and number, density or radiation length, are stored in a data file written
in a format that the Root geometry classes can understand. For example, the material labelled
as “iron” is codified as

iron 1 55.847 26. 7.87
1 1 20. .001

following the notation of the FairGeoMedium class. The simulation of the RPC using this
code can be shown in Fig.4.4. The external aluminium box is visible in red but the rest of
materials can not be seen with the viewer.

Fig. 4.4 Simulation of a RPC detector with EnsarRoot. In this figure, three muons are passing
through the detector, leaving information in the two gas gaps inside the RPC.

When a particle arrives to the detector, it interacts with the different materials according
to their cross sections. Usually, we are not interested on the interaction with all materials but
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only the interaction with a particular medium. In TRAGALDABAS, a signal is produced by
the interaction of a particle with R134a gas. This medium in the simulation is called active
volume. In these particular RPCs we have two gaps filled with freon gas. The particle leaves
information in both gaps and we need to process it to simulate the final measurement. This
allows us to introduce the concept of data level. This is a crucial point in the simulation
process because they contain the information that allows us to make a good real-world
description of the experiment.

Data levels

A data level can be defined as a particular stage in the process of the information. When a
particle enters a material medium there is a certain probability that an interaction between
them can be produced. The Geant package contains the information about the interaction
probability with material media providing the cross sections. This information provided by
Geant is different to the real-world representation because it does not represent a physical
measurement of our detector. A more realistic information must be formed taking the Geant
data as input. These two representations are an example of data levels. In TRAGALDABAS
we define them as point and hit data levels respectively.

1. The point level of data corresponds to the perfect information that is given by our
simulation engine. In our example, Geant is told to provide information every time that
a particle interacts with our active volume. This information is not real in the sense
that is not what we detect in our experiment.

2. A more realistic description is given by the hit level of data. The information provided
by the simulation must to be translated to our observed coordinates. In the case of a
RPC, position and time coordinates. This process is called digitization and is different
depending on the detector.

As it was mentioned before, the RPC chamber has two gaps filled with gas, and inside this
medium the electronic avalanches take place. As a result, each event consists on a collection
of interactions with the active volume that need to be processed. This raw information is the
point level of data. We can say that because the information is not processed yet and it does
not represent a real-world detection. The information provided by the simulation engine is
related to position, momentum, energy loss or time. Our task is now to simulate the detector
response to that particular interaction. In real life situations this process is not perfect. It
might happen that an interaction with our active volume does not produce a signal, or maybe
a single avalanche can induce signal in two pads. These features of the detector must to be
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Fig. 4.5 Representation of a RPC detector used in TRAGALDABAS detector. The detection
area is divided in pads.

simulated to provide a representation as realistic as possible. The improvement of the hit
level of data for the TRAGALDABAS detector was implemented during this thesis. To do
this, we had to take into account the following issues:

1. Since we have two freon gaps, we have two active volumes. Therefore we have two
regions in which point information can be left.

2. The detector has a pad structure. This means that the avalanches produced inside the
gas induce a pulse in the electrodes placed on the pads. The signal is then processed
and as a result are given a position and a time.

3. We can not determine the exact position where the particle entered a RPC chamber.
Since the avalanches produce a signal in a pad, the position coordinates are given by
the coordinates of the centre of the pad where the signal occurred.

4. The cells are not in contact with each other because there are guard strips that avoid
the signal to travel from one cell to its neighbours, as shown in Fig.4.6. Therefore, we
have to know if the point is produced in the pad active zone.

The implementation of both data levels are done for TRAGALDABAS in the classes
TraRPCPoint.h and TraRPCHit.h inside the TRAGALDABAS module distributed with
EnsarRoot. Both data levels are stored and structured using the classes distributed by Root:
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Fig. 4.6 Cell dimensions of the RPC TRAGALDABAS detector. There is a guard strip
between pads that isolates them and tries to avoid induced signals between them.

• Point data level: the simulated interactions with the gas are stored in a TClonesArray.
Every event has therefore a collection of all the points produced by the interaction of
the incident particle. The user has always access to the position, momentum and the
detector in which the interaction took place. This information is stored in a computer
word and is a unique identifier of the event.

• Hit data level: if a point is found inside the active volume this not necessary imply that
it will produce a hit. We assumed that a cell is fired when the charge that the particle
left in the medium (it gives an idea of its energy) is bigger than a certain threshold.
Additionally we can argue if the track of the particle entered, passed or disappeared
inside an active zone. In those cases we process the points to get a hit and is also stored
in a TClonesArray. A hit encapsulates the information concerning the centre of the
cell, time and charge deposited.

Additional information is also encapsulated in the hit level of data. As we know, the
TRAGALDABAS cell mapping is presented in Fig.4.7. It might be interesting to store,
for a further analysis, the plane number, cell centre, row and column of the hits. This is
processed by the use of the variable RPCId. The code takes the generated spatial information,
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Fig. 4.7 The pads of the TRAGALDABAS RPCs are labelled according to their row and
column. The origin is taken in the centre of the chamber.

fPosIn.X() and fPosIn.Y(), and makes a correspondence between them a the cell where the
particle hit the plane:

RPCId = cpKIV*4096 +
int((fPosIn.X()+6*12.6)/12.6)*64 +
int((-fPosIn.Y()+5*12.1)/12.1);

Row = (RPCId & 15) +1;
Column = ((RPCId & 960) >> 6)+1;
Xcenter = 69.3-(12-Column)*12.6;
Ycenter = 54.45-(Row-1)*12.10;

As it can be seen, the variable RPCId is formed taking into account the dimensions of the
cell. We implemented methods in the TraRPCHit class to allow the user to have access to the
row, column and the coordinates of the centre of the cell where the signal was produced.

These point and hit are the two basic data levels that can be found in the TRAGALD-
ABAS module. However, in the latest version of EnsarRoot we implemented a new type of
data level: the saeta level of data. Based on the TimTrack algorithm (explained in Chapter 2)
we transform the hits processed in one event and then we reconstruct the possible trajectories
of the particles passing through our detector. The implementation was done in the TraRPC-
Saeta.h class inside the TRAGALDABAS module. As we will explain later, this saeta object
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contains the parameters related to the propagation of the particle, such as its initial position,
slope or velocity. These saeta objects are stored in a TClonesArray structure, exactly the
same way as the points and hits are stored.

Following the same method as before, more data levels can be created. For example,
a new object called shower. With all the possible saetas we could perform a sketch of the
trajectories of all particles of a single cosmic ray shower that passed through our detector.
This could provide an initial idea about the cosmic ray shower that arrived to the detector. This
algorithm is not still finished and must to be tested with the real data of the TRAGALDABAS
detector.

Particle generators

Up to this point, we have simulated the geometry of the detector and how it manages the
information provided by the simulated particles. It is necessary to simulate the characteristics
of the radiation that will help us to perform studies of the interaction with materials.

The TRAGALDABAS module can use different generators:

1. Box generator: this particle generator simulates events of the so called particle in box.
The user can adjust the type of particle, the multiplicity, the kinetic energy and angles.
Also, the source can be a point or the particles can be generated from a surface.

2. TraBoxGenerator: this generator was implemented as a first cosmic ray simulator for
the TRAGALDABAS detector. It generates muons from a random point from a plane
at a distance z set by the user.

3. Ascii: the events are written in a text file. The code reads the particle type, energy and
angles. After that, the code displays the tracks.

4. CRY: the CRY event generator [37] generates cosmic ray showers from three different
elevations. CRY is not included as a native generator. We created an interface that
takes the output file of CRY generator and treats it as an Ascii generator adapted for
the TRAGALDABAS reference system.

These generators can be used under the Geant3, Geant4 or Fluka [24] Monte Carlo types.

Scripts to control the simulation parameters

The simulation process is run by the execution of a script. This file contains the list of task to
be performed. There is another file that contains the parameters of the tasks. Both files are
controlled by the user:
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1. tragsim.C contains the list of tasks. The user can specify the Monte Carlo type (Geant3,
Geant4 or Fluka), the particle generator (box, tragbox,ascii or CRY), the geometry file
to be used, the number of events or if a saeta object is created or not.

2. tragall.C provides the parameters of the simulation. For example, we can specify the
particle type or angular-energetic range. This file is called by the tragsim.C script.

To start the simulation we only execute the script with Root:

root -l -q tragsim.C

As a result, a root file is generated and the variables can be displayed in a TTree structure, as
shown in Fig.4.2. The TEve viewer opens this output root file and extracts the information of
the events. As an example, Fig.4.8 represents a simulation of several muons generated with
the Geant4 engine (with a box generator) over the TRAGALDABAS configuration.

Fig. 4.8 Simulation of the TRAGALDABAS RPC configuration. It consists on four RPC
detectors placed in the Particle Physics department at Universidad de Santiago de Compostela.

This root file, therefore, contains all the information of the simulated events structured
in a Tree object type. Further analysis of physical observables, such as efficiency, must be
performed with another script. This new file opens the Tree, takes its branches and then the
physical observables can be created.
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4.2.3 Simulations with the muTT detector

The muTT detector is a new type of RPC chamber designed in LIP-Coimbra with an optimised
time and spatial resolutions. This new model of RPC is used as the standard detector in our
tomography system.

The design of the muTT is completely different to the RPC detectors used in TRAGALD-
ABAS. First, the number of gas gaps is different. In TRAGALDABAS the active volume
consisted on two gaps filled with freon. In muTT we have six gaps. Secondly, the detection
method is different. The RPC in TRAGALDABAS was divided in detection pads and the
final measurement corresponds to the spatial coordinates of the centre of the cell that was
fired. As a contrast, muTT consists on two layers of strips per plane. The two layers are set
perpendicular to each other, and the spatial coordinates are measured with the time-of-flight
of the signal along the strip. These differences must to be taken into account to implement a
suitable code to simulate the physics of the new muTT.

As it will be explained at the end this chapter, before the final tomography system was
set, we performed several tests of the detectors in a simplified structure. This configuration
consisted on four muTT planes as shown in Fig.4.9 and served as a test field for our calibration
and reconstruction algorithms. By now, we are only concerned about the simulation of the
geometry of the detector. Contrary to the TRAGALDABAS detector, muTT is not created
as a module of the EnsarRoot framework. The geometry of the muTT was programmed as
a simplified version of the TRAGALDABAS RPC. Therefore, we reused the code of the
Appendix A to create a new code for the muTT.

The external structure of the muTT is the same as TRAGALDABAS: the aluminium box
is the mother volume and the rest of materials are embed inside it. The main difference is in
the number of gas gaps. The muTT geometry contains only one gas gap instead of six. This
simplification is motivated by the fact that, since the muTT uses detection strips, the position
of the interaction can be known. In this approximation, no further digitization of the Monte
Carlo information is performed, and therefore we work only in the point data level.

This is another advantage of the EnsarRoot framework: it is not necessary to create new
code for this detector. We only needed to simplify the already built geometry and work in
an appropriate data level. No new data level has to be created and the same scripts inside
TRAGALDABAS are reused.

4.3 Multiple Coulomb scattering

Every material has a high amount of electrons that are located in the electron cloud of
the atoms. They are light, negative charged particles that in general are weakly bounded
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Fig. 4.9 Simulation of the MuTT detector in EnsarRoot.

to the atoms. As a consequence, every charged particle passing through the material will
experience an electromagnetic interaction between the charge of the particle and the electronic
medium. The particle is then suffering the effect of numerous infinitesimal forces that cause
a deflection in its trajectory, pushing the particle infinitesimally along its path. This effect is
called multiple scattering. This is a highly random process and can be very different for two
particles incoming with same energies and angles. An schematic overview of the multiple
scattering process can be seen in Fig.4.10 As it can be seen in the figure, a particle meets
the outer surface of a material and starts to suffering infinitesimal changes in its trajectory
because of the Coulomb interaction between the charges. The process ends when the particle
is out of the material.

In this representation we can assume that the energy transfer to the media is negligible
since the mass of the electrons are much smaller than the one of any incoming particle (except
the case of the electrons). This is the reason why the changes in the trajectory of the particle
is usually infinitesimal.
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Fig. 4.10 Multiple scattering representation taken from [7]. A particles arrives to the surface
of a material and experiences infinitesimal changes in its trajectory inside the material.

According to this description, we would expect that the probability distribution of the
deflection angle, θ , would be Gaussian. However, in a real life situation we find out that the
material can contain very bounded electrons and therefore the interaction with the incident
particle is not infinitesimal. This is the reason why high deflection angles can be found. As a
result, there are tails in the distribution, that correspond to anomalous high deflection angles
[22, 7].

In the hypothesis that the medium is thin enough and the tails of the angular distributions
are not significant, the central part of the probability distribution can be assumed to follow a
Gaussian distribution.

In the literature it is common to find the distribution of the projection of the total
dispersion angle. If we call θ the total angle, its projection θ0 in any transversal plane is
corrected by a geometrical factor:

θ0 = θ/
√

2

The projected angle θ0 follows a Gaussian distribution of width

θ0 =
13.6 MeV

βcp
z
√

x/X0 [1+0.038ln(x/X0)] (4.1)

in the central region. In this equation, p, βc and z are the momentum of the particle, the
velocity and the charge number of the incident particle. Also the angle depends on the
quantity X0, called radiation length. This number is characteristic of every material and
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can be considered as a natural unit for every pure electromagnetic processes that take place
inside a certain material. It will also appear in the study of electromagnetic cascades due to
Bremsstrahlung electrons since it represents the mean distance that an electron travels until it
loses all but 1/e of its energy.

For each material of atomic number Z the radiation length can be approximated to

X0 =
716.4 A

Z(Z +1) ln(287/
√

Z)
g/cm2 (4.2)

where A is the mass number and Z is the atomic number. This radiation length is tabulated
and it can be seen that decreases as the atomic number Z increases. It is also common to
find the radiation length in units of mass width (g/cm2). This is denoted in literature as ε

and is particularly useful because in this units the radiation length is less dependent on the
density and we have a better guess about the number of scattering centres per mass unit. This
is made just multiplying the linear thickness (L) times density, expressing the X0 in g · cm−2.

The behaviour of the scattering angle and radiation length are the basis of the muon
tomography of heavy materials by the use of cosmic muons. Our simulations concern about
the behaviour of this angle and it is the reason why we propose new observables related with
it.

4.4 Electromagnetic showers

Muons, when they pass trough a material, are losing progressively their energy until they
finally decay in lighter particles (namely: an electron and two neutrinos) and gammas.
On another hand, high energy electrons and high energy photons produce new electrons,
positrons and photons when they interact with the material. These new electrons, positrons
and photons form what is called an electromagnetic shower and are the result of two different
processes:

1. High energetic electrons loss part of their energy by the emission of a photon when
they cross the matter or are deflected by another charged particle. This is due to the
Bremsstrahlung or braking radiation.

2. Photons with an energy bigger than 1.022 MeV, in presence of matter, may produce an
electron-positron pair.

An electromagnetic shower can be sketched in Fig.4.11.
It seems to be reasonable that each stage of the electromagnetic shower takes place, on a

mean value, after a radiation length X0 is travelled. Also it is usually assumed that the energy
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Fig. 4.11 Schematic representation of an electromagnetic shower induced by a high energy
electron (left). On the right side we can see an electromagnetic cascade induced by a cosmic
ray photon or an electron in a MIT-cloud chamber with brass plates.

of the initial particle is equally distributed between the final particles. With this hypothesis,
X0 is the natural unit of length for the electromagnetic interactions independently of the
medium.

This process of pair production-Bremsstrahlung keeps on going until all the initial energy
is lost. Then they are stopped and absorbed. After n stages, the mean energy of each particle
is a factor 1/2n of the initial energy E0 and eventually an energy Ec is reached. At this
critical energy this process is not dominant and the electrons tend to lose their energy through
excitation-ionisation process. Finally, the cascade comes to an end.

The critical energy for iron is around 27 MeV, for lead 8 MeV and for uranium 6.5 MeV.
Therefore, electromagnetic showers tend to be larger in heavy materials compared to the
light materials and the electromagnetic showers vanish faster in X0 units.
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The use of electromagnetic radiation1 for the detection of heavy materials is problematic.
In one hand, the flux of electromagnetic radiation is smaller than the flux of muons arriving
to the sea level. On the other hand, the small value of the radiation length of heavy elements
makes that the showers produced inside the material quickly attenuate. The final energy of
the electrons is so small that it is almost impossible that they can even reach our detectors.

However, it is possible that electromagnetic radiation could be used as a quick indicator
of the presence of a heavy element and therefore it would be possible to determine if a
container needs a more detailed analysis.

4.5 Structure of the simulations

In the previous sections we have introduced the different elements and tools that we need to
perform our simulations. We have chosen the EnsarRoot framework and the physics concerns
the analysis of angular distributions and other observables related to it.

The simulations are divided in two main blocks. One is devoted to the systematic study of
the scattering angle in different materials and energies. As it was mentioned before, there are
two main processes:muon and electromagnetic components, as shown in Fig.4.12. The other

Fig. 4.12 Structure of the simulations. On the left side we can find the muon dispersion and
on the right side the generation of an electromagnetic shower.

set of simulations is related to the data obtained with the real detector, muTT. We simulated
the different setups with the detector configuration and proposed several observables that can
be used to the material identification.

1From now we will denote as electromagnetic radiation to electrons and photons without distinction, since
they are both responsible of the electromagnetic showers.
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To be as much realistic as possible, in the first set of simulations we have used the typical
energetic range of the cosmic rays and a RPC as the reference detector.

4.5.1 Scattering angle simulations

This part of the simulations concerned to the systematic study of the scattering angle of a
cosmic ray due to the interaction with heavy materials. Since the only variable of interest is
the angle, we fired vertical particles over the material, as shown in Fig.4.12. The trajectory
of the particle is perfectly determined and we can control all variables of the particle.

In table 4.1 we make a list of the particles used as projectiles and their kinetic energy.
The values of the table are chosen according to the information of cosmic ray flux at sea
level.

Particle Energy (GeV)

µ 0.1 0.2 0.3 0.4 0.5 1.0 2.0 4.0 8.0 16.0 32.0
e,γ 0.1 0.2 0.3 0.4 0.5

Table 4.1 List of particles and kinetic energies used in the simulations.

The electromagnetic component of cosmic radiation is not easy to study because the
angular part is not a variable of interest. Electromagnetic showers are formed and therefore
there is no point asking about the angular deflection of the incident electron or photon. In
this case, we proposed the number of produced secondary particles during the interaction.
Furthermore, if the secondary electron has energy enough to reach the detector we can
determine the deflection angle compared to the incident particle.

Table 4.2 shows the list of materials and their thickness that were used in our simulations.
Some of the intrinsic properties of the materials were also shown. As we mentioned in
previous section, it is convenient to use the variable ε = x ·ρ to express the thickness of the
material, where ρ is the density.

The simulated experimental setup can be seen in Fig.4.13 where particles have a perpen-
dicular trajectory to a dense material. We used the same RPC detector as the used in the
TRAGALDABAS detector. As it was mentioned, this detector has two gaps filled with freon
gas. These are our active volumes. Since we are interested in the general angular properties
independently of the experiment, we first ignore the signal discretization implemented for
TRAGALDABAS. That means that we only keep the geometry of the detector but we are
not interested on the hits data as it would be seen in TRAGALDABAS, i.e, we only work in
point data level.
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Material Z ρ(g · cm−3) X (cm) ε (g · cm−2) X/X0
Fe 26 7.87 1 7.9 0.6

5 39.4 2.8
10 78.7 5.7
20 157.5 11.4

Pb 82 11.35 1 11.4 1.8
5 56.8 9.0

10 113.5 17.9
20 227.0 35.7

W 74 19.30 1 19.3 2.9
5 96.5 14.3

10 193.0 28.6
20 386.0 57.1

U 92 18.95 1 19.0 3.1
5 94.8 15.6

10 189.5 31.3
20 379.0 62.5

Table 4.2 List of materials used in the simulations and some of their intrinsic properties.
The number ε represents the quantity (thickness·density). The last column represents the
thickness in radiation length units.

Fig. 4.13 Schematic view of the setup of the simulations. A particle is arriving perpendicular
to the surface of the material.

4.6 Analysis of the scattering properties

In this subsection we present the results of the first set of simulations for muons and electrons.
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1. In the case of muons we fired one million of particles for each thickness-material
configuration.

2. In the electromagnetic case we only fired ten thousand electrons, due to the big amount
of secondary particles that are produced in the electromagnetic shower. Computation-
ally, it is no possible to manage them in memory.

We performed the simulations inside the EnsarRoot framework using the standard FairBox
generator. As we are mainly interested on the deflection angle, we placed the source of
emission at 30 cm from the upper surface of the material and fired particles with θ and φ

equal to zero. This means that the incident particles are vertical and it is no worth placing the
detector at a long distance.

4.6.1 Muon inelastic scattering: angle

As it was mentioned before, a charged particle inside a material medium will experience a
random process in which it will change its trajectory. This process is the inelastic Coulomb
multiple scattering. There is a non-zero probability that the muon would have a big angle due
to a non-infinitesimal deviation inside the material. This anomalous angle are much more
likely in heavy elements since they have more bounded electrons per volume unit.

An example of angular distribution can be found in Fig.4.14. In this figure we can see that
the central part of the distribution follows a Gaussian shape, but there are tails corresponding
to the anomalous scattering angles. The example in the figure corresponds to muons with
0.2 GeV of kinetic energy on 1 cm of lead. We used logarithmic scale on the y-axis. In
that representation a Gaussian distribution takes parabolic form centred in the origin, and
it becomes easier to determine the interval in which the distribution has a Gaussian shape.
Moreover, the tails of the distribution are more visible and can be quantified.

For the analysis of the angle we used the following magnitudes:

1. First, we note that the angle can be positive or negative. We gave the angle a sign
whether the particle deviated to positive or negative value of the x-coordinate. This is
made to force the distribution to be centred on zero.

2. One first observable is the deviation obtained by a Gaussian fit over the central part of
the distribution: σg.

3. Other observable is the standard deviation of the sample data:

σm =

√
1
N

N

∑
i=1

(
θi − θ̄

)2 (4.3)
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Fig. 4.14 Histogram of the scattering angle for muons with kinetic energy of 0.2 GeV on
1cm of lead.

where N is the size of the sample, θ is the value of the angle and θ̄ is the mean value
of the angle distribution.

4. The difference between both deviations:

∆σ = σm −σg (4.4)

This quantity is very useful to determine the importance of the tails in the distribution.

Figure 4.15 shows the Gaussian angular dispersion, σg for muons over different materials
of different thickness. It is observed, as expected, that this variable decreases as the energy
of the particle increases. It is also observed that it increases as the thickness of the target
increases. If we compare two materials with the same thickness and energy it can be seen
that σg increases with the atomic number, Z. Figure 4.16 represents the same results for σg

but using logarithmic scale on y−axis. The use of logarithm allows us to better distinguish
the high energy region.

With the aim of extrapolate the values shown in previous figures to a more realistic
situation, we studied the scattering angle when the target material is placed at distances L
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Fig. 4.15 Gaussian angular dispersion, σg for muons on Fe, Pb, W and U.

0.7 m, 1.5 m and 2.25 m above the RPC detector. These distances were selected taking into
account the size of the container and its distance to the detection plane in a real life situation.

Our hypothesis is that we are able to extrapolate to any other distance L and provide
approximated values of the angular dispersion. For that, we define the lateral linear dispersion,
σx as

σx = L ·σm (4.5)

and can be seen in Fig.4.17
The results are obtained for energies between 0.6 GeV and 8 GeV, that correspond with

almost the 80% of muons and we present them in tables 4.3, 4.4, 4.5, and 4.6
Almost 50% of muons that arrive to Earth surface have energy less than 2 GeV. It is

observed from the tables that in almost all heavy materials, muons with an energy less than
2 GeV present σx values of several centimetres. This could mean that even by the use of
detectors with a poor angular resolution a reconstruction of a dense target is possible.
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Iron: table of typical σx (cm)
Energy Target-detector distance

of 0.75m 1.5m 2.25m
muon Thickness (cm) Thickness (cm) Thickness (cm)
(GeV) 1 5 10 20 1 5 10 20 1 5 10 20

0.6 1.4 3.5 5.6 10.1 2.9 6.9 11.1 20.2 4.3 10.4 16.7 30.3
1 0.8 1.9 2.9 5.0 1.5 3.8 5.8 9.9 2.3 5.6 8.6 14.9
2 0.4 1.0 1.5 2.5 0.8 2.0 3.0 5.0 1.2 2.9 4.4 7.4
4 0.2 0.5 0.8 1.2 0.4 1.0 1.5 2.5 0.6 1.5 2.3 3.7
8 0.1 0.2 0.4 0.6 0.2 0.5 0.8 1.2 0.3 0.7 1.1 1.9

Table 4.3 Lateral uncertainties for muons of several energies on iron targets of different
thickness. The material was placed at distances of 0.75 m, 1.5 m y 2.25 m from the detector.

Lead: table of typical, σx (cm)
Energy Target-detector distance

of 0.75m 1.5m 2.25m
muon Thickness (cm) Thickness (cm) Thickness (cm)
(GeV) 1 5 10 20 1 5 10 20 1 5 10 20

0.6 2.6 6.5 10.6 20.1 5.2 13.0 21.1 40.2 7.8 19.4 31.7 60.3
1 1.4 3.4 5.4 9.4 2.8 6.8 10.8 18.8 4.2 10.2 16.2 28.3
2 0.7 1.8 2.8 4.7 1.5 3.5 5.5 9.3 2.2 5.3 8.3 14.0
4 0.4 0.9 1.4 2.3 0.8 1.8 2.8 4.7 1.1 2.7 4.2 7.0
8 0.2 0.5 0.7 1.2 0.4 0.9 1.4 2.3 0.6 1.4 2.1 3.5

Table 4.4 Lateral uncertainties for muons of several energies on lead targets of different
thickness. The material was placed at distances of 0.75 m, 1.5 m y 2.25 m from the detector.

Tungsten: table of typical σx (cm)
Energy Target-detector distance

of 0.75m 1.5m 2.25m
muon Thickness /cm Thickness (cm) Thickness (cm)
(GeV) 1 5 10 20 1 5 10 20 1 5 10 20

0.6 3.3 8.7 15.0 35.1 6.6 17.3 30.1 70.3 9.9 26.0 45.1 105.4
1 1.8 4.5 7.3 13.6 3.6 9.0 14.6 27.2 5.3 13.4 21.8 40.7
2 0.9 2.3 3.6 6.3 1.8 4.6 7.2 12.6 2.8 6.9 10.9 18.9
4 0.5 1.2 1.8 3.1 1.0 2.3 3.6 6.2 1.4 3.5 5.4 9.2
8 0.3 0.6 0.9 1.5 0.5 1.2 1.8 3.0 0.8 1.8 2.7 4.5

Table 4.5 Lateral uncertainties for muons of several energies on tungsten targets of different
thickness. The material was placed at distances of 0.75 m, 1.5 m y 2.25 m from the detector.
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Fig. 4.16 Gaussian angular dispersion, σg for muons on Fe, Pb, W and U in logarithmic
scale.

Fig. 4.17 Definition of linear lateral dispersion, σx.

4.6.2 Muon inelastic scattering: analysis of the properties of materials

Using the same simulations as in the previous sections it would be interesting to analyse
the results taking into account the target material. In Fig.4.18 we represent the Gaussian
deviations σg for all materials as a function of thickness in radiation length units. We
performed the study for three different energies, 1 GeV, 4 GeV and 16 GeV. It is observed
that, for the same muon energy, σg grows with x/X0 independently on the material. This is
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Uranium: table of typical, σx (cm)
Energy Target-detector distance

of 0.75m 1.5m 2.25m
muon Thickness (cm) Thickness (cm) Thickness (cm)
(GeV) 1 5 10 20 1 5 10 20 1 5 10 20

0.6 3.5 9.2 15.8 39.5 7.1 18.4 31.5 79.0 10.6 27.5 47.3 118.6
1 1.9 4.8 7.7 14.2 3.9 9.5 15.4 28.4 5.8 14.3 23.0 42.6
2 1.0 2.4 3.8 6.6 2.0 4.9 7.7 13.2 3.0 7.3 11.5 19.9
4 0.5 1.2 1.9 3.2 1.0 2.5 3.8 6.5 1.5 3.7 5.7 9.7
8 0.3 0.6 1.0 1.6 0.5 1.2 1.9 3.2 0.8 1.9 2.9 4.8

Table 4.6 Lateral uncertainties for muons of several energies on uranium targets of different
thickness. The material was placed at distances of 0.75 m, 1.5 m and 2.25 m from the
detector.

Fig. 4.18 Gaussian angular dispersion, σg as a function of x/X0 for muons of 1, 4 and 16
GeV.

what we expected, since the scattering process is essentially of electromagnetic nature and
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X0 is a natural unit in those processes. A soft systematic effect it is observed depending on
the material for high Z.

If we represent the same observable but as a function of ε we can see that the major
difference comes from iron. The three heaviest elements present almost the same behaviour,
but iron shows a significant difference compared to the others. This dependence of the results
with the material, more notable for the three heaviest lead, tungsten and uranium, opens the
possibility that an estimation of the material can be done as a function of radiation length or
ε . For this, a good estimation of the momentum of the muon is needed.

Fig. 4.19 Gaussian angular dispersion, σg as a function of ε for muons of 1, 4 and 16 GeV.

Finally, we made a study of ∆σ in order to quantify the importance of tails in the angular
distribution, as seen in Fig.4.20

4.6.3 Muon inelastic scattering: analysis of kurtosis

One variable that can be representative from the practical point of view would be the kurtosis
of the angular distribution. This variable could give information about the tails of the
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Fig. 4.20 Difference between σg and σm

distribution and how important they are compared with the rest of values. The goal is to
study if there is a pattern or relation between the kurtosis and the materials. If this relation
exists it could be possible to identify heavy materials by the use of kurtosis.

For a sample of data, the kurtosis is defined as

k =
µ4

σ4 (4.6)

where µ4 is the momentum of the distribution around the mean value of fourth order:

µ4 =
1
N

N

∑
i=1

(xi − x̄)4 (4.7)

It is common to refer the kurtosis to the Gaussian distribution:

k =
µ4

σ4 −3 (4.8)

because the kurtosis of a normal distribution is 3. Therefore, with this definition, the kurtosis
of the normal distribution is zero.

The kurtosis coefficient is a very useful observable to inform about the presence of data in
a sample that are anomalously different. If there are just a few of anomalous data, or outliers,



100 General cosmic ray simulations

the kurtosis tend to be extremely high. For example, if a distribution of data is bi-valued, it
will have a large value of sigma. Therefore, the kurtosis coefficient is smaller compared to
the kurtosis of a Gaussian distribution. We calculated the kurtosis coefficient for the angular

Fig. 4.21 Kurtosis coefficient of the angular distribution of muons on heavy materials.

distributions of muons over different materials. The results are presented in Fig.4.21. It
observed, in general, that the kurtosis coefficient is bigger than the other heavy materials.
Also, the kurtosis decreases with the width, showing that the behaviour is more Gaussian.

The most important result observed in the figure is that, beyond 2 GeV the kurtosis takes
huge values for lead, uranium and tungsten. This effect is a consequence of the physics of the
process. For high energetic muons the sigma of the distribution trends to be small. That is to
say, typically those muons will not experience a significant scattering. This means that the
mean value of the distribution is almost zero and the sigma is small. But, there is a probability
that some of those muons will scatter, and the angle of scattering will be high. The mean
value and sigma will not change significantly. In the kurtosis, µ4 is always positive and is
adding for every element of the distribution. The great value in the kurtosis is explained
because we can find points in the distribution that are very distant to the mean value and the
sigma is very small. Therefore, in the numerator we will find a high value divided by a small
value in the denominator and then the kurtosis will be large.

As a conclusion, strong scattering in high energetic muons can be an indicator of high
Z material, but it is maybe possible to find strong scattering with low energetic muons and
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light materials. Maybe the muon energy can be used to weight the angular distribution, and
therefore our detector must have a good time resolution.

4.7 Electromagnetic showers

The study of the electromagnetic showers can be used as a complementary analysis to
the muon scattering. The rate of electromagnetic components in cosmic rays with energy
enough to pass trough heavy materials is negligible. But maybe the estimation of secondary
background and back scattered electrons could give some useful information, at least, for a
fast identification of materials inside the containers.

Since electrons and gammas produce electromagnetic showers the computational memory
is easily flooded. Therefore, we limited the number of particles to N0 = 10000 over the same
materials and thickness.

The observable that we considered is the ratio N/N0, that represents the total number of
secondary particles detected in the electromagnetic shower compared to the initial number
of particles. Figure 4.22 shows some interesting conclusions. In heavy elements, in targets

Fig. 4.22 Ratio of detected secondary particles compared to the initial number of particles
N/N0.

of several centimetres, absorption process is dominant since few particles are able to be
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detected. The electrons-positrons do not have enough energy to travel and are absorbed
inside the material or in air. However, thin materials are capable to produce high amount of
secondary particles in heavy elements. Multiplicative factors of 20 can be observed. So, in
the presence of heavy elements, it is possible that they are acting as radiators of secondary
particles. Maybe if we are able to detect them they could be used as an indicator of the
presence of heavy element inside the container.

4.8 Analytic approximation to the study of scattering prop-
erties

This section is devoted to the study of the scattering from an analytical point of view. The
goal is to provide a method that can be used to improve the detector features. With this
analysis it might be possible to make quick estimations of the configuration of the detector,
the size of the sample to achieve some angular resolution, among others.

The starting point of the analysis consists in the idea that the angular uncertainty when
we reconstruct a muon track (δθ ) provides uncertainty in the position of the point where the
interaction muon-material took place (δZ)

In this approximation, we assume that δθ << θ and the scattering angle θ is small. This
is not always true for low energy muons hitting a heavy-Z material, for example.

With this assumption, we obtain that

δ r = δθ ·
√

L2 +X2 (4.9)

and
∆Z =

δ r
sinθ

≃ δθ

θ

√
L2 +X2. (4.10)

Combining both equations:

δZ = Z ·δθ

√
1+

1
θ 2 (4.11)

This last equation shows how the uncertainty in the reconstructed vertex (δZ) decreases
with the angle θ , assuming that the angular resolution is fixed. This indicates that the best
imaging will be produced by the low energy muons, since they are the muons with high
scattering angle.

Since most of the muons have in general low scattering angle, if we assume that the
material is at a distance L above the detector it is possible to estimate, for a scattering angle
θ the number of muons n that are needed to obtain a particular resolution δL. If we equal
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both uncertainties:
δL =

δZ√
n

(4.12)

and we assume that Z = L, we find that

n(θ) =
(

δZ
δL

)2

= δθ
2
(

1+
1

θ 2

)(
L

δZ

)2

(4.13)

that it can be seen that is a decreasing monotone function in θ . That is to say, for a given
detector with a known and fixed resolution, the more scattering, the less number of particles
are needed to obtain a better quality in the image.

In case δθ is not small enough, we obtain:

n(θ) =
(

δθ

θ

)2( L
δL

)2

(4.14)

that can be rewritten as

n(θ) =

(
δθ

θ

)2

(
δL
δL

)2 (4.15)

If we know the angular distribution of the muons, f (θ) and the number function n(θ)
that provides the number of muons needed to obtain a certain resolution, it is possible to
define a density function d(θ) that can be used to estimate the optimal scattering angle and
the number of muons that are requested. We define the density function as:

d(θ) =
f (θ)
n(θ)

(4.16)

What does this function mean? Let’s assume that we have a normalised scattering distribution
for muons. We assume as well that the rate of incidence per time unit δ t is N muons. The
number of scattered muons in a particular angular interval centred in θi and with length ∆θ

would be
Ni = f (θi) ·∆θ (4.17)

If ni = n(θi) ·∆θ muons are needed in that interval to obtain that particular resolution, the
ratio di = Ni/ni represents the relation between the number of muons in the interval by the
number of muons that we need. Consequently, the inverse represents the number of intervals
δ t that we need to obtain that resolution. We take as an example of calculation the situation
shown in Fig.4.23. We know the normalised f (θ) and n(θ). With them it is constructed the
function d(θ). In the figure, we can see that the maximum value of the function is obtained
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Fig. 4.23 Example of angular density caltulation to obtain a certain resolution.

inside the fourth interval d4 = 0.07. This means that every muon in that interval contributes
with a 7% of the total sample size that we need to see the target with the desired resolution.
It would be needed, as a mean value, the inverse of that proportion: that is to say, 14 muons.

In a similar way, it is possible to estimate the number of events that we need to reconstruct
the position of the vertex along the z-axis using the whole detector. The formalism is done in
one dimension, but the extension to the other two is straightforward. As before, we consider
small scattering angles.

According to the previous equations, if we consider a detector that provides an angular
resolution δθ , the resolution in the position of the vertex can be written from an interval θi

with ni in it:

δZi =
Z
√

ni
· δθ

θi
(4.18)

Taking into account the resolution in the position of the vertex provided by all scattered muons
at all possible angles, it is possible to compose them as a simple weighted superposition to
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obtain the total δZ:
1

δZ2 =
1

δZ2
1
+

1
δZ2

2
+

1
δZ2

3
. . . (4.19)

or
1

δZ2 =

(
n1 ·θ1

Z ·δθ

)2

+

(
n2 ·θ2

Z ·δθ

)2

+

(
n3 ·θ3

Z ·δθ

)2

+ · · · (4.20)

and then it is easy to obtain

δZ = Z ·δθ

(
nθ

∑
i=1

1
n2

i ·θ 2
i

) 1
2

(4.21)

where nθ is the number of angular intervals.
If we call fi to the probability that a scattered muon is inside the interval θi, the expectation

value for the muons inside that interval will be ni = N · fi, being N the total number of fired
muons. With this, the previous equation will take the form:

δZ =
Z ·δθ

N

(
nθ

∑
i=1

1
f 2
i ·θ 2

i

) 1
2

(4.22)

Finally, he number N of muons that we need to achieve a resolution δZ with a detector
providing an angular resolution δθ at a distance Z is:

N = Z

(
nθ

∑
i=1

1
f 2
i ·θ 2

i

) 1
2

δθ

δZ
(4.23)

In this estimation we assumed ideal muons without uncertainties in its trajectory. As a
consequence, this is only a semi-ideal approximation that needs real data to be modified and
developed in a more realistic way.





Chapter 5

Simulation of physical observables in
muTT

5.1 Introduction

In Chapter 3 we presented a general description ot eh RPC detectors. As it was mentioned,
there is a new model of RPC that will be used as standard of the muon tomography system.
This detector is called muTT.

In this chapter we study the simulated behaviour of several physical observables in the
muTT set-up. The simulations have two main goals. First, to study the image reconstruction
by the use of different algorithms. Second, to study the capability of the system to distinguish
materials of different density, in particular, those heavy elements which are candidates to be
radioactive.

The formation of images is possible by the use of reconstruction algorithms such as
TimTrack. As it was explained in Chapter 4, the Coulomb multiple scattering is the process
that deflects the cosmic ray muons when they pass-through a material. The simulations
shown a clear correlation between the scattering angle and the density of the material. By
the study of the trajectories of the particles it is possible to provide the coordinates of the
scattering centre.

The distinction of materials according to their density is a more complicated task. It is true
that the deflection angle depends on the density (given in X/X0 units) but the reconstruction
algorithms by themselves are not able to distinguish between materials. Different materials,
with different densities and thickness can present a very similar scattering behaviour.
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In this chapter we present a reliable simulation of the physical structure and target
configuration of run number 27. This particular run is the reference of the physical analysis
performed in Chapter 7.

We propose different physical observables that could provide information about the
density of materials, or at least make possible a distinction between them. These quantities
are related to the spatial and angular magnitudes, and they will be presented in this chapter.

As it will be seen, we use two different reconstruction methods (POCA and TimTrack)
and many observables can be defined by the difference between them. The TimTrack method
is fully explained in Chapter 2 and some technical details were avoided and the final results
were presented instead.

5.2 Configuration of the simulations

In this section we will describe the parameters and configurations used in the simulations.
We present the geometry of the structure, the layout of the targets, energy, and angle of the
incident particles.

Physical structure

For all of our simulations we used the geometrical structure shown in Fig.5.1. This arrange-
ment of the planes is a representation of the real structure used to calibrate the muTT planes
(see Chapter 3). With this, we can compare real data with our simulations.The standard unit
of distance in EnsarRoot is the cm. Therefore, all distances shown in figures are cm, if not
specified otherwise.

The origin of coordinates was chosen to be in the centre of the structure, between the
upper and lower RPC planes. The z-axis was taken as positive along the propagation direction
of the cosmic radiation.

The detector is divided in two regions: up and down. The name of a plane contains
information about its position in the detector by the use of a letter and a number. We use the
letters U,D referring to up and down.

The order of the plane is given by a number. We then have U1 (at z = −80 cm), U2,
D1 and D2 (at z = 80 cm) planes. The origin is therefore between U2 and D1 planes. This
system is very useful if at some moment we decide to put additional planes to perform future
experiments.

In the real structure, at z = 0 there is an aluminium plane where the test materials are
placed. The simulations take this into account, despite is not an important parameter.
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Fig. 5.1 Overview of the physical structure used in the simulations. The target materials will
be placed at z = 0. We took z as positive along the propagation of the cosmic rays. Distances
are given in cm.

Target configurations

In Chapter 7 we took as a reference of analysis the set of data named as run 27. In that, three
bricks of different materials; iron, lead and tungsten, were placed between upper and lower
RPC planes.

To compare our simulated observables with the real data, we made a simulation of the
same arrangement as in run 27. An overview of the run 27 is shown in Fig.5.2.

As we can see, the materials present in run 27 are not of the same size. The tungsten
brick is smaller than the iron and lead bricks. In order to study the general behaviour of
the observables depending on the material, we created an alternative layout. This new
configuration consists on three bricks of the same size with the same materials as in run 27.
Comparing the simulations with both configurations we can identify and exclude possible
effects produced by the size of materials.

In Table 5.1 we define the configuration of both simulations scenarios. In the first scenario,
named Simul1, we reproduced the same target configuration as in run 27. We have two bricks
of dimensions 10× 20× 10 cm3 (2 l) made of iron and lead. The third brick is made of
tungsten and with dimensions 10×10×10 cm3 (1 l). In Table 5.1 are shown the positions of
the centres of the bricks together with their lengths along the three coordinate axis.

The second scenario, Simul2, consists on four bricks with the same transversal surface
(10×10 cm2) but with different thickness. This Simul2 configuration is useful to perform
systematic studies of the properties of observable quantities. Therefore, in each Simul2
configuration we have the same material (iron, lead or tungsten) but in four different thickness.

We will mention explicitly whether Simul1 or Simul2 was used in the set of simulations.
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Fig. 5.2 Left: a picture of the real arrangement of the run 27. Right: EnsarRoot simulation of
the run 27. It consisted on 1l of tungsten, 2l of lead and 2l of iron. The targets are centred
along the x-axis.

Material Centre lx ly lz
Fe (-30,0) 10 20 10
Pb (0,0) 10 20 10
W (30,0) 10 10 10

Simul1

Material Centre lx ly lz
(-35,0) 10 10 1

Fe, Pb, W (-25,0) 10 10 5
(15,0) 10 10 10
(35,0) 10 10 20

Simul2

Table 5.1 Distribution of materials in both simulation scenarios. The table contains the
coordinates (x,y) of the centre of the brick and the lengths along the three axis (in cm). On
the left side we have simul1, a representation of the run 27. On the right side, simul2, a
configuration of four bricks with the same transversal surface, but different thickness.

Energy ranges

The next ingredient of the simulations are the primary particles. In the chapter devoted to the
cosmic rays we presented in Fig.1.1 the flux of particles at sea level. In this table, we see that
muons are the most important contribution to the cosmic ray flux at sea level. Therefore, our
simulations were oriented to the study of the scattering properties of muons.

In our simulations, we divided the energy ranges of the simulated particles (muons) in
three groups. In Table 5.2 can be seen, together with the values in energy, the number of
muons that we expect at each energy range.

Despite the low energy muons are the less abundant, they provide the more amount of
scattering information. The high energy muons do not provide much information about the
scattering properties. These muons typically pass through the materials without deflecting.
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Range E (GeV) Expected muons
Low 0.1–1.0 31
Intermediate 1.0–3.0 30
High 3.0–6.0 25

Table 5.2 Definition of the energy ranges used in the simulations. The table shows the relative
intensity of muons that we expect for each energy range. These values are obtained from
Fig.1.1.
.

Despite their scattering information is not very useful, they provide a background for the
scattering observables.

5.2.1 Reconstruction algorithms

In this subsection we present the two algorithms that we used to form the images of the
materials. We define two algorithms: the first method is the TimTrack and the other is the
knows as Point Of Closest Approach (POCA). A full theoretical description of the TimTrack
method can be found in Chapter 2. In this chapter we only present the final results of the
algorithm.

TimTrack

The TimTrack method can be applied to find the interaction vertex of a muon with a material
by the Coulomb multiple scattering.

The TimTrack algorithm is based on the least squares method and is able to provide the
physical parameters related to the trajectory of the particle. It is assumed that the experimental
data follow a particular model that includes the physical parameters, such as slopes, initial
point or velocity, among others. The method is general and can be used in a lot of different
situations with data following several models.

To obtain the position of the vertex with TimTrack we used the supersaeta model. For
detailed information of the equations, see Chapter 2. The supersaeta vector is obtained
satisfying these boundary conditions and considerations:

1. We take the detected points in the planes as input.

2. The model assumes that the particle follows a straight trajectory before and after its
interaction with the material.
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3. We assume that the incoming and outgoing trajectories have a point in common. This
point is the deflection vertex.

After the method is applied, we obtain not only the vertex (X ,Y,Z) but also the kinematic
information that determines the whole path of the particle. The supersaeta vector contains
the following parameters:

s =
(
X0,X ′

1,X
′
2,Y0,Y ′

1,Y
′
2,T0,S,Z0

)
(5.1)

where in this equation (X0,Y0,Z0) is the position of the vertex, (X ′
1,Y

′
1) and (X ′

1,Y
′
1) are slopes

of the trajectories before and after the material, T0 is the initial time referred to an external
clock and S is the inverse of the velocity (slowness).

Fig. 5.3 Representation of a supersaeta. We solve the TimTrack equations to find a vector
with the kinematic parameters. The incoming and outgoing trajectories must have a common
point: the deflection vertex.

In the figure 5.3 can be seen an schematic representation of a supersaeta. This new object
contains the information of the incoming and outgoing trajectories. As a boundary condition,
it must to be fulfilled that both trajectories have a common point. This point is the vertex.
With the TimTrack method we can obtain the values of all parameters and their mutual
correlations at one step, using as input the space built with the experimental data.
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Along this chapter we will use the words TimTrack and supersaeta indistinctly. All the
vertices obtained with TimTrack are the solution of the supersaeta model.

POCA

One of the most used and simple methods in vertex reconstruction due to multiple scattering
is the Point Of Closest Approach. This method is purely geometrical and does not provide
information about the dynamics of the particle or the correlation between these parameters.
POCA reconstructs under this conditions:

1. The measured points are taken as the input of the method.

2. With the points in the upper planes we build a straight line, while the same is done
with the lower planes.

3. For the two straight lines, we find the points that fulfil that the distance between them
is minimal.

4. The vertex is given by the mean value of the previously calculated points.

The equations of the lines up and down are, as a function of the parameters s and t:

P(s) = P0 + s ·u Q(t) = Q0 + t ·v (5.2)

where u and v are their direction vectors. The relative vector between the lines is, therefore
w0 = P0 −Q0. The values of the parameters that give the closest distance between the two
lines are:

sc =
be− cd
ac−b2 tc =

ae−bd
ac−b2 (5.3)

where

a = u ·u
b = u ·v
c = v ·v
d = u ·w0

e = v ·w0

If we substitute the values of the parameters, we obtain the points (one at each line) that
satisfy that their distance is minimal, P(sc) and Q(tc). The vertex is given by the middle
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point between both values:

(X ,Y,Z) =
P(sc)+Q(tc)

2
(5.4)

Both reconstruction methods are programmed as an independent script. This file takes the root
file produced by the simulation and extracts the information concerning the measurements at
each plane. Taking these points as input both algorithms are applied.

To check both reconstruction methods, we applied them to the Simul1 (run 27) configura-
tion. To perform the simulation, we fired muons with different angles and energies between
0.1 and 3 GeV. The results of the simulated vertices reconstructed with both methods are
shown in Fig.5.4.

Fig. 5.4 Test of the reconstruction methods. We reconstructed the deflection vertices with
both methods for the Simul1 target distribution (run 27). Left: reconstruction using POCA.
Right: reconstruction with TimTrack. Their respective 2D projections at z = 0 are shown at
the bottom of the figure.

As it can be seen, both methods provide a good reconstruction of the shapes of the
materials. It is also clear that they are very close in the reconstruction, there are not significant
differences at a first glance.

On the left side of the figure are shown the vertices reconstructed with POCA, together
with the projection at the z = 0 plane. The right side contains the same information for the
TimTrack.
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With the projections at the origin it is possible to estimate the dimensions of the bricks.
Lead and tungsten seem to present a higher density of vertices at z = 0 compared to iron.

If we compare the projections at the origin with the real shapes, we can see that both
methods are capable to reproduce the actual dimensions of the bricks.

5.3 Angular resolution of the detector

An estimation of the angular resolution of the muTT detector can be done. This variable can
be interpreted in two different ways. First, the angular resolution could provide information
about the capability of our detector to distinguish between two different materials. An angular
resolution of the order of mrad is required to this, as it is mentioned in the work of Baesso et
al. [19].

Second, the estimation of the angular resolution gives us an idea about the efficiency of
our reconstruction method. The information of the generated particle is completely known
and therefore it is possible to compare the reconstructed track to the generated by Monte
Carlo.

An analytical expression for the angular resolution can be provided by the formalism
done in 4.8. In that section, it was formulated a relation between the angular resolution and
the resolution (uncertainty) of the measured vertex. This section can be used to compare and
make a theoretical approximation of the angular resolution.

To estimate the angular resolution of the muTT we performed a simulation without target
materials. We generated a million muons with an energy range between 1.0 GeV and 5.0
GeV. The muons have angles below 15 degrees of inclination and are free in the azimuthal
component. The particles are generated randomly from a virtual plane placed at 50 cm above
U1. With these parameters we obtain enough events that pass through the four detectors.

The reconstruction of the tracks is made with the TimTrack method using a non linear
model, as shown in Chapter 2. We consider only the events that cross the four planes, as in
the real muTT case.

The TimTrack method provides the propagation parameters of the particles. In particular,
we can define the polar angle from the projected slopes X ′ and Y ′. This reconstruction
angle can be compared to the angle generated in the Monte Carlo simulation. In Fig.5.5 is
shown the distribution of the residual angle. The angular resolution can be estimated as the
difference between the reconstructed angle with TimTrack and the angle provided by the
Monte Carlo simulation.

A resolution of 1.8 mrad was achieved. This number is obtained by a two-step fitting.
First, we fit the original distribution to a Gaussian function and extract the sigma of this
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Fig. 5.5 Angular resolution of the muTT detector obtained from the distribution of the
residual angle. The final parameter is obtained by a double fitting to 1.5σ . In the pad above
is represented the same distribution but in logarithmic scale.

curve. A second Gaussian fit is made only at 1.5σ range. In the figure is also represented the
distribution in logarithmic scale.

This value is consistent to the estimation of angular resolutions of the order of mrad.
After this result we can affirm that the reconstruction method is providing a value of the
resolution good enough to reconstruct volumes of high density materials accurately and even
detect the presence of high density materials.

5.4 Physical observables

The combination of the two independent reconstruction methods, TimTrack and POCA,
makes possible to provide more clear images of the sample bricks. However, as important as
the shape it is to determine whether if the brick is made of a heavy material or not, and if
possible, how heavy it is.

Some groups propose the study of the final distribution of the particle tracks. They
consider variables involving angular scattering and momentum of the particles [47]. Another
approach is made by the use of maximum likelihood methods combined with clustering
algorithms [43].

In this thesis we propose some physical observables that might provide information about
the distinction between heavy materials. They are defined as the differences of the variables
obtained using both reconstruction methods, POCA and TimTrack.
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A quick summary of the names and definitions of the observables is found in Table 5.3.

Name Symbol Definition
Vertex differences dr (xpoca − xss,ypoca − yss,zpoca − zss)
Polar deviation dθ θpoca −θss
Relative polar deviation dθ/dz (θpoca −θss)/(zpoca − zss)
Spherical deviation dΩ arccos (⃗v · w⃗)
Time delay dt t ′4 − t4

Table 5.3 Definition of the physical observables. A detailed description of the variables can
be found in the text.

To avoid effects related to the size of the materials we performed the simulations using
the Simul2 configuration. Muons were generated as an uniform rain over the detector with
a fixed angle. All the parameters related to the simulations of the observables are found in
Table 5.4

Parameter Value
Number of muons 106

Distribution Simul2
Energy Low, Intermediate, High
Angle 0, 5, 10, 15 (degrees)

Table 5.4 Parameters of the simulations of the physical observables.

5.4.1 Difference in vertex coordinates

One of the first observables that can be presented is the difference in the position of the
scattering vertex obtained with both methods. These differences can contribute to estimate
the sharpness of the reconstructed image.

The vertical component (z) is the most significant variable in the reconstruction process.
Since most of the muons are close to a vertical incidence, the z component is more sensible
to uncertainties in the reconstruction process.

As an example of this fact, in Fig.5.6 is shown the uncertainty in position associated to
the reconstruction process. The more the particle scatters, the better reconstructed vertex.
This fact looks more evident in the POCA method. If both up and down trajectories are
parallel, the condition of closest approach between them can be satisfied anywhere along
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Fig. 5.6 Uncertainties in the reconstruction process. Depending on the relative angle between
the incident and scattered directions, the uncertainty in the vertical component is changing.

the trajectory. As a result, the uncertainty in the longitudinal component is more relevant
compared to the transverse dimensions. This is the motivation to consider z and dz (defined
later) as the standard reference variables of the reconstruction process.

Both reconstruction methods, POCA and TimTrack, provide information about the
scattering vertex. If we consider the difference between the z-coordinate of the vertex,

dz = zpoca − zss (5.5)

it might be possible to stablish a relationship between this variable and the uncertainty in
the width of the material. As we mentioned, the uncertainty in z component is related to the
scattering angle, and at the same time this angle is related to the mass width of the material.

We performed a systematic study of the behaviour of dz for different materials for several
energies, thickness and incident angles. As an example, Figure 5.7 shows the difference dz
for vertical muons on 20 cm of tungsten at low energies.

The differences in all components can be grouped in a vector that we named dr:

dr = (dx,dy,dz) = (xpoca − xss,ypoca − yss,zpoca − zss) (5.6)

where xpoca,ypoca,zpoca are the vertex coordinates obtained with the POCA method and
xss,yss,zss are obtained with the TimTrack.

This vector has the information about the lateral and vertical dispersion and can be used
as a boundary condition for the reconstruction of materials.
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Fig. 5.7 Difference dz in tungsten. The simulated particles are vertical muons of low energy
on 20 cm of W.

The systematic study of the observable was done following the parameters defined in
Table 5.4. As an example, Figure 5.8 shows the results of simulated low energy muons on
tungsten with an incident angle of 15 degrees.

Fig. 5.8 Difference vector dr in air and tungsten for muons with an angle of 15 degrees and
low energy range (0.1 GeV to 1.0 GeV). The first row corresponds to air. Second to fifth
rows are tungsten with 1, 5, 10 and 20 cm thickness.
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The figure shows, in columns, the components of the dr vector (dx,dy,dz). The first row
corresponds to air. The other rows correspond to 1cm, 5cm, 10cm and 20cm of tungsten.
The whole group of results, for all angles and materials, can be found in the Appendix B.
These studies of the reconstruction methods with different angles try to explore if there is a
privileged direction in the process.

After the study of these figures, we conclude that the reconstruction methods are indepen-
dent on the incident direction of the muons. Therefore, there are no further corrections as a
function of the angular components.

5.4.2 Polar deviation

Another set of observables that we studied are related to the angular variables of the scattering
process. We define the scattering angle θ as the relative angle between the incident an
scattered directions. We study the difference dθ , defined as

dθ = θpoca −θss (5.7)

where θpoca is the scattering angle obtained with the POCA method and θss the one obtained
using TimTrack.

Fig. 5.9 Polar deviation, dθ , for a simulation using the Simul1 configuration (run 27). No
further distinction between materials can be done with this variable.
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The Figure 5.9 shows the distribution of the dθ variable for the three different materials,
Fe, Pb and W. To test the efficiency of the observable, we used the configuration Simul1 (run
27). As we are only interested on the scattering angle the muons were simulated as vertical.
From this figure 5.9 it seems obvious that there is a dependency of the variable with the
density of the material. However it is impossible to resolve them. So, clearly the variable dθ

is not providing enough information by itself, as initially expected.
We proposed a new observable that combines both angular and dz differences. The

definition is:
dθ

dz
(5.8)

and we named it relative polar deviation. We performed a systematic study of this observ-
able for the three materials with the parameters specified in Table 5.4 but considering only
vertical muons. The evolution of the observable and its dependency on material and energy
can be seen in Appendix B.

For this study we used the Simul2 configuraion. Therefore, the sample materials are
centred along the y axis. It seems to be logical to study the behaviour of this observable as a
function of the reconstructed x coordinate. With this study we can see how the observable
behaves at each individual brick.

Fig. 5.10 Observable dθ/dz as a function of xss for vertical muons on W with intermediate
energy range.

We show Figure 5.10 as an example of the observable for the case of vertical muons over
W (1cm, 5cm, 10cm and 20cm) with an energy in the intermediate range. As it can be seen,
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there is a clear dependency on the thickness of the material. Also, the position of the bricks
are delimited and can be distinguished clearly.

One of the conclusions that we take from this figure is that, with this observable, the
bricks appear above a certain background level. The systematic study of this images with
different materials and energies could provide a threshold value for each material. In Fig.5.10
can be seen that there is a value around 3 ·10−4 rad/cm that is compatible with a background.
This means that there is a threshold that might depend on the material. This background
can be used to perform further cuts in the reconstruction method an maybe to improve
identification.

From Fig.5.10 it is possible to extract information of the observable for each individual
brick. We took these histograms and performed an integration of the values along the x
position of each brick.

Fig. 5.11 Integrated dθ/dz in a brick made of tungsten with 5cm thickness. The figure is the
result of a projection of the observable in the interval −15 < x <−5 cm.

As an example, the Fig.5.11 shows the integrated relative polar deviation of muons of
intermediate energy through a tungsten brick of 5 cm thickness. This histogram is the result
of the integration of all the values of the observable in the interval −15 < x < −5 cm. In
this figure, it can be seen a change in slope at around 0.0001 rad/cm. The range below this
value is considered as background. We performed a systematic study of the evolution of the
observable isolating each brick.
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The rest of figures done in the systematic study with other materials and energies are
found in Appendix B.

Range Material Background (rad/cm) 1 cm 5 cm 10 cm 20 cm
Fe 7 b.b. b.b. 10 14

Low Pb 7 b.b. 12 14 16
W 7 11 13 14 16
Fe 2 b.b. 3 4 6

Int. Pb 2 b.b. 4 6 7
W 2 3 5 7 10
Fe 2 b.b. b.b. b.b. b.b.

High Pb 2 b.b. b.b. 2.5 3
W 2 b.b. 3 3.5 4

Table 5.5 Position of the maximum cut for the values of dθ/dz for different materials and
energies. The entries must be multiplied by a factor 10−4. In the table is shown the value of
the background. The values are taken from the collection of figures similar to Fig.5.10. In
the table, b.b. stands for below background.

As it can be seen in Table 5.5, the position of the background is dependent on the
energy of the muons. This table also contains the positions of the maxima for each brick
obtained from the histograms similar to Fig.5.10. These values determine the upper cut to
the observable for each material. With this, we associate for each material and thickness a
range of values of the observable dθ/dz.

5.4.3 Spherical angle observable

Next proposed observable is related to the angle between the scattering directions provided
by TimTrack and POCA. We named this relative angle between the methods as spherical
angle, and we denoted it as dΩ. The definition of the observable is made by the use of scalar
product between both out trajectories:

dΩ = arccos (⃗v · w⃗) (5.9)

where v⃗ and w⃗ are the direction vectors of the out trajectories with POCA and TimTrack
methods. Figure 5.12 is divided in two sides. In one side, it is shown the value of the
relative angle between methods, dΩ. As with the other observables, it was made a systematic
study of the dependency of the solid angle with materials, energies and angles of incidence
to determine if there is a threshold value of the observable that allows us to cut the final
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Fig. 5.12 Observable dθ/dz as a function of xtt for vertical muons on W with intermediate
energy range.

reconstruction methods and separate between materials. The right side of the figure shows
the dependency of the solid angle with the scattering angle of the muon. This histograms are
devoted to find the muons that provide the best information in the scattering process.

The complete set of histograms can be seen in Appendix B, where the reader can observe
the evolution of the observable with energy and the different materials.

5.4.4 The metric observable

This kind of observable was already defined by C. Thomay et al. [47]. In that work, the track
parameters and the position of the deflection vertex are calculated at the same time by the
minimisation of a chi-square type operator. Their experimental set-up consists on six RPC
detectors distributed three up and three down. With this, the operator to be minimised has
the form:

E =
3

∑
i=1

(hi − (vx + kx,upper · t))2

σ2
hi

+
6

∑
i=4

(
hi −

(
vx + kx,lower · t

))2

σ2
hi

(5.10)

with t = zi − vz and analogously made for the y component. Using the Minuit [41] minimisa-
tion package provided by Root they obtain the values of the vertex positions (vx,vy,vz) and
the track parameters k taking as an input the position of the planes zi, the measured hits hi,
and their uncertainties σhi .
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Also, they defined an observable called weighted metric distance as:

m̃i j =
|vi −v j|

(θi p̃i) · (θ j p̃ j)
(5.11)

where vi and v j are the scatter vertices of two tracks in the same volume, θi and θ j are the
scattering angles of the muons and p̃i and p̃ j are the normalised momenta. The normalisation
constant was taken as 1.0 GeV . Using this observable it is possible to distinguish between
air and something else. This variable is used as a discriminator to determine whether the
deflection was produced in heavy materials or not.

In this thesis we performed a variation of this metric observable. Since we have two
methods to compare with, we modified their definition of the observable. Instead of using
the difference between two vertices in the same volume, we propose:

m̃i j =
|dr|

(θi p̃i) · (θ j p̃ j)
(5.12)

where in this equation, dr is the vector formed by the difference in coordinates, θi is the
incident angle, p̃i is the normalised momentum in the upper planes, θ j is the scattered angle,
and p̃ j is the normalised momentum in the lower planes.

This change in the definition of the metric is motivated by the fact that we have two
independent reconstruction methods and the difference between them could have information
about the density of the material. As it can be seen, this observable includes the momentum
of the particles and its scattering angle. One important thing about this observable is the fact
that it is always positive and decreases with the density of the material. That is to say, air has
the greatest value and the rest of materials are below that value.

We simulated this observable with the Simul1 configuration to see its behaviour in three
different materials.

Figure 5.13 shows the logarithm of the metric calculated as in equation (5.12). The results
that we obtain are not the same, but they are consistent to those of [47]. From this simulation
can extract two main conclusions:

1. The metric has a maximum value for air, and then is always decreasing with the density.

2. It is not easy to discriminate between heavy materials, but is possible to provide a cut
to improve the reconstruction of the image.

We proposed the value of the metric in air as a threshold to exclude the contribution of
vertices that are reconstructed outside the bricks. In our case, we imposed the condition that
a vertex is only reconstructed if and only if the value of ln(m̃) is less than 12.
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Fig. 5.13 Logarithm of the metric observable. From right to left: air, tungsten, lead, and iron.
The value of air can be used as a discriminator in the reconstruction process.

To visualise the effect of imposing a metric cut in the reconstruction process, we show
the set of figures 5.14 and 5.15.

In both figures, the space is divided in cubic bins of 1×1×1 cm3 volume. To observe
how the reconstruction evolves, we set an additional cut in the bin content. In these figures,
the top histograms have no cut in bin content. The next rows show cuts in bin content of 1, 2,
and 3. This means, that we show only the bins that have a minimum population above 1, 2 or
3. Therefore, with both cuts we do exclude the contribution of air and the points outside the
bricks.

As a conclusion, a cut in metric produces a more efficient reconstruction compared to the
situation with no cuts. The reconstructed images of the bricks are more clear even with low
cut in the bin content.

5.4.5 Time delay

We define this observable as the temporal difference between a non deflected trajectory of
the muon and the reconstructed time:

dt = t ′4 − t4 (5.13)
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Fig. 5.14 Evolution of the reconstruction methods without a cut in the metric variable. On
the left side is shown the evolution of POCA and on the right side of TimTrack.

where t ′4 is the estimated time in the plane number 4 (D2 in our notation) if the incident muon
might follow a straight line trajectory. The t4 is the Monte Carlo simulated time at the same
plane.

We analysed the time delay for the Simul1 configuration using muons without angular
restriction. In Fig.5.16 we can see the results of the time delay as a function of the scattering
angle θ .

As it can be seen, the time delay dt has a parabolic dependency with the scattering angle.
This correlation between the time delay and the deflection angle can be used as a further
correction in the determination of uncertainties.
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Fig. 5.15 Evolution of the reconstruction methods with a cut in the metric variable. A vertex
is represented if the logarithm of the metric is below 12. The left side of the figure shows the
evolution for POCA and the right for TimTrack.

5.5 Sharpness coefficient

We defined a sharpness coefficient as a possible indicator of the quality of the reconstruction
methods. This definition is not unique. In our case, we defined the sharpness coefficient as
the relation:

s =
number of vertices outside material
number of vertices inside material

=
nout

nin
(5.14)

Using this definition, a smaller coefficient means a better sharpness.
We simulated a rain of vertical muons above the top surface of the bricks. With this

procedure, we ensure that the muon is always hitting the material and only the material.
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Fig. 5.16 Time delay as a function of the scattering angle.

Therefore, the scattering vertex is always inside the brick. If the reconstruction method
provides a vertex outside the brick, this will translate into a bad sharpness coefficient.

For this simulations we only used bircks of Pb and W. We used the energy ranges shown
in Table 5.2.

Pb Energy d (cm) sp stt
Low 29.5 30.1
Int. 1 24.7 25.5
High 24.1 25.2
Low 2.6 2.7
Int. 5 1.9 1.9
High 1.8 1.8
Low 0.9 1.0
Int. 10 0.6 0.6
High 0.5 0.5
Low 0.6 0.6
Int. 20 0.3 0.3
High 0.2 0.2

W Energy d (cm) sp stt
Low 23.8 24.6
Int. 1 19.1 20.1
High 19.7 20.2
Low 2.1 2.1
Int. 5 1.4 1.4
High 1.3 1.4
Low 0.9 0.9
Int. 10 0.4 0.5
High 0.4 0.4
Low 0.7 0.7
Int. 20 0.2 0.3
High 0.2 0.2

Table 5.6 Sharpness coefficients for Pb and W bricks. We used the energy ranges previously
defined in Table 5.2 and four material thickness.

In Table 5.6 are presented the results of the sharpness coefficients are defined in equation
(5.14). With this definition of sharpness it can be seen that the POCA and TimTrack method
are quite similar.
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Another strategy to improve the sharpness in the reconstruction was made by combining
both POCA and TimTrack methods together. The idea consists on rescale both distributions
separately and after that combine them in the same histogram. Since the most sensitive and
characteristic variable is the z position of the vertex, we corrected it for the TimTrack and
POCA methods. We created a new pair of variables:

z′poca = zpoca −⟨z⟩poca

z′ss = zss −⟨z⟩ss

where zpoca and zss are the calculated z components with POCA and TimTrack and ⟨z⟩poca,
⟨z⟩ss are the mean values of their respective distributions. This correction is basically a
displacement to increase the statistics around the centre of the bricks. After this correction
is done, both variables can be plotted together. As a result, we duplicate the statistics
at each brick obtaining a better final sharpness. We performed a systematic study of the
reconstruction with these two new variables in different materials for vertical muons.



Chapter 6

Calibration of the muTT detector

6.1 Introduction

In Chapter 3 we presented a general description of the Resistive Plate Chambers detectors
(RPCs) and we introduced a new model of RPC called muTT. This new model of RPC, that
belongs to the Trasgo family of detectors, was chosen as the reference detector of the muon
tomography system.

In this chapter we will explain the novel technique of using the TimTrack algorithm as
a calibration tool of the muTT detector. With this method, several global parameters, such
as the alignment of the planes or the spatial and time resolutions, were obtained. These
calibration constants are important not only to understand the intrinsic muTT features but
also to detect and correct structural problems of the detector.

6.2 Structure of the calibration process

The muTT detector was designed and built by the LIP-Coimbra group. It was transported
from Coimbra to O Porriño (Pontevedra, Spain) The detector is located at the DIGAFER
industrial hangar, at the same place where the prototype of the muon tomography scanner is
build.

After the installation of the RPCs, the first tests of the electronics were made on August
2017. Some adjustments and hardware corrections were necessary and the first stable data
were taken over Fall 2017.

The four RPCs were laid in a simplified structure of the scanner. This makes the correction
and calibration process easier. The structure is shown in Fig.6.1.
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Fig. 6.1 On the left side of the figure is shown an schematic representation of the simplified
structure of the muTT detector. On the right side, we show a picture of the detector as
installed inside the industrial hangar. Same figure as Fig.3.3

As already mentioned in Chapter 3, the planes are denoted by their relative position with
a letter and a number: U1, U2, D1, D2. The origin of the vertical z-component is chosen at
the U1 plane. The calibration and reconstruction algorithms are applied to this particular
detector lay-out.

The calibration process was divided into four main different components:

1. Calibration in time for the four RPC planes.

2. Global alignment of the planes.

3. Time and space corrections due to the position of the hit.

4. Further software corrections.

Space and time calibrations were made using the TimTrack method (Chapter 2) We developed
an algorithm to perform the whole spatial and temporal calibrations together. After running
the program, the calibration parameters are stored in text and Root files. As we will explain
in next sections, the use of Root files makes the storage of the calibration parameters easier.

To perform the calibration of the detector we used an empty run, i.e., without any target
material. Therefore, this run contains only cosmic ray data. We labelled this run with the
number 31:

• Beginning: September, 27th 2017 at 9:00 am.

• End: October, 4th 2017 at 1:30 am.

• Number of events: 701478.
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The DIGAFER industrial hangar is located at 30 meters above sea level with a roof
protecting the structure. The average atmospheric pressure was 1018 mbar, the temperature
oscillated between 18.5−20.0 Celsius and the relative humidity was around 60%.

The experimental measurements are translated to physical observables using a transfor-
mation algorithm. This algorithm is developed bu A. Blanco at LIP-Coimbra. We used as an
input the data already processed with this algorithm.

The events are recorded under the trigger condition of having only one particle hit in
each of the four detectors. That is the most probable case of having a muon crossing the four
planes. So, the trigger was set using the four U1, U2, D1, and D2 planes.

This particular run was performed after some adjustments in the acquisition process, and
for that we considered as the first long-stable run. That electronic configuration was kept
with no major changes until the end of the preliminary tests.

6.2.1 Time calibration

Each RPC plane of the muTT detector is divided in two different zones which are labelled as
left and right. The general discussion of this case was introduced in Chapter 2, subsection
2.6.4, Fig.2.5. As explained, each side of the plane is connected to a different Time-To-
Digital-Converter (TDC) and therefore the measurement in time is different depending on
the side of the detector where the hit was detected. As there are four independent RPCs the
total number of different regions is eight.

It is necessary to perform a synchronisation of all regions of the detector to obtain a
correct value of time. This was made assuming that a particular region is measuring the exact
value of time and then we estimate the temporal shifts relative to that region. With this, the
measured times can be corrected by this temporal shift depending on the region the particle
was detected.

Step 1: Left side events only

It was taken the convention that the good value of time is given by the U1 left side. Therefore,
we will estimate the correction shifts to be applied relative to the U1 left, that is, we will
refer all other times with respect to the U1 left time.

The first step is to synchronise the three left sides of U2, D1 and D2 respect the left U1.
For that purpose, we selected only the events of the run that crossed the detector on the left
side, as shown in Fig.6.2.

The calibration was made by the use of the TimTrack method. After we selected the left
side events, the corresponding tracks were reconstructed following a model that introduces a
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Fig. 6.2 Events that cross only the left side of the muTT. After the TimTrack is applied we
synchronise the left side of the planes respect the U1-left.

temporal shift in planes U2, D1 and D2:

xm = X0 +X ′ · z
ym = Y0 +Y ′ · z (6.1)

tm = T0 + k ·S · z+ τi

where xm, ym and tm are data following the model, X0, X ′, Y0, Y ′, T0 and S are the components
of a vector called saeta (see Chapter 2), z is the independent variable (vertical displacement)
and τi is the temporal shift of plane i = 2,3,4 relative to U1. By the use of the TimTrack
with data following the model above, it is possible to determine the shifts τi corresponding to
the left side of the detector. Since the model is not linear, the calculation process is iterative:
an initial solution is proposed and then is modified; and this output is the new input for a
next iteration. The process finishes when a convergence is reached. The convergence criteria
that we adopted is based on the difference in the Euclidean module of the saetas. In this case,
two iterations were enough to reach converged values.

Step 2: Right side events only

Following the same strategy as in the previous step, we look for events that occur only on the
right side of the detector. With this, we refer the times to the right side of U1.
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Fig. 6.3 Events that cross only the right side of the muTT. After the TimTrack is applied we
synchronise the right side of the planes respect the U1-right.

The reconstruction was made with TimTrack and assuming that the data follow the same
mathematical model as in the previous case, written in equation (6.1). Since the description
of the data is the same in both cases, these two steps can be combined and computationally
be executed at the same time.

Step 3: Right side U1 and left U2, D1 and D2

Once the separated sides are synchronised and referred to the first plane U1, we need to
compensate or correct both sides. For that, we considered events that cross the detector from
right U1 and pass through the left side of the others.

The mathematical model that describes the data is different. Since we are interested in
determining the left-right global shift, a parameter τ1r must to be included.

xm = X0 +X ′ · z
ym = Y0 +Y ′ · z (6.2)

tm = T0 + k ·S · z+ τ1r

In this case, there are no τ2,3,4 and finally we synchronised both sides of the detector.
We present in Table 6.1 the numerical results of the time corrections to be applied to the

data depending on the detection plane.
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Fig. 6.4 Events that cross the detector from right to left

Plane τil (ns) τir (ns)
1 0 0.126887
2 0.571072 2.16441
3 31.5284 31.9045
4 -4.66287 -4.93934

Table 6.1 Values of the time corrections for each muTT plane.

As we will explain later, these values are stored in a text file together with the rest of
calibration parameters. This file is then used as a global calibration file for every future
analysis.

6.2.2 Position calibration and alignment

The RPC planes are not perfectly aligned between them. If there is a relative shift the
measurements in position are not as realistic as desired. This is the case because the reference
origins are not along the same line.

This global calibration in the position of the RPCs is made using the TimTrack method.
Since the time is already corrected, the model does not include time parameters. The model
is non-linear:

xm = X0 +X ′ · z
ym = Y0 +Y ′ · z (6.3)

tm = T0 + k ·S · z
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and, as explained, it must to be solved using an iterative process. The different τil,r are
already stored and we do not need to recalculate them. The variable of interest in the position
calibration are the residuals:

∆x = xrec − xm ∆y = yrec − ym (6.4)

for each plane, where xrec is the reconstructed x-coordinate with the TimTrack method and
xm is the measured coordinate (with similar definition for the y-coordinate).

For a given data file, the steps that we followed to calculate the total corrections in
position for each plane are:

1. Open the measured data file.

2. Read the time calibration parameters. In our case, we read them from a calibration file.

3. Apply the temporal corrections to the experimental data.

4. Use the TimTrack method with the corrected data as input.

5. Construct an histogram of the residual ∆x (the same procedure for ∆y).

6. Obtain the mean value of this histogram.

7. We add this value to the correction that we used at that step. This is the new correction
to be used in the next iteration.

8. The value of the correction is decreasing at each step. When there is no significant
change in the value we considered that a convergence was reached. We stop the
process.

9. We store the value of the total correction.

In Table 6.2 can be found the values of the spatial corrections that need to be applied to
the experimental data.

This strategy that we use to find the total calibration in position can present some
disadvantages. The main problem is the oscillation of the residuals at each step. Since the
corrections are made plane-by-plane at each step, it is difficult to adjust perfectly the four
planes at the same time. Another problem, related to the previous one, is that the TimTrack
method could provide information of a local and not the global minimum. In this case,
some spatial residuals trend to increase and other decrease. Therefore, there is not a global
convergence.
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Plane ∆x (mm) ∆y (mm)
1 -2.62171 -0.369186
2 1.00447 0.630083
3 2.64132 -1.28205
4 -4.04285 1.38945

Table 6.2 Summary of the spatial displacements for each plane.

All these global corrections, in space and time components, are stored automatically in a
calibration file that is generated by our code. Together with this text file we will use further
calibration parameters stored in Root files, as we will explain later.

Format of the calibration file

After the application of the calibration algorithm, the parameters are stored in a text file. It is
used as a global calibration file. Therefore, if we want to analyse a particular run, we open
the calibration file and correct the measured data with these numbers.

The structure of the calibration file is the following:

∆x1 ∆y1 ∆z1 τ1l τ1r α11 α21 α31

∆x2 ∆y2 ∆z2 τ2l τ2r α12 α22 α32

∆x3 ∆y3 ∆z3 τ3l τ3r α13 α23 α33

∆x4 ∆y4 ∆z4 τ4l τ4r α14 α24 α34

where ∆xi, ∆yi, ∆zi are the spatial corrections at plane i; τil , τir are the temporal shifts at
plane i for the left-right sides; and αi j are the angular corrections between planes. In this
work, ∆z and the αi j are not estimated. We propose this format of the calibration file taking
into account possible future corrections.

6.2.3 Slewing effect

The slewing is an effect produced by the read-out electronics that should be corrected in
the analysis of the data. When a particle interacts with an RPC, a signal is produced and its
amplitude is related to the amount of charge integrated on the strips. This signal is sent to the
read-out electronics and processed afterwards.

The signals that are discriminated by a constant threshold suffer a delay between the
beginning of the pulse and the moment that they cross the threshold. This delay depends on
the ratio between the charge and amplitude of the signal. As a consequence, large signals



6.2 Structure of the calibration process 139

arrive before than the others. Therefore, there is a time shift that is dependent on the amount
of charge producing the signal.

Fig. 6.5 Slewing effect. On the left side of the figure we represent the histograms of the
residual in time as a function of charge for the four planes. On the right side we represent the
profiles of the histograms.

In Fig.6.5 we show the two dimensional histograms that relate the residuals in time with
the integrated charge in the upper layer of the muTT RPCs. The histograms are on the left
side of the figure, and on the right side we show the profiles of those histograms. The profiles
are one dimensional histograms that represent the mean value of a variable for each bin of
the other.
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As it can be seen, the histograms show a descendent curve shape. This means that the
events with a low charge present more time delay than the more intense signals.

The profiles shown in Fig.6.5 are used as a calibration pattern for the experimental data.
This means that for a certain measurement of the charge, we correct it with the value provided
by the profile histogram. Therefore, we correct the measured time with the mean value of the
time residuals at that charge position.

6.2.4 Corrections due to position of the hit

The corrections that we present here are complementary to the global spatial and temporal
calibrations of the detector already performed in subsections 6.2.1, 6.2.2, and 6.2.3. In this
case, we study the contributions to the calibration parameters of the internal components of
the RPC planes.

In each RPC plane, the wires that form a strip are not equal, and therefore the parameters
can vary from one strip to another and even inside the same strip. Thus, it seems to be
reasonable that the spatial and time corrections must to be implemented depending on the
position of the hit of the particle. The global parameters obtained in the first calibrations are
further modified with these fine tuning corrections.

Time correction

Each strip is formed by twenty-four individual wires. When a particle interacts with the
detector, a signal is produced an it travels through the wires to the electronic system. The
length of the wires are not the same for each group os strips. In the muTT detector, the twenty-
four wires that form a strip have a common point where the signal is collected. Therefore, if
the signal is travelling by the lateral wires it covers a larger distance compared to the central
wires of the strip. As a consequence, there is a delay of the signal that has to be corrected
depending on the position of the hit. In Fig.6.6 we show an schematic representation of a
fictitious general strip. The red line in the figure represents the limit of the strip, but there is
an additional length to the collector read-out point.

To estimate this time correction, we studied the dependency of the τi with the y-coordinate
of the hit, as shown in Fig.6.7. Each RPC plane has two detection layers of strips. One of
them (upper layer) measures the time component. The strips of this layer are transversal
respect the y-coordinate. This means that each individual layer has a different y-coordinate
and therefore there is a dependency of time with the y-coordinate.

In this Fig.6.7 we represent the two dimensional histograms of the variables τi and
y-coordinate of the hits. On the right side of the figure we present the profiles of these
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Fig. 6.6 Schematic representation of a strip. The length of the wires are not the same in a
strip. The signal travels a variable length from the end of the strip (red line) to the read-out
point.

histograms. This figure shows a clear parabolic dependency of the τ values with y-coordinate.
This fact is consistent with the assumption that the travels more distance on the edge of the
strip than in the central part. The profiles of the two-dimensional histograms provide an
average correction value per wire at each strip.

A similar study is made to determine the contribution of the x coordinate in the time
component. Figure 6.8 shows the two dimensional histograms of the τi and x variables,
together with their correspondent profiles.

The figure, as expected, does not present a clear structures as for the y-coordinate case
(Fig.6.7). The layer of strips transverse to the x-axis (down) does not measure time. Therefore,
the dependency of time with the x-coordinate is flat.

We use both sets of profiles (τi with x and y coordinates) to perform further corrections
on the temporal variables of the data.

Space corrections

In a similar manner as the time variable, we studied the dependency of the spatial residuals
with x and y coordinates. We show the results of the study in Fig.6.9 and Fig.6.10.

On the left side of these figures are represented the two dimensional histograms that
relate the residuals ∆x, and ∆y (as defined in equation (6.4)) as a function of the value of the
coordinates x and y. On the right side we present their correspondent profile histograms.

The histograms present clear structures that could reveal some general problems with
hardware and with the reconstruction method. First, it is observed that there are some
problematic strips at planes D1 and D2. In Fig.6.10 are clearly seen two abnormal regions.
These strips correspond to the up layer (the layer that estimates the y-coordinate) and are
around the central region. Also, in Fig.6.9 it can be seen also a dead region of the down
layers of D2 plane. These problems are affecting to the reconstruction algorithm and this
fact can make the corrections more difficult.
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Fig. 6.7 Time correction as a function of the y-coordinate. On the left side are shown the
histograms of τ with y. On the right side are the profiles of the histograms. There is a
parabolic tendency of time with position.

The second problem is related to the nature of the algorithm. The reconstruction process
is iterative. When the algorithm starts, the data file is opened and we apply already estimated
corrections to the coordinates. After that, we use TimTrack iteratively to find the value
of the residual, we add the new correction and perform a new reconstruction with a better
corrected data. This works fine for not interdependent variables. The problem is that we
are representing the residual of a variable against the variable that we need to correct. As a
consequence, this iterative method is not able to eliminate these interdependencies. Also, the
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Fig. 6.8 Time correction as a function of the x-coordinate. On the left side are shown the
histograms of τ with x. On the right side are the profiles of the histograms. There is a
parabolic tendency of time with position.

corrections are obtained using the profiles of the two dimensional histograms. This means
that we correct with the mean value of the residual.

Third, the algorithm that transforms the raw information of the detector to hits can
introduce some errors in the structure of data. As it was mentioned in Chapter 3, subsection
3.5.2, future improvements of this algorithm with the TimTrack method could be used.

These problems are all affecting the corrections in the spatial components. The TimTrack
method by itself can not solve the structures seen in Fig.6.9 and Fig.6.10. However, after
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Fig. 6.9 On the left side is shown the residual ∆x versus the x-coordinate of the hit for the
four planes. On the right are the profiles of the histograms.

some additional software corrections the effect can be softer, but not completely removed.
We present the software corrections in the next subsection 6.2.5.

6.2.5 Further software corrections

Previous subsections explained the different parts that conform our whole calibration algo-
rithm. In particular, the last subsection devoted to the spatial corrections showed different
problems in correcting the data by the use of an iterative process. To compensate or reduce
the structures shown in Fig.6.9 and Fig.6.10 we introduced additional corrections to the data.
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Fig. 6.10 On the left side is shown the residual ∆y versus the y-coordinate of the hit for the
four planes. On the right are the profiles of the histograms.

We propose here a phenomenological correction based on the experimental data. With this
information, some mathematical functions are applied to the data.

In Fig.6.11 are represented the measured coordinates of the events in run number 31.
It can be seen the problems with some strips at planes D1 and D2. In particular, the y3-
coordinate has an excess of statistics in two strips that could be classified as noise.

In the figures, the coordinates seem to be grouped in local structures corresponding to the
different strips. Actually, this division is artificial and it is produced by the algorithm that
converts the raw information into hits. In the figures can be also seen that the extremes of
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Fig. 6.11 (x,y) coordinates for the run number 31.

these groups are more populated than the central parts. This fact is also a consequence of the
transformation algorithm.

One possible approach to the solution of the problem could be a correction of the data
by the use of a mathematical function. This function will improve the representation of the
spatial coordinates. The form of the function is unknown but must fulfil some conditions.
First, the separation between these artificial groups should disappear. Second, the parabolic
dependency must to be smoothed. This means that the correction function must trend to
move data from the extremes of the groups and populate their central parts.

The method that we followed to find the form of those correction functions (one for x,
another for y) was:
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1. The centres of these artificial structures (xc,yc) were tabulated and stored in a text file.

2. For each group, we performed a fit of the data with a polynomial function of fifth
degree.

3. We performed an average of the fit parameters of those functions.

As a result, we propose:

f (x) = −4.93 ·10−8x5
c

g(y) = −3.5 ·10−5y3
c (6.5)

where (xc,yc) is the position of the centre of the group. Once we have the correction functions
we apply them to the experimental data. We read the run file and keep the measured values
xm and ym. We then search in Fig.6.11 the group corresponding to those coordinates. After
this, we apply the functions 6.5. The numbers given by the functions are the corrections that
must be applied to the data:

xcorrected = xm −δx (6.6)

where δx is the value provided by the functions (6.5). The same procedure is applied to the y
coordinate.

The representation of the corrected coordinates obtained by the use of the equations (6.5)
are shown in Fig.6.12. It can be seen that the correction is not fully removing the separation
between groups of data. However, the structure is more diffuse and the distribution of data
inside the groups seems to be smoother that without the correction. The global effect of the
corrections can be evaluated after the application of a reconstruction method.

Other correction methods can be proposed as well. For example, instead of a mathematical
function we could define an algorithm based on the probability distributions and the bin
content of the histograms. Future works could explore these kind of corrections. The
functions that we proposed in equation (6.5) are a good first approximation to the purpose of
the corrections and we use them in our reconstruction analysis algorithm.

Summary of the calibration process

This paragraph tries to summarise the whole calibration algorithm. The input of the process
is the file that contains the information of the events. This file is the result of a transformation
code that translates raw information of the detector into space and time coordinates.
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Fig. 6.12 Coordinates of run 31 after software corrections using equation (6.5).

During the process, this file is used several times inside an iterative calibration algorithm.
As a standard, we used the TimTrack method to obtain the dynamical information and
perform the tracking of the particles.

The sequence of steps is:

1. Synchronise both sides of the detectors.

2. Determine the global alignment constants.

3. Store the global constants in a calibration file.
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4. Further corrections in spatial and time variables are made by the use of the distribution
of the residuals. The values of the corrections are not stored in a text file, but in a Root
file.

5. Store the corrections of the slewing effect in a Root file.

6. An additional correction of the spatial coordinates is made by the use of a polynomial
function.

The calibration file (text format) and the Root files are the calibration parameters to be used
on the different data inputs.

6.2.6 Reconstruction of tracks using corrected data

To see the effect of the corrections we perform a study of the trajectories of the particles. We
reconstructed the tracks of the events corresponding to the run 31 by the use of the TimTrack
method. The run 31 is empty, i.e., there are no material targets. Therefore, the trajectories of
the particles are not deviated and we assume that all are straight.

The experimental data of run 31 are corrected with the previously estimated calibration
parameters. Using the information of the trajectories it is possible to estimate some features
of the detector, such as time and space resolution, after a reconstruction algorithm is applied.

The correction of the experimental data is done following these steps:

1. For each plane i we read the data: xim, yim, tim, Qui, Qdi. Here, (xim,yim, tim) are the
measured position and time coordinates of the hit and Qui, Qdi are the charges of the
layers up and down of the detection plane i.

2. We read the calibration file and read the corrections in time and space.

3. To find the value of the correction in a profile histogram, we only have to find the bin
number corresponding occupied by the variable and extract the content of the bin.

4. The total correction is done as:

xcorr = xim −∆x−δx −δsoft (6.7)

were ∆x is the global displacement in x (taken from the calibration file), δx is the
correction in x due to the position of the hit (obtained from the profiles of Fig.6.9),
δslewing is the slewing correction (from profiles of Fig.6.5) and δsoft is the correction
made by software (equation (6.5)). In a similar way we correct the y variable. The



150 Calibration of the muTT detector

correction in time is similar. First, we determine the side of the detector where the
hit was detected. From the calibration file we read the temporal shifts left-right and
from the Root profiles in Figs.6.7 and 6.8 we extract the correction in time due to the
position of the hit. Finally, the corrected time at plne i is obtained as:

tcorr = tim − τil,r −δtxi −δtyi −δslewing (6.8)

where τil,r is the global correction left-right (from calibration file), δtxi is the correction
due to the x-coordinate (profiles of Fig.6.8) and δtyi is the correction due to the y-
coordinate (profiles of Fig.6.7)

After we apply the calibration parameters to correct the experimental data, we perform
the reconstruction of the trajectories using the TimTrack algorithm. As it is explained in
Chapter 2, subsection 2.6.2, we use a non-linear model:

mx = X0 +X ′ · z
my = Y0 +Y ′ · z
mt = T0 +S · k · z

where
k =

√
1+X ′2 +Y ′2

With the reconstructed trajectories we performed the study of the spatial and temporal
resolutions. These values are obtained using the distribution of the residuals in x, y, and t for
the four planes.

In Fig.6.13 are shown the distributions of the residuals in time for each plane. To obtain
the final value of the resolution, we performed a double Gaussian fit. First, we fitted the
distribution with a Gaussian function without any restriction in data range. After this, we
keep the sigma of this function and perform a second Gaussian fit. In this second fit we
restricted the range of the data to 1.5 times sigma. With this, we obtain a Gaussian fit on the
central part of the distribution, avoiding the possible influence of the tails of the distribution.
The temporal resolution is the sigma of this second Gaussian fit.

The same study can be made for the spatial components. We used the same trajectories
to extract the information about the residuals in x and y.

In Fig.6.14 are shown the distributions of the residuals of the spatial coordinates. As for
the time resolution, the spatial resolutions are obtained after a double Gaussian fit technique.

We summarise in Table 6.3 the time and space resolutions for each individual plane.
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Fig. 6.13 Time resolution of the muTT planes after the use of a tracking algorithm. The
values of the resolution are obtained after a double Gaussian fit of the distribution of time
residuals.

Plane σx (mm) σy (mm) σt (ps)
1 1.28(1) 1.13(2) 98.7(2)
2 1.67(3) 1.43(3) 134.6(3)
3 1.93(4) 1.50(3) 120.4(3)
4 1.47(3) 1.18(2) 88.7(1)

Table 6.3 Values of the spatial and temporal resolutions obtained after the TimTrack recon-
struction method is applied. The first significant digits of the errors are in parenthesis.

The values of temporal and spatial resolutions provided by the manufacturer of the muTT
are around:

σx = σy = 5 mm σt = 200 ps

for each RPC plane.
As we see, by the use of the TimTrack method we can perform tracking of particles with

better temporal and spatial resolutions than the intrinsic of the muTT. The values that we
obtained for the resolutions will be used in all the tracking analysis of experimental data
instead of the intrinsic values provided by the manufacturer. The combined resolution of the
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Fig. 6.14 Spatial resolution of the muTT planes after the use of a tracking algorithm. The
values of the spatial resolutions are obtained after a double Gaussian fit of the distribution of
residuals.

four RPC planes is given by:

σx =
√

σ2
x1 +σ2

x2 +σ2
x3 +σ2

x4 (6.9)
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and the same for the x and t coordinates. This equation provides total resolutions of:

σx = 3.2mm σy = 2.6mm σt = 224 ps

These values correspond to the total resolution of our system.
To check the quality of the corrections we repeated the same analysis for the distributions

of the spatial and temporal residuals with charge (slewing effect). With the TimTrack method
on the corrected data we constructed similar histograms as in Figs.6.10 and 6.9.

Fig. 6.15 Histogram of the time residuals as a function of charge after corrections to the data.
On the right side are shown the profiles of the two dimensional histograms (left side)

As it can be seen in Fig.6.15 the histograms of the residual time versus the charge are
smother. Since the correction is made using the profiles of the original histograms, we will
find regions (specially in the low charge range) with a less strong correction. This effect can
be seen in the profiles of the two dimensional histograms (right side of the Fig.6.15) Since
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we have poor statistics in the very low charge region, the errors in the profile histograms are
large. However, the effect is almost suppressed in the most populated region (from charge
100 to 300)

The same study was made for the residuals in x and y. The histograms of ∆x, ∆y versus
the x and y-coordinates are shown in Figs.6.16 and 6.17.

Fig. 6.16 Residuals of the x-coordinates versus x after corrections. On the left side are shown
the two dimensional histograms using corrected variables. On the right side are the profiles
of the two dimensional histograms.

The effects are not fully suppressed but the residuals are more centred around zero. We
mentioned in 6.2.4 that these effects are complicated to suppress due to several problems,
such as the iterative nature of the algorithm or the correction with profiles.
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Fig. 6.17 Residuals of the y-coordinates versus y after corrections. On the left side are shown
the two dimensional histograms using corrected variables. On the right side are the profiles
of the two dimensional histograms.

From these figures we also notice that the problems with the regions in U1 and U2
planes are compensated after the application of the algorithm. Despite they are not perfectly
corrected we find a much better structure of the data compared to the original in Fig.6.10.
The effects in residuals are minimised and their contributions are oscillating around zero,
in mean value. In general, we can confirm that the TimTrack method is a powerful tool to
perform calibration and reconstruction analysis.





Chapter 7

Analysis of the experimental data

7.1 Introduction

The general structure of the muTT detector was introduced and described in previous chapters.
We performed cosmic rays simulations using the RPC planes. These simulations were useful
not only to understand the features of the RPC planes, but also to propose several physical
observables relevant to the muon tomography process.

In Chapter 6 we already dealt with real data from the muTT detector. These data were
used to perform the calibration of the RPC planes. To do that, we worked with an empty run
(named run 31) together with a reconstruction algorithm. After this, we provided the global
calibration constants of the muTT detector.

This chapter is the natural continuation of the calibration process. Here, we use the
corrected real data to reconstruct shapes of different test materials.

The section 7.2 is a general description of the run number 27. This run is taken as a
reference of developing the image algorithm in muon tomography. This run was already used
in Chapter 5. In that chapter, we used the run 27 to check the reconstruction algorithms and
to simulate some observables related to the scattering angle.

To construct the images of the test objects we used two independent algorithms: the Point
Of Closest Approach (POCA) and TimTrack. The POCA algorithm is commonly used in
other muon tomography works, as for example [47] or [43]. A more detailed description of
the TimTrack algorithm is presented in Chapter 2.

The other part of the chapter is devoted to the material identification. We compare the
behaviour of several physical observables to the simulations performed in Chapter 5. The
combination of the reconstruction methods could provide information about the type of
materials and not only about its shape.
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7.2 Description of the run number 27

The muTT detector was checked and calibrated after the analysis of several test runs. Modifi-
cations in electronics or software acquisition were done based in these analysis. As a result,
the detector was more stable and efficient.

The run number 27 was one of the first stable runs acquired by the muTT detector. The
detector configuration for this run is shown in Fig.7.1. As it can be seen in the figure, it
consisted on three bricks; Fe, Pb, and W, placed along the x-axis, as it we will be explained
in more detail later.

General considerations

Some remarks are necessary before continuing with the chapter. First, we take into
account that the tests of the reconstruction algorithms and other further analysis were done
for the reduced structure of the muTT detector. This particular set-up consists on four RPC
planes and an aluminium plate in the central part. The RPC planes were placed along the
vertical axis positions indicated in Table 7.1.

Name z (mm)
U1 0
U2 401.5
D1 1205.0
D2 1606.25

Table 7.1 Relative positions of the planes used in the reconstruction process. The origin of
the z-coordinate is in U1.

As indicated in the table, the distances are given in millimetres and we set the origin of
the vertical z-component at the U1 plane. In previous chapters we used a similar reference
frame. This particular choice is not affecting the reconstruction algorithms. In this first part
of the chapter we are interested on the reconstruction of the shapes of the materials. This
problem is symmetric in the vertical component, and therefore the produced images are not
affected by the position of the origin.

As it is shown in Fig.7.1, the origin of x and y coordinates is located at the top-right
corner of the picture. The positive directions of the variables are indicated in the figure.

Technical description of the run

The run was registered with the muTT detector at the DIGAFER industrial hangar at O
Porriño (Pontevedra) In this paragraph we provide the details of the the run number 27:
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Fig. 7.1 Experimental configuration of the run number 27. Three bricks are placed along the
x-axis. The origin of coordinates is placed at the top-right corner. The centres of the bricks
are aligned with the y-axis.

• Beginning: September, 8th 2017 at 9:00 am.

• Number of registered events: 193k.

• Trigger: One and only one hit in U1 & U2 & D1 & D2.

• Rate of registered events: 5 Hz.

In Fig.7.1 it also can be seen the mechanical configuration of the run. On the aluminium
plate are placed three different bricks: one is made of iron, another one is made of lead, and
a third one is made of tungsten. The Fe and Pb bricks are of 10× 20× 10 cm3, while the
W one is 10×10×10 cm3. The separation between the bricks is around 20 cm, and the Pb
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brick was placed at the central part of the aluminium plate. The centres of the bricks are
aligned with the y-axis at 63 cm to the border of the RPC.

7.3 Reconstruction of the targets

The reconstruction of the bricks of the run 27 was done based on two different methods. One
is the Point Of Closest Approach (POCA) and the other is the TimTrack algorithm.

The POCA algorithm takes as input the trajectories before and after the interaction of the
particle with the material medium. These trajectories are parametrised as straight lines. The
method finds the point such as the distance between both lines is minimal. This point is the
vertex of the interaction of the particle with the material.

One of the main advantages of the POCA method is that it can be easily programmed. The
solution of the vertex is found only by geometrical arguments and the equations involved are
quite simple. In Chapter 5 we presented the formulation of the POCA algorithm. The main
disadvantage of the POCA algorithm is that it does not account for the correlations between
variables. Therefore, in this analysis the POCA algorithm does not provide information about
the uncertainties of the reconstructed vertex nor about the correlations between variables.

The TimTrack method was developed in Chapter 2. As it was mentioned, the algorithm
is based on the least squares method and it provides information about the trajectory of a
particle. Since these parameters are obtained after a statistical fit, we have information about
the correlations between variables and the uncertainties of the parameters. TimTrack takes as
input the experimental hits of the detectors and uses a model that describes them. As a result,
we obtain kinematic parameters of the trajectories.

For the muon tomography reconstruction we use the supersaeta model, described in
subsection 2.6.3. The model assumes that the incoming and outgoing trajectories have a
common point. This point is the vertex of the interaction.

We programmed both algorithms and the vertices are represented in three dimensional his-
tograms (Fig.7.2). The binning of the histograms was chosen to be 1×1×1 cm3. Therefore,
we divide the space in cubes of 1 cm3 each. These boxes are filled with the reconstructed
vertices.

To obtain a cleaner image of the materials we can impose some conditions to the re-
construction of the vertices. Constraints in variables such as position, dispersion angle, or
chi-squared can be applied. In the first reconstruction process of the run number 27 we
imposed the condition that a vertex is only reconstructed if the dispersion angle is greater
than a value θcut. The motivation of this cut is clear: the particles with low deviation have
more uncertainty in the reconstruction and do correspond mainly to not-scattered muons.
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Fig. 7.2 Reconstruction of run 27 using POCA and TimTrack methods. For the TimTrack
it was used a supersaeta model. The histograms are filled after a cut in angle θss > 0.05
rad. In the top of the figure are shown the reconstructed vertices, and in the bottom a two
dimensional projection in the central region.

These particles do not contain relevant information of the Coulomb scattering, and therefore
we suppress them.

The deviation angle is calculated using the directions of the incoming and outgoing
trajectories:

θ = arccos (⃗v · w⃗) (7.1)

where v⃗ is the direction vector of the trajectory in the upper planes, and w⃗ is the direction
vector in the lower planes.

The cut in dispersion angle was chosen to be:

θss > θcut = 0.05 rad (7.2)

where θss is the scattering angle obtained by the TimTrack (supersaeta) method.
In Fig.7.3 is shown the distribution of the angular deviation obtained with the TimTrack

method. From this figure, we proposed the value of θcut mentioned before. The events with
low deviation angle do not provide much information about the presence of heavy materials,
and therefore we exclude them from the analysis. This value of θcut is the best compromise
between cleaning the sample of vertical events and keeping enough statistics to perform a
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Fig. 7.3 Scattering angle with the TimTrack method. A value of 0.05 rad was chosen as a cut
for the reconstructed events.

good vertex reconstruction. As we will see later in the study of the relative polar deviation,
this value of θcut also provides clear structures of the observable.

Figure 7.2 shows the results of the reconstruction methods for run number 27 using POCA
and TimTrack (supersaeta) with a θcut in deviation angle. As one can see, both algorithms
provide a good representation of the shapes of the materials. At the bottom part of the figure
are shown two dimensional histogram corresponding to the central part of the bricks. These
slices of the volume space are 3 mm thick and all the vertices inside the slice are integrated.
In these two dimensional histograms can be seen the reconstructed x and y-coordinates of the
bricks.

We can conclude that the reconstruction algorithms provide reliable information of the
run 27. First, the materials are separated around 20 cm to each other. Second, the position of
the centres of the bricks are approximately the same as specified in the run 27 configuration.
The exact position of the bricks are not known with that precision. Therefore, it is not
possible to compare the reconstructed coordinates with the real positions. However, the
information provided by the algorithms seems to be consistent to the real configuration.

As a result, we summarise that the bricks are centred at x = 400 mm (Fe), x = 750 mm
(Pb), and x = 1000 mm (W). The dimensions of the bricks are 10×20 cm2 (Fe and Pb) and
10×10 cm2 (W).
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In the next sections we compare the results of both algorithms. This comparison will
provide additional information that will be used to obtain a more clean reconstructed image
of the bricks. In addition, some observables could help to the identification of the material.

7.3.1 Comparison of the methods

In this subsection we compare the results of the reconstructed vertices of both methods,
POCA and TimTrack.

Fig. 7.4 Comparison of the coordinates (x,y,z) of the reconstructed vertices of run 27. The
comparison is done between POCA (left) and TimTrack (right) The reconstructed vertices
are constricted to a cut in angle θss > 0.05 rad.

In Fig.7.4 we show separately the coordinates of the reconstructed vertices with both
methods. These values are the individual contributions of the vertices represented in Fig.7.2,
and therefore they are already constricted in scattering angle: θss > 0.05 rad. In this figure, it
is possible to distinguish three different regions in the x-coordinates. These peaks correspond
to the bricks. In the middle we can clearly see the lead, and the iron is more diffuse than
tungsten.
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Fig. 7.5 Comparison of the reconstructed variables using POCA and TimTrack. The left side
of the figure shows the two dimensional histograms of the POCA versus TimTrack variables.
On the right side, a linear fit of the profiles of the histograms.

As it is shown in Fig.7.5 there is a strong linear correlation between the reconstructed
variables using POCA and TimTrack. On the left side of the figure are shown the two
dimensional histograms that represent the xpoca versus xss (the same for y and z) On the right
side we perform a linear fit of the profiles of the histograms. The correlation coefficients
are almost 1 for the x and y variables. However, the z component is more sensitive to the
reconstruction method. This difference in the z-component is expected since the POCA
method is more sensitive to the particles with small deviation angle. The difference in
the reconstructed z-coordinate could be related to the scattering properties of the material.
Therefore, we study the behaviour of this difference to check if it is related to the materials.

We defined the variable dz as the difference between the reconstructed z-coordinates:

dz = zpoca − zss (7.3)

The representation of this variable is shown in Fig.7.6. As it can be seen, the global
distribution of this variable is not symmetric.
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Fig. 7.6 Difference in z-coordinates, dz. The distribution of the variable is not symmetric.
As the mean value is negative, typically the TimTrack algorithm reconstructs at higher
z-coordinate, i.e., at the lower part of the brick.

As we see, typically the z value reconstructed with TimTrack is greater than the recon-
structed with POCA. This means that the TimTrack algorithm trends to reconstruct vertices
at the bottom part of the bricks. Since the supersaeta model used in TimTrack enforces a
common point for the incoming and outgoing trajectories, it is more probable to find it at the
bottom part of the brick.

The results shown in Fig.7.6 seem to be consistent with the simulations performed in
Chapter 5. A further study of the difference in reconstructed vertices can be done. In the
last column of Fig.7.7 are shown the dz values for each material. The selection of the bricks
is done by the reconstructed position shown in Fig.7.2. This means that we do not know
exactly the position of the brick and we could be considering vertices that are not inside the
material. This fact produces an uncertainty in the individual contributions to the variable.
As a consequence, we can only confirm that the results are consistent with the simulations,
but the variable by itself does not provide further information about the material. Instead of
using only the dz observable, we can consider the whole radial components (next study)

We performed a study to search a proper cut in the variable dz. From the distribution of
the variable on air it is possible to use a cut to remove the contribution of the air vertices. We
found a value of

dz < 10 mm (7.4)
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to perform cuts in the reconstruction algorithm. This value was obtained after the systematic
study of the influence of dz in other observables.

In Chapter 5 we proposed some physical observables that could be useful in the muon
tomography. The next subsections study some of the observables for the materials of run
number 27.

Study of the radial components

The radial vector is defined as the difference of the reconstructed coordinates using both
methods:

dr = (dx,dy,dz) = (xpoca − xss,ypoca − yss,zpoca − zss) (7.5)

As explained in Chapter 5, the lateral dispersion is related to the scattering angle and later to
the material.

Fig. 7.7 Radial dispersion of the materials in run number 27. The rows are Fe, Pb, and W.
The columns show the values of dx,dy,dz.

In Fig.7.7 are shown the values of the radial dispersions. If we compare this figure with
the simulated values (as for example shown in Fig.5.8) the behaviour is very similar. As a
consequence, the quantity |dr| can be used as a discriminator for the reconstructed vertices.
A large module of the vector means that both models reconstruct very separated vertices, and
therefore there is an uncertainty in the position, as shown in Fig.5.6.
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Study of the scattering properties

We performed the study of the scattering angle of the bricks in run 27. This angle is calculated
as in equation (7.1) using the scalar product of the direction vectors. We present the results
of this angle obtained with TimTrack (supersaeta) and POCA. The direction vectors in the
POCA algorithm are obtained directly from the hits on the RPC planes:

v⃗ =
(

x2 − x1

z2 − z1
,
y2 − y1

z2 − z1
,1
)

and w⃗ =

(
x4 − x3

z4 − z3
,
y4 − y3

z4 − z3
,1
)

(7.6)

where (xi,yi,zi) are the spatial components of the hit at plane i.
By contrast, the direction vectors in the TimTrack method are obtained after the fit of the

dynamical parameters through a supersaeta model. For a full description of the equations
and parameters see subsection 2.6.3.

Fig. 7.8 Scattering angle of the materials in the run 27. The left column corresponds to the
values with the TimTrack method (supersaeta model) and the right are the angles with POCA.
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These angular values are consistent with the simulated structures in Chapter 4. The angle
grows with density of the material. As already mentioned in the study of dz, the individual
contributions can be affected by the presence of air outside the brick. This fact could change
the shape of the distribution. Despite of that, as mentioned, the distributions seem to be
consistent with the simulations.

From the angular distributions we also can see that the value θcut > 0.05 for the angle
suppresses the contribution of most of the vertical particles. Therefore, this value is not
affecting the important contribution carried by the scattered muons.

Study of the relative polar deviation

In section 5.4.2 we defined the observable that relates the angular difference of both methods
with the third component of the radial vector:

dθ

dz
. (7.7)

We called this observable relative polar deviation. As it was shown in the simulations, this
observable was sensitive to the material of the target.

Fig. 7.9 Relative polar deviation as a function of the xss-coordinate. The observable was
evaluated for the scattered particles above the θcut > 0.05 rad. The three structures in the
figure are the different materials, Fe (around x= 400 mm), Pb (x= 700 mm) and W (x= 1000
mm)

In Fig.7.9 we represent the relative polar deviation as a function of the x-coordinate
reconstructed with the TimTrack method. We considered only the events above the angular
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threshold θcut > 0.05 rad. In the figure are clearly shown three different structures at around
x = 400 mm, x = 700 mm, and x = 1000 mm. These zones correspond to the materials of
the run 27. As it was mentioned in Chapter 5 the maximum value of the observable is related
to the material. As it can be seen in the figure, the bricks seem to be part of columns. The
height of this column depends on the material and energy of the incoming particle.

In the figure, lead has the most notable contribution. On one hand, it has a large scattering
power. On the other, in this run the size of the brick is also contributing.

Other structure that can be distinguished in the figure corresponds to tungsten, located
at around x = 1000 mm. The volume of the W brick is 1l, half of the volume of Pb and Fe.
Despite of its volume, the structure can be seen more clear than the iron brick.

The iron has the smallest contribution to the relative polar deviation. The scattering
properties of iron produce a lack of vertices inside the brick. Iron is therefore more diffuse
compared to the others.

We present the evolution of the observable as a function of the cut in angle θcut. This
study can confirm if the value of 0.05 rad provides a good description of the observable. In
Fig.7.10 we represented dθ/dz as a function of xss for three different values of θcut: 0.06,
0.07, and 0.1.

The structure around the bricks is more diffuse as the cut in angle grows. Therefore, the
choose of θcut = 0.05 seems to be consistent with a good representation of the observable.

As a summary, this observable is a good candidate to the identification of materials in
the muon tomography. In one hand, its behaviour is consistent with the simulations, and
therefore it could provide information about the material. On the other hand, we proposed a
cut in angle that suppresses the not-scattered muons and at the same time provides a good
structure of this observable.

Study of the metric

The metric observable was introduced and defined by [47]. We performed a variation of their
definition based on our two reconstruction algorithms, as described in equation (5.12):

m̃i j =
|dr|

(θi p̃i) · (θ j p̃ j)
(7.8)

where we use the module of the radial deviation, |dr|. In this equation, θ are the angles and
p̃ are the normalised momenta.

In Fig.7.11 are shown the different values of the logarithm of the metric observable. The
density of vertices in the iron region is distorting the shape of the distribution. Some of the
values in this iron region correspond to air. Together with the three materials is shown the



170 Analysis of the experimental data

Fig. 7.10 Evolution of the dθ/dz observable as a function of θcut. The values of the cut are
0.06, 0.07, and 0.1 rad. The structures around the bricks disappear as the cut grows.

metric of the air. With this value it is possible to perform more cuts in the reconstructed
vertices. As it can be seen, the air has the largest value of the metric. Therefore, if we impose
a threshold in this observable, the reconstruction of the materials would be more clear since
we are excluding the vertices corresponding to the air.

We have chosen the value
ln
(
m̃i j
)
< 10.0 (7.9)

as the cut in metric. If we only consider the vertices with a metric below 10 we are suppressing
a great amount of air vertices.

7.4 Reconstruction using the cuts in observables

The observables studied in the previous section can be used to make a better reconstruction
of the run 27. The most relevant observables are related to the scattering angle and the metric
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Fig. 7.11 Logarithm of the metric observable for the materials of run 27. The region of iron
is more diffuse, and therefore the observable has a different shape.

of the material. In Fig.7.12 we show how the reconstruction using the TimTrack algorithm is
evolving as we perform cuts in the variables. These three dimensional histograms correspond
to the central part of the detector, i.e., the region between U2 and D1 planes. As it can be
seen in the figure, when no cut is applied the vertices produce not a clear image of the bricks.
After a first cut in angle we eliminate the muons with less information. A better image is
formed. Finally, the image is even better after a cut in metric.

We can set the values of theta and metric to produce the best image as possible. From the
studies performed in previous sections, we proposed the values:

θss > θcut = 0.05 rad dz < 10 mm ln
(
m̃i j
)
< 10.0 (7.10)

for the cuts in angle, vertical difference in vertices, and value of the metric. The value of the
metric is motivated by the Fig.7.11. We tried not be too much restrictive with the cuts, in
particular with the metric. The values of the metric are very similar for all materials. The
strategy is to eliminate the contribution of air as much as possible. The value ln

(
m̃i j
)
< 10.0

removes many vertices in air, but there are still others that can not be removed with this
method.

The reconstruction of the run 27 after applying the cuts defined in equation (7.10) can be
seen in Fig.7.13. The contribution of the vertices of air is considerably reduced.

The three bricks can be clearly distinguished. The cuts in angle and metric reduce the
contribution of the background. The iron brick (left) is not well defined. This fact is due to
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Fig. 7.12 Reconstruction of the run 27 after some cuts. The figures show the evolution of the
images when no cut is applied (up), after a cut in theta (middle), and after a cut in theta and
metric is applied (low).
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Fig. 7.13 Reconstruction of the run 27 after cuts in angle θcut > 0.05 rad, dz < 10 mm
and in metric ln

(
m̃i j
)
< 10.0 as defined in equation (7.10) The three bricks can be clearly

distinguished without background vertices.

the scattering properties of the material. The vertices in that region were a contribution to the
air background and not to the interaction inside the brick.

As expected, the lead (centre) has the best image. The scattering properties and size
of the brick provide a good vertex reconstruction without significant contribution to the
background.

The tungsten brick (right) can be clearly seen, despite having half of the volume of iron.
In Fig.7.14 we show a two dimensional projection of the central part of the bricks. As it

can be seen, the materials have a more clear shape and their dimensions are better defined.
We can conclude that the reconstruction algorithms provide a reliable image of the run 27.

The relative polar deviation after the cuts in angle, vertical dispersion, and metric is
shown in Fig.7.15. The three materials are clearly seen and the observable presents less
background. The maximum values of the relative polar deviation can be determined.
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Fig. 7.14 Two dimensional projection of the central part of the bricks. The dimensions of the
bricks can be clearly seen.

Fig. 7.15 Relative polar deviation, dθ/dz after the cuts in angle, dz, and metric. The three
bricks are clearly seen: Fe (left), Pb (centre), and W (right).

In Table 7.2 is shown a summary of the reconstruction properties of the materials. In
this table we present the centre of the bricks on the x-axis, the dimension of the bricks, and
the value of the relative polar deviation. The dimensions are obtained from Fig.7.14 and the
relative polar deviation from Fig.7.15.
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Material Centre x (mm) lx (mm) ly (mm) dθ/dz×10−3 (rad/mm)
Fe 400 10 20 0.05
Pb 700 10 20 0.15
W 1000 10 10 0.15

Table 7.2 Summary of the reconstruction process. We present the centre at the x-axis, the
values of the lengths along the x and y axis, obtained from Fig.7.14. The values of the relative
polar deviation are obtained from Fig.7.15

These values can be compared to the obtained in Chapter 5. One of the problems of the
method consists on the size of the bricks. As we can see in Table 7.2 the lead and tungsten
present the same relative polar deviation. This is due to the size of the brick: we have 2l of
lead and 1l of tungsten. The scattering properties of both bricks are similar, according to this
observable.





Chapter 8

Summary and conclusions

In this thesis I presented the development of the algorithms and software tools needed for
the construction of a muon tomography system. This scanner should be able to analyse
containers directly on the docks, in a short period of time, and in an efficient manner. The
main task of the system is to detect the presence of radioactive or heavy Z materials inside
the container.

The muon tomography system is based on the RPC detector technology. These gaseous
detectors are widely used in particle physics and their features make them suitable for cosmic
muon tomography purposes.

At the Particle Physics group of the Universidad de Santiago de Compostela (USC, Spain)
we have a detector already devoted to the study of the cosmic radiation: the TRAGALDABAS
detector, which is also based on the RPC technology and several simulation and analysis
tools were already designed and tested in it.

A new model of RPC assembly, the muTT detector, is the technology of the muon
tomography system used in this work. It was designed and constructed in LIP-Coimbra
(Portugal) and it was transported to an industrial hangar in O Porriño (Pontevedra, Spain)
where it was tested and finally added to the prototype of scanner.

The first block of the thesis was devoted to the implementation of the software environ-
ment. Inside this structure we can perform simulations of cosmic radiation and also study the
features of our detectors and experimental set-ups.

We used the EnsarRoot framework as the standard software tool of the analysis and
simulation tasks. The geometry and the basic data structure of TRAGALDABAS and muTT
were included in EnsarRoot. I have developed also the analysis software tools which can be
used either in TRAGALDABAS or in muTT systems.

One of the advantages of EnsarRoot is the possibility of reuse already made code. Most of
the structure developed for TRAGALDABAS were easily re-adapted for the muTT detector.
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As an example, I created an interface that allows EnsarRoot to use the CRY cosmic ray
generator as an input for simulations.

I also proposed a cascade identification algorithm that can be used in the detectors of
the same family as muTT or TRAGALDABAS. With this algorithm we can structure the
information of events with high multiplicity.

The TimTrack algorithm is the standard particle reconstruction method for the muTT
detector. I presented a description of the algorithm and some models that permit to calibrate
the muTT detector and to perform the reconstruction of vertices in the muon tomography
system.

Beside the simulation of the detectors, I simulated the behaviour of the cosmic radiation
on materials. The Coulomb multiple scattering is the key process in understanding the muon
tomography. The cosmic radiation at sea level is mainly composed by muons and electrons.
The muons provide the most valuable information about the Coulomb multiple scattering.
However, the electrons can be used as a first indicator of the presence of a heavy material. It
could be possible, in a future implementation of the design, to study the contribution of the
electromagnetic part of the cosmic radiation. This study could be used to decide whether the
container is clean or needs a more detailed analysis.

Several physical observables were simulated within the EnsarRoot framework. I per-
formed systematic studies of Monte Carlo simulations of quantities related to the scattering
properties of materials. I proposed observables based on the scattering angle θ and their
behaviour was studied for several energies of the cosmic muons over different materials.

For the study of the scattering properties of muons,the TimTrack method was used to
perform the analysis of the muon trajectories. The simulation of the behaviour of physical
observables related to the scattering properties of the materials was done.

Together with the TimTrack method we used the POCA (Point Of Closest Approach)
algorithm as a reconstruction tool. Despite POCA only uses geometrical information,
avoiding correlation between kinematic parameters, it is an optimal reconstruction tool. We
proposed other physical observables based on the difference between POCA and TimTrack.
These quantities can be used to obtain information about the test material.

The TimTrack method was used for the first time to perform calibrations of the muTT
detector. Using this algorithm, there were found several systematic effects in the internal
structure of the muTT detector. Several time and spatial correction were done after the
analysis of the trajectories with the TimTrack method. As a result, after the application of
TimTrack, we obtained better resolutions compared to the provided by the manufacturer.
After reconstruction with TimTrack we obtain:
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Plane σx (mm) σy (mm) σt (ps)
1 1.28(1) 1.13(2) 98.7(2)
2 1.67(3) 1.43(3) 134.6(3)
3 1.93(4) 1.50(3) 120.4(3)
4 1.47(3) 1.18(2) 88.7(1)

These values are better compared to the original specifications.
After the calibration process I performed the reconstruction of some test materials. The

reference run used in this work consisted on two pieces of 10×20×10 cm3, one of Fe and
one of Pb, and a third piece of 10×10×10 cm3 made of W. The three bricks were placed
in the scanning region of the muTT system. The result of the reconstruction can be seen in
Fig.8.1

Both POCA and TimTrack methods provide good images of the bricks. Some new
observables were proposed based on the difference in the reconstruction with both methods.
The three more relevant are the difference in the third component of the reconstruction vertex,
dz, the relative polar deviation dθ/dz, and the metric m̃. These three observables are used to
perform studies about the density of the materials.

As a conclusion, these observables were found to be good candidates to determine the
density of the test material. Future studies can explore their use and maybe make possible a
better material identification.

One of the possible research lines for future works could be the improvement in the
reconstruction method using more time corrections. In particular, there is a parabolic
dependency between the time-of-flight and the scattering angle. The form of the parable is
different from one material to other.

Other possible study is related to the corrections in the position of the hit (x,y). The
signal induced by a particle inside the detector has a dependency on the incident angle of the
particle. This parallax effect between the entry point of the particle and the point where the
signal was induced can be studied and better values of position can be obtained.

Improvements in the software analysis can be done by the implementation of pattern
recognition algorithms. These tools could be used to obtain better images in a shorter period
of time and to separate between "clean" and "deeper analysis" containers.

Since the shapes of the target materials are unknown, it could be possible to apply
Principal Component Analysis (PCA) techniques to the reconstructed data. This analysis can
provide information about the dispersion along the individual variables.
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Fig. 8.1 Reconstruction of the run 27 using the TimTrack algorithm. There are three bricks
made of Fe, Pb, and W that can be clearly seen.

The analysis of the data measured with the macro scanner must to be done. The prototype
structure of the muon tomography system is placed at DIGAFER industrial hangar in O
Porriño, Pontevedra. A picture of the scanner is seen in Fig.8.2.
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Fig. 8.2 Prototype of the macro scanner structure. Two muTT detectors are placed above the
container, and the other two are placed below. The four detectors move at the same time to
cover the whole the surface of the container.

The calibration and analysis of data with this structure could provide information about
the exposure time and the possible background contribution of the container and structure to
the material identification.

Further studies of the structure can be done. The system with detectors placed up and
down provides maximal resolution and acceptance if the targets are placed in the centre of
the container. If the materials are placed outside this region, and specially on the corners,
this set-up is not optimal. The possibility of placing detectors vertically at the lateral part of
the scanner should be studied. Whit this new set-ups the lateral muons can also be detected,
and further improvements in angular acceptance are possible.





Chapter 9

Resumen de la tesis en español

Introducción

En esta tesis hemos presentado diferentes algoritmos que serán de ayuda en la construcción y
posterior desarrollo de un tomógrafo de muones.

La mejora en la seguridad de las fronteras para evitar el tráfico de sustancias radiactivas
se ha convertido en una prioridad para los países de la Unión Europea. Se cree que gran
parte del tráfico de estas sustancias tiene lugar mediante el uso de barcos mercantes. Estos
barcos son capaces de transportar gran cantidad de contenedores siendo posible el paso de
materiales que puedan comprometer a la seguridad nacional.

Actualmente, muchas líneas de investigación están orientadas al desarrollo de meca-
nismos de detección en las propias instalaciones portuarias. Puesto que cada día miles de
contenedores deben ser descargados y despachados, es primordial que los dispositivos sean
capaces de determinar la presencia de materiales radioactivos de la manera más rápida y
eficaz posible. Cualquier pequeño retraso en la tramitación de mercancías puede llevar a un
colapso en el tráfico del puerto.

Una de las maneras más evidentes y directas de realizar esta detección sería mediante el
uso de rayos X. De esta manera, se procede a realizar una radiografía del contenedor y así se
vería si este contiene o no materiales pesados. A pesar de que la radiación electromagnética
de alta energía resulta ideal para esta misión por tener gran capacidad de dispersión ante
materiales pesados, existen varios inconvenientes que hacen muy díficil su uso desde el punto
de vista técnico. Por una parte existe la limitación dada por la superfice del contenedor. Sería
muy costoso (tanto desde el punto de vista económico como desde el punto de vista físico)
cubrir con fuentes de rayos X todo ese volumen manteniendo gran intensidad de radiación.
Otro inconveniente tiene que ver con la naturuleza de la radiación. No es descartable el
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tráfico de seres humanos u otros animales, por lo que los rayos X pueden ser perjudiciales
para los seres vivos en el interior del contenedor.

Una alternativa es el uso de la radiación cósmica natural, principalmente compuesta por
muones, electrones y fotones. Esta radiación constituye una fuente natural y permanente
que además no resulta dañina para los seres vivos. Una de las limitaciones de usar radiación
cósmica es la baja intensidad de partículas en comparación con las fuentes artificiales, como
los rayos X o pequeños aceleradores de partículas.

Para poder analizar de manera eficiente y en corto periodo de tiempo el interior de un
contenedor es necesario el uso de detectores y técnicas de reconstrucción e identificación
optimizadas.

Rayos cósmicos

Los rayos cósmicos son una radiación natural de origenes variados (el Sol, nuestra galaxia y
otras galaxias) que incide permanentemente sobre nuestra atmósfera. Está constituida por
protones y otros núcleos atómicos llegando a alcanzar energías muy superiores a las que se
consiguen en los mejores laboratorios de investigación en la Tierra. Dicha radiación colisiona
a gran altitud con otros núcleos atómicos de la atmósfera produciendo grandes cantidades de
los llamados rayos cósmicos secundarios, que son los que llegan hasta la superficie terrestre.
Éstos, llegan a un ritmo de unos 180 por metro cuadrado y por segundo, siendo en su mayoría
muones, una partícula inestable muy penetrante y electrones y fotones de alta energía, o
rayos gamma. Estos llegan a alcanzar energías una 50 veces mayores que las de los rayos X
mas energéticos.

Los rayos cósmicos mas abundantes y susceptibles de ser usados para la radiografíıa de
grandes volúmenes son los muones; y casi todos ellos llegan próximos a la dirección vertical.

En el caso de los electrones y los rayos gamma, su distribución es mas uniforme, aunque
los efectos que sufren dentro de un contenedor son muy diferentes a los sufridos por los
muones y su posible uso requerirá otro tipo de estrategia en los algoritmos. Hay que tener en
cuenta que casi un 30% de los muones que inciden tienen una energía inferior a 1 GeV y
un 50% de ellos tienen una energía inferior a 2 GeV. Todos estos muones de menor energía
serán los mas importantes para su uso en la radiografía de muones. Es conveniente, por lo
tanto, optimizar nuestras simulaciones con rayos cósmicos de la forma más realista posible.
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El algortimo de reconstrucción TimTrack

Uno de los aspectos más importantes en el análisis de datos experimentales es la recon-
strucción de los eventos. El algoritmo TimTrack [31] está basado en el método de mínimos
cuadrados [18] y es la herramienta de reconstrucción de referencia en los detectores de la
familia Trasgo.

El objetivo de TimTrack es la determinación de los parámetros dinámicos de la partícula
a partir de las medidas experimentales obtenidas de los detectores. Estos parámetros se
agrupan en un vector llamado saeta:

s =
(
X0,X ′,Y0,Y ′,T0,S

)
(9.1)

donde X0,Y0 son las coordenadas del inicio de la propapagión de la partícula, T0 es el tiempo
inicial respecto a un contador externo, X ′,Y ′ son las pendientes de la trayectoria según los
ejes x e y, S es la llamada lentitud (inversa de la velocidad).

Una de las ventajas del método es que TimTrack es capaz de unificar todos los datos
experimentales independientemente del tipo de detector que los mide. Si en un mismo
experimento tenemos, por ejemplo, detectores RPC junto con plásticos centelleadores,
TimTrack es capaz de manejarlos de manera conjunta.

La conexión entre el espacio de medidas experimentales y el espacio de los parámetros
se realiza a través de un modelo m(s). Este modelo consta de tantas ecuaciones como datos
experimentales nd . Dependiendo del tipo de detector y del problema a tratar tendremos una
forma del modelo u otra.

Los parámetros son obtenidos tras resolver la llamada ecuación sea:

s = K−1 ·a (9.2)

donde en esta ecuación tenemos la inversa de la matriz K (llamada matriz de configuración)
y el vector de datos reducido a. Estos objetos se definen como:

K = G′ ·W ·G
a = G′ ·W · (d−g0)

s0 = (d−g0)
′ ·W · (d−g0)
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donde usamos la matriz jacobiana

G =
∂m(s)

∂ s
=


∂m1(s)

∂ s1

∂m1(s)
∂ s2

· · · ∂m1(s)
∂ sns

∂m2(s)
∂ s1

∂m2(s)
∂ s2

· · · ∂m2(s)
∂ sns

...
... . . . ...

∂mnd (s)
∂ s1

∂mnd (s)
∂ s2

· · · ∂mnd (s)
∂ sns


la matriz de pesos estadísticos W (en nuestro caso es siempre diagonal) y el término libre

g0(s) = m(s)−G · s

Puesto que TimTrack obtiene los parámetros a través de un ajuste estadístico que tiene
en cuenta las incertidumbre de las medidas, tenemos acceso a las correclaciones entre
parámetros. Esto se hace a través de la inversa de la matriz de configuración. Es por ello que
a esta matriz se la conozca como matriz de error.

En caso de que nuestro experimento tenga de manera conjunta varios detectores, los
parámetros se obtienen resolviendo la ecuación sea general:

s =

(
n

∑
i

Ki

)−1

·

(
n

∑
i

ai

)

en el que cada detector es explicado por un modelo y por lo tanto tiene asociada una matriz
K y un vector a.

Dependiendo del tipo de modelo que tengamos, podemos distinguir entre TimTrack lineal
o no lineal. El TimTrack de tipo no lineal se resuelve de manera iterativa. El algoritmo
de resolución es el mismo que el de cualquier problema de análisis de varias variables:
proponemos una solución inicial y la vamos modificando hasta encontrar el mínimo:

si = K−1
i−1 ·ai−1

El proceso iterativo para cuando un criterio de convergencia es alcanzado. En nuestro caso,
proponemos criterios basados en el módulo euclídeo de las saetas. Si la diferencia entre
la nueva saeta y la usada en el anterior paso son muy poco diferentes en módulo, entonces
paramos y decimos que el proceso ha convergido.

TimTrack puede ser usado tanto como herramienta de calibración como algoritmo de
reconstrucción de vértices de interacción coulombiana. En esta tesis hemos creado algoritmos
de calibración del detector muTT basados en TimTrack.
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La reconstrucción de vértices ha sido realizada a través de un modelo llamado supersaeta.
Este modelo está fundamentado en la idea de punto común entre trayectorias: establecemos
las ecuaciones de la trayectoria incidente y saliente. La partícula cambia de trayectoria
debido a la presencia de un medio material. El modelo encuentra las coordenadas del punto
común por ambas trayectorias incidente y saliente. Ese punto es el vértice de interacción.

Resistive Plate Chambers (RPCs)

Las RPCs son detectores de tipo gaseoso ampliamente usados en los experimentos de física
de partículas. Inicialmente han sido usados como contadores de partículas a la entrada
de experimentos como ATLAS. Sin embargo, la mejora en sus diseños permiten que sean
candidatos para tareas de reconstrucción de trayectorias. Actualmente se pueden obtener
resoluciones temporales por debajo de los 200 ps, lo cual permite una buena identificación
de trayectorias individuales.

En esta tesis hemos trabajado con detectores de la familia Trasgo. Estos detectores son del
tipo RPC con múltiples volumenes activos y que están enfocados al estudio de rayos cósmicos.
Por una parte, tenemos el detector TRAGALDABAS [4], que está en el departamento de física
de partículas en la Universidad de Santiago de Compostela. Este detector trata de estudiar
propiedades atmosféricas relacionadas con el flujo de rayos cósmicos. TRAGALDABAS ha
sido construido tomando como base la electronica del experimento HADES (GSI, Alemania).
Por otra parte, tenemos el detector muTT. Este nuevo modelo de RPC ha sido diseñado y
construido en LIP-Coimbra (Portugal) y ha sido definido como detector de referencia del
sistema de tomografía de muones. Ambos detectores pueden observarse en la Fig.9.1.

Así pues, disponemos de dos detectores del tipo Trasgo con los que hemos trabajado
en paralelo. Por una parte, TRAGALDABAS tiene la zona de detección dividida en celdas
rectangulares. La señal inducida por la partícula es procesada por la electrónica en función
de la carga recogida en cada celda. Por otra parte, muTT está basado en tiras de hilos.
Cada plano tiene dos planos de hilos, colocados perpendicularmente entre sí. Cada tira está
formada por una colección de 25 hilos que miden la carga depositada. El juego superior de
tiras mide, además de la carga depositada a derecha e izquierda de cada tira, el tiempo de
vuelo de la señal. Tanto TRAGALDABAS como muTT proporcionan una medida (x,y, t), es
decir, dan valores de posición de impacto y tiempo.

El desarrollo de las herramientas de simulación y reconstrucción han sido desarrolladas en
paralelo para ambos detectores. Muchas de las propiedades (como por ejemplo la geometría)
de TRAGALDABAS han sido simuladas dentro de la estructura de EnsarRoot [26]. Por
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Fig. 9.1 Diferencia entre TRAGALDABAS (derecha) y muTT(izquierda). TRAGALDABAS
está basado en zonas de detección rectangulares, mientras que muTT en tiras formadas por
hilos.

lo tanto, muchas de las librerías y demás objetos de control de las estructuras de datos de
TRAGALDABAS han sido readaptadas para ser usadas con el muTT.

El detector muTT fue trasladado hasta una nave industrial en O Porriño (Pontevedra) para
ser probada antes de su instalación final en la estructura del tomógrafo. Esta disposición
reducida permitió realizar estudios de calidad del detector. Defectos en la electrónica fueron
corregidos y diferentes calibraciones (aliniamiento y desfase temporal) fueron aplicadas.

Fig. 9.2 Estructura reducida del muTT. En esta configuración se corrigieron defectos en la
electrónica y se realizaron calibraciones en el detector previa instalación en la estructura final
del tomógrafo.

La nomenclatura usada en el muTT identifica cada plano a través de una letra y un número.
Por una parte, se diferencia entre U o D para decir si el plano es up o bien down (si está
arriba o abajo tomando el centro como referencia). Por otra parte, el número indica el orden
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de colocación del plano respecto al límite superior. Por lo tanto, disponemos de los planos
U1, U2, D1 y D2.

Además de calibraciones y otros ajustes, esta estructura sirvió como banco de pruebas de
nuestros algoritmos de reconstrucción de materiales.

Estructura general de las simulaciones

En todo proceso de construcción de estructuras y propuesta de observables físicos es impres-
cindible realizar una simulación previa de los mismos. Los experimentos de física nuclear
y partículas cada vez tienden a ser más extensos en cuanto a componentes electrónicos y
detectores. Las simulaciones son realizadas para hacer una representación lo más realista
posible del experimento para poder realizar estudios previos a su construcción. Esto puede
ahorrar tiempo y coste en la construcción y puesta en marcha del experimento.

Una simulación es un proceso en el que diferentes algoritmos son ejecutados para obtener
un resultado lo más cercano posible al mundo real. Hoy en día las simulaciones por ordenador
son unas herramientas muy potentes puesto que los avances tecnológicos permiten manejar
grandes cantidades de datos en una escala de tiempo relativamente corta.

Uno de los algoritmos más usados en física para realizar simulaciones es el conocido
como método Monte Carlo [40]. En principio, todo problema probabilístico puede resolverse
mediante este método, que está basado en la resolución de ecuaciones diferenciales que sigue
un estado inicial para pasar por unos estados intermedios y llegar a un estado final. Ese
estado final es el que es analizado a través de sus variables estadísticas y en virtud de la ley
de grandes números.

En esta tesis se realizaron simulaciones para el estudio de la dispersión coulombiana de
la radiación cósmica en materiales pesados. Hemos supuesto que esta radiación está dividida
en dos grandes partes: por un lado tenemos la componente muónica y por otro lado están
los electrones y fotones. Esta división viene motivada por el hecho de que los fotones, en
presencia de un medio, producen pares electrón-positrón que a su vez emiten fotones por
frenado comenzando así una cadena de producción de pares y emisión de fotones. Esta
cadena constituye una cascada electromagnética y nos referiremos tanto a los electrones
como a los fotones con el nombre de parte electromagnética.

Cuando una partícula cargada (como lo es el muon) entra en un material esta sufre un
proceso aleatorio de zarandeo provocado por la repulsión coulombiana de su carga con la de
los átomos del material. Una respresentación esquemática de la dispersión de los muones
como de las ya mencionadas cascadas electromagnéticas pueden ser vistas en la Fig.(9.3)
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Fig. 9.3 Representación esquemática de la dispersión de la radiación cósmica en presencia
de un material. A la izquierda tenemos la parte muónica y a la derecha la electromagnética,
formada por fotones y electrones.

Para realizar las simulaciones hemos hecho uso del código EnsarRoot [26]. Este código
es una variante oficial (o sabor) del código FairRoot [21] y supone una estructura óptima
para realizar nuestras simulaciones al integrar herramientas de generación y análisis. La gran
ventaja de EnsarRoot es que nos permite desarrollar nuestros detectores, realizar Monte Carlo
y analizar los datos todo en un solo proceso sin necesidad de llamar a ejecutables externos.
Además, ya que hereda todas las utilidades de Root y Geant, estas pueden ser usadas de
manera nativa, por lo que la organización de los datos se realizar optimizando el uso de
memoria computacional. Esta manera de trabajar agiliza notablemente la producción de
nuevo código, ya que todas las librerias y utilidades ya creadas y probadas son reutilizadas.

Dentro de la estructura de EnsarRoot hemos simulado el comportamiento de detectores
RPC como TRAGALDABAS [4]. Esta estructura geométrica ha sido reutilizada y adapatada
a las particularidades del nuevo detector muTT para ser usado en el prototipo del tomógrafo
de muones.

El observable físico sobre el que fundamentamos el análisis de los datos es el ángulo de
dispersión θ de la partícula al salir del material. Sabemos que dicho ángulo se comporta de
manera gaussiana en la parte central de su distribución, con desviación:

θ0 =
13.6 MeV

βcp
Z
√

x/X0 [1+0.038ln(x/X0)] (9.3)

siendo p el momento de la partícula incidente, v = βc su velocidad y Z el número atómico
del material atravesado. La cantidad X0 es una magnitud característica del material llamada
longitud de radiación, que se podría decir que es una “unidad natural” para casi todos los
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procesos de naturaleza puramente electromagnética que tienen lugar dentro de un cierto
material.

Puesto que estamos interesados únicamente en el comportamiento de las partículas disper-
sadas, hemos supuesto las partículas incidentes con dirección perpendicular perfectamente
conocida y hemos analizado las características del ángulo de dispersión, en el caso del muón
y de la dispersión y formación de secundarias en el caso de electrones y fotones. El rango de
energías cinéticas de las partículas incidentes se muestran en la Tabla 9.1. En este estudio

Partícula Energía (GeV)
Muón 0.1 0.2 0.3 0.4 0.5 1.0 2.0 4.0 8.0 16.0 32.0
e, γ 0.1 0.2 0.3 0.4 0.5

Table 9.1 Relación de partículas lanzadas y las correspondientes energías cinéticas usadas.

nos hemos limitado al análisis de la dispersión angular de los muones y a la producción de
partículas secundarias por electrones en los diferentes blancos usando los puntos ideales de
impacto y sin tener en cuenta la resolución de lectura del detector.

Sin embargo, los programas de simulación y análisis quedan listos para futuros estudios
en los que se tenga en cuenta las incertidumbres ocasionadas por la "discretización" en la
lectura de señales.

Simulación de observables físicos en muTT

La estructura reducida del muTT, mostrada en la Fig.9.2 nos permite realizar simulaciones
sobre cantidades físicas relevantes en el sistema. Por una parte, nos sirve como bando de
prueba de nuestros algoritmos de reconstrucción. Por otra, nos permite proponer observables
físicos que pueden ayudar a la identificación de materiales pesados.

Para realizar estas tareas, hemos tomado como referencia el conjunto de datos etiquetados
como run 27. La configuración experimental de este run consiste en tres ladrillos colocados
en el centro del detector. Se trata de 2 litros de plomo, 2 litros de hierro y 1 litro de wolframio
(Fig.9.4)

Esta configuración experimental fue simulada con EnsarRoot. A partir de los resultados
de esa simulación podemos comprobar la eficacia de los métodos de reconstrucción. En
particular, hemos propuesto dos métodos independientes: POCA (punto de máximo acer-
camiento) y TimTrack con modelo supersaeta. La diferencia entre las variables reconstruidas
con ambos métodos son la base para nuestros observables físicos.
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Fig. 9.4 Run número 27. Hay tres ladrillos: 2 litros de plomo (centro), dos litros de hierro
(derecha) y un litro de wolframio (izquierda).

Nombre Símbolo Definición
Diferencia en vértices dr (xpoca − xss,ypoca − yss,zpoca − zss)
Desviación polar dθ θpoca −θss
Desviación polar relativa dθ/dz (θpoca −θss)/(zpoca − zss)
Desviación esférica dΩ arccos (⃗v · w⃗)
Retardo temporal dt t ′4 − t4

Table 9.2 Definición de observables físicos propuestos para el estudio de materiales. Pode-
mos diferenciar entre los basados en variables espaciales, variables angulares y variables
temporales.

En la Tabla 9.2 puede encontrarse una relación de los observables estudiados. Podemos
diferenciar entre observables basados en diferencias espaciales, diferencias angulares y
retardo temporal.
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Un apartado diferente merece la desviación polar relativa. Este observable compara
diferencias angulares con diferencias en la componente vertical, z. Este observable veremos
que es el que más información parece tener de cara a la identificación y separación de
materiales pesados.

Calibración del detector muTT

El método de reconstrucción TimTrack ha sido usado por primera vez como herramienta
de calibración en un detector tipo RPC. Mediante la reconstrucción de las trayectorias
hemos podido establecer constantes globales en la calibración del muTT. Constantes como
alineamiento o desplazamientos temporales han sido estudiados a través de TimTrack.

La variable clave en todo el proceso ha sido el residuo, definido como:

∆x = xrec − xm

donde xrec es una variable reconstruida y xm es el valor medido. Se define exactamente igual
para cualquier variable, sea espacial o temporal: siempre es la diferencia entre lo que se
reconstruye y lo que se mide.

Calibración temporal

Mediante un proceso iterativo es posible obtener las constantes globales de calibración para
cada plano. El muTT tiene dos partes diferenciadas, derecha e izquierda. Como la electrónica
es diferente en cada parte, existe un desfase temporal entre ellas que debe ser corregido. El
algoritmo es iterativo, y a cada paso se estudia el residuo temporal por plano. El valor medio
de la distribución es usada como corrección. Como resultado, damos los valores de desfase τ

para cada plano:

Plano τil (ns) τir (ns)
1 0 0.126887
2 0.571072 2.16441
3 31.5284 31.9045
4 -4.66287 -4.93934

Table 9.3 Valores de los desfases temporales globales por plano. Se asume que la parte
izquierda del primer plano es el valor de referencia para el resto de tiempos.
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Calibración espacial

El mismo procedimiento se lleva a cabo para el caso de las correcciones espaciales. Estas
constantes espaciales son consideradas como alineamiento globlal de los planos, es decir,
aparecen por el hecho de que los cuatro planos no están perfectamente alineados. Estos
números nos dan idea de cuánto deben desplazarse los planos para tener un alineado correcto:

Plano ∆x (mm) ∆y (mm)
1 -2.62171 -0.369186
2 1.00447 0.630083
3 2.64132 -1.28205
4 -4.04285 1.38945

Table 9.4 Valores de las constantes de alineamiento por plano.

Los valores globales de alineamiento y desfases temporales son guardados en un fichero
de calibración para ser usado cada vez que se quiera analizar un evento.

Correcciones por slewing

El efecto slewing es puramente electrónico y está relacionado con la amplitud de la señal
recogida por la electrónica. En efecto, la amplitud de la señal tiene que ver con la cantidad
de carga depositada. Toda señal que esté discriminada por un umbral va a sufrir un desfase
temporal entre el inicio del pulso y el momento de cruzar el umbral. Las señales más intensas
tardan menos en llegar, por lo tanto, a mayor carga, menor desfase temporal. Esto se conoce
como slewing effect, y ha de ser introducido como corrección temporal debido a la carga
medida por nuestra RPC.

Correcciones temporales debido a la posición del impacto

Después de las correcciones globales pueden realizarse correcciones finas en espacio y
tiempo. Nuestro detector muTT está compuesto por una serie de tiras de hilos. A través de
TimTrack podemos acceder a la estructura interna del detector y realizar calibraciones hilo a
hilo. Puesto que no todos los hilos tienen la misma longitud la señal tarda diferente tiempo
dependiendo del hilo en el que se detecta la inducción. Es por ello por lo que se pueden
realizar este tipo de correcciones o ajustes finos al tiempo global anteriormente estimado.

Para estimar la corrección debida a la posición hacemos uso de TimTrack para estudiar el
comportamiento del residuo temporal en función de la coordenada y (el juego de hilos que
mide el tiempo está colocado a lo largo de ese eje)
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Fig. 9.5 Corrección temporal debida a la posición y del impacto para cada plano. Con
TimTrack tenemos acceso a la estructura interna del detector y podemos realizar correcciones
hilo a hilo.

Correcciones espaciales debido a la posición del impacto

De manera análoga a las correcciones temporales podemos realizar correcciones dependiendo
de la coordenada espacial del impacto.

Como se puede observar, hay una serie de estructuras que aparecen en estas figuras.
La manera de corregir las variables espaciales se hace a través de los perfiles de dichos
histogramas.

Correcciones adicionales por software

Además de las correcciones anteriormente realizadas se propone el uso de funciones matemáti-
cas como correcciones adicionales. Estas funciones matemáticas se obtienen a partir de los
datos experimentales, mediante un ajuste de las estructuras. De esta manera, se trata de
conseguir un comportamiento lo más suave posible de las variables.

Las funciones que se proponen son potencias de orden cinco y orden orden, obtenidas de
manera fenomenológica.
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Fig. 9.6 Correcciones espaciales debido a las coordenadas espaciales del impacto.

Resumen de correcciones

Todas las correcciones deben ser aplicadas a los datos experimentales originales. La manera
de hacerlo sería, una vez obtenida cada contribución individual:

xcorr = xim −∆x−δx −δsoft

ycorr = yim −∆y−δy −δsoft

tcorr = tim − τil,r −δtxi −δtyi −δslewing

donde a cada valor medido en el plano i, xim, se hacen correcciones de desplazamiento
global (∆x), correcciones debidas a la coordenada que ocupa (δx) y correcciones adicionales
por software (δsoft) En caso de las coordenadas temporales tenemos una corrección global
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dependiendo de si el impacto ocurre en la parte derecha o izquierda del detector (τil,r), una
corrección debida a la posición que ocupa (δtxi y δtyi) y una corrección por la cantidad de
carga de la señal (δslewing)

Reconstrucción de trazas con datos corregidos

Una vez realizadas las correcciones anteriores sobre los datos experimentales es posible
realizar la reconstrucción de los eventos. El estudio de las trayectorias reconstruidas puede
ayudar a determinar diferentes características intrínsecas del detector.

Usando un juego de datos sin blancos, es decir, sin materiales que dispersen los muones,
es posible hacer una estimación de las resoluciones espaciales y temporales por plano. Para
ello, hacemos un histograma de la distribución de residuos espaciales y temporales por plano.
A partir de esas distribuciones, estimamos las desviaciones de las zonas centrales. De esta
manera, damos valores de las diferentes resoluciones:

Plano σx (mm) σy (mm) σt (ps)
1 1.28(1) 1.13(2) 98.7(2)
2 1.67(3) 1.43(3) 134.6(3)
3 1.93(4) 1.50(3) 120.4(3)
4 1.47(3) 1.18(2) 88.7(1)

Table 9.5 Valores de las resoluciones espaciales y temporales por plano. Los valores han sido
obtenidos como la desviación en la parte central de la distribución de residuos.

Los resultados obtenidos son significativamente mejores que los proporcionados por el
fabricante. Esto quiere decir que con nuestro algoritmo de reconstrucción podemos alcanzar
resoluciones mucho mejores que las inicialmente esperadas.

Análisis de los datos experimentales

En esta tesis se realizó el análisis de los datos experimentales contenidos en el run número
27. Este run contine tres bloques de diferentes materiales y tamaños. Por un lado, tenemos
dos litros de plomo situados en el centro del detector. Flanqueando el ladrillo central hay dos
litros de hierro y un litro de wolframio.

Para realizar las imágenes de los bloques se usaron dos algoritmos. Por una parte, el
método POCA y por otra el TimTrack con modelo supersaeta.

Ambos métodos proporcionan resultados muy parecidos en cuanto a imagen se refiere,
así que tomamos como referencia el método TimTrack para el resto del análisis.
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A los métodos de reconstrucción hay que añadir una serie de cortes en las variables que
van a ayudar a limpiar las imágenes finales. En particular, se realizaron cortes en el ángulo
de dispersión, en la diferencia dz y en el observable métrica[47]:

m̃i j =
|dr|

(θi p̃i) · (θ j p̃ j)

donde en esta ecuación |dr| es el módulo del vector desplazamiento (definido como diferencia
entre métodos POCA y TimTrack), θi y θ j son los ángulos de las trayectorias en las partes
superior e inferior (entrada y salida) y p̃ son los momentos normalizados.

Fig. 9.7 Reconstrucción de los bloques del run 27. Hay tres ladrillos diferentes: Fe, Pb y W.
En la parte superior de la figura pude verse una foto de la configuración real del run 27.

En la Fig.9.7 pueden apreciarse los tres ladrillos reconstruidos y comparados con la forma
real del run 27.

Como vemos, después de realizar los cortes oportunos la imagen es bastante clara y hay
vértices que corresponden a aire que son eliminados de la muestra.

Proponemos, además, el observable dθ/dz (desviación polar relativa) como el candidato
para la identificación de los materiales.
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Fig. 9.8 Desviación polar relativa en función de la coordenada reconstruida xss para el run 27.
Como puede observarse, hay tres estructuras bien definidas y que dependen de la naturaleza
del material.

En la Fig.9.8 puede verse la representación del observable desviación polar relativa en
función de la coordenada reconstruida xss. Como puede observarse, hay tres estructuras bien
definidas que corresponden a los tres materiales presentes en el run 27. La región alrededor
de los 400 mm corresponde al hierro, en la parte central está el plomo y sobre los 1000 mm
se encuentra el wolframio. Como podemos observar, hay una dependencia del observable
con el material. A pesar de que el ladrillo de wolframio es la mitad que el de hierro puede
notarse que la desviación polar relativa es mayor.

Como conclusión, el observable que corresponde a la desviación polar relativa puede ser
buen candidato para la identificación de materiales pesados.
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Appendix A

RPC geometry source code

In this appendix we show the source code of a RPC detector as the used in the TRAGALD-
ABAS experiment, tragaldabas.C:

#include <iomanip>
#include <iostream>
#include "TGeoManager.h"
#include "TMath.h"

// Create Matrix Unity
TGeoRotation *fGlobalRot = new TGeoRotation();

// Create a null translation
TGeoTranslation *fGlobalTrans = new TGeoTranslation();
TGeoRotation *fRefRot = NULL;

TGeoManager* gGeoMan = NULL;

Double_t fThetaX = 0.;
Double_t fThetaY = 0.;
Double_t fThetaZ = 0.;
Double_t fPhi = 0.;
Double_t fTheta = 0.;
Double_t fPsi = 0.;
Double_t fX = 0.;
Double_t fY = 0.;
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Double_t fZ = 0.;
Bool_t fLocalTrans = kFALSE;
Bool_t fLabTrans = kFALSE;

TGeoCombiTrans* GetGlobalPosition(TGeoCombiTrans *fRef);

// ------- Main function for creating the geo --------------------
void tragaldabas(const char* geoTag = "")
{

fGlobalTrans->SetTranslation(0.0,0.0,0.0);

// Usage: select the geoTag when calling the macro for a new CALIFA geo
// Possible geoTag values:
// geoTag - Short description
// 0 - Initial Tragaldabas basic geometry

// ------- Load media from media file ------------------------
FairGeoLoader* geoLoad = new FairGeoLoader("TGeo","FairGeoLoader");
FairGeoInterface* geoFace = geoLoad->getGeoInterface();
TString geoPath = gSystem->Getenv("VMCWORKDIR");
TString medFile = geoPath + "/tragaldabas/geometry/media_ensar.geo";
geoFace->setMediaFile(medFile);
geoFace->readMedia();
gGeoMan = gGeoManager;
//-----------------------------------------------

// ------- Geometry file name (output) --------------------
TString geoFileName = geoPath + "/tragaldabas/geometry/tragaldabas_";
geoFileName = geoFileName + geoTag + ".geo.root";
// ---------------------------------------------------------

// ---------- Get and create the required media ------------
FairGeoMedia* geoMedia = geoFace->getMedia();
FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder();
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FairGeoMedium* mAir = geoMedia->getMedium("Air");
if ( ! mAir ) Fatal("Main", "FairMedium Air not found");
geoBuild->createMedium(mAir);
TGeoMedium* pAirMedium = gGeoMan->GetMedium("Air");
if ( ! pAirMedium ) Fatal("Main", "Medium Air not found");

FairGeoMedium* mAluminium = geoMedia->getMedium("aluminium");
if ( ! mAluminium ) Fatal("Main", "FairMedium Aluminium not found");
geoBuild->createMedium(mAluminium);
TGeoMedium* pAluminiumMedium = gGeoMan->GetMedium("aluminium");
if ( ! pAluminiumMedium ) Fatal("Main", "Medium Aluminium not found");

FairGeoMedium* mCopper = geoMedia->getMedium("copper");
if ( ! mCopper ) Fatal("Main", "FairMedium Copper not found");
geoBuild->createMedium(mCopper);
TGeoMedium* pCopperMedium = gGeoMan->GetMedium("copper");
if ( ! pCopperMedium ) Fatal("Main", "Medium Copper not found");

FairGeoMedium* mCar = geoMedia->getMedium("CarbonFibre");
if ( ! mCar ) Fatal("Main", "FairMedium CarbonFibre not found");
geoBuild->createMedium(mCar);
TGeoMedium* pCarbonFibreMedium = gGeoMan->GetMedium("CarbonFibre");
if ( ! pCarbonFibreMedium ) Fatal("Main", "Medium CarbonFibre not found");

FairGeoMedium* mMethacrylate =
geoMedia->getMedium("methacrylate");
if ( ! mMethacrylate ) Fatal("Main", "FairMedium Methacrylate not found");
geoBuild->createMedium(mMethacrylate);
TGeoMedium* pMethacrylateMedium = gGeoMan->GetMedium("methacrylate");
if ( ! pMethacrylateMedium ) Fatal("Main",
"Medium Methacrylate not found");

FairGeoMedium* mRPCGlass = geoMedia->getMedium("RPCglass");
if ( ! mRPCGlass ) Fatal("Main",
"FairMedium RPCGlass not found");
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geoBuild->createMedium(mRPCGlass);
TGeoMedium* pRPCGlassMedium = gGeoMan->GetMedium("RPCglass");
if ( ! pRPCGlassMedium ) Fatal("Main", "Medium RPCGlass not found");

FairGeoMedium* mRPCGasR134A = geoMedia->getMedium("RPCgas");
if ( ! mRPCGasR134A ) Fatal("Main", "FairMedium RPCGasR134A not found");
geoBuild->createMedium(mRPCGasR134A);
TGeoMedium* pRPCGasR134AMedium = gGeoMan->GetMedium("RPCgas");
if ( ! pRPCGasR134AMedium ) Fatal("Main", "Medium RPCGasR134A not found");

FairGeoMedium* mTfl = geoMedia->getMedium("Tefflon");
if ( ! mTfl ) Fatal("Main", "FairMedium Tefflon not found");
geoBuild->createMedium(mTfl);
TGeoMedium* pWrappingMedium = gGeoMan->GetMedium("Tefflon");
if ( ! pWrappingMedium ) Fatal("Main", "Medium Tefflon not found");
// ------------------------------------------------------------

// -------------- Create geometry and top volume ---------------------
gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom");
gGeoMan->SetName("TragaldabasGeom");
TGeoVolume* top = new TGeoVolumeAssembly("TRA_World");
gGeoMan->SetTopVolume(top);
// ----------------------------------------------------

//WORLD
//TGeoVolume *pAWorld = top;

// Defintion of the Mother Volume (cube of 2.0 meters side)
Double_t length = 400.;
TGeoShape *pTragaShape = new TGeoBBox("Traga_boxOut",
length/2.0,length/2.0,length/2.0);
TGeoVolume* pTragaWorld = new TGeoVolume("TragaWorld",pTragaShape, pAirMedium);

TGeoCombiTrans *t0 = new TGeoCombiTrans();
TGeoCombiTrans *pGlobalc = GetGlobalPosition(t0);
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// add the cube (pTragaWorld) as Mother Volume
top->AddNode(pTragaWorld, 0, pGlobalc);

//MODULE KeepIn Volume, 1 cm larger in each dimension than aluminum box
TGeoVolume *RPC_KeepInVolume=gGeoManager->MakeBox("RPC_KeepInVolume", pAirMedium,
166.0/2,129.5/2,3.6/2);
RPC_KeepInVolume->SetVisibility(kFALSE); //invisible KIV

TGeoRotation *rotUni = new TGeoRotation(); //unitary rotation

pTragaWorld->AddNode(RPC_KeepInVolume,0,new TGeoCombiTrans(0.,0.,-186.0,rotUni));
pTragaWorld->AddNode(RPC_KeepInVolume,1,new TGeoCombiTrans(0.,0.,-133.5,rotUni));
pTragaWorld->AddNode(RPC_KeepInVolume,2,new TGeoCombiTrans(0.,0.,-95.6,rotUni));
pTragaWorld->AddNode(RPC_KeepInVolume,3,new TGeoCombiTrans(0.,0.,-11.9,rotUni));

//Aluminum box containing the whole chamber, 3mm thick, laterals 5mm thick
TGeoVolume *RPC_AluBox=gGeoManager->MakeBox("RPC_AluBox", pAluminiumMedium,
165.0/2,128.5/2,2.6/2);
RPC_KeepInVolume->AddNode(RPC_AluBox,0,new TGeoCombiTrans(0.,0.,0.,rotUni));
RPC_AluBox->SetVisibility(kTRUE); //invisible KIV
RPC_AluBox->SetLineColor(kRed);

TGeoVolume *RPC_AluInBox=gGeoManager->MakeBox("RPC_AluInBox", pAirMedium,
164.0/2,127.5/2,2.0/2);
RPC_AluBox->AddNode(RPC_AluInBox,0,new TGeoCombiTrans(0.,0.,0,rotUni));
RPC_AluInBox->SetVisibility(kFALSE); //invisible interior volume (air)

//Foam (box) between aluminium box and copper PCB
TGeoVolume *RPC_FoamBox=gGeoManager->MakeBox("RPC_FoamBox", pAirMedium,
163.0/2,126.5/2,0.87/2);
RPC_AluInBox->AddNode(RPC_FoamBox,0,new TGeoCombiTrans(0.,0.,0.565,rotUni));
RPC_FoamBox->SetLineColor(kYellow);

//copper (box) between foam box and the PCB
//NOTE: It is not divided at this stage. It is also NOT the sensitive
//material, but signals are going to be taken from the gas, dividing it
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//with the proper copper-pad segmentation.
TGeoVolume *RPC_CopperBox=gGeoManager->MakeBox("RPC_CopperBox", pCopperMedium,
163.0/2,126.5/2,0.003/2);
RPC_AluInBox->AddNode(RPC_CopperBox,0,new TGeoCombiTrans(0.,0.,0.1285,rotUni));
RPC_CopperBox->SetLineColor(kRed);

//PCB (box) between copper and the metacrilate
TGeoVolume *RPC_PCBBox=gGeoManager->MakeBox("RPC_PCBBox", pCarbonFibreMedium,
163.0/2,126.5/2,0.157/2);
RPC_AluInBox->AddNode(RPC_PCBBox,0,new TGeoCombiTrans(0.,0.,0.0485,rotUni));
RPC_PCBBox->SetLineColor(kGreen);

//Metacrilate box containing gas and glass
TGeoVolume *RPC_MetaBox=gGeoManager->MakeBox("RPC_MetaBox", pMethacrylateMedium,
163.0/2,126.5/2,0.97/2);
RPC_AluInBox->AddNode(RPC_MetaBox,0,new TGeoCombiTrans(0.,0.,-0.515,rotUni));
RPC_MetaBox->SetLineColor(kWhite);

TGeoVolume *RPC_MetaInBox=gGeoManager->MakeBox("RPC_MetaInBox", pRPCGasR134AMedium,
160.0/2,123.5/2,0.77/2);
RPC_MetaBox->AddNode(RPC_MetaInBox,0,new TGeoCombiTrans(0.,0.,0.,rotUni));
RPC_MetaInBox->SetVisibility(kFALSE); //invisible interior volume (gas)

//Glass planes in the gas (medium of RPC_MetaInBox volume)
TGeoVolume *RPC_GlassBox=gGeoManager->MakeBox("RPC_GlassBox", pRPCGlassMedium,
155.5/2,122.5/2,0.19/2);
RPC_MetaInBox->AddNode(RPC_GlassBox,0,new TGeoCombiTrans(0.,0.,-0.29,rotUni));
RPC_MetaInBox->AddNode(RPC_GlassBox,1,new TGeoCombiTrans(0.,0.,0.,rotUni));
RPC_MetaInBox->AddNode(RPC_GlassBox,2,new TGeoCombiTrans(0.,0.,0.29,rotUni));
RPC_GlassBox->SetLineColor(kBlue);

//Gas (planes) already in the gas (sensitive volumes where ionization takes place)
TGeoVolume *RPC_GasBox=gGeoManager->MakeBox("RPC_GasBox", pRPCGasR134AMedium,
151.2/2,121.0/2,0.1/2);
RPC_MetaInBox->AddNode(RPC_GasBox,0,new TGeoCombiTrans(0.,0.,-0.145,rotUni));
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RPC_MetaInBox->AddNode(RPC_GasBox,1,new TGeoCombiTrans(0.,0.,0.145,rotUni));
RPC_GasBox->SetVisibility(kFALSE); //invisible interior volume (gas)

// --------------- Finish --------------------------------------
gGeoMan->CloseGeometry();
gGeoMan->CheckOverlaps(0.001);
gGeoMan->PrintOverlaps();
gGeoMan->Test();

TFile* geoFile = new TFile(geoFileName, "RECREATE");
top->Write();
geoFile->Close();
// -------------------------------------------------------
}
//---------------------------------------------------------

// ------- Global positioning -------------------------
TGeoCombiTrans* GetGlobalPosition(TGeoCombiTrans *fRef)
{
if (fLocalTrans == kTRUE ) {

if ( ( fThetaX == 0 ) && ( fThetaY==0 ) && ( fThetaZ == 0 )
&&
( fX == 0 ) && ( fY == 0 ) && ( fZ == 0 )
) return fRef;

// X axis
Double_t xAxis[3] = { 1. , 0. , 0. };
Double_t yAxis[3] = { 0. , 1. , 0. };
Double_t zAxis[3] = { 0. , 0. , 1. };
// Reference Rotation
fRefRot = fRef->GetRotation();

if (fRefRot) {
Double_t mX[3] = {0.,0.,0.};
Double_t mY[3] = {0.,0.,0.};
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Double_t mZ[3] = {0.,0.,0.};

fRefRot->LocalToMasterVect(xAxis,mX);
fRefRot->LocalToMasterVect(yAxis,mY);
fRefRot->LocalToMasterVect(zAxis,mZ);

Double_t a[4]={ mX[0],mX[1],mX[2], fThetaX };
Double_t b[4]={ mY[0],mY[1],mY[2], fThetaY };
Double_t c[4]={ mZ[0],mZ[1],mZ[2], fThetaZ };

ROOT::Math::AxisAngle aX(a,a+4);
ROOT::Math::AxisAngle aY(b,b+4);
ROOT::Math::AxisAngle aZ(c,c+4);

ROOT::Math::Rotation3D fMatX( aX );
ROOT::Math::Rotation3D fMatY( aY );
ROOT::Math::Rotation3D fMatZ( aZ );

ROOT::Math::Rotation3D fRotXYZ = (fMatZ * (fMatY * fMatX));

//cout << fRotXYZ << endl;

Double_t fRotable[9]={0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
fRotXYZ.GetComponents(
fRotable[0],fRotable[3],fRotable[6],
fRotable[1],fRotable[4],fRotable[7],
fRotable[2],fRotable[5],fRotable[8]
);
TGeoRotation *pRot = new TGeoRotation();
pRot->SetMatrix(fRotable);
TGeoCombiTrans *pTmp = new TGeoCombiTrans(*fGlobalTrans,*pRot);

TGeoRotation rot_id;
rot_id.SetAngles(0.0,0.0,0.0);

TGeoCombiTrans c1;
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c1.SetRotation(rot_id);
const Double_t *t = pTmp->GetTranslation();
c1.SetTranslation(t[0],t[1],t[2]);

TGeoCombiTrans c2;
c2.SetRotation(rot_id);
const Double_t *tt = fRefRot->GetTranslation();
c2.SetTranslation(tt[0],tt[1],tt[2]);

TGeoCombiTrans cc = c1 * c2 ;

TGeoCombiTrans c3;
c3.SetRotation(pTmp->GetRotation());
TGeoCombiTrans c4;
c4.SetRotation(fRefRot);

TGeoCombiTrans ccc = c3 * c4;

TGeoCombiTrans pGlobal;
pGlobal.SetRotation(ccc.GetRotation());
const Double_t *allt = cc.GetTranslation();
pGlobal.SetTranslation(allt[0],allt[1],allt[2]);

return ( new TGeoCombiTrans( pGlobal ) );

}else{
cout << "-E- R3BDetector::GetGlobalPosition() \
No. Ref. Transformation defined ! " << endl;
cout << "-E- R3BDetector::GetGlobalPosition() \
cannot create Local Transformation " << endl;
return NULL;
} //! fRefRot

} else {
// Lab Transf.
if ( ( fPhi == 0 ) && ( fTheta==0 ) && ( fPsi == 0 )
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&&
( fX == 0 ) && ( fY == 0 ) && ( fZ == 0 )
) return fRef;

return ( new TGeoCombiTrans(*fGlobalTrans,*fGlobalRot) );
}
}



Appendix B

Complementary figures to the systematic
studies of physical observables

In this appendix we show complementary figures corresponding to systematic studies of
different observables presented along the thesis. In particular, we show the studies of the
relative polar deviation dθ/dz and the dΩ observable.

The figures were done for the materials of interest (Fe, Pb, and W) Each material had
different thickness (1 cm, 5 cm, 10 cm, and 20 cm) and were used vertical muons of different
energies. The energy ranges are labelled as low (from 0.1 GeV to 1.0 GeV), intermediate
(from 1 GeV to 3 GeV), and high (from 3 GeV to 6 GeV) following the definition of Table
5.2.
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B.1 Study of the integrated dθ/dz

The integrated relative polar deviation, dθ/dz, is the sum of all the events contained in
an interval ∆x. This interval is the length of the brick, and therefore we show the total
contribution inside the material.

Integrated dθ/dz for low energies (from 0.1 GeV to 1 GeV)

Fe
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Pb

W
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Integrated dθ/dz for intermediate energies (from 1 GeV to 3 GeV)

Fe

Pb
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W
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Integrated dθ/dz for high energies (from 3 GeV to 6 GeV)

Fe

Pb
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B.2 Study of dΩ

The dΩ observable is defined as the relative angle between the scattered trajectories obtained
with POCA and TimTrack. This angle is calculated using the scalar product of both vectors:

dΩ = arccos (⃗v · w⃗)

where v⃗ is the direction vector of the TimTrack and w⃗ is the direction vector obtained with
POCA.

In the first part of the section, the observable is represented as a function of the incident
angle θ . The second part shows the individual histograms of the observable for each material,
thickness, and muon energy.

dΩ vs θ low energies (from 0.1 GeV to 1 GeV)

Fe
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dΩ vs θ intermediate energies (from 1 GeV to 3 GeV)

Fe

Pb
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W
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dΩ vs θ high energies (from 3 GeV to 6 GeV)

Fe

Pb
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W
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dΩ low energies (from 0.1 GeV to 1 GeV)

Fe

Pb
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W
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dΩ intermediate energies (from 1 GeV to 3 GeV)

Fe

Pb
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dΩ high energies (from 3 GeV to 6 GeV)

Fe

Pb
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B.3 Study of the background of dθ/dz in Fe, Pb, and W
for vertical muons with low, intermediate, and high
energies

In this section we perform a study of the background of the relative polar deviation observable.
Each histogram shows the value of dθ/dz as a function of xss.

In the simulations we used four bricks of the material indicated in the title of the histogram.
The bricks are, from left to right, of 1 cm , 5 cm, 10 cm, and 20 cm thickness. Muons of low,
intermediate, and high energy were used.


	SIMULATION AND RECONSTRUCTION ALGORITHMS FOR A COMMERCIAL MUON TOMOGRAPHY SYSTEM
	Table of contents
	List of figures
	List of tables
	Introduction
	1 Cosmic Rays
	1.1 Discovery of the cosmic radiation
	1.2 Sources of cosmic rays
	1.2.1 Extragalactic and Solar cosmic rays
	1.2.2 Atmospheric cosmic rays
	1.2.3 Cosmic rays at Earth surface


	2 The TimTrack algorithm
	2.1 Introduction and motivation
	2.2 General description of the method
	2.3 Non-linear TimTrack
	2.4 Non-linear TimTrack with constraints
	2.5 TimTrack as a calibration method
	2.6 Example of models and their applications
	2.6.1 Linear model
	2.6.2 Non-linear model
	2.6.3 Supersaetas
	2.6.4 Time calibration parameters
	2.6.5 TimTrack with drift velocity inside a pad

	2.7 Numerical examples of the models
	2.7.1 Example of linear model

	2.8 Track finding and reconstruction algorithm

	3 Resistive Plate Chambers detectors
	3.1 Introduction
	3.2 Basics of the RPC detectors
	3.2.1 Operation modes

	3.3 Timing RPC detectors (tRPC)
	3.4 The Trasgo family of detectors
	3.4.1 The TRAGALDABAS detector
	3.4.2 The muTT detector

	3.5 Description of the muTT detector
	3.5.1 Disposition of the planes and nomenclature
	3.5.2 Description of the RPC planes


	4 General cosmic ray simulations
	4.1 Introduction
	4.2 The EnsarRoot simulation and analysis framework
	4.2.1 EnsarRoot structure
	4.2.2 TRAGALDABAS detector as a module inside the EnsarRoot structure
	4.2.3 Simulations with the muTT detector

	4.3 Multiple Coulomb scattering
	4.4 Electromagnetic showers
	4.5 Structure of the simulations
	4.5.1 Scattering angle simulations

	4.6 Analysis of the scattering properties
	4.6.1 Muon inelastic scattering: angle
	4.6.2 Muon inelastic scattering: analysis of the properties of materials
	4.6.3 Muon inelastic scattering: analysis of kurtosis

	4.7 Electromagnetic showers
	4.8 Analytic approximation to the study of scattering properties

	5 Simulation of physical observables in muTT
	5.1 Introduction
	5.2 Configuration of the simulations
	5.2.1 Reconstruction algorithms

	5.3 Angular resolution of the detector
	5.4 Physical observables
	5.4.1 Difference in vertex coordinates
	5.4.2 Polar deviation
	5.4.3 Spherical angle observable
	5.4.4 The metric observable
	5.4.5 Time delay

	5.5 Sharpness coefficient

	6 Calibration of the muTT detector
	6.1 Introduction
	6.2 Structure of the calibration process
	6.2.1 Time calibration
	6.2.2 Position calibration and alignment
	6.2.3 Slewing effect
	6.2.4 Corrections due to position of the hit
	6.2.5 Further software corrections
	6.2.6 Reconstruction of tracks using corrected data


	7 Analysis of the experimental data
	7.1 Introduction
	7.2 Description of the run number 27
	7.3 Reconstruction of the targets
	7.3.1 Comparison of the methods

	7.4 Reconstruction using the cuts in observables

	8 Summary and conclusions
	9 Resumen de la tesis en español
	References
	Appendix A RPC geometry source code
	Appendix B Complementary figures to the systematic studies of physical observables
	B.1 Study of the integrated d/dz
	B.2 Study of d
	B.3 Study of the background of d/dz



