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Abstract

A myriad of data acquisition devices is observing every day more variables and generating a
vast amount of data in almost every application domain. Environmental observation data is an
essential portion of such generated data, whose spatio-temporal nature has posed interesting
challenges in the area of Environmental Observation Data Management Systems. Two fea-
tures are common to all these systems: spatio-temporal observations and heterogeneity. In the
context of this Thesis, the Observations and Measurements (O&M) conceptual schema was
adopted as the theoretical framework for the definition of the concept of observation. Hetero-
geneity specifically concerns the data acquisition part of the aforementioned systems, which
need to access data produced by heterogeneous sensing following different software/hardware
specifications that are accessed through several communication protocols. A major challenge
is to provide the required flexibility to enable data acquisition from heterogeneous sensing de-
vices and data dissemination through heterogeneous end-user applications. The system must
provide simple and straightforward mechanisms for the incorporation of the following com-
ponents: 1) new in-situ sensing devices, 2) new data dissemination services, and 3) different
persistent data storage technologies. Focusing on observation data management, a system
must provide the following general functionalities to effectively manage observation data:
1) management of conventional Entity/Relationship data related to non-observed properties
of entities, 2) management of sampled data over temporal, spatial (1D and 2D) and spatio-
temporal domains, 3) Support for observation data semantics, and 4) efficient implementation
for large scale shared-nothing distributed hardware architectures.

Moreover, the INSPIRE Directive of the European Union encourages the creation of a
Spatial Data Infrastructure (SDI) to ensure the interoperability of spatial information systems
in Europe. The application of INSPIRE in the Spanish legislative system forces public admin-
istrations to make their geographic data available through SDI services. Therefore, the new



2 Abstract

enriched geographical knowledge allows for the appearance of many applications in different
areas of knowledge that require spatial analysis capabilities.

In spite of the above needs, to the best of my knowledge, none of the available technologies
and approaches found in data acquisition and data management literature provide support for
all the aforementioned functionalities.

Therefore, the main objective of this Thesis is the design and implementation of a generic
framework for spatio-temporal observation data acquisition and declarative analytical pro-
cessing. This overall goal can be divided into three independent specific objectives:

– Design and implementation of a generic observation data acquisition and dissemination
server.

– Design of a framework for declarative spatio-temporal analysis in very large spatio-
temporal data warehouses.

– Efficient implementation of spatio-temporal on-line analytical processing in large scale
distributed shared-nothing hardware architectures.

The main contributions of this Thesis may be summarized as follows:

– Generalization of a data acquisition and dissemination server, with great applicability
in many scientific and industrial domains, providing flexibility in the incorporation of
different technologies for data acquisition, data persistence and data dissemination.

– Definition of a new hybrid logical-functional paradigm to formalize a novel data model
for the integrated management of entity and sampled data.

– Definition of a novel spatio-temporal declarative data analysis language for the previous
data model.

– Definition of a data warehouse data model supporting observation data semantics, in-
cluding application of the above language to the declarative definition of observation
processes executed during observation data load.

– Column-oriented parallel and distributed implementation of the spatial analysis declar-
ative language. The huge amount of data to be processed forces the exploitation of
current multi-core hardware architectures and multi-node cluster infrastructures.



Resumen

Una enorme cantidad de dispositivos de adquisición de datos observan cada día más variables
y generan ingentes cantidades de datos en la práctica totalidad de dominios de aplicación. Al
mismo tiempo, cada día más áreas de investigación centran sus esfuerzos en la adquisición
y gestión eficiente de los datos (p. ej., Redes de Sensores, Internet de las Cosas), y en el
aprovechamiento inteligente de la información (p. ej., Minería y Análisis de datos).

Los datos de observaciones medioambientales constituyen una parte fundamental de di-
chos datos y, debido a su naturaleza espacio-temporal, presentan algunos desafíos interesantes
en el área de la gestión de datos. De hecho, durante las últimas décadas se ha realizado un gran
esfuerzo en la investigación de Sistemas de Gestión de Datos de Observaciones Medioam-
bientales. Dichos sistemas presentan dos características comunes: observaciones espacio-
temporales y heterogeneidad.

Observaciones espacio-temporales

La localización de cada observación en un determinado espacio de referencia y el instante
temporal en el que el valor observado de una observación se aplica a la propiedad obser-
vada son elementos fundamentales de los metadatos, imprescindibles durante la ejecución del
análisis. En el contexto de esta Tesis, el esquema conceptual definido por el estándar Ob-
servations & Measurements (O&M) del Open Geospatial Consortium (OGC) ha sido adop-
tado como marco teórico para la definición del concepto de observación y otros conceptos
relacionados (p. ej., propiedad observada, valor observado). Una observación contiene un
valor observado y los metadatos que proporcionan la semántica de observación necesaria
para interpretarlo correctamente. Así, por ejemplo, un valor observado (25) con una unidad

de medida específica (ºC) de una propiedad observada (temperatura) está proporcionado por
una determinada entidad observada (estación_meteorológica). Una entidad observada puede
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tener tanto propiedades convencionales (nombre, propietario) como propiedades observadas

(temperatura, humedad). Los valores de las propiedades convencionales son asignados gene-
ralmente por alguna autoridad mientras que los valores de las propiedades observadas son
estimados por un proceso de observación (sensor_temperatura). Los procesos de observación

pueden ser de naturaleza muy diversa, p. ej., sensores físicos, tareas realizadas por operarios,
algoritmos de procesamiento de datos. Por lo tanto, es obligatorio el registro de propiedades
del proceso de observación específico utilizado para generar el valor observado. Es obligato-
rio también el registro del phenomenonTime, es decir, el instante temporal en el que el valor

observado se aplica a la propiedad observada. El tipo de dato de observación producida por
el proceso de observación viene determinado por dos características del propio proceso:

– Si el proceso se ejecuta de forma periódica, es decir, si es disparado por tiempo (time-
triggered), o si el proceso es disparado por un evento específico (event-triggered).

– La posición relativa del proceso respecto a la entidad observada (in-situ o remoto).

Tipo de disparo

Los procesos disparados por evento (event-triggered) comienzan en un instante temporal
determinado por un evento específico. Por ejemplo, una imagen LIDAR (Light Detection and
Ranging) capturada en un instante determinado. Los procesos disparados por tiempo (time-
triggered) se ejecutan con una frecuencia temporal predeterminada produciendo muestreos
regulares en el dominio temporal. Un ejemplo sería un registro de valores de temperatura
obtenidos por un sensor de una estación meteorológica cada diez minutos.

Localización relativa del sensor

Los sensores in-situ están ubicados en la misma posición donde se producen los valores de
la propiedad observada. Se genera una única observación en cada instante temporal. Pode-
mos mencionar como ejemplo un dispositivo GPS instalado en un vehículo. Los sensores
remotos están ubicados lejos de donde se producen los valores de la propiedad observada. Se
generan varios valores observados en cada instante temporal. Un ejemplo de sensor remoto
es el Sonic Detection and Ranging (SODAR) utilizado para registrar la velocidad del viento
a diferentes altitudes mediante la medición de la dispersión de ondas sonoras producida por
turbulencia atmosférica. El SODAR genera un muestreo 1D de la velocidad del viento a lo
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largo de posiciones discretas consecutivas sobre un perfil lineal vertical. Un ejemplo de sen-
sor remoto instalado en una plataforma móvil es el Visible Infrared Imaging Radiometer Suite
(VIIRS) del satélite Suomi NPP. Este sensor proporciona imágenes de la superficie terrestre
con una resolución espacial de 750 metros. Entre los datos generados por este sensor podemos
encontrar muestreos 2D regulares (llamados Rasters) del color y temperatura de la superficie
del océano.

Heterogeneidad

La parte de los sistemas de gestión de datos encargada específicamente de la adquisición de
datos presenta una gran heterogeneidad debido a dos factores fundamentales:

– Adquisición de datos heterogéneos producidos por dispositivos de adquisición de dife-
rente naturaleza (p. ej., radar, lidar, GPS).

– Implementación de diferentes protocolos de comunicación (p. ej., RS-485, WiFi, Eth-
ernet).

Las arquitecturas de los sistemas desarrollados tanto para aplicaciones de monitorización
y adquisición de datos como para sistemas de control supervisado sin requisitos de tiempo
real están compuestas mayoritariamente por tres elementos:

– Aplicaciones de Usuario: se encargan de realizar el análisis y visualización de los datos.

– Dispositivos sensores: ejecutan los procesos de observación y son muy heterogéneos
tanto en su funcionalidad como en los protocolos de comunicación que implementan.

– Servidores de Datos: actúan como pasarelas entre dominios heterogéneos de Apli-

caciones de Usuarios y colecciones heterogéneas de Dispositivos Sensores, homo-
geneizando el acceso a los datos.

Durante el diseño e implementación de los Sistemas de Gestión y Adquisición de Datos de
Observaciones Medioambientales surgen diferentes problemas que suponen un desafío para
la adquisición y gestión de datos de observaciones.

Respecto a la adquisición de datos de observaciones, cualquier esfuerzo encaminado a la
generalización de los Dispositivos Sensores y las Aplicaciones de Usuario resulta ser infruc-
tuoso. En el caso de los Dispositivos Sensores es debido al fuerte condicionamiento respecto
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a las especificaciones de los vendedores. Por su parte, las Aplicaciones de Usuario tienen una
gran dependencia tanto del dominio específico de aplicación como de las preferencias de los
usuarios. Por otro lado, tanto la funcionalidad como la arquitectura de los Servidores de Datos

suelen ser muy similares en la inmensa mayoría de aplicaciones. Sin embargo, proporcionar
la flexibilidad necesaria en la adquisición de datos desde Dispositivos Sensores heterogéneos
y en la publicación de datos hacia Aplicaciones de Usuario heterogéneas es un gran desafío.
Así pues, el sistema debe proporcionar mecanismos simples y directos que permitan la incor-
poración de los siguientes componentes:

– Nuevos Dispositivos Sensores in-situ.

– Nuevos Servicios de Diseminación de Datos.

– Diferentes tecnologías para el almacenamiento persistente de datos, adaptadas a los
diferentes tipos de datos observados.

En cuanto a la gestión de datos de observaciones, de las diferentes soluciones existentes
en el estado del arte se pueden extraer las siguientes funcionalidades que permiten la gestión
eficiente de datos de observaciones:

– Gestión de datos Entidad/Relación (E/R) convencionales relacionados con propiedades
de Entidades.

– Gestión de datos muestreados en los dominios temporal, espacial (1D y 2D) y espacio-
temporal.

– Soporte para semántica de datos de observaciones. Se deben proporcionar los metadatos
necesarios para poder representar las propiedades observadas de las Entidades.

– Implementación eficiente sobre arquitecturas hardware distribuidas a gran escala.

Los desarrollos y tendencias recientes en el campo de las arquitecturas software de datos
espaciales para Sistemas de Información Geográfica (SIG) proponen la descomposición de los
sistemas en servicios simples y bien definidos, habitualmente basados en la Web y cuyas inter-
faces sigan los estándares internacionales de interoperabilidad del OGC y de la International
Organization for Standardization (ISO). De esta forma, Infraestructuras de Datos Espaciales
(IDE) integradas por servicios distribuidos en Internet pueden ser puestas a disposición de
desarrolladores SIG.
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Además, se están adoptando importantes políticas de mejora de la disponibilidad de con-
juntos de datos espaciales generados por diferentes administraciones públicas. En particular,
la directiva INSPIRE de la Unión Europea incentiva la creación de una IDE que asegure la
interoperabilidad de los sistemas de información espacial en Europa. La aplicación de dicha
directiva en el sistema legislativo español fuerza a las administraciones públicas a publicar
sus datos geográficos a través de servicios IDE. Este nuevo entorno de conocimiento geográ-
fico favorece la aparición de muchas aplicaciones en diferentes áreas de conocimiento que
requieren de habilidades en análisis espacial.

Sin embargo, a pesar de todo este entorno favorable, ninguna de las tecnologías y solu-
ciones que se pueden encontrar en la literatura de adquisición y gestión de datos soportan
todas las funcionalidades mencionadas anteriormente.

La mayor parte de sistemas de adquisición proporcionan gran flexibilidad a la hora de
obtener datos de observaciones desde dispositivos sensores heterogéneos, pero carecen de la
flexibilidad de almacenamiento y diseminación de datos requerida. Algunos sistemas pro-
puestos proporcionan mecanismos flexibles en la incorporación de nuevos dispositivos sen-
sores. Sin embargo, presentan grandes limitaciones o directamente carecen de flexibilidad a
la hora de extender las tecnologías de almacenamiento de datos que implementan. La mayor
parte de sistemas carecen o presentan una flexibilidad muy limitada a la hora de añadir nuevos
servicios de diseminación.

En la literatura de sistemas de gestión de datos se puede encontrar una cantidad enorme
de trabajos orientados a la gestión de datos de observaciones. De hecho, el área de bases de
datos espaciales es una de las áreas de investigación más activas proporcionando una enorme
cantidad de soluciones. Incluso el estándar SQL de ISO, implementado por la inmensa ma-
yoría de sistemas gestores de bases de datos, ha sido extendido para proporcionar funciona-
lidades espaciales. Actualmente, estas herramientas permiten la consulta declarativa de datos
espaciales, incluidos los Raster 2D. Las herramientas NoSQL y Data Warehouse implemen-
tan extensiones espaciales, aunque no soportan datos Raster. Las soluciones SIG disponibles
actualmente proporcionan la funcionalidad necesaria para almacenar y procesar datos conven-
cionales y espaciales, incluidos los datos Raster. Sin embargo, no dan soporte para el análisis
declarativo de datos, que sí está soportado en los gestores de arrays de datos diseñados para el
procesamiento de grandes colecciones de arrays de datos Raster. Aunque la especificación de
análisis de datos relacionales de forma declarativa utilizando estructuras de arrays de datos es
bastante difícil, se han presentado soluciones que intentan integrar la gestión de arrays y datos
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relacionales. En este caso, el usuario está obligado a trabajar con dos semánticas diferentes,
una para datos relacionales y otra para arrays. Existen también algunos sistemas diseñados
para el análisis declarativo de streams de datos de sensores, pero no dan soporte para datos
Raster. Finalmente, la semántica de datos de observaciones solo está proporcionada por los
estándares del OGC, por la iniciativa Sensor Web Enablement (SWE) y por ontologías y
modelos de datos de observaciones específicos. Pero ninguna de estas soluciones permite el
análisis declarativo de datos de observaciones.

Basándonos en las características expuestas de los sistemas y soluciones disponibles ac-
tualmente, el objetivo principal de esta Tesis es el diseño e implementación de una herramienta
genérica para la adquisición y procesado analítico declarativo de datos de observaciones
espacio-temporales. Este objetivo global se puede dividir en tres objetivos específicos, que
se detallan a continuación.

Objetivo 1 (GeoDADIS): Diseño e implementación de un servidor genérico para la
adquisición y diseminación de datos de observaciones. Esta herramienta debe proporcionar la
funcionalidad necesaria para presentar las siguientes características:

– Adquisición in-situ de datos de observación mediante canales de datos síncronos y asín-
cronos.

– Diseminación de datos de observaciones mediante servicios de datos cliente/servidor y
publicación/suscripción.

– Incorporación simple y directa de nuevas tecnologías de almacenamiento de datos de
observaciones.

Objetivo 2 (SODA): Diseño de una herramienta para el análisis espacio-temporal decla-
rativo en almacenes muy grandes de datos espacio-temporales. El concepto matemático de
función es la base de un nuevo modelo de datos que integra datos Raster y datos de Entidades,
e incorpora semántica de datos de observaciones. Además, un nuevo lenguaje declarativo
combina constructores lógicos y funcionales que ya están presentes en otros lenguajes bien
conocidos.

Objetivo 3: Implementación eficiente del procesamiento espacio-temporal on-line decla-
rativo en arquitecturas hardware distribuidas a gran escala.
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A continuación, se detallan las principales contribuciones de esta Tesis:

– Generalización de un servidor de adquisición y diseminación de datos, con gran apli-
cación un muchos dominios científicos e industriales, que proporciona flexibilidad en
la incorporación de diferentes tecnologías para la adquisición, almacenamiento y dise-
minación de datos.

– Definición de un novedoso paradigma híbrido lógico-funcional que permite la forma-
lización de un modelo de datos para la gestión integrada de datos de entidades y datos
muestreados.

– Definición de un nuevo lenguaje espacio-temporal declarativo de análisis de datos que
aprovecha el modelo de datos mencionado anteriormente.

– Definición de un modelo de datos para Almacenes de Datos que proporciona semán-
tica de datos de observaciones, incluida la aplicación del lenguaje antes citado en la
definición declarativa de procesos de observación ejecutados durante la carga de datos
de observaciones.

– Implementación distribuida, paralela y columnar del lenguaje declarativo de análisis
espacial. La ingente cantidad de datos que deben ser procesados fuerza la utilización de
las infraestructuras cluster multi-nodo y arquitecturas hardware multi-core que existen
actualmente.

El diseño e implementación de GeoDADIS ha significado un esfuerzo de generalización
hacia el desarrollo de servidores de adquisición y diseminación de datos. GeoDADIS propone
una nueva arquitectura escalable y extensible que soluciona el problema de la heterogeneidad
en el acceso y diseminación de datos de sensores. La arquitectura general de GeoDADIS
está dividida en tres capas software. La funcionalidad que se encarga del control del sistema,
así como de la gestión de los datos y metadatos de configuración, está proporcionada por
los componentes de la capa Gestión de Datos y Control. Los procesos de muestreo de la
capa Adquisición de Datos permiten la adquisición de medidas producidas por sensores hete-
rogéneos a través de canales de adquisición externos. La capa Interacción Externa permite la
interacción de GeoDADIS con usuarios, aplicaciones externas y administradores. Se permiten
dos tipos de comunicación. La aproximación publicación/suscripción permite la suscripción a
los datos de forma que sea GeoDADIS el que envía los datos a los suscritores a medida que los
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va obteniendo. La aproximación cliente/servidor permite a los clientes consultar directamente
los datos almacenados en el sistema. La flexibilidad se consigue en GeoDADIS gracias al uso
de diferentes patrones de diseño software tanto en la implementación como en el diseño de
sus diferentes componentes. El patrón Adapter facilita la incorporación de nuevos servicios
de datos, servicios de control remoto y canales de adquisición de datos con cambios mínimos
en los componentes internos del sistema. La incorporación de dichos elementos requiere úni-
camente de actualizaciones de la información de configuración. La flexibilidad, escalabilidad
y extensibilidad han sido validadas durante el desarrollo de un prototipo para adquisición y
diseminación de datos basado en GeoDADIS que permite la monitorización del estado de
salud en entornos educativos.

El diseño de SODA se ha dividido en diferentes tareas. En primer lugar, se ha definido un
modelo de datos espacio-temporal que incluye nuevos tipos (espaciales y temporales), y es-
tructuras de datos (Dimensiones, Extensional MappingSets, Intensional Mappings) necesarias
para la correcta representación de datos de Entidades y datos Raster de forma integrada. So-
bre este primer modelo de datos se ha construido un modelo de datos que dota al sistema de
la semántica de observación requerida gracias a la definición de un nuevo lenguaje llamado
XODDL. A continuación, se ha definido un lenguaje declarativo espacio-temporal para el
análisis de datos llamado MAPAL. Además de la especificación de datos y tareas de análi-
sis, este lenguaje permite la definición de procesos analíticos. Estos procesos se ejecutan de
forma interna y proporcionan nuevas observaciones a partir de observaciones externas regis-
tradas por los diferentes canales de adquisición. Finalmente, se han definido los operadores
de sistema que se encargan de ejecutar las tareas definidas por el usuario en MAPAL. Las
ventajas principales de SODA se puntualizan a continuación:

– Tanto el modelo de datos de observaciones espaciales como la definición declarativa de
los procesos analíticos incorporan y dan soporte a la semántica de datos de observa-
ciones.

– Se proporciona soporte directo a la representación y análisis integrado tanto de datos
E/R convencionales como datos espaciales, temporales y espacio-temporales muestrea-
dos.

– Los nuevos tipos de datos espaciales y temporales permiten la representación y trans-
formación entre diferentes resoluciones tanto en el dominio espacial como temporal.
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– El concepto matemático de función se utiliza para representar tanto datos (mediante la
nueva estructura de datos Extensional MappingSet) como comportamiento (mediante
la nueva estructura de datos Intensional Mapping). Así pues, esta solución debería ser
de fácil uso para usuarios del ámbito científico. Adicionalmente, esta aproximación
funcional facilita la definición y reutilización de resultados intermedios.

– La incorporación de los nuevos lenguajes propuestos, MAPAL y XODDL, en servicios
web es muy sencilla debido a que están basados en el lenguaje declarativo XML.

– La implementación eficiente de SODA se ha visto beneficiada por las estructuras de
datos no anidadas que se han definido en el modelo de datos.

Se ha propuesto también la implementación de un prototipo de forma que se pueda com-
parar a SODA con las soluciones existentes en el estado del arte para el análisis de datos es-
paciales y espacio-temporales. Los beneficios de los modelos de datos y operadores definidos
se han demostrado en los resultados de rendimiento obtenidos por el prototipo implemen-
tado. Los tiempos de ejecución obtenidos para la operación de join espacial, implementada
para esta comparativa, mejoran los obtenidos por las soluciones existentes actualmente (p.
ej., GeoSpark, LocationSpark, Stark). Dichos tiempos de ejecución son órdenes de magnitud
inferiores a los obtenidos por los competidores. Además, los test de escalabilidad demuestran
un rendimiento similar al de las mejores soluciones actuales.

El principal inconveniente de SODA viene dado por la adopción de un nuevo paradigma
funcional de gestión de datos por parte de los usuarios de bases de datos tradicionales. Sin
embargo, el formalismo funcional se ha combinado con el bien conocido formalismo lógico
a la hora de definir MAPAL. Por tanto, los constructores de MAPAL son muy similares a los
constructores que están presentes en otros lenguajes disponibles actualmente como XQuery.

Para finalizar este resumen, se van a comentar las líneas de trabajo futuro que se pueden
derivar de esta Tesis.

Respecto a GeoDADIS, las futuras líneas de investigación deberían estar relacionadas
con la ampliación del sistema de forma que se pueda dar soporte para la adquisición y dise-
minación de las observaciones complejas que producen los sensores remotos (p. ej., lidar,
radar).

En cuanto a SODA, se pueden identificar diferentes vías de trabajo futuro. A continuación,
se detallan las más relevantes:
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– Incorporación de nuevas técnicas de optimización de consultas.

– Definición de nuevas estructuras de indexación.

– Diseño e implementación de nuevas estrategias de particionamiento para Dimensiones,
Extensional MappingSets y datos espaciales.

– Incorporación de técnicas de procesamiento aproximado de consultas sobre Extensional
MappingSets almacenados.



CHAPTER 1

INTRODUCTION

1.1 Background

A myriad of data acquisition devices is observing every day more variables and generating
a vast amount of data in almost every application domain, e.g., health care, home automa-
tion, clean energy production, weather forecast, natural disaster prediction. Furthermore, an
increasing number of research areas are involved in the efficient acquisition and management
of data, e.g., Sensor Networks, Data Logging, Internet of Things (IoT), large scale data man-
agement, and in the intelligent exploitation of information, e.g., Data Analytics and Mining.

Environmental observation data is an essential portion of such generated data, whose
spatio-temporal nature has posed interesting data management challenges. More specifically,
important research efforts have been devoted to Environmental Observation Data Manage-
ment Systems for decades. Two features are common to all these systems: spatio-temporal

observations and heterogeneity.

Spatio-temporal observations

The location of each observation in some reference space and the time when the observed
value of an observation applies to the observed property are important pieces of metadata
that must be used during the analysis. In the context of this Thesis, the Observations and
Measurements (O&M) conceptual schema [30] of the Open Geospatial Consortium (OGC)
was adopted as the theoretical framework for the definition of the concept of observation

and other related concepts (e.g., observed property, observed value). An observation en-
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: OM_Observation

+phenomenonTime: TM_Object = 07/02/2018 11:49

: Measure

+value = -15
+uom = ºC

+observedValue

temperature_sensor: OM_Process

+serial_number = LXA5506000EM00
+model = TM09-BELL
+trigger_type = time-triggered
+time_frequency = 10 min
+resolution = 0.5

air_temperature: GFI_PropertyType

+observedProperty

+observationProcess

EOAS_weather_station: Weather_Station

+name: String = EOAS-Santiago
+owner: String = Xunta de Galicia
+geometry: GM_Object = Point(536101 , 4747354, 23029)

+observedEntity

Weather_Station

+name: String
+owner: String
+geometry: GM_Object
+air_temperature: Measure
+air_humidity: Measure
+soil_temperature: Measure
+soil_humidity: Measure
+wind_speed: Measure
+solar_radiation: Measure

«instanceOf»

Figure 1.1: OGC Observation example.

closes both an observed value and the relevant observation metadata that provides observa-
tion semantics required to adequately interpret it. An example of an observation is shown in
Fig. 1.1. An observed value (-15) with a specific unit of measure (ºC) of an observed property

(air_temperature) is provided by an observed entity (EOAS_weather_station). An ob-

served entity may have both conventional properties (name, owner, geometry) and observed

properties (air_temperature, air_humidity, soil_temperature, soil_humidity,
wind_speed, solar_radiation). Values of conventional properties are usually assigned
by some authority whereas values of observed properties are estimated by some observation

process (temperature_sensor). It is mandatory to register properties (serial_number,
model, trigger_type, time_frequency, resolution) of the specific observation pro-

cess used to generate the observed value. Observation processes may be of very different na-
ture, including physical devices (e.g., temperature sensors), tasks performed by people (e.g.,
data registered by an operator) and data processing algorithms (e.g., weather forecast). It is
also mandatory to register the phenomenonTime (07/02/2018 11:49), i.e., the time instant
when the observed value applies to the observed property. Notice for example that the weather
forecast (observation process) might take into account historic data values obtained some time
ago. The type of observation data produced by an observation process is determined by two
characteristics: i) whether the process is executed periodically (time_triggered) or trig-
gered by specific events (event_triggered); ii) the relative position of the process with
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Figure 1.2: Observation data types.

respect to the observed entity (in-situ or remote). Different available data types obtained
by combining such characteristics are shown in Fig. 1.2.

Trigger type

Event-triggered processes start at some time instant determined by a specific event. For
instance, a Light Detection and Ranging (LIDAR) image taken at some specific time instant.
Time-triggered processes are executed at some predefined time frequency producing regular
samplings in the temporal domain. As an example, we might register air temperature values
obtained by the temperature sensor of a weather station every ten minutes.

Sensor location

Focusing on sensors (one of the aforementioned observation process types), in-situ sen-
sors are located at the spatial position of the observed entity. They produce a single observa-
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Sodar Unit

Acoustic Pulse
Echo

Spatial resolution

Scattering volume

(a) SODAR (static platform)

VIIRS
Suomi NPP

Spatial resolution

(b) VIIRS (mobile platform)

Figure 1.3: Illustration of 1D and 2D spatial samplings.

tion value at each time instant. Examples of such sensors are a temperature sensor installed
in a meteorological station (static platform) and a GPS device installed in a car (mobile plat-
form). Unlike in-situ sensors, remote sensors are located far away from the observed entity.
They provide several observed values (one for each observed entity) at each time instant. An
example of static remote sensor is the Sonic Detection And Ranging (SODAR), Fig. 1.3(a),
used to register wind speed at different heights above the ground by measuring the scatter-
ing of sound waves produced by atmospheric turbulence. SODAR generates a 1D sampling
of wind speed along consecutive discrete locations of a vertical line profile. An example of
a remote sensor installed in a mobile platform is the Visible Infrared Imaging Radiometer
Suite (VIIRS) installed in the Suomi NPP satellite (Fig. 1.3(b)). VIIRS allows high resolu-
tion images to be acquired both in visible and infrared spectrum, providing a whole view of
the Earth every two days with a spatial resolution of 750 meters. Generated data include 2D
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regular samplings (called Rasters in the area of Geographic Data Management) of color and
temperature of the sea surface.

Heterogeneity

Heterogeneity specifically concerns the data acquisition part of the aforementioned systems,
which need to access data produced by heterogeneous sensing devices (e.g., humidity sensors,
GPS devices, radar, lidar, multispectral scanner sensors) following different software/hard-
ware specifications that are accessed through several communication protocols (e.g., WiFi,
RS-485, Ethernet).

General system architectures of relevant Data Acquisition and Monitoring Applications
[62, 102, 76, 78, 63], and Non Real-Time Supervisory Control Systems [26, 32] are usually
composed of three main components, namely, End-User Applications, Data Servers and Sens-

ing Devices. End-User applications are in charge of data analysis and visualization. Sensing

devices run the observation process and are highly heterogeneous both in functionality and
communication capabilities, as already stated. Acting as a gateway between the heteroge-
neous specific domains of End-User Applications and the heterogeneous collection of Sensing

Devices, one or more Data Servers are added to the system in order to provide homogeneous
data access.

1.2 Problem description

Based on the above, several challenging problems arise during the design and implementation
of Environmental Observation Data Acquisition and Management Systems. Specific issues
related to both observation data acquisition and observation data management are detailed
below.

Regarding observation data acquisition, generalization efforts in sensing devices program-
ming and end-user application development tend to be worthless because of the strong condi-
tioning on vendor specifications and the high dependency on specific domain and user prefer-
ences, respectively. On the other hand, the functionality and architecture of data servers tend
to be very similar in the broad majority of applications. A major challenge however is to pro-
vide the required flexibility to enable data acquisition from heterogeneous sensing devices and
data dissemination through heterogeneous end-user applications. The system must provide
simple and straightforward mechanisms for the incorporation of the following components:
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– New in-situ sensing devices.

– New data dissemination services.

– Different persistent data storage technologies for different observed properties.

Focusing on observation data management, a system must provide the following general
functionalities to effectively manage observation data:

– Management of conventional Entity/Relationship (ER) data related to non-observed
properties of entities.

– Management of sampled data over temporal, spatial (1D and 2D) and spatio-temporal
domains.

– Support for observation data semantics. Relevant observation metadata of observed

properties of entities must be provided.

– Efficient implementation for large scale shared-nothing distributed hardware architec-
tures.

1.3 Motivation

In terms of spatial data software architectures for GIS, recent developments and trends pro-
pose the decomposition of systems into simple and well-defined services, which are often
web-based and whose interfaces follow international interoperability standards of the OGC
and the International Organization for Standardization (ISO). Thus, Spatial Data Infrastruc-
tures (SDI) integrated by distributed services through the Internet can be made available to
GIS developers.

Beyond the previous technological consideration, relevant policies are being adopted to
improve the availability of spatial data sets generated by different public administrations. In
particular, the INSPIRE Directive of the European Union (2007/2/CE, March 14th 2007) en-
courages the creation of a SDI to ensure the interoperability of spatial information systems in
Europe. The application of INSPIRE in the Spanish legislative system forces public admin-
istrations to make their geographic data available through SDI services. Therefore, the new
enriched geographical knowledge allows for the appearance of many applications in different
areas of knowledge that require spatial analysis capabilities.
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In spite of the above needs, to the best of my knowledge, none of the available technologies
and approaches found in data acquisition and data management literature provide support for
all the functionalities required in Section 1.2. More details related to the this assertion are
given in the following paragraphs.

Most of data acquisition systems provide high flexibility to obtain observation data from
heterogeneous sensing devices but lack the required flexibility in data storage and dissemina-
tion capabilities. As opposed to [79], in [17, 26, 53, 67, 89, 96] flexible mechanisms to attach
new sensing devices are provided. However, [96] lacks flexibility to extend implemented
data storage technologies whereas [17, 26, 53, 67, 89] provide limited capabilities. Flexible
ways to attach new dissemination services are provided in [79] as stored procedures and user-
defined functions accessible through web-form interfaces. Such flexibility is not available in
[89, 96] and is very limited in [17, 26, 53, 67].

A huge amount of research effort devoted to observation data management may be found
in data management literature. The area of spatial databases [46, 68] is one of the most active
research areas providing many research approaches. Even the ISO SQL standard [58], im-
plemented by well known DBMSs [83] has been extended with relevant spatial functionality.
These tools currently enable declarative querying over spatial data, including support for 2D
rasters. High performance Data Warehouse [54] and NoSQL [77] tools implement spatial
extensions although raster data are not supported. Recording and processing of conventional
and spatial data, including rasters, are currently supported by available GIS tools [81]. Declar-
ative data analysis, not provided by such GIS solutions, is supported by array data managers
[15, 22] for very large collections of array raster data. Even though declarative analysis of
relational data through array data structures is not very user friendly, an attempt of integrated
management of relational and array data was tried in [111] but the user has to deal with both
relational and array semantics. Systems providing declarative analysis of data streams of sen-
sor data have been developed in [40, 71]. However, raster data are not supported. Finally,
observation data semantics are only supported by standards of OGC, Sensor Web Enablement
(SWE) initiative [30, 84, 23] and specific observation data models and ontologies [20, 29, 72],
although declarative analysis of observation data is not supported.
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1.4 Objective and contribution

Based on all the above characteristics of currently available solutions and approaches, the
main objective of this Thesis is the design and implementation of a generic framework for
spatio-temporal observation data acquisition and declarative analytical processing. This over-
all goal can be divided into three independent specific objectives.

Objective 1 (GeoDADIS): Design and implementation of a generic observation data
acquisition and dissemination server. Generic functionality of this framework must enable the
following features:

– In-situ observation data acquisition through both synchronous and asynchronous data
channels.

– Observation data dissemination through both client/server and publish/subscribe data
services.

– Simple and straightforward incorporation of new observation data storage technologies.

Objective 2 (SODA): Design of a framework for declarative spatio-temporal analysis
in very large spatio-temporal data warehouses. The well known mathematical concept of
function is the foundation of a new simple data model which integrates entity-based and raster
data, and incorporates observation data semantics. A novel declarative language combines
logical and functional constructors already present in other well know languages.

Objective 3: Efficient implementation of spatio-temporal on-line analytical processing
in large scale distributed shared-nothing hardware architectures.

Based on the above objectives, the general system architecture shown in Fig. 1.4 is pro-
posed in this Thesis.

The main contributions of this Thesis may be summarized as follows.

– Generalization of a data acquisition and dissemination server, with great applicability
in many scientific and industrial domains, providing flexibility in the incorporation of
different technologies for data acquisition, data persistence and data dissemination.
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Figure 1.4: System Architecture.

– Definition of a new hybrid logical-functional paradigm to formalize a novel data model
for the integrated management of entity and sampled data.

– Definition of a novel spatio-temporal declarative data analysis language for the previous
data model.

– Definition of a data warehouse data model supporting observation data semantics, in-
cluding application of the above language to the declarative definition of observation

processes executed during observation data load.

– Column-oriented parallel and distributed implementation of the spatial analysis declar-
ative language. The huge amount of data to be processed forces the exploitation of
current multi-core hardware architectures and multi-node cluster infrastructures.
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1.5 Outline of the Thesis

The Thesis dissertation has been organized as follows. Chapter 2 provides a detailed survey of
related state of the art. First, current data acquisition solutions are introduced and compared
with the solution proposed in this Thesis. Then, data analysis systems are reviewed and
classified by their features. Two sections of this chapter are devoted to specific types of these
systems, those designed for distributed spatial data processing and distributed spatio-temporal
data processing respectively.

Chapter 3 provides a detailed description of GeoDADIS. First, the general architecture of
GeoDADIS is introduced in Section 3.2. Next, the most important components of GeoDADIS
architecture and specific elements enabling communication between them are explained in
depth in Section 3.3. Finally, an experimental implementation of such architecture enabling
the integration of environmental and health data is provided in Section 3.4.

In Chapter 4 the design of SODA is described. The underlying spatio-temporal and ob-
servation data models enabling the representation of spatio-temporal and observation data re-
spectively are defined in Section 4.2. Then, an observation data analysis framework is defined
in Section 4.3. In Section 4.3.1 a novel XML-based declarative language, called MAPAL,
for the definition of analysis tasks is described. The use of such language to define analytical
processes to be executed inside the framework is illustrated in Section 4.3.2. Then, system
operators defined to execute analytical tasks provided by users are broadly explained in Sec-
tion 4.3.3. Finally, in Section 4.3.4, an example of how MAPAL sentences are translated into
system operators to be executed by the framework is exposed.

A prototype implementation of the spatio-temporal data model and the observation data
analysis framework is broadly detailed in Chapter 5. Section 5.2 is devoted to the imple-
mentation of defined data types. Section 5.3 provides an extensive explanation of both in-
memory and disk data structures implementation. User-defined data types and user-defined
functions required to properly represent MAPAL data types and primitive mappings within
Spark DataFrames are described in Section 5.4.1 and Section 5.4.2 respectively. An imple-
mentation of the flexible structure defined to add new data channels to the framework is cov-
ered in Section 5.5. Besides, two specific data channels defined to import and export GeoTIFF
and PostGIS data have been implemented for illustration purposes. Section 5.6 details the im-
plementation of system operators defined in Section 4.3.3. Finally, Section 5.7 shows the
results obtained from the prototype evaluation. Current state of the art solutions are compared
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to our prototype by testing the performance of the spatial join operation. Both execution time
and scalability results are provided.

Chapter 6 highlights the major conclusions of this Thesis and proposes future lines of
research.





CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Introduction

In this chapter a detailed description of related research work is discussed. For an easier
understanding the discussion is divided here into four sections. First, several approaches
related to the area of Data Acquisition Systems are exposed in Section 2.2. Next, state of
art in the area of Data Analysis Systems is discussed in Section 2.3. Section 2.4 is devoted
to related work in the area of Parallel and Distributed Proccessing of Spatial Data. Finally,
approaches for Distributed Spatio-Temporal Data Processing are described in Section 2.5.

2.2 Data Acquisition Systems

There is a plethora of sensor networks that have been developed and widely deployed in
almost every application domain as a product of the vast research effort carried out during the
last three decades. Specifically, monitoring and control applications have been seen as main
targets of such effort during the last decade.

As stated in [28], a Distributed Control System (DCS) is composed of heterogeneous col-
lections of physical devices connected through different communication protocols. Although
the full-control functionality of a DCS is out of the scope of the data acquisition capabilities
of GeoDADIS (e.g., real-time and fault tolerance constraints), similarities between some DCS
components and GeoDADIS may be found.
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2.2.1 CORFU Framework

A Common Object-oriented Real-time Framework for the Unified (CORFU) development
of distributed IPMCS (Industrial Process Measurement and Control Systems) applications is
defined in [96]. The CORFU framework adopts the function block concept defined by IEC
standards [55, 56] and proposes a new network topology for fieldbus interconnection. The
core element in the proposed network topology, called interworking unit, is composed of the
following building blocks.

– Virtual Field Bus (VFB): the main component of the interworking unit abstracts any
commercial fieldbus to the IEC 61499 [55] level. This abstraction allows for interoper-
ability in fieldbus level.

– Fieldbus Wrapper: allows for wrapping different fieldbus specifications to the VFB.

– Industrial Process-Control Protocol (IPCP): each interworking unit implements the
IPCP on top of TCP/UDP layers. The IPCP has been defined for the development,
distribution, and operation of function block based industrial process measurement and
control applications.

In this solution the interworking units are located between each fielbus and a backbone
network that provides real time interconnection of fieldbus segments. The architecture of the
interworking unit adopts the Adapter pattern [41] to ease the incorporation of new wrappers
that enable the interconnection of heterogeneous fieldbuses to the selected backbone. Sim-
ilarly, GeoDADIS implements the Adapter pattern to access data acquisition channels, data
services and control clients.

2.2.2 TORERO Project

The research project TORERO (total life cycle web-integrated control) specifies a new DCS
environment. The main element of the TORERO DCS [89] is a mechatronic component,
called torero device, providing intelligent control. In a TORERO environment the required
control functionality is realized by all torero devices working in collaboration. The architec-
ture of a torero device is divided into three layers:

– Physical layer: sensor/actuator elements.
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– Hardware layer: processor, storage, RAM, Ethernet interface, connectors to the sen-
sor/actuator elements, etc.

– Software layer: Operating System, Java Virtual Machine, FTP, HTTP, the control ap-
plication, etc.

The control application can only access hardware components via so called device func-

tions. A device function is an abstraction of the underlying hardware, i.e., a wrapper that
allows heterogeneous hardware to be controlled by the same control application software. As
stated in Subsection 2.2.1, GeoDADIS also implements the Adapter pattern.

2.2.3 Chimaris and Papadopoulos, 2007

A generic component-based framework that can be used to build telecontrol applications was
defined and implemented in [26]. The main components of this framework, called remote

units, are small intelligent subsystems. Each remote unit must perform the following tasks.

– Handle every connected device (alarms, lights, heating, etc.).

– Monitor the connected devices and transmit data changes and message alerts to the
control center.

– Change its behavior based on received update and control messages.

– Support secure and consistent communication.

– Ensure the availability and efficiency of the communication channel.

Based on the above, a remote unit may include control functionality that goes beyond the
control capabilities of GeoDADIS. However, the flexibility requirements imposed during the
design of GeoDADIS for data dissemination, data storage and remote control are not present
in [26].

2.2.4 Horsburgh et ál., 2011

An environmental observatory information system that supports collection, organization, stor-
age, analysis and publication of hydrologic observations is described in [53]. The architectural
and procedural components are described as follows.
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– Data Observation and Communication: sensors and telemetry systems used to collect
observations.

– Data Storage and Metadata: data models, database systems and software required to
create a persistent data repository.

– Quality Assurance, Quality Control and Provenance: software and procedures for trans-
forming raw data into publishable data products.

– Data Publication and Interoperability: software, protocols, formats and vocabularies
used for publishing data in interoperable formats.

– Discovery and Presentation: tools provided to data consumers for visualization and
analysis purposes.

Related to GeoDADIS are the Data Storage and Metadata and Data Publication and

Interoperability components. The former enables persistent storage of both sensor data and
metadata. An important added-value step in this component involves the mediation across
the variety of software supporting sensor and communication systems. Such a mediation
is achieved in GeoDADIS by the implementation of wrappers for different data acquisition
channels, as already mentioned. The latter provides data dissemination functionality, achieved
in GeoDADIS by the implementation of data services.

2.2.5 GEOSWIFT Infrastructure

GeoSWIFT is a distributed geospatial infrastructure for the Sensor Web1 proposed in [67].
The core component of GeoSWIFT is the open geospatial sensing service, which serve as
a single queryable global sensor for Sensor Web users. Each sensing service role and its
behavior are explained below.

– Sensing Server: provides a web-enabled interface for sensor systems and their geospa-
tial information. The standard for sensor data access exposed by GeoSWIFT is based
on the specifications provided by the Sensor Web Enablement (SWE) initiative [19] of
the OGC.

1 “A Sensor Web is a system of intra-communicating spatially distributed sensor pods that can be deployed to
monitor and explore new environments” [61].
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– Sensing Registry: plays a central role in publishing, finding, and binding to network-
accessible services by providing a common mechanism to classify, register, describe,
search, maintain, and access information about Sensor Webs and other Web Services.

– Viewer: GeoSWIFT Viewer is based on GeoServNet Viewer2.

As in the case of GeoDADIS, the Sensing Server of GeoSWIFT acts as a gateway that
hides the different communication protocols, data formats and standards of sensor systems
and provides a standard interface for clients to collect and access sensor observations. Despite
of the similarities between GeoSWIFT and GeoDADIS, GeoSWIFT does not achieve the
flexibility requirements imposed during the design of GeoDADIS.

2.2.6 LIFE UNDER YOUR FEET (LUYF) Sensor Network

A data access gateway is implemented in [79] to gather data from a Wireless Sensor Network
(WSN) for soil monitoring. Core components of LUYF are detailed below.

– Data Collection Subsystem: composed of motes and a base station. Each mote is con-
nected to a data acquisition board providing ambient light, temperature and soil mois-
ture sensors. Motes sample data at some predefined temporal resolution, typically every
minute, and store them in local memory. The base station requests stored data from
motes once every two weeks and stores the retrieved measurements in the database.

– Database: raw measurements arrive from the base station as ASCII files. First, received
data are loaded into a temporary table. Next, duplicates are removed and data are stored
as raw data. A multi-step pipeline is required for converting raw data to scientifically
meaningful values. Such process is automatically performed by a stored procedure for
all sensors within the database. Stored procedures and user defined functions, accessible
through web-form interfaces, provide access to aggregated data.

The major drawback of LUYF, when compared to GeoDADIS, is the lack of flexibility
that allows users to add new data acquisition wrappers.

2 GeoServNet Viewer is a 2D/3D Web GIService viewer designed for streaming large amount of spatial data via
Internet.
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2.2.7 SPINE Framework

The general architecture of the SPINE framework [17] is composed of a collection of sensor

nodes connected to the coordinator node that manages the network, collects and analyzes
the retrieved data, and acts as a gateway to connect sensors and wide area networks. The
sensor node manages and abstracts sensors (providing a standard interface to diverse sensor
drivers), and is responsible for sampling and storing sensor data in properly defined buffers.
Two major differences may be found between SPINE and GeoDADIS. First, SPINE enables
the incorporation of signal processing functionality that is out of the scope of GeoDADIS.
Second, the flexibility in the incorporation of new data dissemination and remote control
services of GeoDADIS is not present in SPINE.

2.3 Data Analysis Systems

In this section a comparison between different solutions in the area of data analysis is pro-
vided. Based on generic functionalities required for all observation management systems, the
comparison criteria are specified below.

1. Direct support for observation semantics3: the representation of terms related to an
observation is required. Observed entities allow for the representation of entities with
conventional and observation properties. Effective analysis and correct interpretation
of observed values of some observed property require relevant metadata to be recorded.
Specifically, important metadata to be recorded are the observation process and the
phenomenon time. Observation process and observation entity instances have to be
classified into process types and entity types respectively. Moreover, the recording of
observation process properties should be also supported.

2. Support for the management of sampled data: it is not only for classical E/R data that an
observation data management system must support efficient processing. Data structures
and operations have to be provided to enable effective processing of sampled data. As
aforementioned in Section 1.1, time-triggered processes generate temporal sampling
data and remote sensors usually produce spatial sampling data (raster data). As we will
see below, either highly inefficient approaches or complex nested models arise when
applying the classical relational-based models to sampled data.

3 We refer here to observation semantics provided by [30] and detailed in Section 1.1
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3. Support for multi-resolution temporal and spatial data: observation data is currently
generated with different temporal and spatial resolutions by a huge amount of available
sensors. Because of that, evaluation of operations often implies transformations be-
tween diverse temporal and spatial resolutions. An appropriate data type system should
be provided by observation data management systems in order to simplify these trans-
formations.

4. Simple data modeling approach: for evaluation purposes in the context of this The-
sis, we are considering as non-simple data models those that fulfill one or two of the
following features:

– more than one non-nested data structure.

– nested data structures including records and collections.

It is clear that simple data models have some advantages over non-simple ones, e.g.,
an efficient implementation of a simple model is far more straightforward than a nested
data model implementation, and implementation of different semantics in diverse data
structures often results in not user friendly interfaces.

5. Model based on a well known paradigm: a rapid progression up the learning curve is
enabled when data models are defined based on well known paradigms on account of
many years of user experience.

6. Stream processing approach: stream processing approaches are required when real
time prerequisites are present and there is not a large amount of data to be recorded.
These systems implement small stored data structures and efficiently process input data
streams in order to produce output data streams. Stream processing approaches are
commonly known as Complex Event Processing4 (CEP) and they rely on the evalua-
tion of Continuous Query Language (CQL) expressions [13, 59].

7. On Line Transaction Processing (OLTP) approach: OLTP approaches are required
when real time prerequisites are present with simple temporal patterns and there is a
large amount of data to be recorded. This approach is traditionally supported by con-
ventional DBMSs for reasonably large data collections and provided by both NoSQL
[77, 8] and NewSQL [105] solutions in the new era of Big Data Management.

4 Also known as Information Flow Processing Systems [31]



32 Chapter 2. Background and related work

8. On Line Analytical Processing (OLAP) approach: OLAP approaches are required when
real time prerequisites are not present and there is a large amount of data to be recorded.
We usually identify these systems in Data Warehouse solutions implemented by Bussi-
nes Intelligence (BI) applications. Examples of high performance implementations are
Hewlett-Packard Vertica [99], which is an evolution of C-Store [93], and the open
source MonetDB database [54]. Recent research solutions on column-oriented tech-
nologies serve as a basis for efficient implementations of those Big Data solutions. In-
deed, the column-based storage of relational data, instead of the traditional row-based
storage, is the major contribution of these approaches. Main features are:

– efficient compression techniques.

– processing over compressed data.

– columns not involved in computations are not retrieved from storage.

As major drawback we can mention the inefficient performance of insertions, updates
and deletions of data. This makes them suitable for data warehouses.

9. Support for declarative processing: taking into account that procedural solutions are
dominant in application domains such as environmental applications handling sampled
observation data, and that procedural approaches have well known disadvantages com-
pared to declarative languages, it is clear the motivation for applying declarative data
management technologies to these environmental applications.

10. Support for aggregated queries: effective observation data analysis in OLAP systems
cannot be accomplished without statistical methods providing aggregation functional-
ity.

11. Support for iterative processing: recursive queries are required in only few data man-
agement applications. This is the reason why such functionalities were out of the scope
of first SQL implementations. Current ISO SQL standard and DBMSs vendors support
a kind of limited recursion. Regarding the analysis of observation data in environmental
applications, such functionalities are commonly required to perform many simulations.
Examples of these are forest fire propagation, oil spills, and flooding. Thus, although it
is not a key functionality, support for iterative processing is a desirable feature.
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12. Data processing based on a well known language: as stated for data models, a clear
advantage for data management systems is that the definition of query languages is
based on well known paradigms.

13. Distributed processing of spatial, temporal and spatio-temporal data: traditional tech-
nologies are no longer suitable for processing the large amount of spatial, temporal
and spatio-temporal data currently generated. In fact there is a growing demand for
solutions that support high performance queries on such data. This makes distributed
and parallel processing of spatial, temporal and spatio-temporal data no longer desir-
able but required. Hence, data management systems currently created have as essential
requirement such cluster-based processing.

14. Availability of efficient implementation: a data management approach is really useful
if it can be efficiently implemented. A prototype implementation demonstrates the ap-
proach feasibility and its use in real application domains shows its maturity.

The degree of compliance with the previous evaluation criteria is now detailed for several
related research solutions and available technologies, including also the SODA framework.
Table 2.1 provides an overview of such evaluation. For each approach, P represents that the
relevant criterion is partially supported and Y represents that is completely supported. A more
detailed discussion is given below.

2.3.1 OGC SWE Standards

The Sensor Web Enablement (SWE) of the OGC provides standards for interfaces of web ser-
vices that are related to the management of environmental observation data. In particular, the
Observations and Measurements (O&M) [30] and Sensor Model Language (SensorML) [84]
were already mentioned in Chapter 1. The Sensor Observation Service (SOS) [23] defines a
web service interface to query observation data collections, either stored or directly obtained
from devices. Data is transferred between client and server in standard XML encodings of
O&M and SensorML models. Query capabilities of SOS are limited to just filtering. Re-
garding data processing, OGC defines the Web Processing Service (WPS)[88] interface that
enables the invocation of data processing algorithms through the web. Various implementa-
tions of the above standards already exist in the market, both with commercial and open source
licenses. In general it is obvious that O&M provides appropriate support for the modeling of
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OGC SWE Stds. Y Y Y Y

Obs. Data Models Y Y Y

GIS Y Y Y Y

Sensor Stream Y Y Y P P P Y

Spat. and ST DBMSs Y Y Y Y P P P P Y

Spatial NoSQL Y Y Y

Spatial HP DW Y Y Y P P P Y

Array Data Managers Y Y Y Y Y Y

SciQL Y P Y Y Y P Y

Dist. Proc. Systems Y Y Y Y Y Y

SODA Y Y Y Y Y Y Y

Table 2.1: Comparison of related technologies.

observation semantics and sampled data. Different spatial and temporal resolutions are sup-
ported but transformations are a user matter. The underlying object oriented data modeling
approach with XML encodings is well known. However, nested structures are required to sup-
port sampled data. Declarative data processing is not supported at all as WPS just provides
means for remote procedure calls.

2.3.2 Observation Data Models

Beyond the above O&M OGC standards, several data models and ontologies have been pro-
posed to support observation data semantics [20, 29, 72]. They are based on well known
paradigms and provide observation data semantics with simple data modeling approaches.
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However, sampled data and multi-resolution is out of the scope of these models as well as any
kind of data processing.

2.3.3 Geographic Information Systems (GIS)

Currently, a wide variety of GIS tools, both with commercial and open source licenses, are
available. A representative example of them is GRASS [81], which supports the management
of any kind of geographic data, including rasters, recorded in many different well known mod-
els and formats. Raster data management is usually formalized with relevant raster algebras
[24]. Observation semantics are not considered in GIS and although the managed data may
have many different spatial resolutions, transformations between them have to be explicitly
done by the user to perform operations. Spatial data processing is a strength of tools like
GRASS. However, it is performed by the execution of a very large amount of different com-
mands. Therefore, a declarative language is missing. Notice that the user must know which
is the functionality of each command and how to combine them, thus only expert users may
take real advantage of spatial data analysis with GIS tools.

2.3.4 Sensor Stream Processing Approaches

Various Stream Processing approaches have been explicitly proposed for the management of
data generated by sensor networks [40, 71]. Although they were defined for sensor data man-
agement, observation data semantics are not explicitly incorporated and are delegated to user
interpretation. Any kind of spatial data management is out of the scope of these approaches.
They support declarative real-time processing of streams with aggregation functionality based
on SQL like languages. Real-time requirements of these approaches are clearly in conflict
with the support of iterative processing.

2.3.5 Spatial and Spatio-Temporal DBMSs

Many temporal extensions have been proposed for the classical relational model [33, 91].
Recently, some characteristics have been incorporated into ISO SQL standard [64]. Various
spatial [46, 68, 98] and spatio-temporal [47, 104] extensions to classical models have been
proposed in the literature. Spatial functionality has already been added to ISO SQL standard
[58], which is currently implemented by most of the available DBMSs (see [83] for an ex-
ample). Direct support of observation semantics is out of the scope of spatial DBMSs. They
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support management of conventional E/R data with a well known object-relational paradigm
and SQL, where properties of entities might have spatial data types (point, line, surface,
etc.). Extensions for raster data are also supported by some approaches and systems [83], how-
ever, they require nested structures and do not provide explicit support for multi-resolution.
They can be used both for OLTP and OLAP, but in the general case they were not designed
with Big Data requirements in mind. Regarding declarative data processing, it is only effi-
ciently supported for non-sampled data and it includes both aggregations and SQL recursion
for iterative queries. To manipulate raster data with SQL constructors it has to be unnested
from a complex value of a raster data type, which is a highly inefficient task.

2.3.6 Spatial NoSQL Databases

Systems following a NoSQL approach and providing spatial data management capabilities
are still few. An example is the extension of MongoDB [77] with support for the management
of GeoJSON encoded data. Their functionality is very limited both in data modeling and
processing.

2.3.7 Spatial High Performance Data Warehouses Approaches

As stated in Criterion 8, a great research effort has been recently devoted to column-based
implementations for OLAP. But, according to the best of my knowledge, spatial functionality
over a high performance implementation is only provided by MonetDB DBMS [54]. Main
drawbacks are the following.

– Support for iterative processing, sampled data and observation semantics is not pro-
vided.

– Support for declarative processing is partially supported.

– Recursive queries are not implemented.

2.3.8 Array Data Managers

Current array data manager developments [15, 22] heavily rely on array algebras [16]. The
core idea behind these array data managers is to provide high performance OLAP over very
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large arrays by using a simple array data model. Moreover, aggregation functionality is pro-
vided by implemented declarative array query languages. Main drawbacks of these systems
are detailed below.

– Support for iterative processing, multi-resolution and observation semantics is not pro-
vided.

– Implemented languages are quite cumbersome for DBMS users because of the array
semantics and complex array operators, even when their flavors are very similar to the
SQL one.

2.3.9 SciQL

SciQL [111] is a query language based on SQL intended to be used in science applications.
Main features of SciQL are as follows.

– Support for entities and sampled data.

– Integrated analysis of array and relational data.

– Declarative queries with aggregation.

The current implementation of SciQL makes use of MonetDB [54] technologies and
shows the following drawbacks.

– Recursion is not included for iterative processing.

– The relational model is more complex because of the inclusion of an array data struc-
ture.

– The array semantics added to SQL makes SciQL not very friendly to DBMS users.

– Support for multi-resolution and observation semantics is not provided.

2.3.10 Distributed Processing Frameworks

A strong research effort is being carried out in the area of data management devoted to the de-
sign and implementation of distributed analysis frameworks for large scale spatial and spatio-
temporal data . Detailed descriptions of several leading approaches are provided in Sections
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2.4 and 2.5, focused on spatial and spatio-temporal data respectively. Main shortcomings of
these systems are detailed below.

– Support for stream and iterative processing is not provided.

– Some approaches provide declarative processing by defining novel declarative lan-
guages mainly based on SQL.

– Observation semantics functionality is out of the scope of these solutions.

– Only GeoTrellis [43] enables multi-resolution and sampled data analysis.

On the other hand, all of them provide simple data models and are based on well known
languages and data models.

2.3.11 SODA

The main features of the SODA framework are now itemized in order to carry out a valid
comparison in terms of a qualitative evaluation.

– Support for sampled data, multi-resolution and observation semantics is provided.

– The mathematical concept of function serves as a basis for its non-nested data structure.

– Declarative spatio-temporal analysis and aggregation functionality is incorporated.

– Functional and logical constructors are combined in the declarative language.

– The relational paradigm has not served as a basis for the definition of the data model or
the query language.

– A distributed spatio-temporal observation data processing implementation is provided.

2.4 Distributed Spatial Data Processing Systems

The relevance of Spatial Computing [90] is increasing in recent years due to the explosion
experienced in the volume of spatial data produced by mobile applications and devices. Nu-
merous specialized spatial data processing systems have been developed in the last five years
to grapple with the huge amount of spatial data currently generated. Some spatial analytics
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systems (e.g., SpatialHadoop [37] and Hadoop GIS [5]) follow a disk-based strategy, i.e.,
they have been optimized for IO efficiency rather than memory usage. These systems do
not have to worry about fault tolerance or computation distribution thanks to the underlying
MapReduce [34] architecture. They usually provide a set of spatial operators that allows users
to execute spatial queries outperforming spatial extensions of relational database systems by
orders of magnitude [5]. However, these systems have two major drawbacks.

– Despite data reuse is very common in spatial analytics, these systems do not reuse inter-
mediate data. Developed on top of Hadoop [9], intermediate results have to be written
to Hadoop Distributed File System (HDFS) [50] preventing further data analysis.

– Since they have not been optimized for distributed memory usage, latency increases
and throughput decreases when scaling to large scale spatial data.

In order to tackle the above challenges, Spark [109] and Spark-related systems (e.g., Spark
SQL [14], Spark Streaming [110], GraphX [44], and MLlib [75]) implement in-memory com-
puting over a cluster of commodity machines. A natural choice is to develop efficient and
novel spatial processing systems based on Spark. Hence, several spatial data management
systems have been implemented on top of the Spark architecture, e.g., GeoSpark [108], Spa-
tialSpark [107], GeoTrellis [43], Magellan [73], LocationSpark [95], and Simba [106]. A
detailed description of these systems is given in the following subsections.

2.4.1 Hadoop GIS

Hadoop GIS [5] is a scalable and high performance spatial data warehousing system for run-
ning large scale spatial queries on Hadoop. The main objective is to provide a scalable, ef-
ficient and expressive spatial query system that allows for the execution of analytical queries
on large scale spatial data. The following are the main features of Hadoop GIS.

– Parallelization of multiple spatial query types and mapping of query pipelines into
MapReduce by performing tasks such as spatial partitioning, implicit and parallel exe-
cution of spatial queries on MapReduce, and execution of effective methods to amend
query results by handling boundary objects5.

5 A boundary object is an object whose spatial extent crosses multiple tile boundaries.
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Algorithm 2.1 Hadoop GIS algorithm for spatial query processing.
1: Data/space partitioning
2: Storage of partitioned data on HDFS
3: Pre-query processing (optional)
4: for tile in input_collection do
5: Index building for objects in the tile
6: Tile based spatial querying processing
7: end for
8: Boundary object handling
9: Post-query processing (optional)

10: Data aggregation
11: Result storage on HDFS

source: Aji et ál., in Proc. VLDB Endow., 2013 [5].

– Support for fundamental spatial queries such as point, containment, join, and complex
queries such as spatial cross-matching (large scale spatial join) and nearest neighbor

queries.

– Implementation of global partition indexing and local on demand spatial indexing.

– Support for spatial declarative queries. Integration with Hive [97] allows for the def-
inition of an expressive spatial query language (extending HiveQL [52]), and for the
automation of translation and execution of spatial queries.

Algorithm 2.1 shows the steps for running a typical spatial query in the MapReduce en-
vironment proposed by Hadoop GIS. Data partitioning is performed by Steps 1 and 2. Data
tiles are generated by space partitioning in Step 1. Then, Step 2 assigns tile unique IDs (UIDs)
to spatial objects, merges these objects and stores them into HDFS. Hadoop GIS takes into
account two major issues when partitioning data. First, high data skew6 may be present in
the spatial dataset [80] causing high density partitioned tiles. To avoid this scenario, Hadoop
GIS splits high density tiles into smaller ones and performs recursive data partitioning. Sec-
ond, boundary intersecting objects have to be properly handled. The multiple assignment
based approach is taken by Hadoop GIS to replicate and assign intersecting objects to each

6 In a distributed computing context data skew occurs when data is unevenly distributed across partitions in
the cluster. Under these conditions, computational load is unbalaced among workers and may lead to longer job
execution times and lower cluster throughput.
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Figure 2.1: Architecture of Hadoop GIS.
source: Aji et ál., in Proc. VLDB Endow., 2013 [5].

intersecting tile. The optional Step 3 is for pre-processing some specific queries, e.g., those
that perform spatial data filtering based on global index. Parallel execution of spatial queries
following the MapReduce paradigm is performed in Step 4. The main component to support
spatial query processing in Hadoop GIS is the REal-time Spatial QUery Engine (RESQUE),
as shown in Fig. 2.1. Two different spatial access methods for query processing are imple-
mented in Hadoop GIS. A global region spatial index of partitioned tiles is used to filter HDFS
file splits, and a tile based spatial index is used for spatial query processing. Identification of
spatial objects within tiles is performed by Hadoop GIS in the mapping phase by using the tile
name or UID to form the key for MapReduce. Depending on the query complexity, different
spatial query pipelines (implemented as map functions, reduce functions or combination of
both) can be executed in MapReduce. Step 8 is for remedying query results when handling
boundary objects. As already stated, Hadoop GIS implements the multiple assignment ap-
proach which is simple to implement and fits nicely with MapReduce model. An optional
post-query processing may be performed in Step 9. Data aggregation and storage of final
results into HDFS are performed in Steps 10 and 11 respectively.

Hadoop GIS provides an integrated query language (QLSP) over MapReduce as shown in
Fig. 2.1. QLSP extends HiveQL with spatial constructs, and spatial query translation and exe-
cution. Moreover, Hive query engine is extended with the RESQUE query engine (HiveSP).
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Figure 2.2: Architecture of SpatialHadoop.
source: Eldawy and Mokbel, in ICDE, 2015 [37].

2.4.2 SpatialHadoop

SpatialHadoop [37] is a MapReduce framework with native support for spatial data. Unlike
previous approaches (e.g., Parallel-Secondo [69], MD-HBase [82], Hadoop GIS), Spatial-
Hadoop do not rely on Hadoop as a black box. Such a different approach prevents Spatial-
Hadoop from suffering the limitations and performance bottlenecks of Hadoop. The main
attributes that allow SpatialHadoop to overcome the limitations of previous approaches are
detailed below.

– Provision of built-in code. SpatialHadoop code is built inside the Hadoop base code to
extend Hadoop core with spatial data functionality. This feature allows SpatialHadoop
to be more powerful and efficient than previous solutions.

– Support for skewed spatial data distributions by implementing a set of spatial index
structures.

– Users are enabled to develop a huge amount of spatial functions, e.g, spatial join, range

queries.

As shown in Fig. 2.2, the SpatialHadoop architecture is divided into four main layers. A
detailed description of each layer is provided below.
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Language Layer. A novel high level SQL-based language, called Pigeon [36], is im-
plemented in this layer. Several languages have been recently defined to reduce coding effort
when working with MapReduce-based paradigms, e.g., HiveQL [52], Pig Latin [85], SCOPE
[112], and YSmart [65]. Pigeon is an extension to Pig Latin providing OGC-compliant spatial
data types, functions and operations. Standard spatial data types (e.g., Point, LineString,
and Polygon) are supported. User-defined functions (UDFs) are harnessed to define spatial
aggregations (e.g., Union), spatial predicates (e.g., Overlaps), and other spatial functions
(e.g., Buffer). A new kNN (k nearest neighbors) statement has been added to support kNN-
queries. In addition, two Pig Latin statements have been overridden. SpatialHadoop overrides
the Filter statement to support range queries, and the Join statement to support spatial
joins.

Storage Layer. As pointed out in [37], several challenges arise when applying tradi-
tional spatial indexes (e.g., Grid file, R-tree [48]) in Hadoop. To overcome these limitations,
SpatialHadoop follows a two-layer indexing approach. A global index, stored in the master
node, allows SpatialHadoop to split data across a set of partitions stored in slave nodes. A
local index, stored in each partition, enables local data to be arranged. Regardless of the un-
derlying spatial index structure, SpatialHadoop defines an index building algorithm composed
of three main phases.

1. Partitioning. Spatial partitioning of the input file into n partitions performed through
the following steps.

a) Compute the number of partitions, n.

b) Define partition boundaries, i.e., the spatial area covered by each single partition.
This process strongly depends on the underlying index being constructed.

c) Perform the physical partition of the input file, given the above partition bound-
aries, through a MapReduce job.

2. Local Indexing. A reduce function is used to build a local index on the stored data of
each physical partition. To make this happen, the reduce function stores the records of
each partition in a spatial index, written in a local index file.

3. Global Indexing. Once local indexing is performed, the master node builds a global
index that indexes all partitions. First, concatenates all local index files into one final
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Figure 2.3: Map phase in Hadoop and SpatialHadoop.
source: Eldawy and Mokbel, in ICDE, 2015 [37].

indexed file. Second, indexes all file blocks using their rectangular boundaries as the
index key to build the in-memory global index.

MapReduce Layer. This layer is responsible for running the MapReduce jobs that pro-
cess the required queries. Fig. 2.3 shows the Map phase of the MapReduce plan in both
Hadoop and SpatialHadoop, highlighting the differences between them. In Hadoop, the File-

Splitter takes the input file and divides the data into n splits, where n is determined based on
the number of available slave nodes. Then, the RecordReader extracts records as key-value

pairs and passes them to the Map function. SpatialHadoop enriches traditional Hadoop sys-
tems modifying the FileSplitter and RecordReader components. The new SpatialFileSplitter

early prunes file blocks not contributing to the answer and generates data splits by exploiting
the global spatial index stored on input files. And the new SpatialRecordReader efficiently
process the previous splits using local indexes.

Operations Layer. The language layer is provided with a myriad of spatial operations
(e.g., range queries, kNN-queries, spatial joins). The operations layer is responsible for the
efficient implementation of all these spatial operations.
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2.4.3 SpatialSpark

SpatialSpark [107] is a prototype system to process large-scale spatial join queries over Spark,
and supports indexed spatial joins based on point-in-polygon test and point-to-polyline dis-
tance computation. The following main goals have been defined for SpatialSpark.

– Identify limitations and advantages of Spark for spatial data processing in cluster envi-
ronments from an architectural point of view.

– Determine the potential performance of modern hardware for large-scale spatial join
query processing.

Different indexing techniques for spatial filtering have been implemented in SpatialSpark.
For spatial refinement, SpatialSpark relies on the well known Java Topology Suite (JTS) pack-
age [60]. To make SpatialSpark compatible with Hadoop-based systems, strings are used to
represent geometries. Although higher efficiency could be possible by representing geome-
tries as binary, avoiding string pairing overheads and allowing flexible disk accesses, this
option is left for future work in SpatialSpark. As all intermediate data are memory resident
in Spark, higher performance is achieved in SpatialSpark by minimizing expensive disk I/Os,
and utilizing finer grained data parallelism.

2.4.4 GeoSpark

GeoSpark [108] is an in-memory cluster computing framework for processing large-scale spa-
tial data, providing support for spatial data types, indexes, and operations by extending the
core of Spark. Specifically, GeoSpark enhances the resilient distributed datasets (RDDs) to
support spatial data (SRDDs). The key features of GeoSpark are the following.

– Support for loading, processing, and analyzing large-scale spatial data over Spark.

– Support for geometrical and distance operations is given by the definition of a set of
SRDD types, e.g., PointRDD and PolygonRDD. Moreover, Spark programmers may
easily develop spatial analysis applications by using the Application Programming In-
terface (API) provided by SRDDs.

– Support for different global spatial data indexing techniques. Input SRDDs are par-
titioned using a grid structure. Then, these resulting grids are assigned to computing
machines for parallel execution.
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Figure 2.4: Architecture of GeoSpark.
source: Yu et ál., in Proc. SIGSPATIAL, 2015 [108].

The architecture of GeoSpark is composed of three layers, as depicted in Fig. 2.4. Apache

Spark Layer serves as the basis where GeoSpark is built on, Spatial RDD Layer provides
support for geometrical and spatial objects and operations, and Spatial Query Processing

Layer executes efficient spatial query processing algorithms.

Apache Spark Layer. Comprises the basic functions natively provided by Spark such
as loading/storing data from/to persistent storage and regular RDD operations.

Spatial RDD Layer. Efficient partition of spatial data elements across cluster nodes is
enabled by the definition of the extended spatial version of the Spark RDD. To write spatial
data analytics applications, novel parallelized spatial transformations and actions in SRDDs
provide users with an intuitive interface. Main features of this layer are pointed out below.

– Spatial Objects. Three new SRDDs (PointRDD, RectangleRDD, and PolygonRDD),
implemented in this layer, allow the storage of different spatial objects. Furthermore,
GeoSpark provides a Geometrical Operations Library which natively supports geomet-
rical operations such as Overlap(), MinimumBoundingRectangle()and Union().

– SRDD Partitioning. GeoSpark automatically partitions every SRDD using a global grid
file. The algorithm for partitioning the SRDDs is as follows. First, a global grid file
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is created by splitting the spatial space into a number of equal geographical size grid
cells. Then, each element in the SRDD is assigned to every overlapping grid cell, i.e.,
if an element intersects with two or more grid cells, it is duplicated and different grid
IDs are assigned to its copies.

– SRDD Indexing. Spatial IndexRDDs which inherit from SRDDs are implemented in
GeoSpark to provide spatial indexes such as Quad-Tree [39] and R-Tree [48]. Further-
more, a local spatial index may be adaptively created on a SRDD partition to find an
optimal trade-off between the run time performance and the memory/cpu usage in the
cluster.

Spatial Query Processing Layer. Once geometrical objects are pre-processed and stor-
ed in the Spatial RDD Layer, users may invoke spatial queries (e.g., Range Query, Join Query)
supported by this layer over large-scale spatial datasets. Query execution is parallelized in
GeoSpark by using features such as partitioned SRDDs, spatial indexing, and fast in-memory

computation. GeoSpark’s algorithms for spatial range, spatial join, and kNN queries are de-
scribed as follows.

– Spatial Range Query. The range query algorithm is executed by GeoSpark following
the steps below.

1: Load target dataset
2: Partition data
3: Create a spatial index on each SRDD partition (optional)
4: Broadcast the query window to each SRDD partition
5: Check the spatial predicate in each partition
6: Remove duplicate spatial objects generated in data partitioning phase

– Spatial Join Query. The algorithm for processing spatial join queries in GeoSpark is
given below.
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1: Load two input SRDDs
2: Partition data
3: Create a spatial index on each SRDD partition (optional)
4: Join the two SRDDs by their keys (grid IDs)
5: Calculate spatial relations of spatial objects that have the same grid ID
6: Keep in the final results only the elements satisfying the spatial relation
7: Group results by grid ID
8: Remove duplicate results

– Spatial kNN Query. GeoSpark implements the following heap based top-k algorithm
[87] to process spatial kNN queries.

1: Load a partitioned SRDD (pSRDD), a point (P), and a number (k)
2: for partition in pSRDD do
3: Calculate distances from the given point P to every object within partition
4: Maintain a local heap containing the nearest k objects around the point P based

on the calculated distances
5: end for
6: Merge results from each partition

2.4.5 GeoTrellis

Geotrellis [43] is a high performance geoprocessing engine and programming toolkit. The
main objective of GeoTrellis is the incorporation of geospatial analysis functionalities to real
time interactive web applications. Focused on raster data processing, the following core prob-
lems are behind the development of GeoTrellis.

– Create scalable high performance geoprecessing web services.

– Parallelize geoprocessing operations to harness multi-core architectures.

– Create large-scale distributed geoprocessing services.

GeoTrellis helps developers to create simple, standard REST [38] services that return
geoprocessing models results. These geoprocessing models are automatically parallelized
and optimized. Both creating new operators and composing new operators with existing ones
are easy tasks in GeoTrellis.
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2.4.6 Magellan

Magellan [73] is a distributed execution engine for geospatial analytics on big data imple-
mented on top of Spark. Modern database techniques are exploited to optimize geospatial
queries. Once the application developer has written standard SQL or dataframe queries
to evaluate geometric expressions, the execution engine efficiently lays data out in mem-
ory, picks the right query plan, and optimizes the query execution with efficient spatial in-
dexes. Magellan supports multiple spatial data types (e.g., Point, LineString, Polygon,
MultiPoint, MultiPolygon) and several spatial predicates (e.g., Intersects, Contains,
Within). Spatial indexes in Magellan support the so called Z-Order curves [49] and are
mainly used to speed up the spatial join performance.

2.4.7 LocationSpark

LocationSpark [95] is a spatial data processing system built as a library on top of Spark,
providing spatial query APIs on top of the standard dataflow operators. The main features of
LocationSpark are shown next.

– Support for spatial querying, spatial data updates, and spatial analytics. A rich set of
spatial query operators (e.g., spatial range, spatial kNN, spatial join, and kNN join) is
provided. LocationSpark supports data updates and spatio-textual operations. More-
over, spatial data analysis functions such as spatial data clustering, spatial data skyline

computation, and spatio-textual topic summarization are provided by LocationSpark.

– Support for global and local in-memory spatial data indexes. Furthermore, an efficient
spatial Bloom filter has been embedded into LocationSpark’s indexes to avoid unnec-
essary network communication overhead.

– Tracking of frequently accessed spatial data and dynamic flushing of less frequently
accessed data into disk.

– Storing spatial data as key-value pairs, where the key is a spatial geometric key (e.g.,
latitude-longitude value, line segment, polyline, rectangle, polygon) and the value type
can be specified by the user (e.g., text type).

The layered system architecture of LocationSpark is depicted in Fig. 2.5. A detailed dis-
cussion of main layers of such architecture is provided below.
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Figure 2.5: Architecture of LocationSpark.
source: Tang et ál., in Proc. VLDB Endow., 2016 [95].

Query Scheduler. This layer is responsible for managing query skew7 to mitigate run-
time performance degradation of spatial queries. First, LocationSpark dynamically collects
statistical information from each partition and detects hotspot data partitions. Then, in order to
choose a set of partitions to be further reallocated to optimal workers, a cost model evaluates
the overhead of repartitioning the hotspot partitions.

Query Executor. Specific query evaluation plans are executed in slave nodes once spa-
tial queries and related data have been scheduled. For various alternative execution plans,
LocationSpark evaluates the runtime and memory usage trade-offs. The best execution plan
is selected and executed on each slave node.

Spatial Indexing. Two layers of spatial indexes (global and local) are provided by Lo-
cationSpark. The global index is responsible for partitioning data among worker nodes. Based
on the underlying data distribution in space, the global index is built to ensure that each data
partition has the same amount of data. A grid index and a region Quad-tree are provided
as global indexes in LocationSpark. Furthermore, to match the needs of different scenarios,
users can specify the type of the local index (e.g., grid local index, R-tree, a variant of the
Quad-tree, or an IR-tree) to be executed on each data partition.

7 Similarly to data skew, query skew occurs in a distributed computing environment when some queries are
unevenly distributed in space and a number of data partitions are overwhelmed.
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Memory Management. It is very common for spatial data analysis systems that certain
partitions are queried more frequently than others. To deal with this issue, LocationSpark
records access frequencies and corresponding time stamps in the spatial index. Then, access
frequencies are aggregated to detect the most frequently accessed data. Finally, the most
frequently accessed data is cached into memory and the less frequently used data is stored
into disk.

2.4.8 Simba

Simba [106] is a scalable distributed in-memory analytics engine supporting efficient spatial
queries and analytics over big spatial data. The main objectives of Simba are pointed out
below:

– Simple and expressive programming interfaces.

– Low query latency.

– High analytics throughput.

– Excellent scalability.

Next, key features of Simba are highlighted:

– Support for rich spatial queries and analytics by extending Spark SQL [14] with core
spatial operations. An expressive programming interface for these operations is offered
in both SQL and DataFrame API.

– Support for spatial indexing to provide low query latency.

– Execution of multiple spatial queries in parallel to improve analytical throughput.

– Selection of good spatial query plans by using cost-based optimizations (CBO).

– Supply of novel algorithms for efficient and scalable execution of spatial operators.

The architecture of Simba, depicted in Fig. 2.6, shows the novel components added to the
Apache Spark stack. A brief explanation of these components is provided below.
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Figure 2.6: Architecture of Simba.
source: Xie et ál., in Proc. SIGMOD, 2016 [106].

Simba SQL Parser and Extended DataFrame API. The Spark’s DataFrame API and
the Spark SQL’s query parser have been extended with a set of spatial operators, and spatial
keywords and grammar, respectively. Hence, users are allowed to express spatial queries
using SQL-like statements or calling the novel spatial DataFrame API operators. Furthermore,
Simba introduced index management commands in its programming interface similarly to that
in traditional RDBMS.

Indexing. As previous works, Simba implements a two-layered indexing strategy to
achieve better query performance. Several classic index structures such as hash maps, tree
maps, and R-trees are implemented over Spark RDDs. Irrelevant partition pruning is possible
through the collection of statistics from each RDD partition carried out by the global index.
Local query processing inside each RDD partition is accelerated by local indexes in order to
avoid scanning the entire partition. Index management commands allow users to build and
drop indexes anytime on any table. The standard RDD structure has been extended with a
new abstraction, called IndexRDD, that allows to persist indexes and associated data into disk
and load them back to memory easily.

Spatial Operations. A number of spatial operations are supported only for point and
rectangular objects. Simba provides different access and evaluation paths for each operation.
Hence, both final users and Simba’s query optimizer may choose the most appropriate method.

Extended Query Optimizer. A CBO module is implemented in Simba by extending
the Catalyst optimizer of Spark SQL. This module leverages index support in Simba to make
the best use of existing indexes and optimize complex spatial queries.
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2.5 Distributed Spatio-Temporal Data Processing Systems

Big spatio-temporal data processing has become an important topic due to the huge amount
of devices and applications providing large scale spatio-temporal data. Similarly to previous
solutions for spatial data processing, current efforts in big spatio-temporal processing are built
on top of the two aforementioned leading distributed large scale data processing frameworks,
namely Hadoop [9] and Spark [109, 10]. Examples of implementations over MapReduce in-
clude a novel spatio-temporal indexing approach provided for the efficient processing of big
array climate data [66], a query processing engine for massive trajectory data [70], a novel
storage system for big spatio-temporal data analytics [94], and a system for querying and
visualizing spatio-temporal satellite data [35]. ST-Hadoop [6] and Stark [92], two leading ap-
proaches based on Hadoop and Spark respectively, are discussed in the following subsections.

2.5.1 ST-Hadoop

ST-Hadoop [6] is a comprehensive extension to Hadoop and SpatialHadoop that provides
native support for spatio-temporal data by injecting spatio-temporal data awareness inside
each of their layers. ST-Hadoop replicates spatio-temporal index structures when loading
data into HDFS. Consequently, aswers are retrieved by spatio-temporal queries with minimal
data access. As we can see in Fig. 2.7, ST-Hadoop’s architecture is largely similar to the
SpatialHadoop’s architecture. A description of its component layers is provided below.

– Language layer. The Pigeon [36] language has been extended to provide support for
spatio-temporal data types (e.g., Time, Interval) and operations (e.g., Overlap,
Join) over these new data types.

– Operations Layer. Two common spatio-temporal operations (spatio-temporal range

query and spatio-temporal join query) are implemented in this layer.

– MapReduce Layer. The SpatialHadoop’s MapReduce layer has been changed to allow
ST-Hadoop to exploit its spatio-temporal indexes and to implement spatio-temporal
predicates.

– Indexing Layer. Input files are indexed in ST-Hadoop following the next steps.

1. Sampling. The spatial distribution of objects and how that distribution evolves
over time is estimated by reading a random sample of the input data.
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Figure 2.7: Architecture of ST-Hadoop.
source: Alarabi et ál., in Proc. VLDB Endow., 2017 [6].

2. Bulk loading. The spatio-temporal boundaries8 for the ST-Hadoop’s index are
built as follows. First, temporal boundaries are determined by dividing the in-

memory sample into multiple intervals. Next, spatial boundaries are determined
for data within each temporal slice. Finally, the two-level indexing is bulk loaded
into a temporal hierarchy index. By default, the temporal hierarchy index provides
four layers with a resolution of days, weeks, months, and years.

3. Scanning. ST-Hadoop scans the input file, physically partitions HDFS blocks,
and assigns records to all overlapping partitions. The bulk loaded spatio-temporal
boundaries, provided by step 2, determine the ST-Hadoop partitions.

2.5.2 Stark

Stark [92] is a framework for scalable spatio-temporal data analytics on Spark. By imple-
menting different data types and several spatio-temporal operators (e.g., spatio-temporal filter

and join) with various predicates, Stark is able to provide data analytics operations such as
kNN search and density based clustering. The major features of Stark are identified below.

– A domain specific language (DSL) is provided to be seamlessly integrated into any
Scala-based Spark program.

8 Boundaries of a partition provided by a spatio-temporal partitioner represent the spatial region and time interval
containing all elements within that partition.
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Figure 2.8: Architecture of Stark.
source: Hagedorn et ál., in EDBT, 2017 [92].

– A set of spatio-temporal operators for filter and join with different predicates is pro-
vided.

– A density based clustering operator to find groups of similar events and a kNN search

operator are implemented.

– Spatial partitioning and indexing make the execution of data analytics operators much
more efficient and faster.

An overview of the Stark’s architecture and its integration into Spark is shown in Fig. 2.8.
Main components of that architecture are discussed next.

Partitioning. Currently, Stark only considers spatial dimensions for partitioning. Two
different partitioning strategies are provided.

– Grid Partitioner. Data is divided into a number of intervals per dimension. Since Stark
only takes into account 2D spatial dimensions for partitioning, this partitioner provides
a grid of rectangular partitions with equal dimensions. In a first step, the bounds of
these partitions are computed. Then, in a single pass over data, Stark uses these bounds
to assign each element to the corresponding partition, i.e., the grid cell that contains this
element.

– Cost-based Binary Space Partitioner. The Grid Partitioner do not takes into account the
number of elements within each partition to split data among working nodes. Hence,
that partitioning might result in unbalanced data distribution where some partitions con-
tain the largest portion of data items while other partitions are empty. To solve this
problem, this partitioner implements a cost-based binary space partitioning algorithm
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based on [51]. First, data space is divided into two partitions with equal cost, where
cost means number of elements. If the cost of one partition exceeds a threshold, it is
recursively divided again in two partitions with equal cost. The recursion stops when
the cost of a partition does not exceed the threshold or the algorithm reached the mini-
mum side length for a partition. As a result, highly dense regions are split into multiple
partitions while regions with low density belongs to the same partition.

When a spatial element spans across multiple partitions, it is assigned to only one parti-
tion (based on their centroid point) and the bounds of this partition are adjusted accordingly,
resulting in overlapping partitions.

Indexing. Since Stark uses JTS [60] for spatial operations and JTS provides an R-tree
implementation, Stark can use this index structure to index data within a partition. The user
can choose between three different indexing modes.

– No indexing. The queried predicate evaluates every element within a partition.

– Live Indexing. The elements of each partition are put into an R-tree when the partition
is being processed. As a result, a set of candidates whose minimum bounding box
matches the required query is provided. The temporal predicate is evaluated, if needed,
during this pruning process. Then, these candidates have to be checked for matching
the query object.

– Persistent Indexing. When the same index may be used in subsequent executions, Stark
allows to persist the index into disk/HDFS. This may avoid extra consuming time when
creating the index.

DSL. Stark provides an DSL with several spatio-temporal operators that can be used
for flexibly working with spatio-temporal data within any Scala-based Spark program. The
STObject class enables the representation of spatio-temporal data in Stark. STObject has
a field (geo) which stores the spatial attribute and an optional field (time) which stores the
temporal information. When an RDD of 2-tuples (k,v) is defined and k is of type STObject,
STARK implicitly creates the object SpatialRDDFunction that implements the spatio-
temporal functions. Currently, Stark implements three spatio-temporal predicates (intersects,
contains and containedBy), two spatial operators (withinDistance and kNN search), and a data
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mining operator (clustering). The clustering operator implements the DBSCAN algorithm for
Spark, based on MR-DBSCAN described in [51].





CHAPTER 3

GEODADIS

3.1 Introduction

According to the International Energy Agency (IEA), energy efficiency is “a mainstream tool
for economic and social development”, with potential “to support economic growth, enhance
social development, advance environmental sustainability, ensure energy-system security and
help build prosperity” [4]. To reach a significant improvement of energy efficiency in fish-
ing vessels, the Green Fish project1 [11] attempted to characterize the generation and con-
sumption of energy during fishing activities. Different data acquisition systems [102] were
developed and deployed in several fishing vessels.

To leverage the background on designing and deploying the previous data acquisition
systems, GeoDADIS [100] enables data acquisition and data dissemination in in-situ sensor
platforms. A wide range of technologies must be supported for data dissemination tasks. Data
acquisition must fulfill the following requirements.

– Any sensor type must be supported.

– Any communication channel type must be supported.

– Addition of new sensors and new communication channels with a minimum effort.

The effort required to add new sensors that measure new parameters through new data
acquisition channels must be minimum. Both synchronous and asynchronous data acquisition

1 Founded by the Spanish and Galician public administrations.
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channels must be supported. For the former, measures are pulled from the sensors by the
framework. For the latter, sensors push measurements to the framework. Two special data
acquisition channels used to (1) provide the geographic location of the platform and (2) syn-
chronize the clock, must be specified by the system configuration. Furthermore, additional
metadata must be stored in system configuration to enable the specification of the range of
historic recorded measurements and the frequency of the sampling process, for each observed
parameter.

Both client/server (i.e., services query the framework to pull data) and publish/subscriber
(i.e., the framework pushes data to the services) data services must be supported. Similarly
to data acquisition channels, a minimum effort in the implementation of new data services is
required. New remote administration services must be implemented with a minimum effort
as well.

A minimum effort is also required in the implementation of new data storage technolo-
gies for distinct measured parameters. Notice for example the different storage capabilities
required by a single temperature value and a complex satellite image.

The remainder of this Chapter is organized as follows. Section 3.2 provides a detailed
description of the general layered architecture of GeoDADIS, introducing the relevant func-
tionality of each layer and corresponding components. An in-depth description of main com-
ponents of GeoDADIS architecture is given in Section 3.3. Thus, relevant details about struc-
ture and functionality of components DataDissemination, DataAcquisition, Configuration-
Manager and DataManager are provided in Section 3.3.1, Section 3.3.2, Section 3.3.3, and
Section 3.3.4, respectively. Finally, Section 3.4 introduces an experimental implementation
of GeoDADIS developed to monitor people health status in educational environments.

3.2 System Architecture

The general component architecture of GeoDADIS, Fig. 3.1, is composed of three main soft-
ware layers. General purpose functionality related to system control, sensor data management
and configuration metadata management is provided by three main components in layer Data

and Control Management. DataManager provides persistent storage functionality required by
component DataAcquisition and data query functionality demanded by component DataDis-

semination. Component ConfigurationManager enables the remainder components to access
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Figure 3.1: GeoDADIS component architecture.

configuration settings. Functionality enabling to start up, stop and restart different compo-
nents is provided by SystemControl.

External data acquisition channels enable heterogeneous sensors to provide measures for
the sampling processes implemented in layer Data Acquisition at the bottom of GeoDADIS
architecture, Fig. 3.1. For each measured parameter of each sensor, administration staff con-
figure both the time range and the frequency of the sampling process. Regarding trigger prop-
erties of available sensors, the proposed architecture enables both the time-triggered approach
(i.e., sampling frequency is determined by the system) and the event-triggered approach (i.e.,
sensors deliver measures to be sampled independently of the system). As shown in Fig. 3.1,



62 Chapter 3. GeoDADIS

each data acquisition channel must be associated to an external channel manager component.
AsynchChannelManagers enable the communication with event-triggered sensors whereas
SynchChannelManagers enable to query time-triggered sensor at configured sampling rate.
Every new measure generated by an event-triggered sensor is delivered to GeoDADIS by the
relevant AsynchChannelManager through the iDataAcqInsert interface. A buffer located in
the DataAcquisition component temporarily records the last measure of each sensor. Geo-
DADIS queries SynchChannelManagers of time-triggered sensors to sample new measures
at relevant sampling rate. A spatio-temporal stamp (i.e,. a time value together with the ge-
ographic location of the platform) is requested to StampManager through interface iStamp

for each sampled measure. Then, interface iDataMan of component DataManager is used to
deliver the sampled measure and relevant time stamp. Component StampManager periodi-
cally requests the current value of the spatio-temporal stamp by using the interface iStRefresh.
Location and time of stamps are provided by sensors, thus external data acquisition channels
must be used to obtain such values. Configuration data provided by ConfigurationManager

must store the refresh rate and the data acquisition channels used to get the stamp components.
Users and administration staff interaction with GeoDADIS is enabled by the functionality

provided by the layer External Interaction. Component DataDissemination is responsible for
the proper communication between the DataManager and the available data services. Two
different communication approaches are enabled here. The client/server approach enables
communication with DataClients whereas publish/subscribe approach is used in communica-
tion with DataSubscribers. Notice that both DataClient and DataSubscriber data services are
external to GeoDADIS. Interface iDataDisQuery is used by DataClients to deliver queries
over stored measures. DataDissemination delegates such queries to DataManager through
interface iDataMan. Component DataManager notifies the component DataDissemination

through interface iDataDisPublish every time a new measure is recorded. Then, the new mea-
sure is delivered to appropriate DataSubscribers which in turn may use interface iDataDis-

Query to request queries over stored measures. Configuration and control functionality is
provided to administration staff by component RemoteAdmin which delegates actual requests
to ConfigurationManager and SystemControl respectively.
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3.3 Main Components

Prior to the detailed description of GeoDADIS’ main components, a brief introduction to three
well known design patterns [41] and how they relate to GeoDADIS is provided below.

– Singleton pattern: used to enable coordinated access to shared resources by restricting
the instantiation of a class to only one object. Configuration data, data acquisition chan-
nels, data services and control clients are examples of such resources in GeoDADIS.

– Adapter (wrapper) pattern: translates one interface for one class into a compatible inter-
face to enable the cooperation of classes implementing different interfaces. GeoDADIS
uses adapters to uniformly access the specific interfaces of control clients, data services
and data acquisition channels.

– Observer (publish/subscriber) pattern: notifies changes in the state of an object (sub-
ject) to a list of objects (observers). The publish/subscribe communication between
component DataDissemination and component DataSubscriber implements this pat-
tern in GeoDADIS.

3.3.1 DataDissemination

Component DataDissemination combines the three above design patterns to provide flexi-
ble external data access. Both data clients, following a client/server approach through the
iDataDisQuery interface, and data subscribers, following a publish/subscribe protocol, may
access the DataDissemination component. By using the Adapter design pattern, the effort to
add a new data service is restricted to the implementation of a new data subscriber or data
client adapter class. The Singleton design pattern is used to coordinate the access to the avail-
able data services.

The main class of the component (DataServicesManager) implements the three interfaces
of DataDissemination, Fig. 3.2. Pseudocode describing the implementation of relevant meth-
ods of the interfaces that enable the querying (iDataDisQuery)and publishing (iDataDisPub-

lish) of measures is depicted in the figure as well. Methods getParameters and getMeasures

of the interface iDataDisQuery enable external data service components to query the recorded
data. Implementation of such methods is delegated to relevant methods of components Con-

figurationManager and DataManager respectively. The implementation of method publish-

Measure of interface iDataDisPublish, which is used by component DataManager to deliver
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Figure 3.2: UML Class Diagram of component DataDissemination.

measures to appropriate external data subscribers, follows a combination of the Observer and
Adapter design patterns. When a new measure is received, DataServicesManager (subject
class of the Observer pattern) uses the measures’ paramId to notify appropriate DataSub-

scriberAdapters (both Observer class and Adapter class) by calling method publishMeasure

of interface iDataSubscriberAdapter. The list of DataSubscriberAdapter names for each
paramId as well as the name of the DataClientAdapter for each data service is part of the
component configuration metadata. Adapter classes are also required to enable GeoDADIS
to access control functionality (start, restart and stop) of data clients.
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Figure 3.3: UML Class Diagram of component DataAcquisition.
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3.3.2 DataAcquisition

Component DataAcquisition provides general purpose functionality to enable data acquisi-
tion over both synchronous and asynchronous data communication channels. Similarly to
DataDissemination component, the effort to add a new channel is restricted to the implemen-
tation of a new data acquisition channel adapter class due to the use of the Adapter design
pattern.

The functionality of the DataAcquisition component (see Fig. 3.3 for a graphical repre-
sentation of its internal structure) is accessed through the DataAcqManager class. Interface
iDataAcqControl provides component control functionality whereas interface iStRefresh is
used to obtain the current spatio-temporal stamp from the appropriate data acquisition chan-
nels. The implementation of the class follows a Singleton design pattern in order to coordinate
the concurrent access to both the sampling threads and the data acquisition channels. As it is
shown in pseudocode given in the figure for class DataAcqManager, the implementation of
method getStamp of the interface iStRefresh access directly the data channels (class Abstract-

DataAcqChannel) configured as location and time sources. Regarding the data acquisition
process, each sensed parameter is sampled by a different ParameterSampler thread. This im-
plementation is also illustrated with pseudocode in the figure. First, the thread sleeps during a
given samplingInterval that is obtained from the configuration data of the specific parameter.
After waking up, the thread uses its data acquisition channel, which is also obtained from the
configuration data, to obtain the next measure of the parameter. Next, the current stamp ob-
tained from the iStamp interface is used to associate current time and location to the measure.
Finally, the stamped measure is delivered to the component DataManager through interface
iDataMan.

A data acquisition channel (AbstractDataAcqChannel) may access measures of either a
synchronous (SynchDataAcqChannel) or an asynchronous (AsynchDataAcqChannel) exter-
nal channel manager component. Measures of synchronous channel managers are accessed
directly through a relevant adapter class (SynchDataAcqChannelAdapter), which is obtained
from configuration data and that implements the interface iSynchDataAcqChannelAdapter.
On the other hand, measures of asynchronous channel managers are obtained from a buffer
(AsynchInputBuffer), that is populated with the last measure of each parameter through the
interface iDataAcqInsert. Coordinated access to the buffer is achieved through the use of the
Singleton design pattern for its implementation. Notice that an adapter class is still required



3.3. Main Components 67

«interface»
iConfMan

ConfigurationManagerFacade

+getInstance(): ConfigurationManagerFacade

-instance

SensorVO

-sensorId: String
-sensorName: Varchar
-sensorDesc: String

DacqChannelVO

-dacqChannelId: String
-dacqChannelName: String
-dacqChannelDesc: String
-dacqChannelType: DacChannelType
-dacqChannelAdapterClassName: String

-channel

1..*

ParameterVO

-paramId: String
-paramName: String
-paramDesc: String
-samplingInterval: Float
-recordRange: Float
-dataAccessClass: String

-sensor

1..*

DataServiceVO

-dataServiceId: String
-dataServiceName: String
-dataServiceDesc: String
-dataServiceType: DataServiceType
-dataServiceAdapterClassName: String

-params

-paramId

simpleParameterVO

-units: String
-dataType: String

compoundParameterVO

paramComponentVO

-componentName: String
-units: String
-dataType: String

-components1..*

DataSubscriberVO

«interface»
iConfManControl

-dacqChannels

-dacqChannelId

-dataServices

-dataServiceId

-parameters

-paramId

-timeSource

-locSource

Figure 3.4: UML Class Diagram of component ConfigurationManager.

for asynchronous channel managers in order to access their control functionality (start, stop
and restart) from GeoDADIS.
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3.3.3 ConfigurationManager

The internal structure of the ConfigurationManager is shown in the UML class diagram of
Fig. 3.4. The Singleton design pattern enables the ConfigurationManagerFacade to provide
coordinated access to the available configuration data through interface iConfMan. Starting,
stoping and restarting the component may be done through interface iConfManControl. Con-
figuration data consists of the following three collections.

– parameters (ParameterVO class): each measured parameter has samplingInterval and
recordInterval properties. The former is used by component DataAcquisition to de-
termine its sampling frequency. The latter is used by component DataManager to de-
termine when a recorded measure is old enough to be deleted. The sensor and, there-
fore, the data acquisition channel from which the parameter has to be sampled are also
recorded, as it is shown in the figure. Property dataAccessClass records the name of the
data access object class that component DataManager has to use to access the param-
eters data persistence functionality. Finally, it is noticed that both simple parameters
(simpleParameterVO class) like temperature and compound parameters (compoundPa-

rameterVO class) like wind (it has speed and direction components) are supported.

– dataChannels (DacqChannelVO class): each data acquisition channel has a property
dacqChannelType that determines whether the channel is synchronous or asynchronous.
Besides, property dacqChannelAdapterClassName records the name of the adapter
class that component DataAcquisition has to use to interact with the external chan-
nel manager. The data acquisition channels that are used as location and time sources
are determined by associations with respective roles locSource and timeSource.

– dataServices (DataServiceVO class): each data service has a dataServiceType (either
data client or data subscriber). The list of parameters about which each data subscriber
(DataSubscriberVO) has to be notified is also recorded. Property dataServiceAdapter-

ClassName records the name of the adapter class that component DataDissemination

has to use to interact with the external data service component.

3.3.4 DataManager

The functionality of component DataManager, Fig. 3.5, is accessed through the class Data-

ManagerFacade. More precisely, interface iDataManControl provides component control
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functionality and interface iDataMan enables inserting and retrieving measurements from
persistent storage. In particular, operation getMeasures is used to obtain the recorded mea-
sures of the parameter identified by paramId for which the spatio-temporal filter f holds. Such
a filter enables the combined use of both the interval predicates defined by [7] and the spatial
predicates defined by [27]. Retrieved measures include both measured value (various values in
case of compound parameters) and spatial and temporal stamps. On the other hand, operation
insertMeasure records a measure in persistent storage and delivers it to component DataDis-

semination through interface iDataDisPublish (in order to notify relevant subscribers). Data
insertions and queries of measures of a given parameter are executed by its relevant class
ParameterDAO, enabling this way different implementations for different parameters. The
pseudocode given in the figure for the operation insertMeasure of the DataManagerFacade

illustrates the use of the collection of ParameterDAO classes and the interface iDataDisPub-

lish.

3.4 Experimental Implementation

A solution for heterogeneous sensor data integration in crowdsensing applications applied to
health monitoring in educational environments using low cost hardware has been proposed in
[101]. To track common respiratory diseases among members of the educational community,
an application has been developed to collect data from occupants of several educational build-
ings. Different collection methods, protocols and standards have been used. Measurements
of environmental parameters such as temperature, humidity and occupancy have been ob-
tained from buildings through the Building Management System using the BACnet protocol.
External environmental measurements have been obtained in the building surrounding areas
through meteorological community services using the Observations and Measurements data
exchange protocol. The HL7 protocol has been used with a low cost set of medical sensors to
collect heath data, e.g., blood oxygen, pulse, body temperature, breathing status.

Based on the GeoDADIS architecture, the data platform architecture depicted in Fig. 3.6
has been implemented in [101] to enable the integrated collection of above data. Similarly
to GeoDADIS, the Adapter design pattern has been adopted to access specific interfaces of
data acquisition channels and data services in a uniform manner, and the Observer design
pattern has been used to enable publish/subscribe communication with the Analysis Appli-
cation developed in [101]. Unlike GeoDADIS, the implemented platform does not provide
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Figure 3.5: UML Class Diagram of component DataManager.

in-situ data acquisition, control administration nor spatio-temporal stamping of sampled ob-
servations. Provision of data acquisition devices is a feature of this platform that is not present
in GeoDADIS.
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CHAPTER 4

SODA DESIGN

4.1 Introduction

The design of the Spatio-Temporal Observation Data Management System (SODA) [103]
mentioned in Section 1.4 is described in detail in this chapter. The problem description pro-
vided in Section 1.2 and the objectives stated in Section 1.4 serve as a basis for the definition
of the requirements that SODA must fulfill. Thus, it is easy to see that an Observation Data
Management System such as SODA should be composed of two major components.

An observation data warehouse enables the storage of observation data, provides the re-
quired observation semantics and facilitates the representation of Entity and Sampled data in
an integrated manner, i.e., using the same data structures. A spatio-temporal data model has
been defined to provide the novel data types and data structures required for an efficient in-
tegrated representation and storage of temporal, spatial and spatio-temporal components of
observation data from a functional point of view. On top of this underlying data model, an
observation data model has been defined to provide observation semantics. A novel XML-
based language, called XODDL, has been defined to enable the definition of the observation
data warehouse schema.

An observation data analysis system enables the analysis of observation data through the
proposed set of operations. A novel hybrid logical-functional language, called MAPAL, is
proposed to enable the analysis and processing of observation data. Specific syntax is also
proposed to define internal processes, i.e., those processes executed within SODA during
ETL tasks to generate new observation data from imported data or previously generated and
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stored data. Finally, required operators must be defined to actually perform the analysis tasks
defined by users though MAPAL queries.

The remainder of this chapter is organized as follows. Section 4.2 is devoted to the def-
inition of the Observation Data Warehouse in SODA. Spatio-temporal and observation data
models are described in Section 4.2.1 and Section 4.2.2, respectively. The observation data
analysis system proposed in SODA is explained in Section 4.3. First, MAPAL language is
fully described in Section 4.3.1. Then, the proposed syntax to define internal processes is
explained in Section 4.3.2. Next, Section 4.3.3 defines the required operators to perform ob-
servation data analysis. And finally, Section 4.3.4 shows an example of how a MAPAL query
is translated into a sequence of SODA operators.

4.2 Observation Data Warehouse

Based on general functionalities for an observation data management system specified in Sec-
tion 1.2, an observation data warehouse should meet the following requirements.

– Support for the representation of data coming from the integration of temporal, spatial
and spatio-temporal samplings with classical E/R data.

– Direct support for observation semantics, through the representation of appropriate re-
quired metadata (introduced in Section 1.1), must be provided.

– System data types must enable the representation of temporal and spatial data with
parametric resolution. Additionally, implicit and explicit castings should be provided
to ease the transformation between these resolutions.

From the above requirements, an underlying spatio-temporal data model is first defined.
Capabilities of this data model go beyond those of an observation data model and enable
the processing of any type of spatio-temporal data. To build the definitive data model for the
observation data warehouse, structures for observation metadata are then added on top of such
underlying data model.

4.2.1 Spatio-temporal Data Model

It is well known that relational formalism applied to sampled data processing results in highly
inefficient approaches. On the other hand, functional models, which fit well sampled data,



4.2. Observation Data Warehouse 75

have already been used to manage E/R data in the area of Functional Databases [45]. A novel
spatio-temporal data model based on the well known mathematical concept of function is de-
fined in this section. Definition and storage of various data types (conventional, temporal and
spatial), functions to manipulate data values (Intensional Mappings), functions to record data
values (Extensional Mappings and Extensional MappingSets), and data singletons (Constants)
are supported.

Data types

Conventional data types

They consist of the data types usually supported by general purpose data management
systems, including Boolean, CString (variable size character string), Integer, and Real. In sci-
entific applications, the user knowledge about the precision and scale of numeric data is very
important to choose the most appropriate physical representation for real numbers. Hence,
a fixed point numeric representation is supported by the parametric data type FixedPreci-

sion(P,S), with conventional semantics for P (precision, i.e., maximum of number of decimal
digits) and S (scale, i.e., number of decimal digits in the fractional part). Default and maxi-
mum values for P and S are system defined: DP (default P), DS (default S), MP (maximum
P), and MS (maximum S). Every value N of type FixedPrecision(P, S) may be written in the
form

N = n ·10−S

where n is the integer value in the range (−10P,10P) that actually will be stored, together
with P and S. Thus, P determines the underlying primitive1 integer data type used to store n.

Additionally, all data types enable the representation of a special undefined value denoted
by ⊥.

Temporal data types

TimeInstant(R) {
t = n ·R | n ∈ Z; −10MP < n < 10MP }

∪{⊥}
1 Considered primitive data types are: byte, short, int and long.
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Figure 4.1: Example of TimeInstant(R) and Time(R) data types where R = 5s.

Time(R) {
t = n ·R | n ∈ Z; 0≤ n ·R < 24 hours · 3600

seconds
hour

}
∪{⊥}

Date(R)

TimeInstant(86400)

The above temporal data types have been defined to enable the representation of discrete
multi-resolution time values, where R (temporal resolution) is a value of data type Double and
n is the corresponding index in the defined temporal sampling. Similarly to FixedPrecision

values, only R and n values are stored2. Notice that the discrete temporal value t1 = n1 ·R
actually represents the continuous time interval defined by the following set of instants

{ t | n1 ·R≤ t < (n1 +1) ·R }

The semantics of a TimeInstant value is a positive or negative time shift in seconds from an
absolute reference time instant, t = 0. The most commonly used value for this reference time
instant in current DBMS, and also in SODA, is 1970-01-01 T 00:00:00.000000Z.

The semantics of a Time value is a positive time shift in seconds from a relative reference
time instant, t = 0. The value used for this time instant in SODA is the beginning of each day
in civil time throughout the world, i.e., 00:00:00.000000.

As an example, the available values that can be represented by data types TimeInstant(5)
and Time(5) are depicted in Fig. 4.1(a) and Fig. 4.1(b), respectively.

2 The primitive integer data type used to store temporal values is long.
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Spatial data types

Point1D(P,R) {
x = nx ·R | nx ∈ Z; −10P < nx < 10P }

∪{⊥}

Point2D(P,R){
(x,y) = (nx ·R, ny ·R) | nx,ny ∈ Z; −10P < nx,ny < 10P }

∪{⊥}

To enable users to represent discrete multi-resolution spatial values, the above spatial data
types have been defined, where P (precision) is of type Integer and R (spatial resolution) is
of type Double. Notice that the discrete Point1D value x1 = n1 ·R actually represents the
continuous 1D spatial interval{

x | x ∈ R; x1−
R
2
≤ x < x1 +

R
2

}
and the discrete Point2D value (x1,y1)= (nx1 ·R, ny1 ·R) represents the following 2D rectangle{

(x,y) | (x,y) ∈ R2; x1−
R
2
≤ x < x1 +

R
2

; y1−
R
2
≤ y < y1 +

R
2

}
Similarly to time instant values, a Point1D value is a 1D positive or negative spatial shift

in meters from a specific origin point, x = 0. In fact, Point1D(P,R) data type defines a 1D
spatial sampling in R and provides a 1D cartesian coordinate system. Fig. 4.2 depicts feasible
values, nx, for Point1D(1,1) and Point1D(1,0.5).

Likewise, a Point2D value is a positive or negative 2D spatial shift in meters from a spe-
cific origin point, x = (0,0). Point2D(P,R) data type defines a 2D spatial sampling in R2 and
provides a 2D Cartesian coordinate system. Fig. 4.3 depicts all possible values, (nx,ny), for
Point2D(1,1) and Point2D(1,0.5).

Similarly to previous data types, only P, R and integer indexes ni are stored. As FixedPre-

cision values, P determines the underlying primitive integer data type used to store the integer
index value.

Geometric data types

Based on Point2D(P,R) data type and on the standard specification defined in [58], the
following data types enable the modeling of geometries in 2D euclidean spaces:
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Figure 4.2: Spatial data types Point1D(1,1) and Point1D(1,0.5).

– LineString(P,R): vector polylines defined by sequences of elements of Point2D(P,R).

– Polygon(P,R): vector polygons, possibly with holes, whose borders are defined by se-
quences of elements of Point2D(P,R).

– GeometryCollection(P,R): heterogeneous collections of geometries of any of the fol-
lowing data types: Point2D(P,R), Polyline(P,R) and Polygon(P,R).

– MultiPoint(P,R): homogeneous collections of Point2D(P,R) geometries.

– MultiLineString(P,R): homogeneous collections of LineString(P,R) geometries.

– MultiPolygon(P,R): homogeneous collections of Polygon(P,R) geometries.

– Geometry(P,R): abstract type that enables the representation of geometries or geometry
collections of any of the above 2D data types.

Data Structures

The following data structures, Dimensions, Extensional MappingSets and Constants enable
the modeling and recording of spatio-temporal entity and sampled data.

Dimensions

A Dimension is a finite set of elements of a given data type. More formally, a Dimension

d over data type T , denoted d : T , is defined as a non-empty finite subset of T −{⊥}. Dimen-

sions may be defined only over conventional, temporal and spatial data types, and not over
geometric data types.

Temporal and spatial Samplings are special cases of Dimensions of major interest for the
modeling of sampled spatio-temporal data. Thus, if min and max are two values of the same
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Figure 4.3: Spatial data types Point2D(1,1) and Point2D(1,0.5).

Time, TimeInstant, Date or Point1D data type T where min < max, then a 1D Sampling S from
min to max, denoted S(min,max), is defined as the following Dimension over T

S(min,max) = { s ∈ T | min≤ s≤ max }

Likewise, if sm = (xm,ym) and sM = (xM,yM) are two values of the same Point2D data type
T where xm < xM and ym < yM, then a 2D Sampling S from sm to sM, denoted S(sm,sM), is
defined as the following Dimension over T :

S(sm,sM) = { (x,y) ∈ T | xm ≤ x≤ xM, ym ≤ y≤ yM }
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Notice that, in general, a Dimension is stored by the explicit recording of each of its ele-
ments. However, Samplings are implicitly recorded by the storage of their limit and parametric
values.

Extensional MappingSets

An Extensional MappingSet is a finite set of mappings, Extensional Mappings, with a
common domain defined by the Cartesian product of Dimensions.

If d1,d2, . . . ,dn is a sequence of not necessarily distinct Dimensions and T is a data type,
then an Extensional Mapping with signature M(d1,d2, . . . ,dn) : T is defined as a function
M : d1,d2, . . . ,dn→ T .

An Extensional MappingSet with signature EM(d1,d2, . . . ,dn | M1 : T1,M2 : T2, . . . ,Mm :
Tm) is defined as the following finite set of Extensional Mappings:

EM(d1,d2, . . . ,dn | M1 : T1, M2 : T2, . . . , Mm : Tm) =

{M1(d1,d2, . . . ,dn) : T1, M2(d1,d2, . . . ,dn) : T2, . . . , Mm(d1,d2, . . . ,dn) : Tm }

An Extensional MappingSet EM is extensionally defined by a finite set of nested tuples of
the form (d,m), where d ∈ d1×d2× . . .×dn and m ∈ T1×T2× . . .×Tm.

Constants

A Constant C of type T , denoted by C : T , is defined as an atomic value of type T .

Following a functional database approach [45], Dimensions and Extensional MappingSets

enable the modeling of Entities and Relationships between them. Hence for example, Dimen-

sions StationId and MunCode in Fig. 4.4 record identifiers and codes of weather stations
and municipalities, respectively. The remainder properties of stations and municipalities are
modeled by relevant Extensional MappingSets Station and Municipality.

Beyond classical ER data, this model integrates the representation of temporal and spatial
1D and 2D sampled data. For example, Dimensions ObsData and Loc5m in Fig. 4.4 are
respectively a temporal Sampling and a 2D spatial Sampling. These Samplings are used to
model the phenomenonTime of temperature, humidity and wind speed observations at each
weather station in Extensional MappingSet Observation, and the geolocation of elevation
observations in Extensional MappingSet Topo.
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Figure 4.4: Data Structures.

Image in Fig. 4.4 depicts the following geolocated Extensional Mappings: Station.Loc
(green starred locations), Municipality.Geo (red line geometries) and Topo.Elevation

(gray-scale raster).

Intensional Mappings

An Intensional Mapping is a function defined over the available data types, either by an
algorithm or an analytical expression.

If T1,T2, . . . ,Tn is a possibly empty sequence of not necessarily distinct data types and T

is also a data type, then an Intensional Mapping with signature M(T1,T2, . . . ,Tn) : T is defined
as a function M : T1,T2, . . . ,Tn→ T .

Primitive intensional mappings. Defined by algorithms, primitive mappings may be
already incorporated into the system or provided by the user through user-defined functions.
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Figure 4.5: Point2D Space Filling Curve.

They include conventional, temporal and spatial functions like those supported by SQL and
relevant extensions [58]. Comparison and arithmetic operators are also supported and defined
even for temporal and spatial data types. Fig. 4.5 depicts the specific space filling curve used
in SODA for defining a total ordering in Point2D data type. Implicit type castings are auto-
matically applied between data types of the same family during the evaluation of functions
and operations. For illustration purposes, primitive intensional mappings defined for all MA-
PAL data types are shown in Table 4.1. A complete list of intensional mappings defined for
specific data types is provided in Appendix A.

Argument data types must be compatible for the underlying operation or function to suc-
cessfully execute each mapping. Thus, overloaded mappings (i.e., different argument versions
of each mapping) have been defined for each data type in SODA. For instance, the overloaded
mappings defined in SODA for mapping equal(o1,o2) are described below.

equal(Boolean b1, Boolean b2): returns the Boolean value true iff (a∧b)∨ (ā∧ b̄).

equal(CString s1, CString s2): returns the Boolean value true iff s1 is lexicographically
equal to s2, i.e., represents the same sequence of char values.
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Primitive mapping Description

distinct(o1,o2) Returns true if o1 6= o2 and returns false otherwise.

equal(o1,o2) Returns true if o1 = o2 and returns false otherwise.

getDataType(o) Returns the data type of o.

greaterT han(o1,o2) Returns true if o1 > o2 and returns false otherwise.

greaterT hanOrEqualTo(o1,o2) Returns true if o1 ≥ o2 and returns false otherwise.

isDe f ined(o) Returns true if o is not null and returns false other-
wise.

lowerT han(o1,o2) Returns true if o1 < o2 and returns false otherwise.

lowerT hanOrEqualTo(o1,o2) Returns true if o1 ≤ o2 and returns false otherwise.

setUnde f ined(o) Sets o to null.

Table 4.1: Description of primitive common mappings.

equal(Numeric n1, Numeric n2): returns the Boolean value true iff n1 and n2 represent the
same Numeric value. If n1 and n2 have different Numeric data types an implicit casting
is applied before the comparison following the next rules.

– if one argument (nr) is a Real value and the other argument (ni) is an Integer value,
then nr is cast to an Integer value yielding trunc(nr).

– if one argument (nr) is a Real value and the other argument (n f p) is a FixedPreci-

sion(P,S) value, then n f p is cast to a Real value.

– if one argument (ni) is an Integer value and the other argument (n f p) is a Fixed-

Precision(P,S) value, then n f p is cast to an Integer value yielding trunc(n f p).

equal(Temporal t1, Temporal t2): returns the Boolean value true iff t1 and t2 represent the
same Temporal value. If t1 and t2 have different Temporal data types or have the same
data type but different resolution an implicit casting is first applied. Notice that the
casting process may introduce truncation errors. Once both arguments have the same
data type and resolution, t1 = i1 ·R and t2 = i2 ·R, the Boolean value true is returned if
and only if i1 = i2. Rules for the implicit casting are detailed below.

– if both arguments have the same Temporal data type but different resolution (thus,
Date data type does not apply here), then the argument with higher resolution is
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Figure 4.6: Temporal type castings.

cast to the lower resolution. Fig. 4.6(a) shows the casting of a TimeInstant(R1)

value t = i ·R1 to the corresponding TimeInstant(R2) value. First, the index of t at
resolution R2 is calculated as

i′ = i · R1

R2

Since only integer indexes are allowed, the integer part of previous index is used
to calculate the resulting value

t ′ = trunc(i′) ·R2 = trunc
(

i · R1

R2

)
·R2

– if one argument is a TimeInstant(R1) value, t1 = i1 ·R1, and the other argument is a
Date value, since Date is equivalent to TimeInstant(86400), then we can represent
the Date argument as t2 = i2 ·86400 and apply the previous rule.

– if one argument is a TimeInstant(R1) value, t1 = i1 ·R1, and the other argument
is a Time(R2) value, then t1 is cast to the corresponding Time(R3) value, where
R3 = min(R1,R2). Since Time(R3) denotes a time shift within a specific day, only
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the elapsed time since the beginning of the last day3 of the period determined by
t1 (tld) is cast to Time(R3). Fig. 4.6(b) shows the casting of t and −t to Time(R3).
In the first case,

tld = t mod 86400

in the second case,

tld = 86400− (−t mod 86400)

Hence, the index of tld at resolution R3 is

i′ld =
tld
R3

Thus, the resulting Time(R3) value is

t ′ld = trunc(i′ld) ·R3 = trunc
(

tld
R3

)
·R3

– if one argument is a Time(R1) value and the other argument is a Date value, t2 =

i2 ·86400, then t2 is cast to the Time(R1) value t1 = 0. Since the resolution of t2 is
86400, t2 always match the beginning of the corresponding day, and thus, always
match the initial value of the Time(R1) data type.

equal(Point1D p1, Point1D p2): returns the Boolean value true iff p1 and p2 represent the
same Point1D value. If p1 and p2 have different precision or resolution, an implicit

casting is first applied. Similarly to Temporal values, the casting process may introduce
rounding errors. Once both arguments have the same precision and resolution, p′1 =

i′1 ·R′ and p′2 = i′2 ·R′, the Boolean value true is returned if and only if i′1 = i′2.

Let p1 = i1 ·R1 be a Point1D(P1,R1) value and p2 = i2 ·R2 be a Point1D(P2,R2) value.
Both arguments are cast to Point1D(P′,R′), where R′ = min(R1,R2) and P′ enables the
representation of all the values of Point1D(P1,R1) and Point1D(P2,R2) at resolution R′.
The representation of all the values of each data type4 can be ensured by enabling the
representation of the maximum positive values

3 For negative t1 values, last day actually refers to the first day of the period determined by t1.
4 Point1D(P,R) is symmetrical with respect to 0.
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p1max = (10P1 −1) ·R1 p2max = (10P2 −1) ·R2

Hence, the maximum value to be represented is

pmax = max(p1max, p2max)

The maximum value that Point1D(P′,R′) data type can represent is

p3max = (10P′ −1) ·R′

Thus, from the condition ensuring the representation of all values, the resulting preci-
sion can be isolated

p3max ≥ pmax

(10P′ −1) ·R′ ≥ max(p1max, p2max)

P′ ≥ log
(

max(p1max, p2max)

R′
+1

)
P′ =

⌈
log

(
max(p1max, p2max)

R′
+1

)⌉
The casting process is similar to the casting of Temporal values explained above. The
integer indexes of p1 and p2 at resolution R′ are calculated as follows

i′1 = round
(

i1 ·
R1

R′

)
i′2 = round

(
i2 ·

R2

R′

)

equal(Point2D p1, Point2D p2): returns the Boolean value true iff p1 and p2 represent the
same Point2D value. As in the Point1D case, an implicit error-prone casting has to be
done before the comparison if p1 and p2 have different precision or resolution. Once
both arguments have the same precision and resolution, p′1 = (x′1,y

′
1) = (i′1x ·R′, i′1y ·R′)

and p′2 = (x′2,y
′
2) = (i′2x ·R′, i′2y ·R′), the Boolean value true is returned if and only if

(i′1x, i′1y) = (i′2x, i′2y).

Let p1 = (x1,y1) = (i1x, i1y) ·R1 be a Point2D(P1,R1) value and p2 = (x2,y2) = (i2x, i2y) ·
R2 be a Point2D(P2,R2) value. Both arguments are cast to Point2D(P′,R′). Fig. 4.7
depicts the casting from p1 to p′1. In this case, the representation of all the values of
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Figure 4.7: Casting from Point2D(P1,R1) to Point2D(P′,R′).

each data type5 can be ensured by enabling the representation of the maximum positive
values for each dimension,

p1xmax = x1max p2xmax = x2max

p1ymax = y1max p2ymax = y2max

Since Point2D has the same precision and resolution for both dimensions, the maximum
positive values of both dimensions are equal, xmax = ymax = (10P− 1) ·R. Hence, the
maximum positive values for each data type, p1max and p2max, are calculated as follows

p1max = max(p1xmax , p1ymax) = max(x1max,y1max)

= max
((

10P1 −1
)
·R1,

(
10P1 −1

)
·R1

)
=
(
10P1 −1

)
·R1

p2max = max(p2xmax , p2ymax) = max(x2max,y2max)

= max
((

10P2 −1
)
·R2,

(
10P2 −1

)
·R2

)
=
(
10P2 −1

)
·R2

5 Point2D(P,R) is symmetrical with respect to (0,0).
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Figure 4.8: Observation Data Model (UML class diagram)

Thus, the resulting precision can be expressed again as

P′ =
⌈

log
(

max(p1max, p2max)

R′
+1

)⌉
And the integer indexes of p1 and p2 are

i′1x = round
(

i1x ·
R1

R′

)
i′2x = round

(
i2x ·

R2

R′

)
i′1y = round

(
i1y ·

R1

R′

)
i′2y = round

(
i2y ·

R2

R′

)
equal(Geometry g1, Geometry g2): returns the Boolean value true iff g1 and g2 are spa-

tially equal as defined by ST_Equals()method in [58]. It is a shortcut for isEmpty(sym-

Di f f erence(g1,g2)).

4.2.2 Observation Data Model

As already stated in Section 1.4, one of the main goals of SODA is to provide the users with
the observation semantics that allow them to process and analyze observation spatio-temporal
data. To achieve this fundamental objective, a novel data model providing the required obser-

vation semantics is defined.
The UML diagram of the proposed model is depicted in Fig. 4.8. Such model relies in the

concept of Feature to enable the modeling of samplings and observed entities. Feature Type

enables the classification of Features. Each Feature Type has one or more Key Properties, and
may have additional Feature Properties. Both key properties of entities and dimensions of
samplings can be modeled using Key Properties. Notice that a Key Property may either exist
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as an independent object within the system (i.e., not aggregated to any Feature Type) or be
aggregated to more than one Feature Type. Each Feature Property is used to model either a
sampled property or a non-key property of an entity, and may be observed by a sourceProcess.

SourceProcesses are classified into Process Types which enable the characterization of
some important parameters such as process type or trigger type. Regarding the former, pro-
cesses may be classified either as Time-triggered or Event-triggered. The latter enables the
declaration of processes either as External or Internal6. The execution of an External process
is performed outside the system, thus produced observations have to be loaded into the data
warehouse running typical ETL tasks. In contrast to External processes, the execution of an
Internal process is performed within the system during the ETL tasks to produce new obser-
vations derived from both the imported data and the observations already stored in the data
warehouse.

The schema of a spatial observation data warehouse following the data model depicted in
Fig. 4.8 can be easily specified using a novel XML-based language, called XODDL (XML
Observation Data Definition Language). Indeed, the definition of XODDL is deeply rooted in
the observation data model, as shown in the XML schema definition of XODDL depicted in
Code 4.1.

It is necessary for system administrators to perform the following tasks when starting the
system up:

1. Create a dataset schema using XODDL.

2. Add Observation Process metadata.

3. Define Internal Processes.

4. Insert Feature Types.

5. Insert FeatureProperties.

Then, observation data ETL tasks can be executed within the system. New observed val-
ues, stamped with appropriate temporal data (phenomenon Time), are appended to Observed

Properties of Features Types. Except for administration purposes, data deletions and updates
are not supported.

6 Definition of Internal processes is covered in Section 4.3.2
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<?xml version="1.0" encoding="UTF-8"?>

<xs:schema attributeFormDefault ="unqualified" elementFormDefault ="qualified"

targetNamespace="es.usc.citius.de.soda.xoddl"

version="1.0.0" xmlns="es.usc.citius.de.soda.xoddl"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ObservationSchema">

<xs:complexType>

<xs:sequence>

<xs:element name="ProcessType" type="ProcessType_Type" maxOccurs="unbounded"/>

<xs:element name="FeatureType" type="FeatureType_Type" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="FeatureType_Type" >

<xs:sequence>

<xs:element name="KeyProperty" type="KeyProperty_Type" maxOccurs="unbounded"/>

<xs:element name="Property" type="FeatureProperty_Type" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:QName" use="required"/>

</xs:complexType>

<xs:complexType name="ProcessType_Type" >

<xs:sequence>

<xs:element name="Property" type="ProcessPropertyType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:QName" use="required"/>

<xs:attribute name="type" type="ProcessTypeEnum" use="required"/>

<xs:attribute name="triggeredBy" type="TriggeredByType" use="required"/>

<xs:attribute name="timeResolution" type="xs:string" use="optional"/>

</xs:complexType>

<xs:simpleType name="ProcessTypeEnum">

<xs:restriction base="xs:string">

<xs:enumeration value="Internal"/>

<xs:enumeration value="External"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="TriggeredByType">

<xs:restriction base="xs:string">

<xs:enumeration value="Time"/>

<xs:enumeration value="Event"/>

</xs:restriction>

</xs:simpleType>
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<xs:complexType name="KeyPropertyType">

<xs:attribute name="name" type="xs:NCName" use="optional"/>

<xs:attribute name="type" type="xs:string" use="optional"/>

<xs:attribute name="sampling" type="xs:boolean" use="optional" default="false"/>

</xs:complexType>

<xs:complexType name="FeaturePropertyType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="type" type="xs:string" use="required"/>

<xs:attribute name="sourceProcessType" type="xs:QName" use="optional"/>

</xs:complexType>

<xs:complexType name="ProcessPropertyType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>

</xs:schema>

Code 4.1: XML schema definition of XODDL.

A more detailed description of main elements in the observation data model, Feature Type

and Process Type (and associated Dimensions and ExtensionalMappingSets generated to store
their data), are provided below. The UML object diagram of Fig. 4.9 shows a running example
used to ease the understanding of the above concepts.

Feature Type

Feature Type has been defined to enable the integrated modeling of entities and samplings. In
the running example, three Feature Types have been defined.

Topo: used to model a geographic sampling. The spatial Dimension of Topo is modeled by
Key Property Loc5m which defines a sampling Dimension of data type Point2D(9,5).
The elevation above the sea level at each point of Loc5m is provided by Feature Property

Elevation.

Municipality: used to model municipal entities. Each municipality is uniquely identified
by non sampling Key Property MunCode. Feature Properties Name and Geo provide the
name and geometry of each municipality respectively.

Station: models meteorological facilities (entities). Similarly to Municipality, a Key

Property StationId uniquely identifies each meteorological station. Non observed
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: KeyProperty

name = MunCode
dataType = CString
sampling = False

: FeatureProperty

name = Name
dataType = CString

: FeatureProperty

name = Geo
dataType = MultiPolygon(9,0.01)

: FeatureProperty

name = Location
dataType = Point2D(9,0.01)

: FeatureProperty

name = Name
dataType = CString

: FeatureProperty

name = Elevation
dataType = FixedPrecision(7,2)

: KeyProperty

name = StationId
dataType = Integer
sampling = False

: FeatureType

name = Municipality

: FeatureType

name = Station

: FeatureType

name = Topo

: KeyProperty

name = Loc5m
dataType = Point2D(9,5)
sampling = True

: FeatureProperty

name = Temperature
dataType = Double

: ProcessType

name = HumidityTempProbe
type = External
triggeredBy = Time
timeResolution = 10 minutes

: ProcessProperty

name = Description
dataType = CString

: FeatureProperty

name = FrostAlert
dataType = CString

: ProcessType

name = FrostControl
type = Internal
triggeredBy = Event
timeResolution = 10 minutes

: ProcessProperty

name = Description
dataType = CString

: FeatureProperty

name = Humidity
dataType = Integer

: FeatureProperty

name = WindSpeed
dataType = Double

: ProcessType

name = Anemometer
type = Extenal
triggeredBy = Time
timeResolution = 5 seconds

: ProcessProperty

name = Description
dataType = CString

Figure 4.9: Running example (UML object diagram)

properties Name and Location provide the name and location of each station. Ob-

served properties Temperature, Humidity, WindSpeed and FrostAlert model ob-

served values provided by relevant observation processes. Temperature and relative hu-
midity observations are provided by an external process of type HumidityTempProbe,
wind speed observations are provided by an external process of type Anemometer and
the frost risk index for each weather station is generated by an internal process of type
FrostControl according to temperature and relative humidity observation values pro-
vided by an external process of type HumidityTempProbe.
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A detailed description of Dimensions and Extensional MappingSets generated within the
system for each Feature Type FT is provided below.

a) Let KP be a Key Property of data type DT . Different Dimensions will be generated de-
pending on the value of attribute sampling.

– if sampling=true, a sampling Dimension FT.KP(lo,hi) is generated, where lo and
hi of data type DT define the boundaries of the generated sampling.

– if sampling=false, a non sampling Dimension FT.KP : DT is generated.

The running example generates the following Dimensions:

Topo.Loc5m(lo:Point2D(9,5), hi:Point2D(9,5))

Municipality.MunCode:CString

Station.StationId:Integer

Notice that duplicate names are not allowed, thus the name of the Feature Type is added
as a prefix to the name of the relevant property in order to avoid name conflicts.

b) Let KP1, . . . ,KPn be the Key Properties of FT . The following Extensional MappingSet is
also generated

FT (FT.KP1, . . . ,FT.KPn | M1 : DT1, . . . ,Mm : DTm)

where
Mi : DTi = FT.FPi(FT.KP1, . . . ,FT.KPn) : DTi

is the Extensional Mapping generated for the non observed Feature Property FPi of FT .

The Extensional MappingSets generated in the running example are the following:

Topo(

Topo.Loc5m |

Elevation:FixedPrecision(7,2)

Municipality(

Municipality.MunCode |

Geo:MultiPolygon(9,0.01))

Station(

Station.StationId |

Name:CString,

Location:Point2D(9,0.01))
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Similarly to Key Properties, the name of the Feature Type is added as a prefix to the name
of the relevant Extensional Mapping to avoid name conflicts.

c) Let FP1 : DT1, . . . ,FPn : DTn be the Feature Properties generated by an observation source
process of type PT . Let KP1, . . . ,KPn be the Key Properties of FT . The following Exten-

sional MappingSet is stored to enable the recording of generated observation values.

FT.PT (FT.KP1, . . . ,FT.KPn,PT.Time | FP1 : DT1, . . . ,FPn : DTn,Process : Integer)

where
FPi : DTi = FPi(FT.KP1, . . . ,FT.KPn,PT.Time) : DTi

is the Extensional Mapping recording the observation values of FPi,

Process(FT.KP1, . . . ,FT.KPn,PT.Time) : Integer

records the identifier of the specific observation process used at each time instant to gen-
erate observations, and

PT.Time

is a Dimension generated by PT to store the time instants of observation values.

In the running example the following Extensional MappingSets are generated:

Station.HumidityTempProbe(

Station.StationId,

HumidityTempProbe.Time |

Temperature:Double,

Humidity:Integer,

Process:Integer)

Station.Anemometer(

Station.StationId,

Anemometer.Time |

WindSpeed:Double,

Process:Integer)

Station.FrostControl(

Station.StationId,

FrostControl.Time |

FrostAlert:CString,

Process:Integer)
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Process Type

Source Processes metadata of Observed Properties are stored by Process Type objects. Each
Process Type may be either Time-triggered or Event-triggered at a given timeResolution

R. Time-triggered processes generate Temporal samplings at resolution R, i.e., a new ob-

served value is generated every R seconds since lo to hi (lo and hi are respectively the lowest
and highest TimeInstant(R) values defined in the system for observation times generated by
the relevant process). The semantics for timeResolution in Event-triggered processes is
slightly different, meaning that the time at which the event is fired will be stored as a TimenIn-

stant(R) value. In the running example, process HumidityTempProbe generates temperature
and humidity observations every 10 minutes, whereas process Anemometer generates wind
speed observations every 5 seconds. Owing to the external nature of these processes, observa-

tion values must be provided by external systems. On the contrary, internal FrostControl

process computes the frost risk value according to meteorological observations provided by
HumidityTempProbe. To generate calculated Feature Properties, the system executes in-

ternal processes during ETL tasks.
For each Process Type PT , the following Dimensions and Extensional MappingSets are

recorded.

a) Since the sourceProcess that actually generates observation values for PT may change
over time, identifiers of such processes are automatically generated by the system and
recorded in a Dimension PT : Integer. Notice that these identifiers are used in Extensional

Mappings Process, defined in the above subsection, to identify the sourceProcess that
generates each observation. Following Dimensions are generated within the system to
record all the required process identifiers in the running example:

HumidityTempProbe:Integer

Anemometer:Integer

FrostControl:Integer

b) Let PP1, . . . ,PPn be the Process Properties of PT . The following Extensional MappingSet

is recorded
PT.Properties(dPT | M1 : PPT1, . . . ,Mn : PPTn)

where
dPT = PT : Integer
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is the Dimension of PT identifiers, and

Mi : PPTi = PT.PPi(PT ) : PPTi

is the Extensional Mapping that enables the recording of the PPi values for each PT in-
stance.

For the running example, the following Extensional MappingSets are generated:

HumidityTempProbe.Properties(

HumidityTempProbe |

Description:CString)

Anemometer.Properties(

Anemometer |

Description:CString)

FrostControl.Properties(

FrostControl |

Description:CString)

c) If PT is a time-triggered Process of resolution R then a Sampling

PT.Time(lo : TimeInstant(R),hi : TimeInstant(R))

is recorded, where lo and hi are respectively the lowest and highest time instants config-
ured in SODA for observations generated by PT . If PT is an event-triggered Process of
resolution R then a non-sampling Dimension

PT.Time : TimeInstant

is stored. These Dimensions store the time instant assigned to each observation value

and are, therefore, added to the domain of the relevant Extensional MappingSet that stores
such observation values. As shown in the above subsection, Dimensions HumidityTemp-

Probe.Time, Anemometer.Time and FrostControl.Time have been added to the do-
main of Extensional MappingSets Station.HumidityTempProbe, Station.Anemo-
meter and Station.FrostControl, respectively.

4.3 Observation Data Analysis

Given the above data models for the representation of both spatio-temporal and observation
data, a novel XML based language, called MAPAL (Mapping Analysis Language) is provided
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for the analysis of the proposed data structures. Such a language should fulfill the following
requirements based on the generic functionality of an observation data management system.

– Follow a declarative paradigm.

– Support for OLAP over large data warehouses of spatial observation data.

– Support the definition of Internal Processes.

– Support the integrated analysis of both entity data and spatial, temporal and spatio-
temporal sampled data.

– Support for aggregation functionality.

4.3.1 Mapping Analysis Language (MAPAL)

Owing to the functional nature of the proposed data models, extensions of well known lan-
guages like SQL and XQuery cannot be directly used. However, constructs of these well
known languages are used by the hybrid logical-functional paradigm of MAPAL. The combi-
nation of such constructs with the XML syntax enables their insertion in currently dominating
web services interfaces. Three types of expressions (Functional, Conditional and Aggregate)
may be used to define derived Constants, Intensional Mappings and Extensional MappingSets.
Additionally, Sampling and Dimension expressions are used to define derived Dimensions.
MAPAL syntax and semantics, with illustrative examples, are provided below.

The XML Schema definition of MAPAL is shown in Code 4.2. Notice that, for illustration
purposes, pieces of code defining Dimensions, Intensional Mappings, Constants and Exten-

sional MappingSets are explained separately and corresponding references have been inserted
in Code 4.2.

An abstract super type DefinitionType is defined to encapsulate the required common at-
tribute name. As it is shown in following code snippets, all definitions extend DefinitionType.
ExternalReferenceType specifies the syntax required to access input and output data channels
in order to import and export Constants, Dimensions and Extensional MappingSets. Two re-
quired attributes, dataChannel and name, have been defined to specify the data channel and
the name of the Constant, Dimension or Extensional MappingSet in the data channel, respec-
tively. Code 4.3 shows the DimensionType schema that enables the definition of sampling and
non sampling Dimensions. ConstantType schema that enables the definition of Constants is
depicted in Code 4.4. In Code 4.5 the IntensionalMappingType schema that enables the defi-
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<?xml version="1.0" encoding="UTF-8"?>

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

targetNamespace="es.usc.citius.de.mapal"

version="1.0.0"

xmlns="es.usc.citius.de.mapal"

xmlns:xs="http://www.w3.org/2001/XMLSchema" >

<!-- ***************************** -->

<!-- DEFINITION -->

<!-- ***************************** -->

<xs:complexType abstract="true" name="DefinitionType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

<xs:element abstract="true" name="Definition" type="DefinitionType"/>

<!-- ***************************** -->

<!-- EXTERNAL REFERENCES -->

<!-- ***************************** -->

<xs:complexType name="ExternalReferenceType">

<xs:attribute name="dataChannel" type="xs:NCName" use="required"/>

<xs:attribute name="name" type="xs:QName" use="required"/>

</xs:complexType>

<!-- DIMENSION DEFINITION: Code 4.3 -->

<!-- INTENSIONAL MAPPING DEFINITION: Code 4.5 -->

<!-- CONSTANT DEFINITION: Code 4.4 -->

<!-- EXTENSIONAL MAPPING DEFINITION: Code 4.6 -->

</xs:schema>

Code 4.2: XML schema definition of MAPAL.

nition of Intensional Mappings is shown. Code 4.6 shows the ExtensionalMappingSetType

schema that enables the definition of Extensional MappingSets.

Dimensions

DimensionType, Code 4.3, specifies the syntax to define Dimensions. Such Dimensions may
be defined by using the element <Dimension>. DimensionType extends DefinitionType with
an optional attribute storeName. If this attribute is defined, the Dimension is persisted to disk
with the name storeName and added to the system catalog in order to be accessible for subse-
quent operations. Notice that the common attribute name refers to the name of the Dimension

in main memory. The new generated Dimension may be exported to a specific number of data
channels by adding one optional element <Output> of type ExternalReferenceType for each
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<xs:group name="DimensionSpecification">

<xs:sequence>

<xs:element name="ForEach" type="ForEachType" maxOccurs="unbounded"/>

<xs:element name="Where" type="xs:string" minOccurs="0"/>

<xs:element name="Return" type="xs:string"/>

</xs:sequence>

</xs:group>

<xs:complexType name="ForEachType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="var" type="xs:NCName" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="DimensionType">

<xs:complexContent>

<xs:extension base="DefinitionType">

<xs:sequence>

<xs:choice>

<xs:element name="Input" type="ExternalReferenceType"/>

<xs:element name="Sampling" type="SamplingSpecificationType"/>

<xs:group ref="DimensionSpecification" />

</xs:choice>

</sequence>

<xs:attribute name="storeName" type="xs:QName" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="Dimension" substitutionGroup="Definition" type="DimensionType"/>

<xs:complexType name="SamplingSpecificationType">

<xs:sequence>

<xs:element name="Start" type="xs:string"/>

<xs:element name="End" type="xs:string"/>

</xs:sequence>

<xs:attribute name="type" type="xs:string"/>

</xs:complexType>

Code 4.3: XML schema definition of MAPAL Dimension.

output data channel. For the <Output> element, dataChannel is the data channel to which
the Dimension is exported and name is the storage name of the Dimension in the data channel.

As already stated, a Dimension may be either a sampling Dimension or a non sampling
Dimension. Moreover, each non sampling Dimension may be either derived from Dimensions

previously loaded in the system or loaded from external data channels.



100 Chapter 4. SODA Design

A sampling Dimension may be defined by using the element <Sampling> of type Sam-

plingSpeficicationType which specifies the appropriate syntax to define sampling Dimen-

sions. An attribute type identifying the sampling Dimension data type is required. Elements
<Start> and <End> enable the definition of the minimum and maximum values of sampling

Dimensions. An example of a Point2D sampling Dimension covering the geographic region
of Galicia (autonomous community of northwestern Spain) is shown next.

<Dimension name="Galicia100m" storeName="local:Galicia100m">

<Sampling type="Point2D(9,100)">

<Start> 465000.0,4615000.0 </Start>

<End> 705000.0,4865000.0 </End>

</Sampling>

</Dimension>

A derived non sampling Dimension may be defined by using a sequence of elements
<ForEach>, <Where> and <Result>. The element <ForEach> contains a Dimension Set

Expression of the form

d1 OP d2 OP . . . OP dm

where di is a Dimension name and OP is either AND or OR. The semantics of AND and
OR are respectively those of Dimension Set Operations Intersection and Union, which are
defined below. The required attribute var defines a variable name that iterates over the result
of the Dimension Set Expression. Multiple elements <ForEach> may be defined inside the
element <Dimension> enabling the definition of multiple variables iterating over different
Dimension Set Expressions. If multiple variables are defined, the values to be processed are
provided by the Cartesian product of the values resulting from each Dimension Set Expres-

sion. Then, values to be processed may be filtered by providing a conditional expression with
element <Where>. Finally, the resulting values of the previous condition are processed by the
expression specified by the element <Result>. An example is shown below.

<Dimension name="Pontevedra100m" storeName="local:Pontevedra100m">

<ForEach var="x"> galicia100m </ForEach>

<Where> getX(x) &gt; 490000 AND getX(x) &lt; 600000 AND

getY(x) &gt; 4630000 AND getY(x) &lt; 4750000

</Where>

<Return> x </Return>

</Dimension>
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Dimension Pontevedra100m contains the Point2D values within Galicia100m which
meet the condition specified in element <Where>, i.e., the points within a rectangular grid of
Point2D values covering the geographic region of Pontevedra (province of Galicia). Although
Pontevedra100m is a rectangular grid of Point2D values, it is not a sampling Dimension

anymore. Obviously, Galicia100m must be already defined in the system. Since attribute
storeName has been defined, a Dimension local:Pontevedra100m is stored on disk to
record Pontevedra100m values.

Any external Dimension may be imported by using the element <Input> of type External-

ReferenceType. For the <Input> element, dataChannel is the data channel from which the
Dimension is imported and name specifies the name in the input data channel of the Dimen-

sion to be imported. The following example imports Dimension Galicia5m from Dimension

tiff:GaliciaLoc5m defined in data channel GeoTiff and stores it into local catalog.

<Dimension name="Galicia5m" storeName="local:Galicia5m">

<Input dataChannel="GeoTiff" name="tiff:GaliciaLoc5m"/>

</Dimension>

Let d1(T1) and d2(T2) be two non sampling Dimensions, where T1 and T2 are compatible
data types, i.e., either they are of the same data type or an implicit casting has been defined
among them. Then d1 Union d2 is defined as the following Dimension

d(T ) = cast(d1 as T ) ∪ cast(d2 as T )

where T is the data type resulting from the implicit casting between T1 and T2, and cast(diasT )

is the Dimension resulting from casting each element of di to type T .
Let d1(T1) and d2(T2) be two Dimensions, where T1 and T2 are compatible data types

whose resulting implicit casting data type is T , and at least one of the Dimensions is a 1D
Sampling. Then d1 Union d2 is defined as the 1D Sampling S(m,M), where

m = min{cast(v as T ) | v ∈ d1∪d2}

M = max{cast(v as T ) | v ∈ d1∪d2}

Let d1(T1) and d2(T2) be two Dimensions, where T1 and T2 are compatible data types
whose resulting implicit casting data type is T , and at least one of the Dimensions is a 2D
Sampling. Then d1 Union d2 is defined as the 2D Sampling S((xm,ym),(xM,yM)) where
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xm = min{cast(x as T ) | (x,y) ∈ d1∪d2}

ym = min{cast(y as T ) | (x,y) ∈ d1∪d2}

xM = max{cast(x as T ) | (x,y) ∈ d1∪d2}

xM = max{cast(y as T ) | (x,y) ∈ d1∪d2}

Let d1(T1) and d2(t2) be two Dimensions, where T1 and T2 are compatible data types
whose resulting implicit casting type is T , and at least one of the Dimensions is a non sampling
Dimension. Then d1 Intersection d2 is defined as the following Dimension,

d(T ) = cast(d1 as T ) ∩ cast(d2 as T )

where cast(di as T ) is the Dimension resulting from casting each element of di to type T .
Let d1(T1) and d2(T2) be two 1D Samplings, where T1 and T2 are compatible data types

whose resulting implicit casting data type is T . Then d1 Intersection d2 is defined as the 1D
Sampling S(m,M), where

m = max{cast(v as T ) | v ∈ d1∪d2}

M = min{cast(v as T ) | v ∈ d1∪d2}

Let d1(T1) and d2(T2) be two 2D Samplings, where T1 and T2 are compatible data types
whose resulting implicit casting data type is T . Then d1 Intersection;d2 is defined as the 2D
Sampling S((xm,ym),(xM,yM)) where

xm = max{cast(x as T ) | (x,y) ∈ d1∪d2}

ym = max{cast(y as T ) | (x,y) ∈ d1∪d2}

xM = min{cast(x as T ) | (x,y) ∈ d1∪d2}

xM = min{cast(y as T ) | (x,y) ∈ d1∪d2}

Constants

The syntax to define Constants is specified by ConstantType in Code 4.4. storeName,
<Input> and <Output> have been defined with exactly the same semantics that those defined
for Dimensions. Additionally, a Constant may be defined through a Functional Expression by
using the element <Return>.
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<xs:complexType name="ConstantType">

<xs:complexContent>

<xs:extension base="DefinitionType">

<xs:sequence>

<xs:choice>

<xs:element name="Input" type="ExternalReferenceType"/>

<xs:element name="Return" type="xs:string"/>

</xs:choice>

<xs:element name="Output" type="ExternalReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="storeName" type="xs:QName" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="Constant" substitutionGroup="Definition" type="ConstantType"/>

Code 4.4: XML schema definition of MAPAL Constant.

A Functional Expression e, denoted by e(v1, . . . ,vn), defined in the context of variables
v1, . . . ,vn combines context variables with already defined constructors (Constants, Inten-

sional Mappings and Extensional MappingSets), operators, literals, primitive mappings and
type castings. The semantics is the obvious one.

A new Constant IDWDistance is defined by the following code through a simple func-
tional expression and then exported to a PostGIS channel. Notice that constants dist1 and
dist2 must be already defined in the system.

<Constant name="IDWDistance" storeName="local:IDWDistance">

<Result> min(dist1,dist2) </Result>

<Output dataChannel="PostGIS" name="postgis:IDWDistance"/>

</Dimension>

Intensional Mappings

The schema of an Intensional Mapping in MAPAL is shown in Code 4.5. Definition of Inten-

sional Mappings are enabled by element <IntensionalMapping> of type IntensionalMap-

pingType. An optional attribute domain has been defined to enable the specification of input
arguments. Thus a list of input arguments may be specified in order to define the domain over
which the mapping has to be applied. The resulting Intensional Mapping may be defined by
Functional, Conditional or Aggregated Expressions applied to the input argument values.
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<xs:group name="AggregateExpression">

<xs:sequence>

<xs:element name="ForEach" type="ForEachType" maxOccurs="unbounded"/>

<xs:element name="Where" type="xs:string" minOccurs="0"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="OrderAscendingBy" type="xs:string"/>

<xs:element name="OrderDescendingBy" type="xs:string"/>

</xs:choice>

<xs:element name="Aggregate" type="xs:string"/>

</xs:sequence>

</xs:group>

<xs:group name="ConditionalExpression">

<xs:sequence>

<xs:sequence maxOccurs="unbounded">

<xs:element name="When" type="xs:string"/>

<xs:element name="ThenReturn" type="xs:string"/>

</xs:sequence>

<xs:element name="ElseReturn" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:group>

<xs:complexType name="IntensionalMappingType">

<xs:complexContent>

<xs:extension base="DefinitionType">

<xs:choice>

<xs:element name="Return" type="xs:string"/>

<xs:group ref="AggregateExpression" />

<xs:group ref="ConditionalExpression" />

</xs:choice>

<xs:attribute name="domain" type="xs:string" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="IntensionalMapping"

substitutionGroup="Definition"

type="IntensionalMappingType"/>

Code 4.5: XML schema definition of MAPAL Intensional Mapping.

Similarly to Constants, element <Return> enables the definition of an Intensional Map-

ping through a Functional Expression. The following example defines an Intensional Map-

ping slope that computes the slope of the terrain at location p (input argument) from its el-
evation. Notice that referenced Extensional MappingSet Topo:Elevation must be already
defined.
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<IntensionalMapping name="xslope" domain="p">

<Return>

1*Topo.Elevation(shift(p,-1,1)) +

2*Topo.Elevation(shift(p,-1,0)) +

1*Topo.Elevation(shift(p,-1,-1)) -

1*Topo.Elevation(shift(p,1,1)) -

2*Topo.Elevation(shift(p,1,0)) -

1*Topo.Elevation(shift(p,-1,-1))

</Return>

</IntensionalMapping>

<IntensionalMapping name="yslope" domain="p">

<Return>

1*Topo.Elevation(shift(p,-1,-1)) +

2*Topo.Elevation(shift(p,0,-1)) +

1*Topo.Elevation(shift(p,1,-1)) -

1*Topo.Elevation(shift(p,-1,1)) -

2*Topo.Elevation(shift(p,0,1)) -

1*Topo.Elevation(shift(p,1,1))

</Return>

</IntensionalMapping>

<IntensionalMapping name="slope" domain="p">

<Return> atan1(sqrt(xslope(p)^2 + ysolpe(p)^2)) </Return>

</IntensionalMapping>

An Aggregate Expression, that enables the application of aggregate mappings to finite se-
quences of tuples built from Dimensions and Extensional MappingSets, may be used in MA-
PAL to define an Intensional Mapping. Several required and optional elements may be used to
define an Aggregate Expression. Elements <ForEach> and <Where> have the same semantics
that those defined by DimensionType. An optional sequence of Functional Expressions may
be specified to order, either ascending or descending, the resulting values from <ForEach>

and <Where> elements. Element <Aggregate> specifies an Aggregate Expression which
combines functional expression elements with system provided aggregate functions. Aggre-
gated functions defined within the system may have the form of the classical ones of SQL
(e.g., AVG, SUM) or may also exploit the ordering, e.g., function AT POSIT ION(S,n) yields
the element of S located at position n.

The following lines of code apply the well known Inverse Distance Weight (IDW) interpo-
lation method over meteorological stations defined in Dimension StationId for the specific
input meteorological property m, location point p and time instant t to provided an aggregated
value of m.
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<IntensionalMapping name="meteoProperty" domain="m, s, t">

<When> m = "Temperature" </When>

<ThenReturn> ffr:Observation.Temperature(s,t) </ThenReturn>

<When> m = "Humidity" </When>

<ThenReturn> ffr:Observation.Humidity(s,t) </ThenReturn>

<When> m = "WindSpeed" </When>

<ThenReturn> ffr:Observation.WindSpeed(s,t) </ThenReturn>

</IntensionalMapping>

<IntensionalMapping name="IDW" domain="m,p,t">

<ForEach var = "s"> StationId </ForEach>

<Where> distance(Station.Loc(s), p) &lt; IDWDistance </Where>

<Aggregate> sum(meteoProperty(m,s,t)/distance(Station.Loc(s), p)^2) /

sum(1/distance(Station.Loc(s), p)^2)

</Aggregate>

</IntensionalMapping>

An Intensional Mapping may be defined by a Conditional Expression that enables the
introduction of if-then-else structures. An unbounded number of <When> and <ThenReturn>
elements enable the definition of conditions and corresponding results. An optional element
<ElseReturn> enables the definition of the default result. In previous code, Intensional

Mapping meteoProperty returns temperature, humidity or wind speed observations through
a Conditional Expression.

Extensional MappingSets

The schema definition of an Extensional MappingSet of type ExtensionalMappingSetType

is shown in Code 4.6. Similarly to Dimensions and Constants, an Extensional MappingSet

may be imported from an external data channel and exported to several external data chan-
nels. Of course, it may also be persisted into local catalog. The following code shows the
definition of Extensional MappingSet Observation imported from Extensional MappingSet

Observation in data channel Postgis, persisted to local catalog as ffr:Observation

and exported to data channel NetCDF as ObservationFromPostgis.

<ExtensionalMappingSet name="Observation" storeName="ffr:Observation">

<Input dataChannel="Postgis" name="Observation"/>

<Output dataChannel="NetCDF" name="ObservationFromPostgis"/>

</ExtensionalMappingSet>

An optional attribute domain may be used to specify a list of Dimensions so that the
Cartesian product of such Dimensions is the domain of the resulting Extensional MappingSet.
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<xs:complexType name="ExtensionalMappingType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="ExtensionalMappingSetType">

<xs:complexContent>

<xs:extension base="DefinitionType">

<xs:sequence>

<xs:choice>

<xs:element name="Input" type="ExternalReferenceType"/>

<xs:element name="ExtensionalMapping" type="ExtensionalMappingType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>

<xs:element name="Output" type="ExternalReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="storeName" type="xs:QName" use="optional"/>

<xs:attribute name="domain" type="xs:string" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="ExtensionalMappingSet" substitutionGroup="Definition"

type="ExtensionalMappingSetType"/>

Code 4.6: XML schema definition of MAPAL Extensional Mapping.

Since an Extensional MappingSet is composed of Extensional Mappings that provide an out-
put value for each domain element, <ExtensionalMapping> enables the definition of an
Extensional Mapping through a Functional Expression. In the example below, a forest fire
risk index is provided by Extensional MappingSet ForestFire for each combination of
time instant (within ffr:ObsDate) and location (within ffr:Loc5m). Resulting Extensional

MappingSet is exported to data channel NetCDF as ForestFire.

<IntensionalMapping name="normalize" domain="v, min, max">

<When> v &lt; min </When> <ThenReturn>0</ThenReturn>

<When> v &gt; max </When> <ThenReturn>1</ThenReturn>

<ElseReturn> (v-min)/(max-min) </ElseReturn>

</IntensionalMapping>

<ExtensionalMappingSet name="ForestFire" domain="p ffr:Loc5m, t ffr:ObsDate">

<ExtensionalMapping name="Risk">

normalize(IDW("Temperature",p,t), minTemperature, maxTemperature)*TemperatureWeight+
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(IDW("Humidity", p,t)/100)*HumidityWeight+

normalize(IDW("WindSpeed",p, t), minWindSpeed, maxWindSpeed)*WindSpeedWeight+

normalize(slope(p), 0, maxSlope)*SlopeWeight

</ExtensionalMapping>

<Output dataChannel="NetCDF" name="ras:ForestFire"/>

</ExtensionalMappingSet>

4.3.2 Analytical Processes

An appropriate syntax to define internal analytical Observation processes executed during
ETL tasks is now defined. Similarly to MAPAL and XODDL, a declarative XML-based
syntax has been defined to ease the definition of internal processes.

Element <Process> enables the definition of such processes. A required attribute <pro-
cessType> specifies the process data type. An optional element <Description> within
<Process> may provide a textual process description. A required element <Definition>
comprises the required MAPAL elements to properly define the internal process.

– First, a number of optional Dimensions and Intensional Mappings may be defined to be
used in remainder elements.

– Next, the temporal Dimension of the resulting process is defined by using either an el-
ement <TriggeredByTime> or an element <TriggeredByEvent>. Recall that each
Process Type PT has a Dimension PT.Time, which is either a sampling Dimension for
time-triggered processes or a non sampling Dimension for event-triggered processes.
The temporal Dimension of a time-triggered internal Process Type PT with temporal
resolution R is defined with an expression of the following form:

<TriggeredByTime> PT1.Time,...,PTn.Time </TriggeredByTime>

where each PTi.Time is the temporal Dimension of a Process Type PTi. The semantics
are those of the 1D Sampling S(m,M), where

m = cast(min{v | v ∈ PT1.Time∪PT2.Time∪ . . .∪PTn.Time} as TimeInstant(R))

M = cast(max{v | v ∈ PT1.Time∪PT2.Time∪ . . .∪PTn.Time} as TimeInstant(R))

An expression of the following form enables the definition of the temporal Dimension

of an event-triggered internal Process Type PT of time resolution R:
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<TriggeredByEvent>

<Event var="t"> PT1.Time, PT2.Time, ... , PTn.Time </Event>

<Condition> c(t) </Condition>

</TriggeredByEvent>

where each PTi.Time is the temporal Dimension of a Process Type PTi and c(t) is a
functional expression of Boolean type. The semantics are those of the non sampling
Dimension defined by the set

{ cast(t as TimeInstant(R)) | t ∈ PT1.Time ∪ PT2.Time ∪ . . .∪ PTn.Time ∧ c(t) }

– Finally, an <ExtensionalMapping> MAPAL element has to be used to define a Fea-

ture Property FT.FP observed by an internal Process Type PT. This Extensional Map-

ping is automatically added to the relevant Extensional MappingSet recording FP ob-
servation values. The evaluation of each Extensional Mapping during ETL tasks is
restricted to the evaluation of the elements of PT.Time to be imported, avoiding re-
evaluation of the Extensional Mapping for the whole temporal extension of the data
warehouse.

Definition of Process Type FrostControl of running example is provided below for illus-
tration purposes.

<?xml version="1.0" encoding="utf-8"?>

<pd:ProcessDefinitions

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="es.usc.citius.de.soda.ProcessDefinition Soda_ProcessDefinition.xsd"

xmlns="es.usc.citius.de.mapal"

xmlns:fish="es.usc.citius.de.fish"

xmlns:pd="es.usc.citius.de.soda.ProcessDefinition">

<pd:Process processType="FrostControl">

<pd:Description>

Calculates the frost risk index for each Station from Temperature and Humidity

observation values.

</pd:Description>

<pd:Definition>

<IntensionalMapping name="FrostAlert" domain="t, h">

<When> t &lt; 0 AND h &gt; 95 </When>

<ThenReturn> VERY HIGH </ThenReturn>

<When> t &lt; 0 AND h &gt; 85 AND h &lt;= 95 </When>

<ThenReturn> HIGH </ThenReturn>
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<When> t &lt; 0 AND h &gt; 75 AND h &lt;= 85 </When>

<ThenReturn> MEDIUM </ThenReturn>

<When> t &lt; 0 AND h &gt; 65 AND h &lt;= 75 </When>

<ThenReturn> LOW </ThenReturn>

<When> t &lt; 0 AND h &gt; 55 AND h &lt;= 65 </When>

<ThenReturn> VERY LOW </ThenReturn>

<ElseReturn> VERY LOW </ElseReturn>

</IntensionalMapping>

<IntensionalMapping name="StationsInRisk" domain="t">

<ForEach var="s"> Station.StationId </ForEach>

<Where> Station.HumidityTempProbe.Temperature(s, t) &lt; 0

AND Station.HumidityTempProbe.Humidity(s, t) &gt; 85

</Where>

<Aggregate> not EMPTY(s) </Aggregate>

</IntensionalMapping>

<pd:TriggeredByEvent>

<pd:Event var="t"> HumidityTempProbe.Time </pd:Event>

<pd:Condition> StationsInRisk(t)</pd:Condition>

</pd:TriggeredByEvent>

<ExtensionalMapping name="FrostAlert"

domain="Station.StationId s, FrostControl.Time t">

<Return> FrostAlert(Station.HumidityTempProbe.Temperature(s, t),

Station.HumidityTempProbe.Humidity(s, t))

</Return>

</ExtensionalMapping>

</pd:Definition>

</pd:Process>

</pd:ProcessDefinitions>

An accurate implementation of a frost risk alert system is out of the scope of this Thesis,
thus some simplifications are made for an easy understanding. For this example, the frost risk
is calculated based on the following rules:

– if T < 0 ∧ RH > 95, then frost risk is VERY HIGH

– if T < 0 ∧ 85 < RH ≤ 95, then frost risk is HIGH

– if T < 0 ∧ 75 < RH ≤ 85, then frost risk is MEDIUM

– if T < 0 ∧ 65 < RH ≤ 75, then frost risk is LOW

– if T < 0 ∧ 55 < RH ≤ 65, then frost risk is VERY LOW
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where T is the measured temperature in Celsius degrees and RH is measured relative humidity
in percentage units.

Every time that FrostControl code is executed a new process identifier is automati-
cally generated by the system. This identifier is stored in both Dimension FrostControl

and Extensional Mapping Process of Extensional MappingSet Station.FrostControl.
Process FrostControl is defined as an event-triggered process that is fired every time a sta-
tion is in risk VERY HIGH or HIGH, i.e., measured temperature is below 0ºC and measured
relative humidity is above 85%. Such conditions are implemented by Intensional Mapping

StationsInRisk. Feature Property Station.FrostAlert generates output observations
applying the above rules (implemented by Intensional Mapping FrostAlert) over tempera-
ture and relative humidity values.

4.3.3 System Operators

Query processing performs the evaluation of the above MAPAL expressions. A many-sorted
algebra over three different data structures (Dimensions, Constants and Extensional Map-

pingSets) that enables the evaluation of MAPAL queries is defined next. Operations of this
algebra are classified into three different groups according to the result structure that they
produce. The general syntax of such operations is the following:

operatorName[paramList] . . . [paramList](argumentList)

where paramList is a comma separated list of parameters and argumentList is a comma sep-
arated list of arguments.

Dimension Operators

– ImportDimension[Name][channelName][storageName]. Imports a Dimension from an
external data channel. Parameter Name is the name of the new Dimension. Parameter
channelName is the name of the external data channel. Parameter storageName is the
name, in the external data channel, of the Dimension to import.

– ScanDimension[Name]. Reads a Dimension from local catalog. Parameter Name is the
name of the Dimension to read.

– SamplingDimension[Name](k1,k2). Generates an new in-memory sampling Dimension

with all the values of Sampling S(k1,k2). Parameter Name is a CString containing the
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name of the generated Dimension. Operands k1 and k2 are Constants with identical
temporal or spatial data type, obtained from some Constant operator.

– Union(d1,d2). Computes the Union of Dimensions as defined in 4.3.1. Operands d1

and d2 are Dimensions produced by some other operator.

– Intersection(d1,d2). Computes the Intersection of Dimensions as defined in 4.3.1.
Operands d1 and d2 are Dimensions produced by some other operator.

– ProjectDimension[d][c](MS). Generates a result Dimension containing all the distinct
elements of parameter d where Extensional Mapping c has a true value. Operand MS

is an Extensional MappingSet produced by a relevant operation. Parameter d is the
name of either a Dimension or an Extensional Mapping of MS. Optional parameter
c is the name of a Boolean Extensional Mapping of MS. Notice that if d is a sam-

pling Dimension and c is provided, then the resulting Dimension will not be a sampling

Dimension anymore.

– StoreDimension[Name](d). Saves Dimension d to disk using Name as its storage name.
Parameter Name is a CString and parameter d is a Dimension generated by some oper-
ator. If d is a sampling Dimension only the metadata and its limits are written into the
local catalog.

– ExportDimension[channelName][storageName](d). Exports the Dimension d to an ex-
ternal data channel. Parameter d is a Dimension generated by some operator. Parameter
channelName is the name of the external data channel. Parameter storageName is the
name, in the external data channel, of the new exported Dimension.

Extensional MappingSet Operators

– ImportMappingSet[Name][channelName][storageName][domain]. Imports an external
Extensional MappingSet from a data channel. Parameter Name is the name of the new
Extensional MappingSet. Parameter channelName is the name of the external data
channel. Parameter storageName is the name, in the external data channel, of the Ex-

tensional MappingSet to import. Parameter domain is a comma separated list of Di-

mensions, i.e., the domain of the Extensional MappingSet. Notice that all Dimensions

within the domain must be already imported before importing the Extensional Map-

pingSet.
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– Product[Name](d1, . . . ,dn). Generates a new Extensional MappingSet, without Exten-

sional Mappings, whose domain is the Cartesian product d1× . . .×dn. Parameter Name

is the name of the new Extensional MappingSet. Each operand di is a Dimension pro-
duced by some operator.

– Product(MS,d). Generates a result Extensional MappingSet whose domain is the
Cartesian product of d with the domain of MS. All Extensional Mappings of MS are
kept in the resulting Extensional MappingSet.

– ProjectMappingSet[Name][s1, . . . ,sn](MS). Generates a new Extensional MappingSet

whose domain is equal to the domain of MS and with one Extensional Mapping for each
si. Operand MS is an Extensional MappingSet produced by some operator. Parameter
Name is the name of the new Extensional MappingSet. Each parameter si is either a
Dimension or an Extensional Mapping of MS.

– EvaluateIntensionalMappings[m1, . . . ,mn](MS). Adds new Extensional Mappings to
MS. Operand MS is an Extensional MappingSet produced by some operator. Each mi

is an intensional mapping expression of the form newMappingName = pm(s1, . . . ,sm),
where pm is the name of a primitive mapping and each si is the name of either a Di-

mension or an Extensional Mapping of MS. The actual expression of mi is generated
from the expression of each si obtained from MS. If some Extensional Mapping of MS

has been already computed by an expression equivalent to the actual expression of mi,
the new name newMappingName is added to the list of names referencing such Exten-

sional Mapping. Otherwise, the primitive mapping is evaluated for each element of the
domain of MS to produce a new Extensional Mapping called newMappingName.

– EvaluateExtensionalMapping[m](MS). Appends a new Extensional Mapping to MS

(an Extensional MappingSet produced by some operator). Parameter m is an extensional

mapping expression of the form newMappingName = ems.em(s1, . . . ,sm), where ems

references an Extensional MappingSet, em references an Extensional Mapping of ems,
and each si is the name of either a Dimension or an Extensional Mapping of MS. The
domain of ems must be defined by the Cartesian product of m dimensions d1×d2× . . .×
dm in such a way that the data type of each si is compatible with the data type of each di.
If some Extensional Mapping of MS has been computed by an expression equivalent to
m, then the name newMapping will be added to the names of such Extensional Mapping,
otherwise em will be evaluated.
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– EvaluateConstant[Name](MS,k). Generates a new Extensional Mapping from the ex-
pression of k. Parameter Name is the name of the new Extensional Mapping. Operand
MS is an Extensional MappingSet produced by some operator. Operand k is a Constant

value. If the expression of k is already present in some Extensional Mapping of MS,
then the name newMapping will be added to such Extensional Mapping. Otherwise, a
new Extensional Mapping called newMapping is added to MS, which records the value
obtained from k for each element of the domain. The data type and expression of the
new mapping will be obtained from k. The domain of the new mapping in MS will be
empty.

– EvaluateAggregateMappings[Name][groupBy][orderBy][c][ag1, . . . ,agn](MS). MS is
an Extensional MappingSet obtained from some operator. Parameter groupBy is a
list of names of Dimensions of MS. Parameter ordSpec is an optional ordering spec-
ification composed of a list of pairs (s,o), where each s is the name of either a Di-

mension or an Extensional Mapping of MS, and o is an ordering direction, either as-

cending or descending. Optional parameter c is the name of an Extensional Mapping

of MS of Boolean data type. Each agi is an expression of the form newMappingi =

AggMappingi(s1,s2, . . . ,sn), where AggMappingi is the name of a primitive aggregate
mapping and each s j is the name of either a Dimension or an Extensional MappingSet

of MS. The result Extensional MappingSet will have as domain the list of Dimensions

referenced in groupBy and as Extensional Mappings the list of mappings of MS whose
domain does not contain Dimensions not present in groupBy, together with the new
mappings generated by ag1,ag2, . . . ,agn. To achieve this, first MS is grouped by Di-

mensions in groupBy and Extensional Mappings whose domain does not contain Di-

mensions out of groupBy. Next, the sequence of tuples of each group is filtered using
c. Then, the result is ordered according to ordSpec. Finally, each aggregate mapping is
evaluated in the ordered sequence of tuples to produce just one value for each group. If
some Extensional Mapping of MS already has the same expression of one of the aggre-
gates aggMappingi to be evaluated, then newMapping will be added to the names of
such Extensional Mapping and aggMappingi will not be evaluated again.

– StoreMappingSet[Name](MS). Parameter Name is a CString and operand MS is an
Extensional MappingSet obtained from some operation. The metadata of MS and the
data of each of its Extensional Mappings is saved to disk. This operation has not effect
if MS does not have any Extensional Mapping.
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– ExportMappingSet[channelName][Name](MS). Exports the Extensional MappingSet

MS to an external data channel. Parameter MS is an Extensional MappingSet generated
by some operator. Parameter channelName is the name of the external data channel. Pa-
rameter Name is the name, in the external data channel, of the new exported Extensional

MappingSet.

Constant Operators

– Literal[Name][l]. Transforms a literal into a data value that is recorded in the result
Constant. Parameter Name is the name of the new generated Constant. Parameter l is
the CString representation of a literal. The expression associated to the Constant will
be l.

– ImportConstant[Name][channelName][storageName]. Imports a Constant from an ex-
ternal data channel. Parameter Name is the name of the new Constant. Parameter
channelName is the name of the external data channel. Parameter storageName is the
name, in the external data channel, of the Constant to import.

– ScanConstant[Name]. Reads a Constant from local catalog. Parameter Name is the
name of the Constant to read.

– EvaluateIntensionalMapping[Name][m](k1, . . . ,kn). Each operand ki is a Constant ob-
tained from some operation and m is the name of a primitive mapping. Mapping m is
evaluated using the values of ki as parameters to obtain the value for the result Constant.
The expression of the result will also be generated from m and the expression of each
ki.

– EvaluateExtensionalMapping[Name][m](k1, . . . ,kn). It is similar to the above opera-
tion, however now m references an Extensional Mapping of an Extensional MappingSet.
The data of both m and the Dimensions of the domain of m have to be accessed to ob-
tain the result value. The expression of the result will be generated from m and the
expression of each ki.

– EvaluateAggregateMapping[Name][orderBy][c][agg](MS). MS is an Extensional Map-

pingSet obtained from some operation. Parameter ordSpec is an ordering specification
composed of either Dimensions or Extensional Mappings of MS and ordering directions
(ascending or descending). Parameter c is an Extensional Mapping of MS of Boolean
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type. Parameter agg is an expression of the form aggMapping(s1,s2, . . . ,sn), where ag-

gMapping is a primitive aggregate mapping and each si references either a Dimension

or an Extensional Mapping of MS. The elements of MS are first filtered using c and
next ordered according to ordSpec. Finally, the aggregate mapping is applied to reduce
MS to a single value of the result Constant. The expression of the result Constant will
be generated from the expression of the aggregate mapping, by concatenating at the
appropriate place the expression of each si obtained from MS.

– StoreConstant[Name](k). Saves Constant k to disk using Name as its storage name.
Parameter Name is a CString and operand k is a Constant generated by some operator.

– ExportConstant[channelName][Name](k). Exports the Constant k to an external data
channel. Parameter k is a Constant generated by some operator. Parameter channel-

Name is the name of the external data channel. Parameter Name is the name, in the
external data channel, of the new exported Constant.

4.3.4 Evaluation of MAPAL Expressions

To illustrate how MAPAL expressions are transformed to MAPAL operators, the sequence of
operators corresponding to the evaluation of the following MAPAL expressions is given next.

<IntensionalMapping name="RiskByMunicipality" domain="m,t">

<ForEach var="p"> Loc5m </ForEach>

<Where> within(p, Municipality.Geo(m)) </Where>

<Aggregate> AVG(ForestFire.Risk(p, t)) </Aggregate>

</IntensionalMapping>

<ExtensionalMappingSet name="MunicipalityWithRisk" storeName="MunicipalityWithRisk"

domain="m MunCode, t ObsDate">

<ExtensionalMapping name="Name"> Municipality.Name(m) </ExtensionalMapping>

<ExtensionalMapping name="Geo"> Municipality.Geo(m) </ExtensionalMapping>

<ExtensionalMapping name="Risk"> RiskBymunicipality(m, t) </ExtensionalMapping>

</ExtensionalMappingSet>

Extensional MappingSet MunicipalityWithRisk provides the fire risk index for mu-
nicipalities at every stored time instant. The name and geometry of each municipality is
provided by accessing Extensional MappingSet Municipality. The fire risk index for each
municipality is calculated by Intensional Mapping RiskByMunicipality as the average
of the fire risk indexes for all points within the municipality geometry. The fire risk index
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for a specific municipality at a specific time instant is provided by Extensional MappingSet

ForestFire defined in Section 4.3.1.
The following operator expressions are generated to evaluate the above MAPAL expres-

sions:

1 d1 = ScanDimension[MunCode]

2 d2 = ScanDimension[ObsDate]

3 MS1 = Product[MunicipalityWithRisk](d1,d2)

4 MS2 = EvaluateExtensionalMapping[Name=Municipality.Name(MunCode)](MS1)

5 MS3 = EvaluateExtensionalMapping[Geo=Municipality.Geo(MunCode)](MS2)

6 d3 = ScanDimension[Loc5m]

7 MS4 = Product(MS3, d3)

8 MS5 = EvaluateExtensionalMapping[M1=Municipality.Geo(MunCode)](MS4)

9 MS6 = EvaluateIntensionalMapping[M2=within(Loc5m,M1)](MS5)

10 MS7 = EvaluateExtensionalMapping[M3=ForestFire.Risk(Loc5m,ObsDate)](MS6)

11 MS8 = EvaluateAggregateMapping[MunCode,ObsDate][][M2][Risk=AVG(M3)](MS7)

12 MS9 = ProjectMappingSet[Name,Geo,Risk](MS8)

13 MS10 = StoreMappingSet[MunicipalityWithRisk](MS9)

First, Dimensions MunCode and ObsDate are read from local catalog (1-2). Notice that ei-
ther imported from an external data channel or generated by previous operations, they must be
already stored in local catalog. Then, Extensional MappingSet MunicipalityWithRisk is
generated by building a new domain from MunCode and ObsDate (3). Extensional Mappings

Name and Geo are added to MunicipalityWithRisk by evaluating Extensional Mappings

Municipality.Name and Municipality.Geo, respectively (4-5). In order to generate
Extensional Mapping Risk, Intensional Mapping RiskByMunicipality has to be evalu-
ated. Thus, Dimension Loc5m is read from local catalog (6) and added to the domain of
MunicipalityWithRisk (7). A temporary mapping M2 storing the evaluation of the con-
dition defined in element <Where> of RiskByMunicipality is required to calculate the
aggregated function AVG. Such evaluation is performed by evaluating Extensional Mapping

Municipality.Geo (8) and Intensional Mapping within (9). The fire risk index for each
location and time instant is calculated by evaluating Extensional Mapping ForestFire.Risk

and stored as a temporary mapping M3 (10). Extensional Mapping Risk storing the aggregated
average indexes is generated in (11) by evaluating an Aggregate Mapping. Notice that Di-

mension Loc5m has been deleted from the domain of the resulting Extensional MappingSet,
temporary mapping M2 is used as the aggregate condition and Extensional Mapping Risk

is calculated by calling the primitive aggregate function AVG over temporary mapping M3.
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Finally, only Extensional Mappings Name, Geo and Risk are considered in the resulting Ex-

tensional MappingSet MunicipalityWithRisk (12) and local catalog is updated (13).



CHAPTER 5

MAPAL IMPLEMENTATION

5.1 Introduction

Column-oriented DBMSs have shown to be the most efficient tools for the implementation
of OLAP (On-Line Analytical Processing) over very large data warehouses. It is noticed
that OLAP performs data reading tasks in workloads where only some columns of the tables
are involved. In that case, recording data columnwise avoids having to read the whole table
to access only some columns and furthermore, it enables better leveraging of compression
techniques [3].

A column-oriented prototype has been developed to implement a MAPAL system. A gen-
eral overview of the architecture of such prototype is depicted in Fig. 5.1. Observation Data

Analysis Service receives a set of Operator Expressions1 as input. Such Operator Expressions

determine the Operator Tree to be processed by the Query Processor. A SODA implemen-
tation should compile MAPAL expressions provided by users, build several query execution
plans in cooperation with a Query Optimizer, select the most appropriate alternative and ex-
ecute the corresponding Operator Expressions. Taking into account that the major objective
of this prototype is to show the capabilities of SODA regarding observation data analysis
performance, the implementation of a MAPAL compiler, a Query Optimizer and a complex
Query Processor goes far beyond the scope of this prototype. Likewise, implementation of
compilers for XODDL and internal process definitions are out of the scope of this prototype.
Thus, administration staff must manually configure the Catalog Manager, which provides

1 As defined in Section 4.3.3
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Figure 5.1: SODA Prototype Architecture.

access to all the system metadata, and records system provided constructors, including data
types, primitive mappings and operators, aggregate functions and type castings. Dimensions,
Extensional MappingSets and Constants are recorded in a Data Storage Unit. Finally, the
Observation Data ETL module enables the importing of external observation data.

Apache Parquet [1] and Apache Spark [10] are two very well known tools of the Apache
Hadoop ecosystem. Apache Parquet is an efficient columnar data storage technology that
enables the recording of complex nested data structures. It supports efficient compression and
encoding schemes and uses the record shredding and assembly algorithm described in [74].

Apache Spark is a fast and general-purpose cluster computing system, providing APIs
for various programming languages and an optimized engine. Its primitive data structure is
the Resilient Distributed Dataset (RDD), which can be created from many storage formats.
An RDD is a collection of data elements partitioned across the nodes of the cluster that can
be operated on in parallel. Many primitive operations are supported on RDDs, including
input/output operations, application of functions to RDD elements (Map operation) and var-
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ious relational operations (e.g., select, join, union, intersection). Operation Range enables
the generation of series of integer numbers in a result RDD. Operation ZipWithUniqueId en-
ables the generation of unique identifiers for RDD elements at each computing node. A Spark
DataFrame is constructed by combining an RDD with a schema that defines attribute names
and types. SQL operations are supported on Spark DataFrames, e.g., select, where, join,
group by, aggregation, union, intersection. DataFrames can be straightforwardly created/s-
tored from/to Apache Parquet files.

The above characteristics make the combination of Spark with Parquet a very good can-
didate platform for the efficient implementation of the proposed column oriented MAPAL
prototype. Based on my background on computer programming, the Spark Java API has been
selected to develop the prototype software code. And thus, both data types and data structures
have also been coded in Java.

The following sections provide an overview of the design of both physical data struc-
tures and operations for the efficient implementation of MAPAL on top of the aforemen-
tioned column-oriented storage and processing framework. The remainder of this Chapter is
organized as follows. Section 5.2 exposes the implementation of data types defined in Sec-
tion 4.2.1. Implementation of data structures also defined in Section 4.2.1 is explained in
Section 5.3. The implementation of required Spark user defined types and functions is cov-
ered in Section 5.4. Section 5.5 is devoted to MAPAL ETL structures that enable efficient
data import and export. Implementation of operators defined in Section 4.3.3 is covered in
Section 5.6. Finally, MAPAL performance is evaluated in Section 5.7.

5.2 Data Types Implementation

An original contribution of this Thesis is the definition of spatial and temporal data types
that enable the integrated and uniform representation of spatio-temporal entities and spatio-
temporal coverages (time evolving raster data). This section is devoted to the implementation
of all the data types defined in Section 4.2.1. Each primitive mapping supplied by the system
is implemented by a relevant data type class.
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MapalValue

+distinct(o2): BooleanValue
+equal(o2): BooleanValue
+getDataType(): DataTypeMetadata
+greaterThan(o2): BooleanValue
+greaterThanOrEqualTo(o2): BooleanValue
+isDefined(): BooleanValue
+lowerThan(o2): BooleanValue
+lowerThanOrEqualTo(o2): BooleanValue
+setUndefined()

BooleanValue

-value: Boolean[0..1]

+BooleanValue(v: Boolean)
+and(o: BooleanValue): BooleanValue
+getValue(): Boolean
+not(): BooleanValue
+or(o: BooleanValue): BooleanValue
+toCString(): CStringValue

CStringValue

-value: String[0..1]

+CStringValue(v: String)
+concat(s: CString): CStringValue
+getValue(): String
+length(): FixedPrecisionValue
+lower(): CStringValue
+toBoolean(): BooleanValue
+toDate(): DateValue
+toFixedPrecision(): FixedPrecisionValue
+toFixedPrecision(p: integer, s: integer): FixedPrecisionValue
+toInteger(): IntegerValue
+toReal(): RealValue
+toTime(): TimeValue
+toTime(r: FixedPrecisionValue): TimeInstantValue
+toTimeInstant(): TimeInstantValue
+toTimeInstant(r: FixedPrecisionValue): TimeInstantValue
+upper(): CStringValue

NumericValue

+abs(): NumericValue
+acos(): NumericValue
+asin(): NumericValue
+atan(): NumericValue
+atan2(y: NumericValue): NumericValue
+ceil(): IntegerValue
+cos(): NumericValue
+divide(n: NumericValue): NumericValue
+floor(): IntegerValue
+ln(): NumericValue
+log(): NumericValue
+mod(a: NumericValue): IntegerValue
+multiply(n: NumericValue): NumericValue
+power(e: NumericValue): NumericValue
+round(): IntegerValue
+round(n: IntegerValue): FixedPrecisionValue
+sin(): NumericValue
+sqrt(): NumericValue
+subtract(n: NumericValue): NumericValue
+sum(n: NumericValue): NumericValue
+tan(): NumericValue

RealValue

-value: Double[0..1]

+RealValue(v: Double[0..1])
+getValue(): Double
+toBoolean(): BooleanValue
+toCString(): CStringValue
+toFixedPrecision(): FixedPrecisionValue
+toFixedPrecision(p: IntegerValue, s: IntegerValue): FixedPrecisionValue
+toInteger(): IntegerValue
+toPoint1D(): Point1DValue
+toPoint1D(p: IntegerValue, r: RealValue): Point1DValue

FixedPrecisionValue

-value: Number[0..1]
-precision: integer
-scale: integer

+FixedPrecisionValue(p: IntegerValue[0..1], s: IntegerValue[0..1], v: Number[0..1])
+getPrecision(): IntegerValue
+getScale(): IntegerValue
+getStoredValue(): Number
+getValue(): RealValue
+toBoolean(): BooleanValue
+toFixedPrecision(p: IntegerValue, s: IntegerValue): FixedPrecisionValue
+toInteger(): IntegerValue
+toPoint1D(): Point1DValue
+toPoint1D(p: IntegerValue, r: RealValue): Point1DValue
+toReal(): RealValue
+toCString(): CStringValue

IntegerValue

-value: Long[0..1]

+IntegerValue(v: Long[0..1])
+getValue():IntegerValue
+toBoolean(): BooleanValue
+toCString(): CStringValue
+toReal(): RealValue
+toFixedPrecision(): FixedPrecisionValue
+toFixedPrecision(p: IntegerValue, s: IntegerValue): FixedPrecisionValue
+toPoint1D(): Point1DValue
+toPoint1D(p: IntegerValue, r: RealValue): Point1DValue

Figure 5.2: Class diagram of Conventional data types in the prototype implementation.
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5.2.1 Conventional Data Types Implementation

The class diagram of conventional MAPAL data types implemented in the developed proto-
type is depicted in Fig. 5.2. An abstract class MapalValue encapsulates the common opera-
tions (primitive mappings) that every data type must implement, as defined in Table 4.1. Thus,
the rest of the classes representing MAPAL data types must inherit from MapalValue. Class
BooleanValue has an attribute value of Java type Boolean to store the actual boolean value.
Moreover, BooleanValue implements the primitive boolean mappings defined in Table A.1,
and provides the required constructor and accessor methods. Similarly to BooleanValue, class
CStringValue provides constructor and accessor methods, and implements the string primitive
mappings defined in Table A.2. The Java type String is used to store the actual CString value.

Primitive mappings common for all numeric (Integer, Real, FixedPrecision) data types,
defined in Table A.3, are encapsulated by the abstract class NumericValue from which all
the numeric classes inherit. Attribute value of IntegerValue and RealValue are of Long and
Double Java types, respectively. Whereas, to store the actual integer value of attribute value in
FixedPrecisionValue, the abstract Java type Number is used. Depending on the combination of
attributes precision and scale, the most appropriate Java integer type inheriting from Number

(Byte, Short, Integer and Long) is actually used. Furthermore, constructors, accessor methods
and appropriate casting mappings are defined for all numeric data types.

Notice that constructor and accessor methods are defined for internal use within the imple-
mentation and are not accessible to MAPAL users through primitive mappings. Conventional
data type values are generated automatically by the system from literal values in MAPAL
sentences.

5.2.2 Temporal Data Types Implementation

A major added value in MAPAL are those data types that enable the definition of temporal
Samplings. Abstract class SamplingValue in Fig. 5.3 defines the primitive mapping subtract

for all those data types that may be used in Sampling definitions.
Inheriting from SamplingValue, abstract class TemporalValue encapsulates attributes and

mappings common for all defined temporal data types. Specifically, attribute resolution uses
the Java primitive type double to store the temporal resolution. Moreover, the mapping sum

and an overloaded version of mapping subtract, defined in Table A.4, are added here together
with the accessor method for attribute resolution. Similarly to numeric data types, TimeValue
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MapalValue

+distinct(o2): BooleanValue
+equal(o2): BooleanValue
+getDataType(): DataTypeMetadata
+greaterThan(o2): BooleanValue
+greaterThanOrEqualTo(o2): BooleanValue
+isDefined(): BooleanValue
+lowerThan(o2): BooleanValue
+lowerThanOrEqualTo(o2): BooleanValue
+setUndefined()

TemporalValue

-resolution: double

+getResolution(): RealValue
+subtract(n: IntegerValue): TemporalValue
+sum(n: IntegerValue): TemporalValue

TimeInstantValue

-value: long[0..1]

+TimeInstantValue(r: RealValue, t: IntegerValue)
+toCString(): CStringValue
+toTime(): TimeValue
+toTime(r: RealValue): TimeValue
+toTimeInstan(r: RealValue): TimeInstantValue

TimeValue

-value: intType[0..1]

+TimeValue(r: RealValue, t: intType)
+toCString(): CString Value
+toTime(r: RealValue): TimeValue
+toTimeInstant(): TimeInstantValue
+toTimeInstan(r: RealValue): TimeInstantValue

intType

DateValue

+DateValue(t: IntegerValue)
+toCString(): CStringValue

Point1DValue

-coord: coordType[0..1]
-precision: integer
-resolution: double

+Point1DValue(p: IntegerValue[0..1], r: RealValue[0..1], c: coordType[0..1])
+Point1DValue(coord: FixedPrecisionValue)
+Point1DValue(coord: RealValue)
+getCoord(): FixedPrecisionValue
+getResolution(): FixedPrecisionValue
+getPrecision(): IntegerValue
+getValue(): coordType
+subtract(n: IntegerValue): Point1DValue
+sum(n: IntegerValue): Point1DValue
+toCString(): CStringValue
+toFixedPrecision(): FixedPrecisionValue
+toFixedPrecision(p: IntegerValue, s: IntegerValue): FixedPrecisionValue
+toInteger(): IntegerValue
+toPoint1D(p: IntegerValue, r: RealValue): Point1DValue
+toReal(): RealValue

coordType

SamplingValue

+subtract(v: SamplingValue): IntegerValue

Figure 5.3: Class diagram of Temporal and Point1D data types in prototype implementation.

and TimeInstantValue implement constructors and the appropriate casting mappings also de-
fined in Table A.4. While Java primitive type long is used to store the integer temporal value
in TimeInstantValue, class TimeValue uses the most appropriate Java primitive integer type
(intType) to store such integer value. The selection of intType is strongly dependent on the
attribute resolution.

Since MAPAL data type Date is a shortcut for TimeInstant(86400), class DateValue only
defines a constructor and an overloaded version of mapping toCString. Similarly to con-
ventional data types, constructor and accessor methods are only for internal use and are not
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accessible by MAPAL users. The system generates them from literal values in MAPAL sen-
tences.

5.2.3 Point1D Data Type Implementation

Another important MAPAL data type contributed by this Thesis is Point1D. Definition of spa-
tial 1D Samplings is enabled by this data type. Thus, class Point1DValue in Fig. 5.3, also
inheriting from SamplingValue, stores attributes precision and resolution using Java primitive
types integer and double, respectively. As TimeValue does, the most appropriate Java primi-
tive integer type (coordType) is used to store the integer spatial attribute coord. In this case,
such Java type is selected depending on the value of attributes precision and resolution. Prim-
itive Point1D mappings defined in Table A.5 are also present in Point1DValue together with
constructors and accessor methods. As previous data types, such constructor and accessor
methods are not accessible by MAPAL users.

5.2.4 Point2D Data Type Implementation

Probably the most important contribution of MAPAL, regarding data types, is the definition
of data type Point2D that enables, in turn, the definition of 2D spatial Samplings. Class
Point2DValue in Fig. 5.4 encapsulates the Point2D mappings defined in Table A.6, together
with constructors and accessor methods.

Attributes precision and resolution store relevant Point2D parameters using Java primitive
types integer and double, respectively. Attribute value uses a JTS2 [60] object Point to store
the 2D spatial coordinates. Since MAPAL data type Point2D also represents a geometry,
Point2DValue implements the primitive mappings defined in Geometry2DInterface, which
contains the vast majority of primitive mappings defined for all Geometries in Table A.7.
Recall that Point2D enables the definition of 2D spatial Samplings, thus Point2DValue inherits
from SamplingValue as well. Point2DValue constructor and accessor methods are also not
accessible by MAPAL users.

5.2.5 Geometric Data Type Implementation

The developed prototype also implements the geometric data types defined in Section 4.2.1.
Thus, class Geometry2DValue in Fig. 5.4 provides constructors and accessor methods to create

2 Java Topology Suite.



126 Chapter 5. MAPAL Implementation

MapalValue

+distinct(o2): BooleanValue
+equal(o2): BooleanValue
+getDataType(): DataTypeMetadata
+greaterThan(o2): BooleanValue
+greaterThanOrEqualTo(o2): BooleanValue
+isDefined(): BooleanValue
+lowerThan(o2): BooleanValue
+lowerThanOrEqualTo(o2): BooleanValue
+setUndefined()

Point2DValue

-value: Point
-precision: integer
-resolution: double

+Point2DValue(p: IntegerValue[0..1], r: RealValue[0..1], v: Point[0..1])
+Point2DValue(c1: FixedPrecisionValue, c2: FixedPrecisionValue)
+4neigh(p: Point2DValue): BooleanValue
+8neigh(p: Point2DValue): BooleanValue
+getPosition(): IntegerValue
+getValue(): Point
+getX(): FixedPrecisionValue
+getXint(): IntegerValue
+getY(): FixedPrecisionValue
+getYint(): IntegerValue
+shift(x: IntegerValue, y: IntegerValue): Point2DValue
+toPoint2D(p: IntegerValue, r: RealValue): Point2DValue

SamplingValue

+subtract(v: SamplingValue): IntegerValue

Geometry2DValue

-precision: integer
-resolution: double
-value: Geometry

+Geometry2DValue(p: IntegerValue[0..1], r: FixedPrecisionValue[0..1], v: LineString[0..1])
+Geometry2DValue(p: IntegerValue[0..1], r: FixedPrecisionValue[0..1], v: Polygon[0..1])
+Geometry2DValue(p: IntegerValue[0..1], r: FixedPrecisionValue[0..1], v: GeometryCollection[0..1])
+Geometry2DValue(p: IntegerValue[0..1], r: FixedPrecisionValue[0..1], v: MultiPoint[0..1])
+Geometry2DValue(p: IntegerValue[0..1], r: FixedPrecisionValue[0..1], v: MultiLineString[0..1])
+Geometry2DValue(p: IntegerValue[0..1], r: FixedPrecisionValue[0..1], v: MultiPolygon[0..1])
+Geometry2DValue(v: Point2DValue[1..*], isLineString: BooleanValue)
+Geometry2DValue(e: LineString2DValue, h: LineString2DValue[0..*])
+Geometry2DValue(m: LineString2DValue[1..*])
+Geometry2DValue(m: Polygon2DValue[1..*])
+area(): RealValue
+centroid(): Point2DValue
+exterior(): Geometry2DValue
+endPoint(): Point2DValue
+getValue(): Geometry
+holes(): Geometry2DValue
+isClosed(): BooleanValue
+isRing(): BooleanValue
+isSimple(): BooleanValue
+length(): RealValue
+perimeter(): RealValue
+startPoint(): Point2DValue
+voronoi(): Geometry2DValue

«interface»
Geometry2DInterface

+buffer(n: RealValue): Geometry2DInterface
+contains(g: Geometry2DInterface): BooleanValue
+convexHull(): Geometry2DInterface
+crosses(g: Geometry2DInterface): BooleanValue
+difference(g: Geometry2DInterface): Geometry2DInterface
+disjoint(g: Geometry2DInterface): BooleanValue
+distance(g: Geometry2DInterface): RealValue
+envelope(): Geometry2DInterface
+equals(g: Geometry2DInterface): BooleanValue
+fromGml(s: CString): Geometry2DInterface
+fromWkt(s: CString): Geometry2DInterface
+getPrecision(): IntegerValue
+getResolution(): FixedPrecisionValue
+gml(): CStringValue
+intersection(g: Geometry2DInterface): Geometry2DInterface
+intersects(g: Geometry2DInterface): BooleanValue
+overlaps(g: Geometry2DInterface): BooleanValue
+symDifference(g: Geometry2DInterface): Geometry2DInterface
+touches(g: Geometry2DInterface): BooleanValue
+union(g: Geometry2DInterface): Geometry2DInterface
+within(g: Geometry2DInterface): BooleanValue
+wkt(): CStringValue

Figure 5.4: Class diagram of Point2D and Geometric data types in prototype implementation.
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and access geometries, respectively. Furthermore, primitive mappings defined in Table A.8,
Table A.9, Table A.10 and Table A.11 are also incorporated into Geometry2DValue. Prop-
erty value uses a JTS abstract object Geometry to store the geometry value. Current imple-
mented3 subclasses of Geometry include LineString, Polygon, MultiLineString, MultiPoint

and MultiPolygon. Even though all mentioned primitive mappings are implemented in Ge-

ometry2DValue, only appropriate ones may be represented depending on the actual subclass
of Geometry. Similarly to Point2DValue, Geometry2DValue stores geometry precision and
resolution, and implements the primitive mappings defined in Geometry2DInterface.

5.3 Data Structures Implementation

Efficient structures are required for recording data and metadata related to Dimensions, Ex-

tensional MappingSets and Constants both in disk and main memory. A detailed description
of such structures implemented in the developed prototype is provided in this section.

5.3.1 In-Memory Structures Implementation

Each Dimension, Extensional MappingSet and Constant, either obtained from disk or cal-
culated, is recorded in main memory in a structure composed of a header, with appropriate
metadata, and a data area.

Metadata recorded in a Dimension header include name, size and data type. A Dimension

might be obtained from disk or generated in memory as a result of some operation. A boolean
IsStored is kept in the header to identify these two types of Dimensions. Attribute Storage-

Name is used to identify Dimensions stored in the local catalog (introduced in next Section).
Boolean attribute IsMaterialized shows whether a Dimension is materialized in main memory
or not. A non-materialized Dimension (Fig. 5.5(b)) only records unique element identifiers
in main memory, which reference element positions. Such references are generated in main
memory using the size of the Dimension. A materialized Dimension might have been gener-
ated in memory, in such case it has only data values (Fig. 5.5(c)), or it may have been read
from disk, in such case it has both references and data values (Fig. 5.5(a)). Non-materialized
stored Dimensions enable the implementation of late materialization [2], which avoids having
to read data values from disk which are not involved in any calculation.

3 http://locationtech.github.io/jts/javadoc/.
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Name: StationId
Size: 80
IsSampling: False
IsStored: True
StorageName: StationId
IsMaterialized: True
DataType: Integer
DataChannel: PostGis 

Header Data

Refs Values

0
1
2
3
4
5
6
...

893
894
896
899

1000
1001
1002

...
 

Name: StationId
Size: 80
IsSampling: False
IsStored: True
StorageName: StationId
IsMaterialized: False
DataType: Integer
DataChannel: PostGis 

Header Data

Refs Values

0
1
2
3
4
5
6
...

 
 

(a)  Materialized stored Dimension (b)  Non-materialized stored Dim- 

Name: ObsDate
Size: 365
IsSampling: True
IsStored: False
StorageName:
IsMaterialized: True
DataType: TimeInstant(86400)
DataChannel:
Start: 16060
End: 16425

Header Data

Refs Values

16060
16061
16062
16063
16064
16065
16066

...

(c)  Materialized non-stored Dimension
       ension 

Figure 5.5: Example of in-memory Dimension structures.

An Extensional MappingSet header must record global metadata (Name, IsStored and
StorageName) as well as metadata of building Dimensions and Extensional Mappings. Fig. 5.6
illustrates an Extensional MappingSet computed in memory to record the temperature, eleva-
tion and location of each meteorological station at each observation date. Extensional Map-

ping Temperature records the result of the evaluation of the expression: Observation.Tempe-
rature(StationId,ObsDate). Extensional Mapping m1 is a temporary one that records the re-
sult of the expression Station.Loc(StationId). Extensional Mapping Loc shares both data and
metadata with m1, therefore it will share also the same header entry. Extensional Mapping m2

is also temporary and records the result of the expression: cast(m1(StationId,ObsDate) AS

Point2D(7,5)). Finally, Extensional Mapping Elevation records the result of the expres-
sion Topo.Elevation(m2(StationId,ObsDate)). It is noticed that Extensional Mapping m2

records Point2D(7,5) values that reference elements in Dimension Loc5m. These references
are needed to obtain the elevation values from disk. It is therefore noticed that beyond the
references and values of the Dimensions and the values of each Extensional Mapping, both
Dimensions and Extensional Mappings might record additional columns that contain refer-
ences to stored Dimensions. Besides, the header of each Extensional Mapping keeps record
of the subset of Dimensions from which it is dependent, i.e., its real domain and the expres-
sion that was used to compute it. The former is used during aggregate operations, as it will
be shown in Section 5.6, whereas the latter helps in avoiding the computation of duplicate
Extensional Mappings in the same Extensional MappingSet as it is the case of Extensional

Mappings m1 and Loc.



5.3. Data Structures Implementation 129

ReferencedBy

m2 {Loc5m}

RefDimensions

RefDims

 
 

Dimensions

Name

StationId
ObsDate

False
True

IsSampling

True
True

IsStored

False
False

IsMaterialized

Integer
TimeInstant(86400)

DataType

 
16060

Start

 
16424

End Size

Header

Data

Refs Values

0
0
0
...
1
1
...

StationId

Refs Values

ObsDate

0
1
2
...
0
1
...

Temperature

Values

m1

Values

m2

Values Loc5m

Elevation

Values

1124
1136
1206

...
1645
1705

...

(51320501, 479952838) 
(51320501, 479952838) 
(51320501, 479952838) 

...
(53881597, 475086604) 
(53881597, 475086604) 

...

(102641, 959906) 
(102641, 959906) 
(102641, 959906) 

...
(107763, 950173) 
(107763, 950173) 

...

1388891280
1388891280
1388891280

...
1001420550
1001420550

...

40271
40271
40271

...
332839
332839

...

Name: TemperatureElevationAtStation IsStored: False StorageName: 

StorageName

StationId
ObsDate

Name

{Temperature}
{m1, Loc}
{m2}
{Elevation}

FixedPrecision(5,2)
Point2D(9, 0.01)

Point2D(7,5)
FixedPrecision(7,3)

DataType

Mappings

Domain

{StationId, ObsDate}
{StationId}
{StationId}
{StationId}

 

Expression

Observation.Temperature(StationId, ObsDate)
Station.Loc(StationId)

Cast(Station.Loc(StationId), "Point2D(7,5)")
Topo.Elevation(m2)

 

80
365

DataChannel

PostGIS
PostGIS

Figure 5.6: Example of in-memory MappingSet structures.

The structure of each Constant will record the following attributes: name, storage name,
IsStored (whether the Constant has been stored), data value and the expression evaluated to
generate the data value (used to avoid duplicate computations).

These in-memory structures for the representation of Dimensions, Extensional Mapping-

Sets and Constants during the execution of operations are implemented in Java, making use
of the DataFrame structure of Spark to record data columns. Fig. 5.7 depicts an UML di-
agram of the Dimension, Extensional MappingSet and Constant structures designed for the
implementation.

Each Constant resulting from some MAPAL operation is represented with an object of
class Constant, Fig. 5.7. Notice that, together with relevant names, this class has also attributes
to represent both its data value (of class MapalValue) and the expression used to compute it.
As explained in Section 5.2.1, class MapalValue is the root of a hierarchy of classes that enable
the representation of all the system data types. Each subclass of the hierarchy provides an
appropriate data structure for the data value and a collection of methods to implement required
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Constant

-name: CStringValue
-isStored: BooleanValue
-storageName: CStringValue
-expression: CStringValue
-data: MapalValue

+Literal(name: CStringValue, expression: CStringValue)
+Import(name: CStringValue, storageName: CStringValue, channelName: CStringValue)
+Scan(name: CStringValue)
+EvaluateIntensionalMapping(name: CStringValue, mapping: CStringValue, arguments: Constant[1..*])
+EvaluateExtensionalMapping(name: CStringValue, mapping: CStringValue, arguments: Constant[1..*])
+EvaluateAggregateMapping(name: CStringValue, orderBy: OrderBySpecification, c: CStringValue, agg: AggMappingCall, ms: MappingSet)
+Store(storageName: CStringValue)
+Export(storageName: CStringValue, channelName: CStringValue)

Dimension

-data: DataFrame

+Import(name: CStringValue, storageName: CStringValue, channelName: CStringValue)
+Scan(name: CStringValue)
+SamplingDimension(name: CStringValue, start: Constant, end: Constant)
+Union(dim: Dimension)
+Intersection(dim: Dimension)
+Project(dimensionName: CStringValue, booleanMappingName: CStringValue, ms: MappingSet)
+Store(storageName: CStringValue)
+Export(storageName: CStringValue, channelName: CStringValue)

DimensionHeader

-name: CStringValue
-storageName: CStringValue
-dataChannel: CStringValue
-size: IntegerValue
-dataType: DataTypeMetadata
-isSampling: BooleanValue
-isStored: BooleanValue
-isMaterialized: BooleanValue

SamplingDimensionHeader

-start: MapalValue
-end: MapalValue

MappingSet

-data: DataFrame

+Import(name: CStringValue, storageName: CStringValue, channelName: CStringValue, domain: CStringValue[1..*])
+Product(name: CStringValue, dims: Dimension[1..*])
+Product(dim: Dimension)
+Project(name: CStringValue, components: CStringValue[1..*])
+EvaluateIntensionalMappings(mappingNames: CStringValue[1..*], mappings: IntMappingCall[1..*])
+EvaluateExtensionalMapping(mappingName: CStringValue, mapping: ExtMappingCall)
+EvaluateConstant(mappingName: CStringValue, k: Constant)
+EvaluateAggregateMappings(name: CStringValue, groupBy: CStringValue[1..*], orderBy: OrderBySpecification, c: CStringValue,

mappingNames: CStringValue[1..*], aggs: AggMappingCall[1..*])
+Store(storageName: CStringValue)
+Export(storageName: CStringValue, channelName: CStringValue)

MappingSetHeader

-name: CStringValue
-storageName: CStringValue
-isStored: BooleanValue

-dimensions1..*

MappingHeader

-name: CStringValue[1..*]
-dataType: DataTypeMetadata
-domain: CStringValue[1..*]
-expression: CStringValue

-mappings1..*

ReferencedDimensions

-ReferencedBy: CStringValue
-refDimensions: CStringValue[1..*]

-refDims 0..*

AggMappingCall

-aggMapping: CStringValue
-arguments: CStringValue[1..*]

ExtMappingCall

-extMapping: CStringValue
-arguments: CStringValue[1..*]

IntMappingCall

-intMapping: CStringValue
-arguments: CStringValue[1..*]

OrderBySpecification

-component: CStringValue[1..*]
-direction: OrderingDirection[1..*]

«enumeration»
OrderingDirection

Ascending
Descending

DataTypeMetadata

-dataTypeName: MapalDataType
-precision: IntegerValue
+scale: IntegerValue
-resolution: RealValue

«enumeration»
MapalDataType

Tuple
DataValue
BooleanValue
CStringValue
NumericValue
IntegerValue
RealValue
FixedPrecisionValue
SamplingValue
TemporalValue
TimeValue
TimeInstantValue
DateValue
Point1DValue
Point2DValue
Geometry2DValue

Figure 5.7: In-memory structures implementation with Spark.
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primitive mappings and operators. Each Constant operation described in Subsection 4.3.3 has
a relevant method in class Constant.

Each Dimension generated by some operation is represented in memory by an instance of
class Dimension, Fig. 5.7. The header of class Dimension is an instance of class Dimension-

Header. Notice that class SamplingDimensionHeader is provided for the proper represen-
tation of SamplingDimensions. Dimension data is stored in a Spark DataFrame, which may
have one or two columns depending on whether the Dimension is stored or/and materialized,
as shown in the example of Fig. 5.5. Each Dimension operator described in Subsection 4.3.3
is implemented with a relevant method in class Dimension.

Each Extensional MappingSet generated by some operation is stored in memory by an
instance of class MappingSet. The header is an instance of type MappingSetHeader, which
includes one DimensionHeader per Dimension of the Extensional MappingSet and one Map-

pingHeader per Extensional Mapping. Information related to which Extensional Mapping

or Dimension references values of stored Dimensions is provided by instances of class Ref-

erencedDimensions. All the data columns of an Extensional MappingSet are represented in
a single DataFrame. Such DataFrame includes columns for Dimension references and Di-

mension values, for Extensional Mapping values and for Dimensions referenced by either
Extensional Mappings or Dimensions. Each Extensional MappingSet operation described in
Subsection 4.3.3 is implemented by a relevant method in class MappingSet.

Additional classes have been defined to ease the proper representation of several class
attributes and method arguments. Thus, attribute dataType in DimensionHeader and Map-

pingHeader stores information of recorded data type in a DataTypeMetadata object, which
in turn stores the data type name in a MapalDataType object. Optional argument orderBy, in
methods for calculating aggregate mappings both in Constant and MappingSet classes, stores
the ordering specification in an OrderBySpecification object, which in turn stores the ordering
direction in an OrderingDirection object. Classes IntMappingCall, ExtMappingCall and Ag-

gMappingCall enable the representation of expressions of the form mapping(a1, · · · ,an) used
in the evaluation of intensional, extensional and aggregate mappings, respectively.

Spark class DataFrame provides methods to properly depict the DataFrame schema (pri-
ntSchema()) as well as the recorded DataFrame data (show()). For illustration purposes,
Fig. 5.8 depicts the output of such methods in the stored DataFrame of Extensional Map-

pingSet Municipality. Notice that Dimensions and Extensional Mappings values are recorded
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Figure 5.8: In-memory DataFrame schema and partial data of Extensional MappingSet Municipality.

in DataFrames using User-Defined Types (UDTs). Section 5.4.1 provides a detailed descrip-
tion of such special data types.

5.3.2 Disk Structures Implementation

A local catalog with relevant metadata of Dimensions, Extensional MappingsSets and Con-

stants is recorded in disk and loaded in main memory on system startup. The schema of the
catalog, filled with example metadata, is shown in Fig. 5.9.

Stored data for each Dimension include name, data type metadata and size (number of
elements). A boolean property specifies whether the Dimension is a sampling or not. For
sampling Dimensions, the start and end values of the sampling are also recorded in the catalog.
Notice that only temporal and spatial samplings are allowed and, in any case, always integer
coordinates in the underlying grid are recorded. For non sampling Dimensions, the path to the
file where the Dimension data is stored is also recorded. For each Extensional MappingSet

the catalog records its name, the set of Dimensions that define the domain of its mappings,
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Figure 5.9: System Catalog example.

and also the path to the storage file. For each Extensional Mapping the catalog records its
name, the name of the holding Extensional MappingSet and data type metadata. Both data
and metadata (name and data type) of Constants are also recorded in the catalog.

Beyond the above metadata, the data of non sampling Dimensions and Extensional Map-

pingSets must also be recorded in disk structures. Following the columnwise data storage
paradigm, column oriented Parquet files are used to record each non sampling Dimension

and each Extensional MappingSet. A two column file is generated to store each Dimension,
recording data values and relevant references. First, a data column of increasing ordered val-
ues is generated from Dimension values. Then, a second column is generated by assigning a
sequential reference to each value in turn. Storing references in disk ensures that the ordering
process is executed only once in the storage step and not multiple times in the materializing
step. Notice that one logical file storing a Dimension may be split into several physical files
when is stored in the Hadoop distributed file system, and thus an ordered reading of Dimen-

sion values is not assured by HDFS readers. Contrary to classical relational approaches, that
record Tuples, non sampling Dimensions are recorded here only once, independently of the
number of Extensional MappingSets referencing them. Similarly to Dimensions, each Exten-

sional MappingSet is stored in a Parquet file. In this case, the storage file has one data column
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Figure 5.10: Parquet file schema of Extensional MappingSet Municipality.

for each Extensional Mapping within the MappingSet, and one additional column with refer-
ences. First, an increasing ordering is applied to the Extensional MappingSet domain and a
sequential reference is assigned to each ordered value in turn. Recall that each value in the Ex-

tensional MappingSet domain is assigned to a specific combination of Extensional Mapping

values. Thus, each domain value is replaced by the relevant reference. Finally, one column per
each ExtensionalMapping and an additional column with references are stored in the Parquet
file. Storage of Extensional MappingSet references enables the following features:

– Only store the values of the Cartesian product of Dimensions that make sense for a
specific Extensional MappingSet without using additional structures.

– Provide a mechanism to ensure both the ordering process is executed only once (in stor-
age step) and the ordered materialization of Extensional MappingSets (in the reading
step).

Notice that compression techniques and appropriate encoding systems enabled by the Par-
quet storage format will drastically reduce the payload of stored columns. To improve this
payload reduction even more, a novel well known binary representation has been developed
to store geometries (including Point2DValues) in DataFrames and consequently in Parquet
files. Such representation improves the well known binary representation of OGC4 geome-
tries, enabling the encoding of building point coordinates as integer values rather than double
precision real values.

For illustration purposes, Fig. 5.10 depicts the schema of the Parquet file generated to store
Extensional MappingSet Municipality into the local catalog. Column Geo stores the required
attributes to properly represent the geometry of each municipality. Notice that attribute value

4 Open Geospatial Consortium.
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in column Geo is stored using the Parquet type binary that enables the proper storage of the
well known binary representation generated for each geometry.

5.4 User-Defined Data Types and Functions

5.4.1 User-Defined Data Types (UDTs)

Since Dimension and Extensional Mapping data values are stored in DataFrames, each Mapal-

Value needs to be mapped to a relevant SparkSQL [14] data type, i.e., those data types defined
in Spark to store data within a DataFrame. For those user data types too complex to be mapped
to simple SparkSQL data types, appropriate SparkSQL User-Defined Types (UDTs) are de-
fined. Therefore, relevant UDTs have been defined for every MapalValue. Point2DValueUDT,
defining the UDT corresponding to Point2DValue, is shown in Code 5.1 for illustration pur-
poses. Notice that Point2DValueUDT inherits from MapalValueUDT which in turn inherits
from interface UserDefinedType<MapalValue>. Thus, the following four methods have to be
implemented:

– sqlType(). Defines the underlying storage SparkSQL type for the UDT. Point2D-

ValueUDT defines a StructType composed of three StructFields. Field precision enables
the storage of the Point2DValue precision as an integer value. Field resolution enables
the storage of the Point2DValue resolution as float-point double value. Field value

enables the storage of the Point2DValue value as a binary value, i.e., an array of bytes.
Recall that the Point2DValue value is an object of type Point as defined in JTS.

– userClass(). Returns the actual class object of the value to be stored. Point2D-

ValueUDT obviously returns the class Point2DValue.

– Serialize(Object userValue). Converts the user type to a SparkSQL type. Point-

2DValueUDT receives a Point2DValue as input and returns a GenericInternalRow com-
posed of three values. An integer value storing the precision. A double value storing the
resolution. A byte array storing the aforementioned well known binary representation
of the JTS Point. Such byte array can be directly matched to a Parquet binary when
stored to disk. Notice that the row structure must match the user data type defined in
sqlType().
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/**

* User-Defined Type to store Point2DValue data into a DataFrame column

*/

public class Point2DValueUDT extends MapalValueUDT {

@Override

public DataType sqlType() {

List<StructField> fields = new ArrayList<>();

fields.add(DataTypes.createStructField("value",

DataTypes.BinaryType,

false));

fields.add(DataTypes.createStructField("precision",

DataTypes.IntegerType,

false));

fields.add(DataTypes.createStructField("resolution",

DataTypes.DoubleType,

false));

StructType structType = DataTypes.createStructType(fields);

return structType;

}

@Override

public Class<Point2DValue> userClass() {

return Point2DValue.class;

}

@Override

public Object serialize(Object value) {

if (value instanceof Point2DValue){

Point2DValue point2Dvalue = (Point2DValue)value;

byte[] value = point2Dvalue.toWKB();

Integer size = point2Dvalue.getPrecision();

Double resolution = point2Dvalue.getResolution();

Object[] values = {value, size, resolution};

GenericInternalRow result = new GenericInternalRow(values);

return result;

}

return null;

}

@Override

public MapalValue deserialize(Object row) {

if (row instanceof UnsafeRow){

UnsafeRow unsafeRow = (UnsafeRow) row;

try {

return new Point2DValue(unsafeRow.getInt(1),

unsafeRow.getDouble(2)

).fromWKB(unsafeRow.getBinary(0));

} catch (ParseException e) {

e.printStackTrace();
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}

}

else if (row instanceof GenericInternalRow){

GenericInternalRow genericRow = (GenericInternalRow) row;

try {

return new Point2DValue(genericRow.getInt(1),

genericRow.getDouble(2)

).fromWKB(genericRow.getBinary(0));

} catch (ParseException e) {

e.printStackTrace();

}

}

return null;

}

}

Code 5.1: User-Defined Type Point2DValueUDT.

/**

* UDF for primitive mapping greaterThan

*/

public class GreaterThan implements UDF2<MapalValue, MapalValue, BooleanValue>{

@Override

public BooleanValue call(MapalValue a, MapalValue b) throws Exception{

return a.greaterThan(b);

}

}

Code 5.2: User-defined Function for primitive mapping greaterThan.

– Deserialize(Object userValue). Converts a SparkSQL type to a user type. Both
UnsafeRow and GenericInternalRow can be received as input values in Point2DValue-

UDT. Values within these rows are used to build the returned Point2DValue.

5.4.2 User-Defined Functions (UDFs)

Spark implements a wide range of system defined functions to be applied over data recorded
in DataFrames that eases the processing of both primitive and user-defined data types. For
those processing needs that go beyond the basic implemented functions, Spark provides a
mechanism that enable users to define new functions, called User-Defined Functions (UDFs).
Therefore, MAPAL leverages UDFs to implement its primitive mappings. Code 5.2 shows
the UDF for the primitive mapping greaterThan. Notice that method greaterThan of input
argument a is called to return the resulting BooleanValue.
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/**

* Interface to import/export observation data from/to data channels

*/

public interface DataChannelInterface {

public Dimension ImportDimension(String dimensionName, String storageName);

public Constant ImportConstant(String constantName, String storageName);

public MappingSet ImportMappingSet(String mappingSetName,

String storageName,

ArrayList<String> domain)

public void ExportDimension(String dimensionName, Dimension dimension);

public void ExportConstant(String constantName, Constant constant);

public void ExportMappingSet(String storageName, MappingSet mappingSet);

}

Code 5.3: Interface DataChannelInterface.

5.5 Data Channels Implementation

As shown in Fig. 5.1, one of the main components of the MAPAL prototype architecture is
the module Observation Data ETL. Such component must enable the importing and exporting
of heterogeneous observation data. Therefore, appropriate pieces of code, called data chan-

nels in the context of this Thesis, can be added to the Observation Data ETL component in
order to access external observation data sources. No restriction on communication between
data channels and data sources is imposed in this prototype. Restrictions have to do with
both implementation of data channel catalogs and communication between data channels

and MAPAL core. Regarding the former, access to the storage file system from data channel

code must observe the specific rules provided by the administration staff.
To enable a proper input/output communication between heterogeneous data channels

and MAPAL core, the well known design pattern Adapter is adopted here to define the in-
terface DataChannelInterface (Code 5.3) that must be implemented by every data channel.
DataChannelInterface defines the required methods to import and export Dimensions, Exten-

sional MappingSets and Constants. Notice that based on parameter channelName of relevant
MAPAL operations, the required import/export method is called on the appropriate data chan-

nel. Thus, such parameter is not needed in DataChannelInterface methods.
Two data channels have been implemented in the proposed prototype. Channel Geo-

TIFFChannel enables the importing/exporting of observation data from/to GeoTIFF files [42].
GeoTIFF is a file format for saving raster images with embedded georeferencing information.
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Such georeferencing information is used to assign each pixel in the GeoTIFF image a specific
geographic location over the Earth surface. Therefore, the regular grid of building pixels in
a GeoTIFF image actually represents a 2D grid of locations over the Earth surface, i.e., a 2D
spatial sampling Dimension in the context of SODA. Thus, GeoTIFFChannel is able to import
a sampling Dimension by simply reading the georeferencing metadata. Since several layers
(rasters) of data may be recorded in a GeoTIFF image, a single pixel may store observation
values of different observation properties. Obviously, such data layers providing observation
values of a 2D spatial Dimension perfectly match the SODA concept of Extensional Map-

ping. Thus, importation/exportation of spatial Extensional MappingSets is a straightforward
task for GeoTIFFChannel. Since a GeoTIFF actually stores georeferenced data, both export-
ing Dimensions and importing/exporting Constants are not supported for this data channel.

The second data channel implemented in the prototype, PostGISChannel, enables the
importing/exporting of observation data from/to a PostGIS database. The concept of table
in relational databases has also a straightforward match to the concept of Extensional Map-

pingSet. Therefore, any Dimension may be imported/exported from/to a column in a PostGIS
table. The correct formatting and semantics of the imported column is under the user sole re-
sponsibility. PostGISChannel only ensures that no duplicated values are imported. Likewise,
an Extensional MappingSet may be imported/exported from/to a table in PostGIS, where each
column corresponds to either a Dimension or an Extensional Mapping. Notice that import-
ing/exporting Constants does not make sense in the scope of this data channel.

5.6 Operators Implementation

Each operation defined in Section 4.3.3 is implemented by a relevant method in terms of Spark
operations on DataFrames. Implementation descriptions for each Dimension and Extensional

MappingSet operation are given in the following sections. Implementation of Constant opera-
tions is either trivial or very similar to relevant Extensional MappingSet operations, thus they
are not explicitly explained here.

5.6.1 Dimension Operators

As already explained in Section 5.3.1, each Dimension operator is implemented by a relevant
method in class Dimension. Thus, syntax example and a detailed explanation of the imple-
mentation of each such method are provided below.
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ImportDimension

Example:

Dimension dim_1 = Dimension.Import(Name, channelName, storageName);

The static method Import of class Dimension (Fig. 5.7) is called to execute this operator.
First, parameter channelName is used to get the name of the Java class that implements the ap-
propriate DataChannelInterface for the corresponding data channel. Data Channel Metadata

is overseen by Catalog Manager to properly configure data channels (Fig. 5.1). The relation
between the name of a data channel and the name of the Java class that provides the imple-
mentation appropriate for such data channel is recorded in Data Channel Metadata. Once
the Java class is obtained, a new object is instantiated and the method ImportDimension of
DataChannelInterface is called. Each data channel must implement this method in a proper
way using parameter storageName and return a Dimension object named Name.

ScanDimension

Example:

Dimension dim_2 = Dimension.Scan(Name);

The Spark operator range is used in static method Scan of class Dimension to generate a
DataFrame recording a series of integers from 0 to the size s of the stored Dimension Name,
i.e., generates a in-memory non-materialized stored Dimension. Notice that s is obtained from
the local catalog. The number n of partitions is system defined. Spreading references across
partitions is the partition strategy predefined for the Spark operator range. The steps followed
by Spark to generate a distributed DataFrame of references are detailed next:

1. Create an array of integers from 0 to n−1.

2. Create a DataFrame with n partitions by parallelizing the previous array, i.e., spread
each integer i within the array to a specific partition.

3. Each partition generates a portion of consecutive references following the steps below.

a) Calculate the minimum reference, min = b(i · s)/nc.

b) Calculate the maximum reference, max = b((i+1) · s)/nc−1.
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c) Generate the intermediate references from min to max, { i | i∈Z ; i∈ [min,max]}.

For example, let n = 5 and s = 17. First, the following array a is generated: [0,1,2,3,4].
Then, a DataFrame with 5 partitions is generated by parallelizing a. Thus, each integer within
a is delivered to a different partition. For illustration purposes, let us assume that partition
0 stores integer 0, partition 1 stores integer 1, and so on. Finally, each partition generates a
portion of the 17 required references applying the above steps:

– partition 0:

min = b(i · s)/nc= b(0 ·17)/5c= 0

max = b((i+1) · s)/nc−1 = b((0+1) ·17)/5c−1 = 2

{ i | i ∈ Z ; i ∈ [min,max]}= { i | i ∈ Z ; i ∈ [0,2]}= {0,1,2}

– partition 1:

min = b(i · s)/nc= b(1 ·17)/5c= 3

max = b((i+1) · s)/nc−1 = b((1+1) ·17)/5c−1 = 5

{ i | i ∈ Z ; i ∈ [min,max]}= { i | i ∈ Z ; i ∈ [3,5]}= {3,4,5}

– partition 2:

min = b(i · s)/nc= b(2 ·17)/5c= 6

max = b((i+1) · s)/nc−1 = b((2+1) ·17)/5c−1 = 9

{ i | i ∈ Z ; i ∈ [min,max]}= { i | i ∈ Z ; i ∈ [6,9]}= {6,7,8,9}

– partition 3:

min = b(i · s)/nc= b(3 ·17)/5c= 10

max = b((i+1) · s)/nc−1 = b((3+1) ·17)/5c−1 = 12

{ i | i ∈ Z ; i ∈ [min,max]}= { i | i ∈ Z ; i ∈ [10,12]}= {10,11,12}

– partition 4:

min = b(i · s)/nc= b(4 ·17)/5c= 13

max = b((i+1) · s)/nc−1 = b((4+1) ·17)/5c−1 = 16

{ i | i ∈ Z ; i ∈ [min,max]}= { i | i ∈ Z ; i ∈ [13,16]}= {13,14,15,16}
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SamplingDimension

Example:

Dimension dim_3 = Dimension.SamplingDimension(Name, k1, k2);

For 1D Sampling data types (temporal and Point1D), the Spark operator range is also
used in static method SamplingDimension of class Dimension to generate a DataFrame with
the series of integer values of the result dimension, starting in the initial integer obtained from
the first Constant k1 and finishing in the last integer obtained from the second Constant k2.
Then, integer values are transformed to adequate MapalValue UDTs5 in the DataFrame of
resulting Dimension.

For data type Point2D, method SamplingDimension generates two DataFrames. One
DataFrame stores the integer x coordinates of feasible Point2DValues from the integer x coor-
dinate of k1 to the integer x coordinate of k2. The other DataFrame stores the integer y coor-
dinates from the integer y coordinate of k1 to the integer y coordinate of k2. Then, a Cartesian
product is applied to previous integer coordinates in order to build a 2D rectangular grid of
points. Finally, integer coordinates of resulting points are used to generate Point2DValueUDT

values in the DataFrame of resulting Dimension.
Notice that both Constants must be of compatible data types to enable an implicit casting

if needed. Otherwise, an exception is thrown.

Union

Example:

Dimension dim_4 = d1.Union(d2);

Method Union in class Dimension implements the Union of two Dimensions as defined in
Section 4.3.1. Let d1 be the Dimension that calls the method Union and d2 be the Dimension

passed as input argument. Notice that the result of this operation is always a materialized
non-stored Dimension.

The algorithm to implement the Union of two Dimensions, where at least one of them
is a sampling Dimension, is shown in Algorithm 5.1. First, required metadata is obtained
from each Dimension in Steps 1 - 6. The name of each Dimension, required to build the

5 Resulting data type is determined by the data type of Constants.
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Algorithm 5.1 Union algorithm (at least one Dimension is a Sampling).
1: name1← name of d1
2: name2← name of d2
3: m1← minimum value of d1
4: M1← maximum value of d1
5: m2← minimum value of d2
6: M2← maximum value of d2
7: Apply an implicit casting to above SamplingValues (if needed)
8: if m1.lowerT hanOrEqualTo(m2) then
9: start← m1

10: else
11: start← m2
12: end if
13: if M1.greaterT hanOrEqualTo(M2) then
14: end←M1
15: else
16: end←M2
17: end if
18: name ="Union_ name1_name2"
19: return Dimension.SamplingDimension(name,start,end)

name of the resulting Dimension, is always obtained from the header. The minimum and
maximum values of each Dimension are required to calculate the start and end values of the
resulting sampling Dimension. For sampling Dimensions, minimum and maximum values
are obtained from start and end values stored in the header. For non sampling Dimensions,
data values are first obtained by materialization, and then, minimum and maximum values
are calculated by applying the aggregate DataFrame methods min and max to previous data
values. Notice that minimum and maximum values are of a subtype of SamplingValue and
must be of compatible data types for the operation Union in order to enable an implicit casting
if needed in Step 7. Start and end values of resulting Dimension are calculated in Steps 8 - 17
by calling appropriate comparison methods. A special case arises if Dimension values are of
type Point2DValue. If both Dimensions are sampling Dimensions, the coordinates of start and
end values are calculated as follows.

start = (min(m1.getX(),m2.getX()),min(m1.getY (),m2.getY ()))

end = (max(M1.getX(),M2.getX()),max(M1.getY (),M2.getY ()))
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R=2m

P1

P2 P3

(a) Non sampling Dimension D1

R=1m

m1

M1
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Figure 5.11: Examples of operation Union with sampling Dimensions.

If only one Dimension, lets say d1, is a sampling Dimension, the start and end values are
calculated as shown below,

start = (min(m1.getX(),min(x1, . . . ,xn)),min(m1.getY (),m2.getY ())),

end = (max(M1.getX(),max(x1, . . . ,xn)),max(M1.getY (),M2.getY ())),

where x1, . . . ,xn are the x coordinates of values in the non sampling Dimension d2. Step 18
derives a new name for the result sampling Dimension, which is constructed and returned
in Step 19. Examples of such result sampling Dimensions are depicted in Fig. 5.11. The
sampling Dimension resulting from the Union of a non sampling Dimension D1 (Fig. 5.11(a))
and a sampling Dimension D2 (Fig. 5.11(b)) is depicted in Fig. 5.11(d). Notice that the start
value m3 of the result Dimension is built with the x coordinate of P2 and the y coordinate of
P1, applying the above formulas. Likewise, the end value of the result Dimension is built with
the x coordinate of P3 and the y coordinate of M1. Fig 5.11(e) shows the sampling Dimension

resulting from the Union of sampling Dimensions D2 and D3 depicted in Fig. 5.11(b) and
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Algorithm 5.2 Union algorithm (both Dimensions are non sampling Dimensions).
1: d1.Materialize() (if needed)
2: d2.Materialize() (if needed)
3: Apply an implicit casting to data values of both Dimensions (if needed)
4: D1← DataFrame of d1
5: D2← DataFrame of d2
6: D← D1.UnionAll(D2).dropDuplicates()
7: H← generate new header
8: return Dimension(H,D)

Fig. 5.11(c) respectively. Start value m4 of the result Dimension is built with the x coordinate
of m2 and the y coordinate of m1, whereas the end value M4 is built with the x coordinate of
M2 and the y coordinate of M1.

The algorithm implemented to calculate the Union of two non sampling Dimensions is
shown in Algorithm 5.2. First, input Dimensions are materialized if needed in Steps 1 - 2.
Then, an optional implicit casting may be applied if required in Step 3. Operation Union is
performed in Steps 4 - 6 by calling the DataFrame method UnionAll over the DataFrames
of d1 and d2. Duplicate data values must be deleted from the DataFrame D of the resulting
Dimension. Step 7 generates the header H of the resulting Dimension. Finally, a new Di-

mension, generated from H and D, is returned. Notice that the returned Dimension is a non
sampling Dimension.

An example of the Union of two non sampling Dimensions is shown if Fig. 5.12. The
non sampling Dimension resulting from the Union of non sampling Dimensions D1 and D4,
Fig. 5.12(a) and Fig. 5.13(a) respectively, is depicted in Fig. 5.12(c). The resulting Dimension

contains all the values recorded both in D1 and D4.
As stated in Section 5.3.2, a two-column DataFrame is stored per non sampling Dimension

in the local catalog to record data and references, whereas only metadata storage is required
for sampling Dimensions. Therefore, different materialization strategies are required for each
Dimension type. The materialization process of a non sampling Dimension d is a simple
process involving the following two steps:

1. Read from local catalog the stored Dimension corresponding to d, i.e., read from disk
both the header metadata and data values.
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R=2m

(a) Non sampling Dimension D1

R=2m

(b) Non sampling Dimension D4

R=2m

(c) Union(D1,D4)

Figure 5.12: Examples of operation Union with non sampling Dimensions.

2. Let D1 be the DataFrame storing the references of d. Let D2 be the two-column
DataFrame of the stored Dimension read from local catalog. Data values from D2

matching the references in D1 can be obtained by applying a le f t join by reference
columns over D1 and D2.

For a sampling Dimension d, the materialization process is even simpler:

1. Read from local catalog the stored Dimension corresponding to d, i.e., read from disk
the header metadata.

2. Use the minimum and the maximum values obtained from metadata with the Spark
operator range to generate a DataFrame storing the references to resulting Dimension

values. Then, the Spark operator map is used to generate the resulting SamplingValues

from relevant references.

Intersection

Example:

Dimension dim_5 = d1.Intersection(d2);

The algorithm for the Intersection of two Dimensions, defined in Section 4.3.1, is imple-
mented by method Intersection of class Dimension. Let d1 be the Dimension that calls the
method Intersection and d2 be the Dimension passed as input argument. Similarly to operator
union, the result of this operation is always a materialized non-stored Dimension.
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R=1m

(a) Non sampling Dimension D5
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(b) Non sampling Dimension D1
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(c) Sampling Dimension D3
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(d) Intersection(D1,D5)

R=2m

(e) Intersection(D1,D3)

Figure 5.13: Examples of operation Intersection with non sampling Dimensions.

The Intersection of two Dimensions, where at least one of them is a non sampling Dimen-

sion, can be implemented following an algorithm similar to that shown in Algorithm 5.2 by
simply changing Step 6 by the line below, which calls the DataFrame method Intersect.

D← D1.Instects(D2).dropDuplicates()

Examples of operation Intersection are provided in Fig. 5.13. The non sampling Di-

mension resulting from the Intersection between the non sampling Dimensions D1 and D5

(Fig. 5.13(b) and Fig. 5.13(a) respectively) is depicted in Fig. 5.13(d). The Intersection of the
non sampling Dimension D1 and the sampling Dimension D3 (Fig. 5.13(c)) results in the non
sampling Dimension shown in Fig. 5.13(e).

If both Dimensions are 1D Samplings, then the algorithm to implement the Intersection is
similar to that shown in Algorithm 5.1. Condition in Step 8 is changed to m1.greaterT hanOr-
EqualTo(m2), condition in Step 13 changes to M1.lowerT hanOrEqualTo(M2), and the re-
sulting name generated in Step 18 is “Intersection_ name1_name2”.

Similarly to operation Union, the intersection of two 2D Samplings can be calculated by
Algorithm 5.1 with small changes in the computation of start and end values of resulting



148 Chapter 5. MAPAL Implementation
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(b) Sampling Dimension D3
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m5

(c) Intersection(D2,D3)

Figure 5.14: Examples of operation Intersection with sampling Dimensions.

sampling Dimension. In addition to previous changes in Steps 8, 13 and 18, start and and
values are calculated as follows.

start = (max(m1.getX(),m2.getX()),max(m1.getY (),m2.getY ()))

end = (min(M1.getX(),M2.getX()),min(M1.getY (),M2.getY ()))

Fig. 5.14 depicts the Intersection between the two sampling Dimensions D2 and D3. No-
tice that value m5 in resulting sampling Dimension is built with x coordinate of m1 and y
coordinate of m2. Likewise, value M5 is built with x coordinate of M1 and y coordinate of M2.

ProjectDimension

Example:

Dimension dim_6 = Dimension.Project(d, c, MS);

Operation ProjectDimension is implemented by static method Project of class Dimension.
A preliminary filtering operation is applied to specified Extensional MappingSet MS depend-
ing on whether parameter c (pointing to a boolean Extensional Mapping of MS) is provided
or not. If provided, DataFrame operator filter is used to restrict to the rows where c is true.
Next, DataFrame operator select is evaluated to generate one Dimension from the Dimen-

sion or Extensional Mapping pointed by parameter d. Finally, duplicates are removed using
DataFrame operator dropDuplicates. Notice that duplicates have to be eliminated regardless
of whether the Dimension is materialized or not.
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StoreDimension

Example:

dim_6.Store(Name);

Method Store of class Dimension persists an in-memory Dimension to disk. The name of
the stored Dimension in the local catalog is given by parameter Name. Relevant metadata is
recorded into local catalog, including minimum and maximum values for sampling Dimen-

sions. Additionally, as explained in Section 5.3.2, data values of non sampling Dimensions

are stored in two-column Parquet files. First, non-materialized Dimensions must be material-
ized. Then, a new DataFrame recording a column with data values of Dimension in ascending
order is generated. Next, a new references column is added to the DataFrame. Finally, the
two-column DataFrame is stored in a Parquet file. Storing references column in disk enables
future lazy materialization.

ExportDimension

Example:

dim_6.Export(channelName, storageName);

Method Export of class Dimension is similar to method Import. First, parameter channel-

Name is used to get the name of the Java class that implements the appropriate DataChan-

nelInterface for the corresponding data channel. Once the Java class is obtained, a new object
is instantiated and the method ExportDimension of DataChannelInterface is called to store the
Dimension in the data channel named as storageName. Each data channel must implement
this method in a proper way.

5.6.2 Extensional MappingSet Operators

Each MappingSet operator is implemented by a relevant method in class MappingSet, as stated
in Section 5.3.1. The rest of this section provides a syntax example and a broad description of
the implementation of each method.
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ImportMappingSet

Example:

MappingSet ms_1 = MappingSet.Import(Name, channelName, storageName, domain);

Method Import of class MappingSet, Fig. 5.7, enables an Extensional MappingSet to be
imported from an external data channel. The name of the Java class implementing the Dat-

aChannelInterface for the corresponding data channel is obtained from parameter channel-

Name. Then, a new object is instantiated and method ImportMappingSet is called. Similarly
to Dimensions, each data channel must implement this method.

Product

Example:

MappingSet MS1 = MappingSet.Product(Name, dims);

MappingSet MS2 = MS1.Product(dim);

Two overloaded methods Product have been defined in class MappingSet to implement
this operator. The static method that accepts a list of Dimensions as input parameter uses the
DataFrame operator join6 over input Dimensions to build the domain of the returned Exten-

sional MappingSet. The method that accepts only one Dimension as input parameter uses the
DataFrame operator join over the input Dimension and the calling Extensional MappingSet to
build the returned Extensional MappingSet. Notice that the resulting domain is the Cartesian
product of the input Dimension and the current domain of calling Extensional MappingSet,
and all Extensional Mappings are kept in the resulting Extensional MappingSet.

ProjectMappingSet

Example:

MappingSet MS3 = MS2.Project(name, components);

This operation is implemented by method Project of class MappingSet. DataFrame oper-
ator select is used to get the resulting DataFrame with the domain of the calling Extensional

6 Join without conditions is equivalent to Cartesian product.
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MappingSet and only the Dimensions and Extensional Mappings referenced by input argu-
ment components. Notice that non-materialized Dimensions referenced by components must
be materialized before applying the operator select.

EvaluateIntensionalMappings

Example:

MappingSet MS3 = MS2.EvaluateIntensionalMappings(mappingNames, mappings);

Evaluation of Intensional Mappings is implemented by method EvaluateIntesionalMap-

pings of class MappingSet. A SQL-like expression is generated for each intensional mapping
call in input argument mappings. Thus, DataFrame operator selectExpr can be used to evalu-
ate them and generate one new column per intensional mapping expression. The name of each
new generated mapping is provided by input argument mappingNames. Notice that primitive

mappings must be available as Spark UDFs in order to be called by operator selectExpr.

EvaluateExtensionalMapping

Example:

MappingSet MS3 = MS.EvaluateExtensionalMapping(mappingName, mapping);

Method EvaluateExtensionalMapping of class MappingSet implements this operator as
shown in Algorithm 5.3. Notice that input parameter mapping stores an expression of the
form ems.em(s1, · · · ,sm), where ems references an ExtensionalMappinSet, em references an
ExtensionalMapping of ems, and each si is the name of either a Dimension or an Extensional

Mapping of the calling Extensional MappingSet MS. Let em(d1, · · · ,dm) denote the Exten-

sional Mapping to be evaluated. Before em is obtained from disk, each si must record in MS

references to its relevant di. Four cases have been identified:

– Reference si is the name of an Extensional Mapping of MS. If di is in the list of Di-

mensions referenced by si, then an appropriate column with references to di is already
prepared to evaluate em. Otherwise, references to di must be obtained form values
stored in si (function createRefsToStoredDim in Algorithm 5.3). First, Dimension di

is obtained from disk and materialized. Then, an inner equi-join is evaluated between
DataFrames of di and MS using value columns of di and si in the equality condition to
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Algorithm 5.3 Evaluate Extensional Mapping algorithm.
1: D← DataFrame of MS
2: for i← 1 to n do
3: if isExtensionalMapping(si) then
4: if di /∈ referencedBy(si) then
5: D← createRefsToStoredDim(D, si, di)
6: end if
7: else
8: if isDimension(si) then
9: if storageName(si) != di then

10: si.Materialize() (if needed)
11: D← createRefsToStoredDim(D, si, di)
12: end if
13: else
14: return Error
15: end if
16: end if
17: end for
18: H← update MS header
19: D← materializeMapping(ems, em, D)
20: return ExtensionalMappingSet(H,D)

get the relevant di reference corresponding to each si value. Finally, the value column
of di is dropped from result.

– Reference si is the name of a Dimension of MS. If its storage name is equal to the
name of Dimension di, then MS already has a column with references to di. Otherwise,
references to di must be obtained form values stored in si as in the previous case. Notice
that si must be materialized before references are obtained.

Once all required reference columns have been obtained, function materializeMapping in
Algorithm 5.3 materializes ems.em. Recall that, as explained in Section 5.3.2, stored Exten-

sional MappingSets record a single column with references to their domain values. There-
fore, ems.em is obtained from disk as a two column DataFrame EMDF , where column re f s

contains references to the domain of ems and column values contains the relevant values of
ems.em. At this stage, each si has a column ri in MS that records references to di. Thus, a new
column domainRefs with relevant references to domain values of ems can be obtained from
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Figure 5.15: Example of operation EvaluateExtensionalMapping.

reference columns ri in MS through the following expression.

dr = rn ·1+ rn−1 · size(rn)+ rn−2 · (size(rn) · size(rn−1))+ . . .+ r1 · (size(rn) · . . . · size(r2))

Finally, an equi-join is executed between the DataFrame of MS and EMDF using column
domainRe f s and column re f s in the equality condition. Notice that columns domainRe f s and
re f s are dropped from the resulting DataFrame, whereas columns ri are kept for subsequent
operations.

An illustration example, depicted in Fig. 5.15, evaluates the following sentence:
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MappingSet MS3 = MS.EvaluateExtensionalMapping("Temperature", "Observation.Temperature(

StationId,Date)");

where Observation is a stored MappingSet whose domain is composed of stored Dimensions

StationId and ObsDate. Hence, d1 = StationId, d2 =ObsDate, s1 = StationId, and s2 =Date.
The execution of operator EvaluateExtensionalMapping in this example follows the steps

below.

– Fig 5.15(a). Let MS be an Extensional MappingSet whose domain is composed of
Dimensions StationId and Date. Since d1 = s1, MS.StationId.Re f s records references
to the stored sampling Dimension StationId (r1 = MS.StationId.Re f s). However, Date

is a non-stored sampling Dimension recording date values. Thus, we have to build
the appropriate references to Dimension ObsDate from such values. First, Dimension

ObsDate is read from disk. Then, an equijoin operation is executed between MS and
ObsDate with the following condition MS.Date.Values = ObsDate.Values to assign
each Date value the proper reference to ObsDate. The new generated references column
is stored as MS.Date.ObsDate (r2 = MS.Date.ObsDate) to build an intermediate result
of MS3.

– Fig. 5.15(b). Once we have all required reference columns ri, column MS3.DomainRe f s

is built applying the above formula.

– Fig. 5.15(c). In the last step, the complete Extensional Mapping to be evaluated is first
read from disk together with references to the domain of the relevant ExtensionalMap-

pingSet (EMDF). An equijoin is executed between the intermediate result of MS3 and
EMDF with the following condition MS3.DomainRe f s = EMDF.Re f s to restrict to
temperature values referenced by MS3.

As we can see, the new Extensional MappingSet MS3 is composed of the same domain
as Extensional MappingSet MS and the new Extensional Mapping Temperature. Notice that
column MS.Date.ObsDate remains for further operations.

EvaluateConstant

Example:

MappingSet MS4 = MS.EvaluateConstant(mappingName, k);
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Figure 5.16: Example of operation EvaluateAggregateMapping.

DataFrame operator withColumn is used by method EvaluateConstant in class MappingSet

to add a new column mappingName to the calling Extensional MappingSet MS. A new column
containing the same MapalValue in all rows is generated from input Constant k and passed as
parameter to operator withColumn to be added to the DataFrame of MS.

EvaluateAggregateMappings

Example:

MappingSet MS5 = MS.EvaluateAggregateMappings(name, groupBy, orderBy, c, mappingNames,

aggs);

Implementation of this operator in method EvaluateAggregatedMappings of class Map-

pingSet is as follows. First, the DataFrame operator filter with condition c =TRUE is applied
to calling Extensional MappingSet MS in order to select the required rows. Next, DataFrame
operator select is used to drop from MS those Dimensions not referenced in input argument
groupBy and those Extensional Mappings whose domain contains Dimensions not present in
input argument groupBy (except those referenced by aggregated mappings). Notice that non-
materialized Dimensions referenced by aggregated mappings must be materialized. Then,
DataFrame operator groupBy prepares the DataFrame of MS for the subsequent application of
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relevant aggregate mappings by using DataFrame operator agg. Appropriate aggregate map-
pings, implemented as UDFs, are used by this operator. Finally, DataFame operator orderBy

is used to order the resulting Extensional MappingSet according to input argument orderBy.
In Fig. 5.16, an illustration example is shown. Let MS be a Extensional MappingSet whose

domain is composed of Dimensions Municipality and Location, recording municipality ids
and a 2D sampling of georeferenced points, respectively. Additionally, three Extensional

Mappings have been defined in MS. Geo records the relevant geometry of each municipal-
ity. Elevation records the elevation above the sea level of each location point. c is a boolean
Extensional Mapping taking true values for those tuples where Location is within Geo. The
average elevation for each municipality is calculated in this example by executing the follow-
ing sentence:

MappingSet MS5 = MS.EvaluateAggregatedMappings("MS5", "Municipality", "Municipality", c

"Elevation_Avg", aggs);

where aggs is an AggMappingCall representing the expression AVG(Elevation).
The first step in Fig. 5.16 shows how MS is filtered with the condition c =TRUE to obtain

the first intermediate result of MS5. Then, Dimensions not referenced in argument groupBy

(Location) and Extensional Mappings whose domain contains Dimensions not referenced in
argument groupBy (c) are removed. Next, DataFrame operator groupBy is used to group by
Dimension Municipality and Extensional Mapping Geo. The aggregated mappings are now
evaluated over the referenced Extensional Mapping Temperature to generate the new aggre-
gated mapping column Elevation_Avg. Notice that those Dimensions and Extensional Map-

pings referenced by aggregated mappings that do not meet the select condition (Temperature)
are now removed. Finally, the resulting Extensional MappingSet is ordered by Dimension

Municipality.

ExportMappingSet

Example:

MS.Export(storageName, channelName);

Similarly to method Export in class Dimension, parameter channelName is used to get
the name of the Java class that implements the appropriate DataChannelInterface for the
corresponding data channel. Once the Java class is obtained, a new object is instantiated and
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the method ExportMappingSet in DataChannelInterface is called. Each data channel must
implement this method in a proper way.

StoreMappingSet

Example:

MS.Store(storageName);

Storage of Extensional MappingSets into the local catalog is performed by method Store

in class MappingSet. First, DataFrame of calling Extensional MappingSet MS is ordered by
reference columns ri of Dimensions using DataFrame operator sort. To ensure that every Di-

mension has a relevant reference column ri, all Dimensions within MS must be previously
stored into the local catalog. Next, DataFrame operation select is used to select the Exten-

sional Mapping columns of MS and to generate a single column with references to the domain
of MS by applying the expression defined to build the column domainRefs during the evalua-
tion of Extensional Mappings. The resulting DataFrame is recorded in a Parquet file. Addi-
tionally, MappingSets and Mappings structures of local catalog (as shown in catalog example
of Fig. 5.9) are updated with appropriate metadata.

5.7 Experimental Evaluation

5.7.1 Cluster setup

All experiments were conducted on the Big Data cluster at Centro de Supercomputación de
Galicia (CESGA)[25], consisting of 38 nodes with two configurations:

– 4 master nodes

– 2x 6-core Intel Xeon E5-2620 v3 @ 2.40GHz

– 64 GB RAM

– 1x 10Gbps + 2x 1Gbps

– 12x 2TB NL SATA 6Gbps 3.5”
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– 34 slave nodes

– 2x 6-core Intel Xeon E5-2620 v3 @ 2.40GHz

– 64 GB RAM

– 1x 10Gbps + 2x 1Gbps

– 8x 480GB SSD SATA 2.5”

Each node runs CentOS Linux release 7.4.1708 with Hadoop 2.4.2, Spark 1.6.1 and Spark
2.1.2. The Spark cluster is deployed on YARN (Yet Another Resource Navigator) [12].

5.7.2 Experiment setup

A great number of criteria can be applied to classify queries in database management systems
(DBMS). One of them is based on the number of scans required to access an object. According
to this criterion, we may have either single-scan queries (i.e., require at most one access to
an object) or multiple-scan queries (objects have to be accessed several times). Obviously,
multiple-scan queries are more time consuming because execution time is generally not linear
but superlinear in the number of objects [21]. One of the most important multiple-scan query

in a spatial DBMS is the spatial join, defined in [86] as follows.

Given two relations, R and S, each storing a set of spatial objects (i.e., each tuple stores the

identifier of one object), spatial join identifies overlapping object from R and S. (A range

query is a special case in which one of the relations represents the set of points and the other

relations represents the query region.) The spatial join is denoted by

R[zr� zs]S

where zr and zs are the attributes of R and S (respectively) that store the elements resulting

from the decomposition of spatial objects.

(Orenstein, 1986: 329)

Based on the above, a spatial join operation with a contains predicate is used to compare
performance between existing solutions. Thus, the execution time of spatial join is used as
comparison attribute. Furthermore, to test the integration capabilities of MAPAL, a raster of
Point2D values is joined with a set of polygons (entities).
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Spatial Resolution (meters) Size (# points)
400 391732
200 1564376
100 6252500
50 2500000
25 9998000

12.5 399880000

Table 5.1: Spatial resolution and number of points of raster datasets.

For this experiment, elevation data of Galician geography at different spatial resolutions
provided by the Spanish National Geographic Institute (Instituto Geográfico Nacional - IGN)
[57] is used as input raster data, whereas a combustion model layer obtained from land cover
classification of Galicia is used as input entity data. Spatial resolutions (in meters) of raster

datasets and relevant size (number of points) are shown in Table 5.1. Fig. 5.17(a) shows the el-
evation raster at a spatial resolution of 200 meters. Fig 5.17(b) depicts the combustion model
dataset, which is composed of 11057 polygons. The expected output joins each polygon P of
the combustion model dataset with all locations of the elevation raster contained in P. How-
ever, as explained in Section 5.3.1, the in-memory MappingSet structure defined in MAPAL
requires each domain value to be composed of individual Dimension values. Thus, the output
returned by MAPAL contains all the elements of the Cartesian product of polygons and raster

points. An additional boolean mapping returns true if the relevant polygon contains the rel-
evant point and returns false otherwise. The sequence of MAPAL operators generated to
evaluate the spatial join between the combustion model polygons CombustionPolygons and
the raster Raster_25meters with a spatial resolution of 25 meters is shown below for illustra-
tion purposes.

Dimension polygonIds = Dimension.Scan("CombustionPolygonIds");

Dimension points25meters = Dimension.Scan("Raster_25meters").Materialize();

MappingSet domain = MappingSet.Product("domain", polygonIds, points25meters);

MappingSet geo = domain.EvaluateExtensionalMapping("Geo", "CombustionPolygons.Geo(

CombustionPolygonIds)");

MappingSet result = geo.EvaluateIntensionalMappings("Contains", "contains(Geo,

Raster_25meters)");
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(a) Elevation raster data

(b) Combustion Model Polygons (c) Combustion Model Envelopes

Figure 5.17: Experiment input datasets.
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5.7.3 Evaluation Results

The frameworks selected to be compared against the MAPAL prototype are the most relevant
distributed spatial data processing systems in the state of art developed on top of Spark, i.e.,
GeoSpark [108], Geotrellis [43], LocationSpark [95], Simba [106], SpatialSpark [107] and
Stark [92].

To ensure a fair comparison between the different distributed spatial data processing
frameworks, the input dataset has been pre-processed. Since some existing frameworks do
not support columns of non-spatial data types, additional input columns storing non spatial
values (e.g., elevation values column) have not been included in the analysis tasks. Fur-
thermore, since LocationSpark only enables spatial processing of rectangular polygons, each
input polygon has been replaced by its envelope. Fig. 5.17(c) shows the envelopes used in
the experiment. Additionally, since the rest of existing solutions do not provide integrated
raster-entity data analysis, location points within the elevation raster are translated to a set of
2D points for each tested solution.

To test the performance of each solution for different workloads, the spatial join operation
has been executed between the combustion model envelopes and the raster datasets shown in
Table 5.1. Fig. 5.18 shows the spatial join execution time (each time value is actually the
average of time values provided by five executions) for tested frameworks with the following
Spark configuration:

– master: yarn

– deploy-mode: cluster

– driver-memory: 8G

– executor-memory: 8G

– num-executors: 40

Due to the huge difference in resulting execution times (orders of magnitude) between
tested solutions, such results have been plotted in three different charts. Notice that Mapal
(Fig. 5.18(e)) is the slowest solution. Almost two times slower than SpatialSpark (Fig. 5.18(c))
at a spatial resolution of 400 meters, and almost one order of magnitude slower than Stark
(Fig. 5.18(a)) at a spatial resolution of 12.5 meters. Therefore, the higher the resolution, the
more significant the difference will be.
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Figure 5.18: Execution time for the spatial join operation in a 40-executor cluster.
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Some solutions showed Java Heap Memory Overflow as resolution increased, e.g., GeoSpark
(25 and 12.5), SpatialSpark (12.5). Simba was tested but it always had to be killed because
it seemed to be hanged. Thus, I have got no results for Simba. I was not allowed to exe-
cute Geotrellis in a 40-executor configuration due to the huge amount of disk accesses per
second. Only a 8-executor configuration was allowed to test Geotrellis. An example of disk
accesses on such configuration provided by the hdfs audit log is shown below. The number
of accesses increases from 368 accesses/minute to 31818 accesses/minute when Geotrellis
starts the spatial join operation at 18:27, and decreases from 31931 accesses/minute to 117
accesses/minute when Geotrellis is killed at 18:32.

[root@c13-19 hdfs]# for i in {25..35}; do echo "Hour: 18:$i"; head -n 1000000 hdfs-audit

.log.2018-05-12 | grep "18:$i" | wc -l; done

Hour: 18:25

547

Hour: 18:26

368

Hour: 18:27

31818

Hour: 18:28

31812

Hour: 18:29

31813

Hour: 18:30

31822

Hour: 18:31

31913

Hour: 18:32

117

Hour: 18:33

83

Hour: 18:34

81

5.7.4 Scalability

A major feature of every large-scale data processing system is the scalability, i.e., the capa-
bility to handle a growing amount work and the potential to be enlarged to accommodate that
growth [18]. Therefore, scalability is a main requirement for Mapal. To test the performance
of Mapal regarding scalability, the spatial join operation has been executed on Spark clus-
ters with different number of executors. In order to enable the execution of all the remainder
solutions, a spatial resolution of 50 meters has been selected.
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Figure 5.19: Execution time for the spatial join operation with a spatial resolution of 50 meters.
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Similarly to performance charts, scalability results have been plotted in three different
charts due to the huge difference in resulting execution times. Again, Mapal (Fig. 5.19(e)) is
more than one order of magnitude slower than GeoSpark and Stark (Fig. 5.19(a)), and even
slower than LocationSpark and SpatialSpark (Fig. 5.19(c)). Surprisingly, GeoSpark showed
a bad scalability performance increasing the execution time as the number of executors in-
creased. Mapal and LocationSpark get to decrease their execution times as the number of
executors increased, whereas Stark and SpatialSpark decreased execution times up to 24 ex-
ecutors and then began to increase it. Specifically, Mapal shows a nice scalability behavior.

5.8 Optimization Example

As shown in the previous section, taking into account all the elements of the Cartesian prod-
uct (e.g., for a spatial resolution of 50 meters, Mapal returns 276175011047 values whereas
36908866 values are returned by remainder solutions) in the evaluation of the primitive map-
ping contains is harmful for the MAPAL performance. Most of the evaluated combinations
return false in MAPAL, whereas these combinations are not evaluated in the remainder
solutions. Therefore, an optimized operator may be build into MAPAL to reduce the huge
amount of returned elements while maintaining a MappingSet representation consistent with
the defined data model.

Two novel spatial join operators are proposed here as optimization examples. Both so-
lutions are intended to return a significantly smaller number of elements. The operator Spa-

tialJoin_Contains_DatatypeQT must be called from the MappingSet of polygons to execute
the algorithm shown in Algorithm 5.4. First, in Steps 9 and 10, a Quad-Tree [39] structure
covering the whole area of the underlying data type is created for the input raster data, gen-
erating rectangles that represent groups of input raster points. Notice that the values of such
data type are ordered following a Z-Order curve [49], thus resulting rectangles are composed
of consecutive points. Next, each combustion model polygon is inserted into a copy of the
original Quad-Tree structure, which is modified according to the inserted geometry (Steps 13
and 14). Finally, the structure is processed to return an array with the resulting rectangles and
additional metadata indicating whether the points of each rectangle are contained in the rele-
vant polygon or not (Step 15). Thus, the values of the resulting MappingSet are composed of
a polygon id, a polygon geometry, a rectangle geometry representing a group of consecutive
input raster points and a boolean value which is true if the rectangle is within the polygon
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Algorithm 5.4 SpatialJoin_Contains_DatatypeQT algorithm.
1: MSP←MappingSet with input polygons
2: MSR←MappingSet with input raster data
3: size← spatial size of the input raster (from MSR)
4: resolution← spatial resolution of the input raster (from MSR)
5: startXcoord← integer x coordinate of the raster starting point (from MSR)
6: startY coord← integer y coordinate of the raster starting point (from MSR)
7: endXcoord← integer x coordinate of the raster ending point (from MSR)
8: endY coord← integer y coordinate of the raster ending point (from MSR)
9: quadTree← QuadTree(size,resolution)

10: quadTree.setSampling(startXcoord,startY coord,endXcoord,endY coord)
11: result← array of resulting values initialized to null
12: for polygon in MSP do
13: quadTreeCopy← quadTree.copy()
14: quadTreeCopy.insertGeometry(polygon)
15: result.add(quadTreeCopy.processTree())
16: end for
17: return result

and false otherwise. The resulting MappingSet may have several values for each input poly-
gon. Obviously, all the possible combinations of input polygons and input raster points have
to be represented by the resulting combinations of polygons and rectangles.

A similar approach is taken by the operator SpatialJoin_Contains_DimensionQT. In this
case, a resulting array containing the same elements as in the previous case is provided for
each input polygon. An initial rectangle7 is recursively divided in a Quad-Tree fashion, gen-
erating four new rectangles at each step. In this solution, the points of the input raster are
ordered following the space filling curve depicted in Fig. 4.5. Similarly to the previous solu-
tion, a specific rectangle can not be divided anymore when 1) is completely inside the relevant
polygon, 2) is completely outside the relevant polygon, or 3) its size reached the spatial reso-
lution of the input raster. In the latter case, the rectangle is considered inside the polygon if
its centroid is contained by the polygon, and considered outside otherwise.

The main difference between these two approaches resides in the initial step. Whereas the
operator SpatialJoin_Contains_DimensionQT starts to process polygons from a single rectan-
gle covering the whole area of the input raster points, the operator SpatialJoin_Contains_Data-

typeQT uses the whole area of the underlying data type (usually much bigger than the area

7The initial rectangle is generated to cover the whole area of the input raster data.



5.8. Optimization Example 167

of the input raster data) to generate a Quad-Tree for the input raster data. Such an initial
rectangle and initial Quad-Tree are respectively shown in Fig. 5.20(b) and Fig. 5.20(a) for an
illustration example with a raster spatial resolution of 5000 meters. We can see that the border
of the raster area is approximated by smaller rectangles in the DatatypeQT solution, provid-
ing more rectangles to be initially processed. Notice that all these rectangles will appear in the
resulting array for each input polygon in addition to those rectangles required to process it. On
the contrary, the resulting array of the DimensionQT solution for each input polygon only con-
tains the rectangles required to process it. Fig. 5.21(a) shows the resulting rectangles returned
by the SpatialJoin_Contains_DatatypeQT operator for a specific input polygon (depicted in
blue). Rectangles in red are those returned as false, i.e., outside the input polygon, whereas
rectangles inside the input polygon are colored in green. Fig. 5.21(b) depicts the resulting
rectangles for the same input polygon returned by the SpatialJoin_Contains_DimensionQT

operator.
Execution times obtained by the operator SpatialJoin_Contains_DatatypeQT outperforms

the best existing solutions. For small spatial resolutions (400-200 meters), Fig. 5.22(a) shows
that the DatatypeQT solution obtains execution times similar to those obtained by Location-
Spark, GeoSpark and Stark. The DatatypeQT solution enhances its performance as spatial
resolution increases. For a spatial resolution of 12.5 meters, the DatatypeQT solution is more
than one order of magnitude faster than the fastest remainder solution (LocationSpark). Fur-
thermore, the DatatypeQT solution showed (Fig. 5.23(a)) a nice scalability performace, de-
creasing its execution time as the number of Spark executors increased.

The behavior of the SpatialJoin_Contains_DimensionQT showed a performance even bet-
ter than the operator SpatialJoin_Contains_DatatypeQT. Execution times for different spa-
tial resolutions showed an amazing outperformance, even improving the performance of the
DatatypeQT solution. For small spatial resolutions, the DimensionQT solution is three times
faster than the DatatypeQT solution (Fig. 5.22(a)). This difference increases as spatial resolu-
tion does. For the maximum resolution tested, DimensionQT is nearly seven times faster than
DatatypeQT. For the tested spatial resolution, the DimensionQT solution showed an adequate
scalability behavior (Fig. 5.23(a)), decreasing execution times as the number of Spark execu-
tors increases. Due to the great speed shown by the DimensionQT solution, a better scalability
behaviour is expected as spatial resolution increases.
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(a) SpatialJoin_Contains_DatatypeQT (b) SpatialJoin_Contains_DimensionQT

Figure 5.20: Initial rectangles for optimized join operators.

(a) SpatialJoin_Contains_DatatypeQT (b) SpatialJoin_Contains_DimensionQT

Figure 5.21: Resulting rectangles for optimized join operators.



5.8. Optimization Example 169

0 100 200 300 400
0

14

28

42

56

70

Spatial resolution (m)

E
xe

cu
tio

n
Ti

m
e

(s
)

MapalSpark_DimensionQT
MapalSpark_DatatypeQT

(a)

Spatial
Resolution

(m)

MapalSpark
DimensionQT

MapalSpark
DatatypeQT

400 7.53 18.50
200 7.57 20.10
100 7.73 25.38
50 8.26 33.94
25 8.59 45.96

12.5 9.95 66.97

(b)

Figure 5.22: Execution time for the optimized spatial join operators in a 40-executor cluster.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

The design of the GeoDADIS framework is a generalization effort towards the development
of data acquisition and dissemination servers. Heterogeneity in sensor data access and sensor
data dissemination is a problem identified in data acquisition and monitoring research fields.
GeoDADIS proposes a scalable and extensible architecture to solve it.

Flexibility features are achieved in GeoDADIS through the use of different software de-
sign patterns during the design of GeoDADIS components. The Adapter pattern eases the
incorporation of new data services, remote control services and data acquisition channels with
minimum changes in core components of the system. Incorporation of these elements only
requires configuration data updates. Flexibility, scalability and extensibility features were
validated during the development of a GeoDADIS based data acquisition and dissemination
prototype that enables health monitoring in educational environments.

A framework for the analysis of spatio-temporal observation data, called SODA, was de-
signed. Qualitative evaluation and comparison with related data management technologies
and approaches were provided. First, based on a previously defined spatio-temporal data
model, an observation data model was formalized. Then, a declarative spatio-temporal data
analysis language was also described together with analytical processes and system operators.
A prototype implementation is proposed and compared to state of the art solutions for spa-
tial and spatio-temporal data analysis. Main advantages of the proposed framework may be
summarized as follows.
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– Both the spatial observation data model and the declarative definition of Internal Pro-

cesses support and incorporate observation data semantics.

– Support for the integrated representation and analysis of both conventional E/R data
and temporal, spatial and spatio-temporal sampled data is directly provided.

– The new defined temporal and spatial data types enable the representation and transfor-
mation between different data resolutions.

– The well known mathematical concept of function is used to represent both data (Ex-

tensional MappingSets) and behavior (Intensional Mapppings). Thus, this approach
should be friendly to scientific users. Furthermore, a functional approach eases the
definition and reuse of intermediate results.

– Incorporation of novel proposed languages, MAPAL and XODDL, in web services is
simplified by their XML based nature.

– The efficient implementation of the framework leveraged the single non-nested data
structure defined in the data model.

The benefits of defined data models and operators have been demonstrated by the per-
formance results obtained by the implemented prototype. Execution times of the spatial join
operation, implemented for comparison purposes, outperformed state of the art solutions for
big spatial data analysis, e.g, GeoSpark, LocationSpark, Stark. Prototype execution times
are orders of magnitude below the execution times obtained by competitors. Moreover, the
prototype shows a scalability performance similar to the best performance solutions.

The main drawback of SODA is the adoption of a new functional data management
paradigm by current DBMS users. However, the functional formalism has been combined
with the well known logical formalism to define MAPAL. Thus, MAPAL constructors are
very similar to those of current available languages like XQuery.

6.2 Future lines of research

The main future line of research on GeoDADIS is related to the support of remote sensors
(e.g., lidar, radar, scatterometer, sounder) and complex measurements produced by them.

Regarding SODA, several future work issues may be identified.



6.2. Future lines of research 173

– Incorporate query optimization techniques.

– Define new appropriate indexing structures.

– Design and implement new partitioning strategies for both Dimensions and Extensional

MappingSets, and spatial data.

– Incorporation of approximate query processing techniques to stored Extensional Map-

pingSets.
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PRIMITIVE MAPPINGS

Primitive mapping Description

and(b1,b2) Returns b1∧b2.

not(b) Returns b̄.

or(b1,b2) Returns b1∨b2.

toCString(b) Returns a CString representation of b. If b = true,
“true” is returned. Otherwise, “false” is returned.

Table A.1: Description of primitive boolean mappings.

Primitive mapping Description

concat(str1,str2) Concatenates the CString str2 to the end of the CString

str1.

length(str) Returns the number of characters in str.

lower(str) Converts all of the characters in str to lower case.

upper(str) Converts all of the characters in str to upper case.

toBoolean(str) Returns the Boolean value represented by str. If str

equals to “true” (case insensitive), the boolean value
true is returned. If str equals to “false” (case insensi-
tive), the boolean value false is returned. Otherwise, an
IllegalFormatException is thrown.
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Primitive mapping Description

toDate(str) Returns the Date value represented by str. If str is not
parsable as Date, an IllegalFormatException is thrown.

toFixedPrecision(str) Returns the FixedPrecision value represented by str. Pre-

cision and scale parametric values are automatically ex-
tracted from str. If str does not contain a parsable Fixed-

Precision value, a NumberFormatException is thrown.

toFixedPrecision(str, p,s) Returns the FixedPrecision value represented by str ap-
plying an implicit casting to FixedPrecision(p,s). If str

does not contain a parsable FixedPrecision value, a Num-

berFormatException is thrown.

toInteger(str) Returns the Integer value represented by str. If str does
not contain a parsable Integer value, a NumberFormatEx-

ception is thrown.

toReal(srt) Returns the Real value represented by str. If str does not
contain a parsable Real value, a NumberFormatException

is thrown.

toTime(str) Returns the Time value represented by str. Resolution

parametric value is automatically extracted from str. If
str does not contain a parsable Time value, an IllegalFor-

matException is thrown.

toTime(str,r) Returns the Time value represented by str applying an im-

plicit casting to Time(r). If str does not contain a parsable
Time value, an IllegalFormatException is thrown.

toTimeInstant(str) Returns the TimeInstant value represented by str. Res-

olution parametric value is automatically extracted from
str. If str does not contain a parsable TimeInstant value,
an IllegalFormatException is thrown.

toTimeInstant(str,r) Returns the TimeInstant value represented by str apply-
ing an implicit casting to TimeInstant(r). If str does not
contain a parsable TimeInstant value, an IllegalForma-

tException is thrown.

Table A.2: Description of primitive string mappings.
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Primitive mapping Description

abs(x) Returns the absolute value of x.

acos(x) Returns the arc cosine of x. The returned angle is in the
interval [0,π].

asin(x) Returns the arc sine of x. The returned angle is in the
interval [−π/2,π/2].

atan(x) Returns the arc tangent of x. The returned angle is in the
interval [−π/2,π/2].

atan2(x,y) Returns the θ component of the point (ρ,θ) in polar co-
ordinates that corresponds to the point (x,y) in Cartesian
coordinates.

ceil(x) Returns the smallest (closest to negative infinity) Integer

value that is greater than or equal to x.

cos(x) Returns the trigonometric cosine of x interpreted as an
angle in radians.

divide(x,y) Returns the result of the division operation a/b.

f loor(x) Returns the largest (closest to positive infinity) Integer

value that is less than or equal to x.

ln(x) Returns the natural logarithm (base e) of x.

log(x) Returns the base 10 logarithm of x.

mod(x,y) Returns the remainder after the division of x by y.

multiply(x,y) Returns the result of the multiplication operation x · y.

power(x,y) Returns x raised to the power of y.

round(x) Returns x rounded to the nearest Integer value.

round(x,y) Returns x rounded to the nearest Real value that have y

decimal digits.

sin(x) Returns the trigonometric sine of x interpreted as an angle
in radians.

sqrt(x) Returns the correctly rounded positive square root of x.

subtract(x,y) Returns the result of the subtraction operation x− y.

sum(x,y) Returns the result of the additive operation x+ y.
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Primitive mapping Description

tan(x) Returns the trigonometric tangent of x interpreted as an
angle in radians.

toBoolean(x) Returns the Boolean value false if x = 0 and returns
true otherwise.

toCString(x) Returns a CString representation of x.

toFixedPrecision(x) Returns the FixedPrecision value that is equivalent to x.
Precision and scale parametric values are automatically
extracted from x.

toFixedPrecision(x, p,s) Returns the FixedPrecision value that is equivalent x, ap-
plying an implicit casting to FixedPrecision(p,s).

toInteger(x) Equivalent to f loor(x).

toPoint1D(x) Returns a Point1D value which spatial coordinate is
equivalent to argument x. Precision and resolution para-
metric values are automatically extracted from a.

toPoint1D(x, p,r) Returns a Point1D value which spatial coordinate is
equivalent to argument x, applying an implicit casting to
Point1D(p,r) data type.

toReal(x) Returns the Real value that is equivalent to x.

Table A.3: Description of primitive numeric mappings.

Primitive mapping Description

subtract(t1, t2) If t2 is a Temporal argument, returns an Integer value rep-
resenting the number of Temporal values between t2 and
t1. If t2 is an Integer argument, returns the Temporal value
resulting from subtracting t2 Temporal values to t1.

subtractAsString(t1, t2) Returns subtract(t1, t2) in a human readable format.

sum(t1, t2) Returns the Temporal value resulting from adding t2 Tem-

poral values to t1. Argument t2 must be of type Integer.

toCString(t1) Returns a CString representation of t1.

toDate(t1) Returns the Date value that is equivalent to t1.
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Primitive mapping Description

toTime(t1) Returns the Time value that is equivalent to t1. Resolution

parametric value is automatically extracted from t1.

toTime(t1,r) Returns the Time value that is equivalent to t1, applying a
casting to Time(r).

toTimeInstant(t1) Returns the TimeInstant value that is equivalent to t1.
Resolution parametric value is automatically extracted
from t1.

toTimeInstant(t1,r) Returns the TimeInstant value that is equivalent to t1, ap-
plying a casting to TimeInstant(r).

Table A.4: Description of primitive temporal mappings.

Primitive mapping Description

subtract(p1, p2) If p2 is a Point1D argument, returns an Integer value rep-
resenting the distance (in number of Point1D values) be-
tween p2 and p1. If p2 is an integer argument, returns
the Point1D value resulting from subtracting p2 Point1D

values to p1.

sum(p1, p2) Returns the Point1D value resulting from adding p2

Point1D values to p1.

toCString(p) Returns the CString representation of p.

toFixedPrecision(p) Returns the FixedPrecision value that is equivalent to p.
Precision and scale parametric values are automatically
extracted from p.

toFixedPrecision(p1, p,s) Returns the FixedPrecision value that is equivalent to p1,
applying a casting to FixedPrecision(p,s).

toInteger(p) Returns the largest (closest to positive infinity) Integer

value that is less than or equal to p.

toPoint1D(p1, p,r) Returns p1 applying a casting to Point1D(p,r).

toReal(p) Returns the Real value that is equivalent to p.

Table A.5: Description of primitive Point1D mappings.
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Primitive mapping Description

4neigh(p1, p2) Returns true if p2 is within the 4-neighborhood of p1,
and returns false otherwise.

8neigh(p1, p2) Returns true if p2 is within the 8-neighborhood of p1,
and returns false otherwise.

getPosition(p1) Returns the position of p1 in the underlying coordinate
system according to the space filling curve shown in
Fig. 4.5.

getPrecision(p1) Returns the precision of p1.

getResolution(p1) Returns the resolution of p1.

getX(p1) Returns the x coordinate of p1: nx ·R.

getXint(p1) Returns the integer x coordinate of p1 in the underlying
coordinate system: nx.

getY (p1) Returns the y coordinate of p1: ny ·R.

getYint(p1) Returns the integer y coordinate of p1 in the underlying
coordinate system: ny.

shi f t(p1,x,y) Returns the Point2D value ps = (nx+x, ny+y) ·R, where
x,y ∈ Z and R is the resolution of p1.

subtract(p1, p2) Returns an Integer value representing the distance (in
number of Point2D values) between p2 and p1 according
to the space filling curve shown in Fig. 4.5.

toPoint2D(p1, p,r) Returns p1 applying a casting to Point2D(p,r).

Table A.6: Description of primitive Point2D mappings.

Primitive mapping Description

bu f f er(g1,d) Returns a Geometry value containing a buffer area around
g1 having the width d.

contains(g1,g2) Returns true if g1 contains g2, and returns false other-
wise.

convexHull(g1) Returns the smallest convex Polygon that contains all the
points in g1.
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Primitive mapping Description

crosses(g1,g2) Returns true if g1 crosses g2, and returns false other-
wise.

di f f erence(g1,g2) Returns a Geometry value representing the closure of the
point-set composed of the points contained in g1 that are
not contained in g2.

dis joint(g1,g2) Returns true if g1 is disjoint from g2, and returns false
otherwise.

distance(g1,g2) Returns the minimum distance between g1 and g2.

envelope(g1) Returns a Polygon value representing the minimum boun-
ding box of g1.

equals(g1,g2) Returns true if g1 and g2 are exactly equal, i.e., test
whether the two geometries are structurally equal. Two
geometries are exactly equal if and only if they have the
same structure and they have the same values for their
vertices (in exactly the same order).

f romWkt(s) Reads a well-known text representation from the CString

value s and returns the corresponding Geometry value.

f romGml(s) Reads a GML2 representation from the CString value s

and returns the corresponding Geometry value.

getPrecision(g1) Returns the precision of the underlying grid used by the
point-set of g1.

getResolution(g1) Returns the resolution of the underlying grid used by the
point-set of g1.

gml(g1) Returns g1 as XML fragments in GML2 format.

intersection(g1,g2) Returns a Geometry value representing the point-set com-
mon to both g1 and g2.

intersects(g1,g2) Returns true if g1 intersects g2, and returns false oth-
erwise.

overlaps(g1,g2) Returns true if g1 overlaps g2, and returns false other-
wise.
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Primitive mapping Description

symDi f f erence(g1,g2) Returns a Geometry value representing the closure of
the point-set composed of the union of the points in
g1 which are not contained in g2, with the points in
g2 not contained in g1. It is actually a shortcut for
union(di f f erence(g1,g2),di f f erence(g2,g1)).

touches(g1,g2) true if g1 touches g2, and returns false otherwise.

union(g1,g2) Returns a Geometry value representing the point-set of g1

plus the point-set of g2.

within(g1,g2) Returns true if g1 is within g2, and returns false other-
wise.

wkt(g1) Returns the well-known text representation of g1.

Table A.7: Description of primitive mappings that are common to all geometry data types
defined in SODA (including Point2D(P,R)).

Primitive mapping Description

endPoint(ls) Returns the last Point2D value within ls.

isClosed(ls) Returns true if the first and last points of ls are exactly
the same,and returns false otherwise.

isRing(ls) Returns true if ls is both simple and closed, and returns
false otherwise.

isSimple(ls) Returns true if ls does not intersect itself, and returns
false otherwise.

length(ls) Returns the count of Point2D values within ls.

startPoint(ls) Returns the first Point2D value within ls.

Table A.8: Description of primitive LineString mappings.

Primitive mapping Description

exterior(p) Returns a LineString value representing the exterior ring
of p.

holes(p) Returns the interior rings (aka “holes”) within p.
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Primitive mapping Description

area(p) Returns the area of p.

perimeter(p) Returns the perimeter of p.

centroid(ls) Returns the centroid of p.

Table A.9: Description of primitive Polygon mappings.

Primitive mapping Description

voronoi(mp) Returns the Voronoi diagram of mp.

Table A.10: Description of primitive MultiPoint mappings.

Primitive mapping Description

isSimple(mls) Returns true if mls does not intersect itself, and returns
false otherwise.

Table A.11: Description of primitive MultiLineString mappings.
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