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ABSTRACT

The mapping of species ranges is one of the most relevant and widely used pieces of
information in the study of biodiversity. Knowing the distribution range of species is a
fundamental first step us to understand the factors that determine those distributions, as well
as the patterns in the richness and abundance of species in a biogeographical context, all this
being necessary information to establish conservation strategies. The distribution range is a
conceptual construction that describes the area where a taxon occurs. The basic units of
information for constructing these ranges are spatially and temporally referenced observations
of species (i.e. records). Direct field sampling on very large spatial scales is rarely feasible, as
it requires significant resources and time. Therefore, large-scale biodiversity analyses tend to
be based on a variety of data reporting information on species observations or distributions,
ranging from point location data obtained from databases or wildlife atlases to species
distribution maps based on expert knowledge. In spite of been essential, our knowledge on the
distribution of species is far from complete, even for the best studied taxa. Given the great
relevance of species distribution maps, it is surprising to note that very little attention has
been paid to analyse how these maps are affected by the quality of the baseline data and the
diversity of methods used to construct them. This is the central axis of the thesis, which

structured in four main chapters.

In Chapter | we conducted a bibliographic review in order to obtain information from
scientific publications that use species distribution ranges in their studies. We noted how
distribution ranges have been generated and identified which are the most commonly used
methods to generate distribution ranges from georeferenced data, along with the advantages
and disadvantages provided by each of them. Most often researchers do not provide
information on how ranges have been constructed. The lack of explicit information on the
data and methods used in the construction of distribution ranges severely affect the
interpretation of results. Finally, the methods commonly used to delineate the areas have been
insufficiently evaluated. We urge researchers to be explicit both in what they consider the
ranges of distribution of species and in the methods they use to generate them. This will allow



for more robust comparisons between the ranges of distribution of species generated by

different methods.

In Chapter Il we assessed the accuracy of five geographic algorithms commonly used to
delineate species ranges with the aim of providing guidelines to minimize Type | error and
maximize sensitivity of the resulting species ranges. To this aim, we generated hypothetical
range areas with the same total surface but varying in shape, number of fragments,
heterogeneity in fragment size and simulated sets of species records varying in numbers,
spatial distribution and presence of errors and biases. The recommended algorithms have been
Adaptive Local Convex Hull (a-LoCoH) and Kernel Density Estimation (KDE). KDE
algorithm has the highest sensitivity and a-LoCoH algorithm has the lowest type | error rate.
Both behaved similarly well when describing range fragmentation. We provide
recommendations to minimize the effects of data quantity and quality, and provide guidance
to choose an algorithm when defining species distribution ranges based on species

observations.

Chapter 111 of this thesis explores options for a systematic and replicable generation of
range maps that take into account the different sources of variability and the exponential
increase in the availability of species records. We offer a unified and repeatable methodology
for building species range maps, which we compare with the existing maps of the
International Union for Conservation of Nature (IUCN). The combination of IUCN
distribution maps with georeferenced species data available from the Global Biodiversity
Information Facility (GBIF) is a promising route to providing information on where mapped
distributions are reliable and where they are uncertain. Lack of information or availability of
information in certain areas makes it difficult to implement systematic approaches to the
construction of distribution maps. So we also reveal priority sites for lack of information or

sampling effort on a global scale.

Chapter 1V assesses the variability in the description of species distribution ranges based
on non-systematic data gathering (e.g. using records from available databases) or on
systematic and specific surveys. As a case study, we used the southern water vole (Arvicola
sapidus) in peninsular Spain, using the results of a citizen science initiative specifically
focussed on this species and comparing them with those of a previous atlas. The resulting

distribution maps had notable differences, which were related to identification errors and



heterogeneous sampling effort in the non-systematic dataset as well as to actual changes in
range due to predation by invasive American mink. The likelihood of commission errors
increases in areas where there are species that may be confused with the water vole and by
mink predation. The probability of omission errors increases in areas with low sampling effort
and the existence of rodents easily confused with the study species. We emphasize the need to
be cautious in using available information sources to generate range maps, particularly in

areas with little data or signs of heterogeneous spatial coverage.

In conclusion, this thesis explores the different dimensions of species distribution maps
and offers a necessary perspective to deal with problems posed by sciences such as ecology or
conservation biology. We also try to understand the nature of the uncertainty involved in
distribution maps to help interpret existing results and guide future research. The information
metrics developed throughout this thesis could be incorporated into online tools that allow
researchers and funding agencies to identify priority species and areas to improve information

sources along with their associated distribution maps.



RESUMEN

El mapeo de areas de distribucion de especies es una de las piezas de informacion mas
relevantes y ampliamente utilizadas en el estudio de la biodiversidad. Conocer el area de
distribucion de las especies es un primer paso fundamental para entender los factores que
determinan esas distribuciones, asi como los patrones de riqueza y abundancia de las especies
en un contexto biogeografico, siendo toda esta informacion necesaria para establecer
estrategias de conservacion. El area de distribucién es una construccion conceptual que
describe el area donde ocurre un taxon. Las unidades basicas de informacion para la
construccion de estas areas son las observaciones de referencia espacial y temporal de las
especies (es decir, los registros). EI muestreo directo sobre el terreno a escalas espaciales muy
grandes rara vez es factible, ya que requiere recursos y tiempo considerables. Por lo tanto, los
analisis de biodiversidad a gran escala tienden a basarse en una variedad de datos que reportan
informacion sobre observaciones o distribuciones de especies, que van desde datos de
localizacion de puntos obtenidos de bases de datos o atlas de vida silvestre hasta mapas de
distribucion de especies basados en el conocimiento de expertos. A pesar de ser esencial,
nuestro conocimiento sobre la distribucion de las especies esta lejos de ser completo, incluso
para los taxones mejor estudiados. Dada la gran relevancia de los mapas de distribucion de
especies, es sorprendente observar que se ha prestado muy poca atencion al analisis de como
estos mapas se ven afectados por la calidad de los datos de linea de base y la diversidad de los
métodos utilizados para construirlos. Este es el eje central de la tesis, que se estructura en

cuatro capitulos principales.

En el Capitulo | realizamos una revision bibliogréfica para obtener informacion de
publicaciones cientificas que utilizan areas de distribucion de las especies en sus estudios.
Observamos cémo se han generado e identificado las areas de distribucion que son los
métodos mas comunmente utilizados para generar areas de distribucion a partir de datos
georreferenciados, junto con las ventajas y desventajas proporcionadas por cada uno de ellos.
En la mayoria de los casos, los investigadores no proporcionan informacion sobre como se
han construido las areas. La falta de informacion explicita sobre los datos y métodos

utilizados en la construccién de las &reas de distribucion afecta severamente a la



interpretacion de los resultados. Por ultimo, los métodos utilizados habitualmente para
delimitar las zonas no se han evaluado suficientemente. Instamos a los investigadores a ser
explicitos tanto en lo que consideran areas de distribucion de las especies como en los
métodos que utilizan para generarlas. Esto permitira realizar comparaciones mas solidas entre

las areas de distribucion de las especies generados por diferentes métodos.

En el Capitulo Il evaluamos la exactitud de cinco algoritmos geograficos cominmente
utilizados para delinear las areas de distribucion de las especies con el objetivo de
proporcionar directrices para minimizar el error de Tipo | y maximizar la sensibilidad de las
areas de distribucion de las especies resultantes. Con este objetivo, generamos areas de
distribucion hipotéticas con la misma superficie total pero variando en forma, nimero de
fragmentos, heterogeneidad en el tamafio de los fragmentos y conjuntos simulados de
registros de especies variando en numero, distribucion espacial y presencia de errores y
sesgos. Los algoritmos recomendados han sido Adaptive Local Convex Hull (a-LoCoH) y
Kernel Density Estimation (KDE). El algoritmo KDE tiene la sensibilidad mas alta y el
algoritmo a-LoCoH tiene la tasa de error tipo I mas baja. Ambos se comportaron
similarmente bien al describir la fragmentacion del area. Proporcionamos recomendaciones
para minimizar los efectos de la cantidad y calidad de los datos, y proporcionamos orientacion
para elegir un algoritmo a la hora de definir las areas de distribucion de las especies en base a

las observaciones de las especies.

El Capitulo 11l de esta tesis explora las opciones para una generacion sistematica y
replicable de mapas de areas de distribucion que tengan en cuenta las diferentes fuentes de
variabilidad y el aumento exponencial en la disponibilidad de registros de especies.
Ofrecemos una metodologia unificada y repetible para construir mapas de areas de
distribucion de especies, que comparamos con los mapas existentes de la Unién Internacional
para la Conservacion de la Naturaleza (UICN). La combinacién de los mapas de distribucion
de la UICN con los datos de especies georreferenciados disponibles del Fondo Mundial para
la Informacion sobre la Biodiversidad (GBIF) es una via prometedora para proporcionar
informacion sobre dénde son fiables los mapas de distribucion de especies y dénde son
inciertos. La falta de informacion o la disponibilidad de informacion en determinadas zonas

dificultan la aplicacion de enfoques sistematicos para la elaboracion de mapas de distribucion.



Asi que también revelamos sitios prioritarios por falta de informacion o esfuerzo de muestreo

a escala global.

El Capitulo 1V evalla la variabilidad en la descripcion de las areas de distribucion de las
especies basandose en la recoleccion de datos no sistematicos (por ejemplo, usando registros
de bases de datos disponibles) o en encuestas sistematicas y especificas. Como caso de
estudio se utilizo el topillo de las agua (Arvicola sapidus) en la Espafia peninsular, utilizando
los resultados de una iniciativa de ciencia ciudadana centrada especificamente en esta especie
y comparandolos con los de un atlas anterior. Los mapas de distribucion resultantes
presentaban diferencias notables, relacionadas con errores de identificacion y esfuerzos
heterogéneos de muestreo en el conjunto de datos no sistematicos, asi como con cambios
reales en el area de distribucion debido a la depredacion por el vison americano invasor. La
probabilidad de errores de comision aumenta en areas donde hay especies que pueden ser
confundidas con el topillo de agua y por la depredacion del visén. La probabilidad de errores
por omision aumenta en areas con bajo esfuerzo de muestreo y la existencia de roedores
facilmente confundibles con la especie estudiada. Hacemos hincapié en la necesidad de ser
cautelosos al utilizar las fuentes de informacion disponibles para generar mapas de area de
distribucion, en particular en zonas con pocos datos o signos de cobertura espacial

heterogénea.

En conclusion, esta tesis explora las diferentes dimensiones de los mapas de distribucion
de especies y ofrece una perspectiva necesaria para abordar problemas planteados por ciencias
como la ecologia o la biologia de la conservacion. También tratamos de entender la naturaleza
de la incertidumbre involucrada en los mapas de distribucion para ayudar a interpretar los
resultados existentes y gquiar la investigacion futura. Las métricas de informacion
desarrolladas a lo largo de esta tesis podrian ser incorporadas en herramientas en linea que
permitan a los investigadores y agencias de financiamiento identificar especies y areas
prioritarias para mejorar las fuentes de informacién junto con sus mapas de distribucion

asociados.



RESUMO

O mapeo das areas de distribucion de especies € unha das pezas de informacion mais
relevantes que se usan ampliamente no estudo da biodiversidade. Cofiecer a area de
distribucion da especie € un primeiro paso fundamental para comprender os factores que
determinan esas distribucions, asi como os patrons de riqueza e abundancia da especie nun
contexto bioxeogréafico, toda esta informacion é necesaria para establecer estratexias de
conservacion. A area de distribucion é unha construcién conceptual que describe a zona onde
ocorre un taxén. As unidades basicas de informacion para a construcion destas areas son as
observacions espaciais e temporais de referencia da especie (¢ dicir, 0s rexistros). A mostraxe
directa no chan a escalas espaciais moi grandes raramente é factible, xa que require un tempo
e recursos considerables. Polo tanto, as anélises de biodiversidade a gran escala tenden a
basearse nunha variedade de datos que reportan informacién sobre observacions ou
distribucions de especies, que van dende datos de localizacion de puntos obtidos a partir de
bases de datos ou atlas de vida salvaxe ata mapas de distribucion de especies baseados no
cofiecemento de expertos. A pesar de ser esencial, 0 noso cofiecemento sobre a distribucion
das especies esta lonxe de ser completo, incluso para os taxons mellor estudados. Dada a gran
relevancia dos mapas de distribucion de especies, € sorprendente observar que se prestou moi
pouca atencidn & analise de como estes mapas estan afectados pola calidade dos datos base e a
diversidade dos métodos utilizados para construilos. Este é o eixe central desta tese, que esta
estruturada en catro capitulos principais.

No Capitulo | realizamos unha revision bibliografica para obter informacion de
publicacions cientificas que usan areas de distribucion de especies nos seus estudos.
Observamos como se xeraron e identificaron as areas de distribucidn, que son os metodos
mais utilizados para xerar areas de distribucién a partir de datos xeorreferenciados, xunto coas
vantaxes e desvantaxes proporcionadas por cada un deles. Na maioria dos casos, 0S
investigadores non proporcionan informacion sobre como se construiron as reas. A falta de
informacidn explicita sobre os datos e métodos utilizados na construcion das areas de
distribucion afecta gravemente & interpretacion dos resultados. Por dltimo, os métodos

xeralmente utilizados para delinear areas non foron suficientemente valorados. Instamos aos



investigadores a que sexan explicitos tanto no que consideran areas de distribucion de
especies como nos métodos que utilizan para xeralas. Isto permitira facer comparacions mais

solidas entre as areas de distribucidn das especies xeradas por diferentes métodos.

No Capitulo Il foi valorada a precision de cinco algoritmos xeograficos comunmente
utilizados para delinear as areas de distribucion das especies, a fin de proporcionar directrices
para minimizar o erro de Tipo | e maximizar a sensibilidade das &reas de distribucion das
especies resultantes. Para este fin, foron xeradas areas distribucion hipotéticas coa mesma
superficie total, pero variando en forma, numero de fragmentos, heteroxeneidade no tamafio
dos fragmentos e conxuntos simulados de rexistros de especies variando en ndmero,
distribucion espacial e presencia de erros e sesgo. Os algoritmos recomendados foron
Adaptive local Convex Hull (a-Locoh) e Kernel Density Estimation (KDE). O algoritmo KDE
ten a maior sensibilidade e o algoritmo de a-Locoh ten a menor taxa de erro de tipo I. Ambos
se comportaron de forma similar ao describir a fragmentacién da area. Proporcionamos
recomendacions para minimizar os efectos da cantidade e calidade dos datos e proporcionar
orientacion para elixir un algoritmo ao definir as areas de distribucion da especie con base nas

observacions da especie.

O Capitulo I11 desta tese explora as opcions para unha xeracion sistematica e replicable
de mapas de distribucion das areas que tefian en conta as distintas fontes de variabilidade e o
aumento exponencial na dispofiibilidade de rexistros de especies. Ofrecemos un sistema
unificado e repetible para construir mapas de distribucion das especies, en comparacion cos
mapas existentes da Union Internacional para a Conservacion da Natureza (UICN). A
combinacion da distribucién de mapas de especies da UICN e datos xeorreferenciados
dispofiibles a partir do Global Biodiversity Information Facility (GBIF) é un camifio
prometedor para proporcionar informacion sobre onde son fiables os mapas de distribucion
das especies e onde son incertas. A falta de informacion ou dispofiibilidade da informacion en
certas areas dificultan a aplicacion de enfoques sistematicos para a elaboracién de mapas de
distribucion de especies. Asi que tamén revelamos areas prioritarias por falta de informacion

ou esforzo de mostraxe a escala global.

O Capitulo 1V avalia a variabilidade na descricion das areas de distribucion da especie
baseandose na recollida de datos non sistematicos (por exemplo, utilizando rexistros de bases

de datos dispofiibles) ou en enquisas sistematicas e especificas. Como caso de estudo



utilizouse o topillo das auga (Arvicola sapidus) na Espafia peninsular, utilizando os resultados
dunha iniciativa cientifica cidada centrada especificamente nesta especie e comparandoos cos
dun atlas anterior. Os mapas de distribucion resultantes presentaron diferenzas notables,
relacionadas con erros de identificacion e esforzos de mostraxe heteroxéneos no conxunto de
datos non sistematicos, asi como cambios reais na area de distribucion debido & depredacion
do visén americano invasor. A probabilidade de erros de comisién aumenta en areas onde hai
especies que poden confundirse co topillo de auga e pola depredacion do vison. A
probabilidade de erros por omision aumenta en areas con baixo esforzo de mostraxe e a
existencia de roedores facilmente confundidos coas especies estudadas. Destacamos a
necesidade de ser cautelosos ao utilizar as fontes de informacion dispofiibles para xerar mapas
de area de distribucion, especialmente en areas con poucos datos ou signos de cobertura

espacial heteroxénea.

En conclusion, esta tese explora as distintas dimensions dos mapas de distribucion de
especies e ofrece unha perspectiva necesaria para abordar problemas derivados de ciencias
como a ecoloxia ou a bioloxia de conservacion. Tamén intentamos comprender a natureza da
incerteza involucrada nos mapas de distribucion para axudar a interpretar os resultados
existentes e orientar a futura investigacion. As métricas de informacién desenvolvidas ao
longo desta tese poderian incorporarse a ferramentas en lifia que permitan aos investigadores e
axencias de financiamento identificar areas de especies e prioridades para mellorar as fontes

de informacion e os seus mapas de distribucion asociados.






RESUMEN EN LENGUA CASTELLANA DE MAS DE
3000 PALABRAS

La biodiversidad se distribuye de forma heterogénea por toda la Tierra. Conocer los
lugares en los que estan presentes las diferentes especies es uno de los principales objetivos de
las ciencias naturales, especialmente en disciplinas como la biogeografia, la macroecologia y
la biologia de la conservacion. Un conocimiento preciso de la distribucion de las especies
permite describir los patrones geograficos de la biodiversidad, informar el manejo y
conservacion de los recursos naturales, identificar &reas prioritarias para la conservacion o
investigar las relaciones evolutivas a través del espacio (Margules et al., 2002; Rondinini et
al., 2011). El éarea de distribucion de las especies (u otro nivel taxonémico) es una
construccion conceptual que describe el area donde estad presente un taxén o especie. Las
unidades basicas de informacién para la construccion de estas areas son las observaciones de
referencia espacial y temporal de las especies (es decir, los registros). EI muestreo directo
sobre el terreno a escalas espaciales muy grandes rara vez es factible, ya que requiere recursos
y tiempo considerables. Por lo tanto, los analisis de biodiversidad a gran escala tienden a
basarse en una variedad de datos que reportan informacién sobre observaciones o
distribuciones de especies, que van desde datos de localizacion de puntos obtenidos de bases
de datos o atlas de vida silvestre hasta mapas de distribucion de especies basados en el
conocimiento de expertos. A pesar de ser esencial, nuestro conocimiento sobre la distribucion

de las especies esta lejos de ser completo, incluso para los taxones mejor estudiados.

El area de distribucidén puede caracterizarse en términos de su tamafio, forma y otros
descriptores de sus limites, fragmentacion o estructura interna (Brown et al., 1996, Lucas et
al., 2016). Como herramienta conceptual, el area de distribucion proporciona una descripcion
resumida de la compleja dindmica espacio-temporal de las poblaciones. La caracterizacion de
las areas de distribucion depende de como se definen, la calidad y cantidad de los datos de
linea de base disponibles y el enfoque metodoldgico elegido para construirlos; temas que a

menudo se pasan por alto en la literatura cientifica.



Definicidn de las areas de distribucion de las especies

Tal y como se ha definido anteriormente, y dado que este concepto sera tratado a lo largo
de la presente tesis doctoral, el area de distribucion es una construccion conceptual que define
un espacio topoldgico en el que se supone que la especie o0 taxdn esta presente dadas las
observaciones y la resolucion espacial y temporal impuestas. Sin embargo, este concepto a
veces se contextualiza en la literatura cientifica de diferentes maneras, con el potencial de

confusion cuando se usa el concepto de una manera no transparente.

La UICN, en la evaluacion mas influyente del estado de conservacion de las especies
(UICN, 1994, 2001), define la extensién de la ocurrencia (EOO) como el area contenida
dentro del limite continuo mas corto que abarca todos los sitios de ocurrencia actual de un
taxon. EI EOO puede incluir discontinuidades o disyunciones dentro de la distribucion
general de los taxones, tales como grandes areas de habitat obviamente inadecuado. El area de
ocupacion (AOO) es un subconjunto del EOO vy describe el area donde una especie esta
realmente presente (Gaston, 1991; 2003). Estos dos parametros se utilizan en los protocolos
de la UICN para evaluar el estado de conservacion de las areas de distribuciéon (Gaston and
Fuller, 2009; UICN Standards and Petitions Subcommittee, 2010). De la misma manera, otras
definiciones de areas de distribucion también se utilizan en la literatura cientifica actual para
generar mapas de areas de distribucion de especies. Algunos se basan exclusivamente en
registros georreferenciados, y otros utilizan estimaciones de idoneidad ambiental junto con
registros georreferenciados, que pueden traducirse en areas en las que supuestamente se
cubren los requisitos ambientales de la especie. Sin embargo, la distribucion de una especie
no solo esta determinada por el nicho ecoldgico, sino también por las barreras de dispersion,
las interacciones bioticas y los factores historicos (Oswald et al., 2016, Husakova y
Miinzbergova, 2016, Schloss et al.,, 2012). Los modelos ecoldgicos de nicho, mas
frecuentemente conocidos como modelos de distribucion de especies (MDF), son
herramientas metodologicas utilizadas para delinear las areas donde se cumplen las
condiciones para la existencia de una especie, basdndose en los datos de ocurrencia conocidos
y las condiciones ambientales en esos lugares. Por lo tanto, los MDFs por definicion no
identifican las areas de distribucion de las especies. Sin embargo, este salto de area de

distribucion a area de distribucién potencial ocurre frecuentemente en la literatura.



Datos de biodiversidad

Bajo el explosivo aumento de los datos globales, el término "big data" se utiliza para
describir enormes conjuntos de datos. Estos grandes datos generan nuevas oportunidades para
descubrir nuevos valores y también incurren en nuevos desafios al tratar de organizar y
manejar estos conjuntos de datos de manera efectiva (Maldonado et al., 2015; Stephenson et
al., 2017). En ciencias como la ecologia o la biologia de la conservacion, las bases de datos de
la ciencia ciudadana se estan convirtiendo en una forma importante de recopilar informacién
sobre la distribucion de las especies (Dickinson et al., 2012; Tiago et al., 2017). Las
observaciones recogidas por un gran numero de voluntarios, en grandes extensiones
espaciales y periodos temporales, a menudo proporcionan un gran ndmero de registros
(Chandler et al., 2012), lo que permite realizar estudios que de otro modo serian inviables. El
incremento de los registros de especies a partir de las iniciativas de ciencia ciudadana en los
ultimos afios es particularmente importante para grupos taxondémicos visibles y faciles de
identificar. La posibilidad de recoger, a través de aplicaciones mdviles con conexion a
Internet, observaciones georeferenciadas del mundo natural (por ejemplo, avistamientos de
fauna) a través de interfaces interactivas de geovisualizacion (por ejemplo, Google Maps,
Google Earth y Microsoft Virtual Earth) o el uso de sensores en dispositivos moviles nos
permite recoger una gran cantidad de datos del entorno. Ademas de la gran oportunidad que
ofrecen las plataformas de ciencia ciudadana, las bases de datos de biodiversidad también
agregan informacion publicada (libros, monografias, articulos o actas de congresos),
colecciones de historia natural, informacion recogida en encuestas, encuestas especificas o
repositorios en linea (Soberdén y Peterson, 2004; Guralnick et al. 2007). Por lo tanto, las bases
de datos sobre biodiversidad proporcionan una gran cantidad de informacion heterogénea y
las iniciativas para generar, almacenar y conectar estas bases de datos también han proliferado

en las Ultimas décadas.

Ambiciosas infraestructuras internacionales como el Fondo Mundial de Informacién
sobre la Biodiversidad (GBIF, http://www.gbif.org/) tratan de vincular todas estas colecciones
de bases de datos sobre biodiversidad entre paises y continentes. GBIF es en la actualidad la

base de datos de biodiversidad méas grande y mas ampliamente utilizada (Beck et al., 2012,



2014; Jetz et al., 2012). El objetivo de GBIF es "hacer que los datos primarios del mundo
sobre biodiversidad estén libre y universalmente disponibles a través de Internet" (Yesson et
al., 2007; GBIF, 2008). Actualmente, GBIF proporciona un portal Unico para acceder a mas
de 975 millones de registros (en abril de 2018). Esta disponibilidad masiva de datos sobre la
biodiversidad, junto con la rapida aparicién de nuevas técnicas e instrumentos para analizar
dicha informacion, ha facilitado el analisis y la interpretacion a gran escala de los datos sobre
la biodiversidad y la distribucion de las especies. Por lo tanto, estos datos proporcionan un
recurso inestimable para documentar la biodiversidad y su distribucién a través del tiempo y
el espacio para la investigacion, la educacion y la formulacion de politicas (Williams et al.,
1996; Winker, 2004). Sin embargo, estas fuentes de datos incurren en sesgos potenciales
relacionados con ambigiedades taxonOmicas, cobertura territorial desigual, errores
tipograficos y de georeferenciacion o incertidumbre geografica (Soberon y Peterson, 2004;
Newbold, 2010) que ahora son reconocidos por la comunidad cientifica. Estas limitaciones
han puesto en duda la utilidad de las bases de datos publicas, incluso si todos los datos

disponibles pudieran recopilarse exhaustivamente (Hortal et al., 2008; Stropp et al., 2016).

Existen tres limitaciones principales para caracterizar la distribucion de las especies, que
van desde la informacion contenida en las bases de datos de biodiversidad: i) esfuerzo de
estudio desconocido, ii) ausencias desconocidas, y iii) recurrencia desconocida. Estas
limitaciones estan interrelacionadas entre si, por lo que so6lo cuando se compilan
exhaustivamente todos los sucesos conocidos es posible estimar el esfuerzo de muestreo con
cierta fiabilidad, ayudando asi a diferenciar la ausencia de pruebas de la evidencia de
ausencia. Por lo tanto, una base de datos de biodiversidad que recopile exhaustivamente toda
la informacién disponible sobre la identidad y distribucion de un grupo de especies permitiria
tanto identificar areas bien encuestadas (por ejemplo, Hortal y Lobo, 2005) como obtener
estimaciones de la ocurrencia repetida y/o la probabilidad de ausencia de especies particulares
(por ejemplo, Guillera-Arroita et al.,, 2010). A pesar de la importancia ampliamente
reconocida de evaluar la calidad y la integridad de los datos como paso preliminar en
cualquier estudio de biodiversidad, este proceso a menudo se descuida. Podria decirse que
esto se debe en parte a que este proceso de evaluacion lleva mucho tiempo, requiere el uso de
varias aplicaciones informaticas y la repeticion del mismo proceso para cada una de las
unidades territoriales o emplazamientos considerados (0, en general, para cualquier tipo de

unidad espacial).



El sesgo espacial en los datos de distribucion de especies es un fendmeno general con el
potencial de distorsionar fuertemente nuestra vision sobre los patrones de biodiversidad a gran
escala (Ballesteros-Mejia et al., 2013; Boakes et al., 2010; Yang et al., 2013). Una multitud de
factores, tales como dénde se llevaron a cabo las encuestas y a qué escala espacial, qué datos
o0 especimenes fueron recolectados, y cuales de estos datos fueron almacenados y archivados.

Enfoque metodoldgico

Se han desarrollado muchos métodos diferentes para generar areas de distribucion a partir
de los registros de observacién, pero se ha prestado poca atencion a comprender cémo las
variaciones en la cantidad y calidad de los datos de linea de base y la implementacion de
diferentes metodologias afectan la precision de los mapas de distribucion de las especies
(Graham e Hijmans, 2006; Maldonado et al., 2015). Hasta ahora, podemos diferenciar dos
técnicas principales para construir areas de distribucion de las especies: algoritmos
geogréaficos y mapas de areas dibujadas por expertos.

Los algoritmos geograficos son metodos matematicos que utilizan Unicamente
observaciones espacio-temporales (Burgman y Fox, 2003; Getz y Willmers, 2004; Getz et al.,
2007) para definir un espacio topolégico como la extension de la ocurrencia o el area donde
se supone que la especie estd presente dadas las observaciones y la resolucidn espacial
impuestas por las observaciones vecinas (Bronstein et al., 2007). Estos métodos solo utilizan
registros para definir el espacio geografico que representa el area en la que se supone que una
especie esta presente (Burgman y Fox, 2003; Bronstein et al., 2007). Al requerir solo registros
de especies para la construccion de mapas de areas de distribucion, estos métodos conectados
a las bases de datos de biodiversidad en linea nos permitirian mantener las areas de
distribucion siempre actualizadas. Ademas, estos métodos son facilmente repetibles siempre y
cuando el procedimiento esté debidamente anotado. Los mapas de area de distribucion
dibujados por expertos derivan de un dibujo manual de un poligono simplificado en torno a
registros conocidos, utilizando el conocimiento experto de las preferencias de habitat de las
especies y la informacion ambiental auxiliar, como los tipos de hébitats o los accidentes
geograficos (Maréchaux et al., 2017; Herkt et al., 2017). Se trata de un método que presenta

un alto nivel de abstraccion, ademas de ser dificil de replicar por no haber sido realizado con



una metodologia clara y repetible. En la actualidad, la Union Internacional para la
Conservacion  de la  Naturaleza  (UICN;  http://www.iucnredlist.org/technical-
documents/spatial-data) es el depositario mas completo de esta gama de especies dibujadas
por expertos. Los mapas de expertos de la UICN estan disponibles para todas las especies de
aves (Butchart et al., 2004), anfibios (Stuart et al., 2004), mamiferos (Schipper et al., 2008) y
reptiles (Bohm et al., 2013), asi como para varias especies de otros taxones en muchas

regiones del mundo (UICN, 2017), y se estan utilizando cada vez mas para la investigacion.

Los MDFs también se utilizan a menudo en la literatura cientifica para generar areas de
distribucion de las especies (Boitani et al., 2011; Elith et al., 2006), un enfoque que es
inapropiado siguiendo nuestra definicion del concepto de &rea de distribucion de las especies.
Mientras que los algoritmos geograficos generan areas de distribucion fenomenoldgicas,
basados s6lo en los registros de especies, los MDF generan estimaciones de idoneidad
ambiental, que pueden traducirse en areas donde los requerimientos ambientales de las
especies estan supuestamente cubiertos. A pesar de ello, no tenemos ninguna garantia de que

la especie esté realmente presente.

Conclusion

Dada la gran relevancia de los mapas de distribucion de especies, es sorprendente
observar que se ha prestado muy poca atencion al analisis de coOmo estos mapas se ven
afectados por la calidad de los datos de linea de base y la diversidad de los métodos utilizados
para construirlos. Este es el eje central de la tesis, que se estructura en cuatro capitulos

principales.

En el Capitulo | realizamos una revision bibliografica para obtener informacion de
publicaciones cientificas que utilizan areas de distribucion de las especies en sus estudios.
Observamos cémo se han generado e identificado las areas de distribucion que son los
métodos mas cominmente utilizados para generar areas de distribucion a partir de datos
georreferenciados, junto con las ventajas y desventajas proporcionadas por cada uno de ellos.
En la mayoria de los casos, los investigadores no proporcionan informacion sobre cémo se
han construido las areas. La falta de informacion explicita sobre los datos y métodos

utilizados en la construccién de las areas de distribucion afecta severamente a la



interpretacion de los resultados. Por ultimo, los métodos utilizados habitualmente para
delimitar las zonas no se han evaluado suficientemente. Instamos a los investigadores a ser
explicitos tanto en lo que consideran areas de distribucion de las especies como en los
métodos que utilizan para generarlas. Esto permitira realizar comparaciones mas solidas entre

las areas de distribucion de las especies generados por diferentes métodos.

En el Capitulo Il evaluamos la exactitud de cinco algoritmos geograficos cominmente
utilizados para delinear las areas de distribucion de las especies con el objetivo de
proporcionar directrices para minimizar el error de Tipo | y maximizar la sensibilidad de las
areas de distribucion de las especies resultantes. Con este objetivo, generamos areas de
distribucion hipotéticas con la misma superficie total pero variando en forma, nimero de
fragmentos, heterogeneidad en el tamafio de los fragmentos y conjuntos simulados de
registros de especies variando en numero, distribucion espacial y presencia de errores y
sesgos. Los algoritmos recomendados han sido Adaptive Local Convex Hull (a-LoCoH) y
Kernel Density Estimation (KDE). El algoritmo KDE tiene la sensibilidad mas alta y el
algoritmo a-LoCoH tiene la tasa de error tipo I mas baja. Ambos se comportaron
similarmente bien al describir la fragmentacion del area. Proporcionamos recomendaciones
para minimizar los efectos de la cantidad y calidad de los datos, y proporcionamos orientacion
para elegir un algoritmo a la hora de definir las areas de distribucion de las especies en base a

las observaciones de las especies.

El Capitulo 11l de esta tesis explora las opciones para una generacion sistematica y
replicable de mapas de areas de distribucion que tengan en cuenta las diferentes fuentes de
variabilidad y el aumento exponencial en la disponibilidad de registros de especies.
Ofrecemos una metodologia unificada y repetible para construir mapas de areas de
distribucion de especies, que comparamos con los mapas existentes de la Unién Internacional
para la Conservacion de la Naturaleza (UICN). La combinacién de los mapas de distribucion
de la UICN con los datos de especies georreferenciados disponibles del Fondo Mundial para
la Informacion sobre la Biodiversidad (GBIF) es una via prometedora para proporcionar
informacion sobre dénde son fiables los mapas de distribucion de especies y dénde son
inciertos. La falta de informacion o la disponibilidad de informacion en determinadas zonas

dificultan la aplicacion de enfoques sistematicos para la elaboracion de mapas de distribucion.



Asi que también revelamos sitios prioritarios por falta de informacion o esfuerzo de muestreo

a escala global.

El Capitulo 1V evalla la variabilidad en la descripcion de las areas de distribucion de las
especies basandose en la recoleccion de datos no sistematicos (por ejemplo, usando registros
de bases de datos disponibles) o en encuestas sistematicas y especificas. Como caso de
estudio se utilizo el topillo de las agua (Arvicola sapidus) en la Espafia peninsular, utilizando
los resultados de una iniciativa de ciencia ciudadana centrada especificamente en esta especie
y comparandolos con los de un atlas anterior. Los mapas de distribucion resultantes
presentaban diferencias notables, relacionadas con errores de identificacion y esfuerzos
heterogéneos de muestreo en el conjunto de datos no sistematicos, asi como con cambios
reales en el area de distribucion debido a la depredacion por el vison americano invasor. La
probabilidad de errores de comision aumenta en areas donde hay especies que pueden ser
confundidas con el topillo de agua y por la depredacion del visén. La probabilidad de errores
por omision aumenta en areas con bajo esfuerzo de muestreo y la existencia de roedores
facilmente confundibles con la especie estudiada. Hacemos hincapié en la necesidad de ser
cautelosos al utilizar las fuentes de informacion disponibles para generar mapas de area de
distribucion, en particular en zonas con pocos datos o signos de cobertura espacial

heterogénea.

En conclusion, esta tesis explora las diferentes dimensiones de los mapas de distribucion
de especies y ofrece una perspectiva necesaria para abordar problemas planteados por ciencias
como la ecologia o la biologia de la conservacion. También tratamos de entender la naturaleza
de la incertidumbre involucrada en los mapas de distribucion para ayudar a interpretar los
resultados existentes y gquiar la investigacion futura. Las métricas de informacion
desarrolladas a lo largo de esta tesis podrian ser incorporadas en herramientas en linea que
permitan a los investigadores y agencias de financiamiento identificar especies y areas
prioritarias para mejorar las fuentes de informacién junto con sus mapas de distribucion

asociados.
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Introduction

Biodiversity is distributed heterogeneously across the Earth. Knowing the places in which
the different species are present is a main objective of natural sciences, especially in
disciplines such as biogeography, macroecology and conservation biology. An accurate
knowledge of species distributions allows describing the geographical patterns of
biodiversity, informing the management and conservation of natural resources, identifying
priority areas for conservation or investigating evolutionary relationships through space
(Margules et al., 2002; Rondinini et al., 2011). The distribution range of species (or other
taxonomic level) is a conceptual construction that describes the area where it is present. The
range can be characterized in terms of its size, shape and other descriptors of its limits,
fragmentation or internal structure (Brown et al., 1996, Lucas et al., 2016). As a conceptual
tool, the distribution range provides a summarized description of the complex spatio-temporal
dynamics of populations. The characterization of distribution ranges depends on how they are
defined, the quality and quantity of the available baseline data and the methodological

approach chosen to build it; issues that are often overlooked in the scientific literature.

Defining species distribution ranges

As defined above, and as this concept will be treated throughout the PhD thesis, the
distribution range is a conceptual construction that defines a topological space where the
species or taxon is assumed to be present given the observations and the spatial and temporal
resolution imposed. However, this concept is sometimes contextualized in the scientific
literature in different ways, with potential for confusion when using the concept in a non-

transparent way.

The TUCN, in the most influential assessment of the conservation status of species
(IUCN, 1994, 2001), defines the extent of occurrence (EOO) as the area contained within the
shortest continuous boundary that encompasses all sites of present occurrence of a taxon.
EOO may include discontinuities or disjunctions within the overall distribution of taxa, such
as large areas of obviously unsuitable habitat. The area of occupancy (AOO) is a subset of the
EOO and describes the area where a species is actually present (Gaston, 1991; 2003). These

two parameters are used in the [IUCN protocols to asses conservation status from distribution
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ranges (Gaston and Fuller, 2009; IUCN Standards and Petitions Subcommittee, 2010).
Likewise, other distribution ranges definitions are also used in the current scientific literature
to generate species range maps. Some are based exclusively on georeferenced records, and
others use estimates of environmental suitability together with georeferenced records, which
can be translated into areas where the environmental requirements of the species are
supposedly covered. However, the distribution of a species is not only determined by the
ecological niche, but also by dispersal barriers, biotic interactions and historical factors
(Oswald et al., 2016, Husdkova and Miinzbergova, 2016, Schloss et al., 2012). Ecological
niche models, most frequently known as species distribution models (SDMs), are
methodological tools used to delineate the areas where the conditions for the existence of a
species are met, based on known occurrence data and the environmental conditions in those
locations. Therefore, SDMs by definition do not identify species distribution ranges.
Nevertheless, this leap from distribution range to potential distribution range occurs

frequently in the literature.

Glossary I: Relevant concepts used throughout this study

Species records are the geographic coordinate’s data, often available in online
biodiversity databases.

Distribution range is the areca where a taxon is present, which can be
characterized in terms of its size, shape and descriptors of the limits,
fragmentation or internal structure.

Species range maps are visuals representations of distribution ranges.

Ecological niche is a multidimensional space in which each dimension
(component of the niche) corresponds to a resource or requirement of a species.
This fundamental (or potential) niche is limited by the interaction with other
species, resulting in the real niche (observed).

Species distribution models (SDMs) are tools used for modelling species

geographic distributions based on correlations between known occurrence records
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and the environmental conditions at occurrence localities

Extent of occurrence (EOOQ) is the area contained within the shortest continuous
boundary that encompasses all sites of present occurrence of a taxon.

Area of occupancy (AOO) is defined as the area within its 'extent of occurrence'

which is occupied by a taxon, excluding cases of vagrancy

Biodiversity data

Under the explosive increase in global data, the term "big data" is used to describe huge
data sets. These big data generates new opportunities to discover new values and also incur
new challenges when trying to organize and manage these datasets effectively (Maldonado et
al., 2015; Stephenson et al., 2017). In sciences such as ecology or conservation biology,
citizen science databases are becoming an important way to collect information on species
distributions (Dickinson et al., 2012; Tiago et al., 2017). Observations gathered by a large
number of volunteers, over broad spatial extents and temporal periods often provide a large
number of records (Chandler et al.,, 2012), allowing studies that would otherwise be
unfeasible. The increment of species records from citizen science initiatives in recent years is
particularly important for conspicuous and easy to identify taxonomic groups. The possibility
of collecting, through mobile applications with internet connections, georeferenced
observations of the natural world (e.g., wildlife sightings) via interactive geovisualization
interfaces (e.g., Google Maps, Google Earth, and Microsoft Virtual Earth) or the use of
sensors in mobile devices allow us to collect a large amount of data from the environment. In
addition to the great opportunity offered by citizen science platforms, biodiversity databases
also aggregate published information (books, monographs, papers or conference proceedings),
collections of natural history, information collected in surveys, specific surveys or online
repositories (Soberon and Peterson, 2004; Guralnick et al. 2007). Therefore, biodiversity
databases provide a large amount of heterogeneous information and initiatives to generate,

store and connect these databases have also proliferated in recent decades.

Ambitious international infrastructures such as the Global Biodiversity Information

Facility (GBIF, http://www.gbif.org/) seek to link all these collections of biodiversity

databases between countries and continents. GBIF is at the moment the largest and most
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widely used biodiversity database (Beck etal., 2012, 2014; Jetz et al., 2012). The objective of
GBIF is to‘make the world's primary data on biodiversity freely and universally available via
the Internet” (Yesson etal., 2007; GBIF, 2008). Currently, GBIF provides a single portal to
access more than 975 million records (as for April 2018). This massive availability of
biodiversity data, together with the rapid emergence of new techniques and tools to analyze
such information, has facilitated large-scale analyses and interpretation of biodiversity and
species distribution data. Such data thus provide an invaluable resource to document
biodiversity and its distribution through time and space for research, education and policy
making (Williams etal., 1996; Winker, 2004). However, these data sources incur potential
biases related to taxonomic ambiguities, unequal territorial coverage, typographical and
georeferencing errors or geographical uncertainty (Soberon and Peterson, 2004; Newbold,
2010) that are now recognized by the scientific community. These limitations have called into
question the usefulness of public databases, even if all available data could be gathered

exhaustively (Hortal et al., 2008; Stropp et al., 2016).

There are three main limitations for characterizing species distributions ranges from the
information contained in biodiversity databases: 1) unknown survey effort, ii) unknown
absences, and iii) unknown recurrence. These limitations are mutually interrelated, so only
when all known occurrences are comprehensively compiled it is possible to estimate sampling
effort with some reliability, thereby helping to differentiate the absence of evidence from the
evidence of absence. Therefore, a biodiversity database that compiles exhaustively all
available information on the identity and distribution of a group of species would enable both
identifying well-surveyed areas (e.g. Hortal and Lobo, 2005) and obtaining estimates of the
repeated occurrence and/or the probability of absence of particular species (e.g. Guillera-
Arroita et al., 2010). Despite the widely recognized importance of evaluating data quality and
completeness as a preliminary step in any biodiversity study, this process is often neglected.
Arguably, this is in part because such evaluation process is highly time-consuming, it requires
the use of several software applications, and repeating the same process for each one of the

territorial units or sites considered (or, in general, for any type of spatial unit).

Spatial bias in species distribution data is a general phenomenon with the potential of
strongly distorting our view on large-scale biodiversity patterns (Ballesteros-Mejia et al.,

2013; Boakes et al., 2010; Yang et al., 2013). A multitude of factors, such as where surveys
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were carried out and at what spatial scale, what data or specimens were collected, and which
of these data were stored and finally mobilized, can cause such biases. Data provided by
GBIF are no exception to these problems. The distribution of museums and their funding, data
digitalization policies of sharing data with GBIF may weigh particularly high as factors
leading to spatial bias in the data made available. The identification of spatial biases in
biodiversity databases is essential to interpret the results obtained in the generation of species
distribution maps (Tiago et al., 2017). Only by taking into account these biases, such as the
existence of under-sampled regions, can we support and improve the adoption of conservation

measures by decision-makers (Tulloch et al., 2013).

In addition to spatial bias, another disadvantage of these databases lies in errors, mostly
spatial and taxonomic errors. Errors in occurrence data are caused by a variety of factors,
including mistakes in transfer of data from field sheets to electronic databases, rounding
errors, failure to specify the geographical datum used to measure geographical location and
retrospective georeferencing of imprecise locality descriptions (Graham et al., 2007; Varela et
al., 2011). In this sense, a great effort is being made worldwide to reduce these errors and

biases in these databases (Soberon and Peterson, 2004; Guralnick et al., 2007).

Methodological approach

Many different methods have been developed to generate distribution ranges from
observation records but little attention has been paid to understand how variations in the
quantity and quality of baseline data and the implementation of different methodologies affect
the accuracy of species range maps (Graham and Hijmans, 2006; Maldonado et al., 2015). So
far, we can differentiate two main techniques to build species distribution ranges: geographic

algorithms and expert-drawn range maps.

Geographic algorithms are mathematical methods that use only spatio-temporal
observations (Burgman and Fox, 2003; Getz and Willmers, 2004; Getz et al., 2007) to define
a topological space as the extent of occurrence or the area where the species is assumed to be
present given the observations and spatial resolution imposed by neighboring observations

(Bronstein et al., 2007). These methods only use records to define the geographic space that

17



represents the area in which a species is assumed to be present (Burgman and Fox, 2003;
Bronstein et al., 2007). By requiring only species records for the construction of range maps,
these methods connected to the online biodiversity databases would allow us to keep the
ranges always up to date. In addition, these methods are easily repeatable as long as the
procedure is properly annotated. Expert-drawn range maps derive from a manual drawing of a
simplified polygon around known records using expert knowledge of habitat preferences of
species and auxiliary environmental information, such as the types of habitats or geographical
features (Maréchaux et al., 2017; Herkt et al., 2017). It is a method that presents a high level
of abstraction as well as being difficult to replicate because they were not made with a clear or
repeatable methodology. Actually, the most comprehensive repository of such expert-drawn
range is provided by the International Union for the Conservation of Nature (IUCN;

http://www.iucnredlist.org/technical-documents/spatial-data). [UCN expert maps are available

for all species of birds (Butchart et al., 2004), amphibians (Stuart et al., 2004), mammals
(Schipper et al., 2008) and reptiles (Bohm et al., 2013) as well as for several species in other
taxa in many regions across the world (IUCN, 2017), and they are being used increasingly for

research.

SDMs are also often used in the scientific literature to generate species distribution
ranges (Boitani et al., 201;, Elith et al., 2006), an approach that is inappropriate following our
definition of the concept of species distribution range. While geographic algorithms generate
phenomenological distribution ranges, based only on species records, SDMs generate
estimates of environmental suitability, which can be translated into areas where the
environmental requirements of the species are supposedly covered. In spite of that, we have

no guaranty that the species is actually present.
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Objectives

The main objective of this PhD thesis is the evaluation of methodologies for obtaining
species distribution maps from the different approaches that characterize the distribution
ranges in relation to their definition, the existing sources of biodiversity information and the
different methods used to build distribution ranges. Specifically, the following questions are

addressed:

v" To know which are the most used methods in the description of species distribution
ranges and if the authors adequately describe the implementation of these methods. To
this end, a bibliographic review is made of the current approaches that describe the
ranges of species based on georeferenced data, the methodologies used in the process
of constructing species distribution areas and the advantages and disadvantages of

each method (Chapter 1).

v To evaluate the accuracy of commonly used geographic algorithms in reproducing
reference areas from geographic records that vary in the quantity and quality of
biodiversity databases (number, spatial bias and errors) to provide guidelines on how
to delineate distribution ranges while minimizing the Type I error rate and maximizing
the sensitivity. To do this, we construct reference ranges with limitations in terms of:
the shape, number and size of the range fragments and baseline data (amount of

information, spatial distribution and errors) (Chapter 2).

v" Develop unified techniques, systematic and replicable to generate species range maps
using geographic algorithms and online biodiversity databases. To do this, we build
ranges of species using geographic algorithms and online georeferenced records. We
compared the ranges generated by species with those provided by IUCN and identified
concordant and discordant areas. Finally, we generated a spatially explicit estimate of
the sampling effort, with the aim of discerning between commission and omission
errors in discordant areas to identify areas around the world that require a record-
collection effort to enable proper functioning of systematic approaches to the

generation of species distribution maps (Chapter 3).
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v" To compare the distribution ranges generated from non-systematic and systematic data
collection strategies, using as a case study the southern water vole in peninsular Spain.
We used two different sources of information on the species distribution, and built
distribution range maps using geographic algorithms. Finally, we investigated factors
that might be associated with omissions and commission errors to reduce the risk of

omitting unmapped areas from the range maps. (Chapter 4).



Defining species distribution ranges: current

approaches, methodologies and limitations

ABSTRACT. Currently there is not a consensus when it comes to defining the
distribution range of a species. This is because distribution ranges are generally
constructed using heterogeneous data and without providing information on
how they have been generated. This lack of explicit information often means
that the interpretation of the results obtained using them is challenging. Here,
we conducted a literature review in order to identify publications that used
species distribution ranges in their studies. For each paper, we looked for all
the information related to how the distribution ranges have been generated,
whether these papers had explicit information on how the distribution ranges
have been constructed and, which are the most common methods used to
generate distribution areas from georeferenced data. The results obtained
indicate that (1) species distribution ranges are rarely defined in papers, (2),
those that do offer little or no information on how species distribution ranges
have been generated, (3) there is a long list of different methods used to
generate species distribution ranges, and (4) the methods employed varied
considerably even when dealing with the same information source.
Additionally, we describe the methods most commonly used and their
advantages and disadvantages and provide recommendations to help in
selecting the best method that allows mapping distribution ranges. We urge
researchers to be explicit in both what they consider species distribution ranges
and the methods they use to generate them. Our recommendations will increase
the reproducibility of studies and allow for more solid comparisons between
species distribution ranges generated with different methods.

Key words: bias and error, biodiversity databases, GBIF, geographic
algorithms, polygons, range maps.

Rios-Pena, L., Clavero, M., & Revilla, E. Defining species distribution ranges: current

approaches, methodologies and limitations (In prep).



RESUMEN

Actualmente no existe consenso a la hora de definir el area de distribucion de una
especie. Esto se debe a que las areas de distribucion se construyen generalmente utilizando
datos heterogéneos y sin proporcionar informacioén sobre como se han generado. Esta falta de
informacion explicita a menudo significa que la interpretacion de los resultados obtenidos al
utilizarlos es desafiante. Aqui, realizamos una revision de la literatura con el fin de identificar
las publicaciones que utilizaron areas de distribucion de las especies en sus estudios. Para
cada trabajo, se buscé toda la informacion relacionada con como se han generado las 4reas de
distribucion, si estos documentos tenian informacién explicita sobre como se han construido
las areas de distribucion y cudles son los métodos mas comunes utilizados para generar areas
de distribucion a partir de datos georreferenciados. Los resultados obtenidos indican que (1)
las areas de distribucion de las especies rara vez se definen en los documentos, (2) los que
ofrecen poca o ninguna informacion sobre como se han generado las areas de distribucion de
las especies, (3) existe una larga lista de métodos diferentes utilizados para generar areas de
distribucion de las especies, y (4) los métodos empleados variaron considerablemente incluso
cuando se trataba de la misma fuente de informacioén. Ademas, describimos los métodos mas
comunmente utilizados y sus ventajas y desventajas, y ofrecemos recomendaciones para
ayudar a seleccionar el mejor método que permite mapear las areas de distribucion. Instamos
a los investigadores a ser explicitos tanto en lo que consideran las areas de distribucion de las
especies como en los métodos que utilizan para generarlas. Nuestras recomendaciones
aumentaran la reproducibilidad de los estudios y permitirdn realizar comparaciones mas

solidas entre areas de distribucion generados con diferentes métodos.

Palabras clave: sesgo y error, bases de datos de biodiversidad, algoritmos geograficos, GBIF,

poligonos, mapas de areas de distribucion.
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INTRODUCTION

Species distribution ranges can be defined as the areas that enclose all the localities where
a species (or whichever the taxon) has been recorded. This concept is key in biogeography,
macroecology, conservation biology and large-scale community ecology (Brown et al., 1996).
It is used to describe spatial patterns of biodiversity and identify the processes shaping these
patterns, to inform the management and conservation of natural resources, to identify priority
areas for conservation or to investigate evolutionary relationships across space (Rondinini et

al., 2011; Meyer et al., 2016).

The study of distribution ranges emerged in the 18" and 19™ centuries, when naturalists
such as Candole, Wallace, Hooker or Darwin documented the patterns in the distribution of
the variety of plants and animals around the world and speculated on the drivers generating
them (Egerton 2012). The first works that dealt explicitly with the characteristics of
distribution ranges came from the hand of Willis (1922), who quantified the areas of
distribution ranges in several taxonomic groups, and Arrhenius (1921), who worked on
species/area relationships. For most of the twentieth century, research on distribution ranges
was directed primarily towards identifying the ecological factors determining the boundaries
of species ranges (Billings, 1952; Andrewartha and Birch, 1954; MacArthur, 1972). In 1977,
Sydney Anderson published the first of several papers focused on measuring the areas of the
mapped ranges of vertebrates in North America and Australia (Anderson, 1977). However, it
was not until the publication of Rapoport’s monograph Aerography (Rapoport, 1982) when
the interest of the scientific community on studying species distribution ranges began to rise
(Anderson and Marcus, 1992). Rapoport provided evidence of a decrease in species range size
from high to low latitudes, which was to be known as the Rapoport’s rule, using mammal
subspecies data from North America. Since the last decade of the 20™ century the study of
distribution ranges has grown noticeably, boosted by the development of extensive online

databases that compile occurrences of species (Garcia-Rosello et al., 2015).

In the 21st century, under the explosive rise of global data, a new concept of "big data" is
emerging, which is mainly used to describe large datasets and the methods associated with
them. These large datasets have in turn led to a new conceptual development, the so-called
Ecological Niche Models (ENMs). Those models use occurrence records in order to establish

a model of the suitability of the local environmental conditions for the appearance of the
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target species. These estimates translate into areas where the species' environmental
requirements are assumed to be met, but which, accordingly, do not define the area of actual
presence. Consequently, ENMs do not identify species distribution ranges, although that leap
from “possible distribution range” to “distribution range” is often made, especially when there

is no alternative.

The choice of methodology is often critical in determining the characteristics of the
distribution ranges generated (Mufoz and Felicisimo 2004; Fotin et al., 2005; Tsoar et al.
2007; Mota-Vargas and Rojas-Soto, 2011). Different methods have been developed to
generate distribution ranges (Burgman and Fox, 2003; Getz and Willmers, 2004; Graham and
Hijmans, 2006; Getz et al., 2007). These can be grouped into two broad categories: 1)
geographical methods that define the area of presence based exclusively on the geographic
coordinates of the occurrence data (Burgman and Fox, 2003; Bronshtein et al 2007; Jaryan et
al., 2013; Sharifi et al., 2012; Getz et al., 2007; Asaeedi et al., 2013; Kondoh et al., 2013); and
2) expert knowledge approaches that use the original records together with personal
knowledge and/or intuitions as source of information to establish the boundaries, shape and
size of a species' distribution (Gaston, 1996; Brown and Lomolino, 1998; Orme et al., 2005).
Expert knowledge approaches essentially involve the implementation of an informal

distribution niche modelling but that is non-repeatable (Graham and Hijmans, 2006).

The key role of species distribution ranges in many ecology-related disciplines and the
fact that they can be generated with methods that may produce disparate results for the same
source of information, call for the need of unifying criteria on how to generate species ranges.
Here, we review current practice in describing species ranges from georeferenced data. We
developed a literature review in order to know how frequently authors explicitly report how
distribution ranges are generated, and identify the most commonly used methodologies. We
then describe the advantages and disadvantages of each of the methodologies identified in the
literature review. Our crosscutting aim is to highlight how different methodologies to generate
species distribution ranges may produce different outcomes, thus emphasizing the need to

standardize approaches.
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USES AND OPERATIONAL DEFINITIONS

The general definition of the area enclosing all the localities where a species is present is
translated in the literature into different operational definitions. Krebs (2001) defined the
distribution range in terms of the variability of abundance, stating that the abundance of an
organism within its range must always be greater than zero and the boundary of a distribution
range is equal to the contour line where the abundance is equal to zero. Espinosa and Llorente
(1993) made a distinction between ecological and geographical distributions, and define the
former as the behaviour of a population parameter along an environmental gradient, be it a
gradient of conditions (temperature, pH, salinity, etc.) or of resources (availability of food,
shelter, breeding sites, etc.). Zunino and Zullini (2003) defined the species distribution range
as the fraction of the geographical area where that species is present and can interact in a non-
ephemeral manner with the ecosystem, while Sober6n (2007) defined the distribution areas in
terms of the actual or potential spatial locations that individuals comprising a species can
occupy and one particular type of niche in terms of the parameters of population equations,
thus mixing the concept with that of ecological niche models. Therefore, there is a conceptual
discussion about the distribution range in the scientific literature that leads to large differences
in the way distribution ranges are generated (Kreft et al 2006, McPherson and Jetz, 2007).
Species distribution ranges are highly dynamic and can expand and contract over time,
although it is rarely considered (Davis and Shaw, 2001; Gaston, 2003). Acknowledging such
dynamism has important implications for the understanding of biodiversity patterns and the
conservation of biological diversity (Lamoureux et al., 2006; Myers et al., 2000) as, for

example, for assessing the conservation status of species (e.g. [UCN, 1994).

We reviewed scientific publications working with species distribution ranges and
analysed whether they were explicit in defining ranges and describing how those ranges had
been generated. We searched for papers focused on species distribution ranges in the Web of
Science (WOS), using different keywords (Table 1), as well as filters by language (English
and Spanish), research domains (science technology) and research areas (Zoology,
Environmental Sciences, Ecology and Biodiversity Conservation). We obtained 2034 articles
of which only 127 articles contained explicit information about what is and how species
distribution ranges have been generated. Out of the 127 selected papers, 100 worked directly

with species distribution ranges and 27 with species distribution models. Of the 100 papers
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containing information of how ranges were constructed, only 17 offered sufficient
information to replicate accurately the distribution ranges, i.e., they gave information about
the chosen methods and specified the parameters selected in the methods for the construction
of the distribution range. Therefore, 83% of the documents focusing on the construction of
species ranges did not provide information on how the areas on which results were
subsequently obtained had been delimited. In addition, 21.3% of papers that define the
concept of species distribution apply species distribution models to generate their own maps

of areas of presence, thus using potential areas to make inference.

Table 1: Keywords used in the literature review to search for papers that use species ranges in
their analyses. Total refers to the total number of papers obtained in each keyword search.
These papers have been reviewed and the total number of articles working with species
distribution ranges has been selected (Information). The total number of papers valid as
source of information has been designated as SDR (Species Distribution Range). TOTAL is

the total sum of Information and SDR papers that show unique values, without repetition of

papers.

Keywords Total Information SDR
"species distribution range" 186 10 8
"distribution range" AND area AND species 1145 35 20
"distribution area" AND map* AND species™ 135 3 0
"distribution area" AND map* AND species NOT model* 103 23 23
"geographic distribution" AND species* AND map* NOT 44 10 8

model* AND area* AND range*

"distribution" AND species* AND range* AND area* 62 13 11
size* AND map* AND geographic* NOT model* NOT

predict*®

"distribution area" AND species® AND geographic* NOT 108 10 9
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model* NOT predict* NOT home ranges*

"geographic distribution*" AND "geographic range*" OR 251 24 21
"geographic boundary*" AND specie* NOT '"species

distribution model*"

TOTAL 127 100

METHODS AND THEIR ADVANTAGES AND DISADVANTAGES

The development of systematic methodologies for representing species distributions maps
began in the decade of the 1950s and involved identifying organism’s distributions on maps
and connecting the disjoint distribution ranges by lines calls strokes (Croizat L. 1958, 1964).
Since then, a large number of methodologies have been developed to solve the problem of
how to draw species distribution ranges on maps. Distribution ranges are normally
constructed using georeferenced records (Hirsch and Chiarello, 2012; Desender et al., 2010;
Laplana et al., 2013). However, different methods can provide substantially different results
(Fig 1; Appendix 1.S2, Table 1.S2). We conducted a second literature review to identify the
most commonly used methodologies for generating species distribution ranges from
georeferenced data. This new database is composed only of papers that use geographic
methods to generate distribution ranges. A total of 100 publications form this database
(Appendix 1.S1, Table 1.S1). The information extracted from each paper was mainly focused
on the methodology used to generate species ranges from data records and the detailed

description of each method.

The cartographic method turned out to be the most commonly used, appearing in more
than 50% of the publications. It was followed by the minimum convex polygon (MCP, with
20%), the expert delineation (15%), kernel density estimation (10%), and the indicator
kriging, hull (concave and convex) and local convex hull (k-LoCoH and r-LoCoH) methods
(each with 5%). We run a third search for each selected method in order to find at least 20
articles were it is used (Table 2). In addition, for each described method, we present its
advantages and disadvantages in order to know which method is most suitable for the sources

of information obtained and the objectives defined:
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(1) Cartographic method

This approach consists in superposing a grid to a map containing recorded localities of a given
taxon; the distribution range encompasses all the grid cells containing at least one record. This
is the typical approach used in atlases. The results of this simple procedure are extremely
sensitive to the scale (grid cell size) used in the calculation. Consequently, when a fine scale
is used the resulting distribution range will be small and unrecorded occurrences derived from
a heterogeneous sampling effort will be overlooked. In contrast, using coarser resolutions may
result in mapping large unoccupied areas, resulting in range overestimations. Therefore, the
choice of a scale is not a simple matter, and could be a source of inconsistencies and biases
(IUCN 2001). A reasonable solution to the problem of assigning a suitable scale was provided
by Willis et al. (2003), who suggested that grid cell size could be defined as 10% of the
distance between the most distant pair of points. This criterion allows calculating a specific
scale to each particular species depending on its range configuration. This method is currently
being used in Red List assessments to calculate the area of occupancy (AOO) defined as the
area within its extent of occurrence (EOQO, area contained within the shortest continuous
imaginary boundary that can be drawn to encompass all the known, inferred or projected sites
of present occurrence of a taxon), which is occupied by a taxon. Nevertheless, the challenge
remains when dealing with species with very large ranges and with a biased spatial sampling

effort.

(2) Expert-drawn range maps

This method manually draws a simplified polygon around known occurrence locations using
expert knowledge of a species’ habitat preference and auxiliary environmental information,
such as the presence of specific land uses or geographic barriers (Hawkins et al., 2008). This
method is not repeatable and, in addition, given the rather high level of abstraction involved,
deduced range boundaries typically ignore most of the internal structure as well as spatial
outliers (Brown et al., 1996). The most comprehensive repository of such expert-drawn range
maps is provided by the International Union for the Conservation of Nature (IUCN) and its
partner, BirdLife International (often built by experts modifying the outcome of other
methods such as MCP, see below). At present, [UCN expert maps are available for birds
(Butchart et al., 2004), amphibians (Stuart et al., 2004), mammals (Schipper et al., 2008) and
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reptiles (Bohm et al., 2013), and they are being used increasingly for macroecological
research, often because they are the only source of occurrence information readily available.
IUCN expert maps were created with a specific purpose in mind, namely to guide
conservation efforts. [IUCN maps tend to be conservative, underestimating the geographic
range (sensu extent of occurrence; see Gaston and Fuller, 2009) of many species, especially in
poorly surveyed regions such as the species-rich tropics—even in case of well-studied taxa

(Ficetola et al., 2014; Pineda and Lobo, 2012).

(3) Minimum Convex Polygon

The minimum convex polygon (MCP; Mohr, 1947) (also called a convex hull) is the smallest
polygon in which no internal angle exceeds 180 degrees and which contains all the presence
records. This method is simple and easy to compute. Its main problem is that it tends to
overestimate ranges because it includes large areas in which the focal species is not (or may
not be) present, at least as long as the point clouds move away from the rounded or elliptical
shapes (Mota-Vargas and Rojas-Soto, 2012; Burgman and Fox, 2003). The MCP approach is
sensitive to outliers and to sample size, precluding comparisons of polygons generated with
different sample sizes. Despite these caveats, it is the most used method in the assessment of

the conservation status of species (IUCN, 2014; 2017; Burgman and Fox, 2003).

(4) Alpha convex and concave hulls

Alpha convex and concave hull are defined as a generalization of convex hull (Edelsbrunner
et al., 1983; Burgman and Fox, 2003). These methods differ in the estimation of the internal
angles. While the angles can be convex or concave, in the concave hull method, the angles are
exclusively convex for the convex hull method. The alpha hull methods have been shown to
be more efficient when species ranges have a concave shape, while the convex hull method
tends to overestimate them. However, both methods are similarly good when the shape of the

range is convex (Asaeedi et al, 2013).
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(5) Kernel Density Estimation (KDE)

Kernel density estimation (KDE; Silverman, 1986) is frequently used to estimate distribution
ranges (Burgman and Fox, 2003; Fortin et al., 2005). This methodology requires to select a
bandwidth h (Seaman and Powell 1996), a free parameter that has a strong influence on the
resulting range estimate. The bandwidth determines the relationship between the distance of a
location from a point and the contribution of the location to the density estimate at that point.
There are two types of kernel density estimations, fixed and adaptive. In the former the
bandwidth is a fixed value over the plane, whereas in the latter there is a smoothing parameter
that varies over the plane so that areas with a low concentration of records have higher h
values than areas with a high concentration of points. The density estimation will be high in
areas with many observations, and low in areas with few data. However, the choice of
bandwidth will dramatically change the KDE, as a bandwidth that is too high or low will
result in over- or under smoothing, respectively (Willians et al., 2014; Quintero et al., 2015).
Otherwise, a poorly selected bandwidth is likely to produce an unrealistic structure in the
density estimate (Spencer and Ghaznavi, 2017). Simulations have shown that estimates using
core density work well because they faithfully reproduce the areas taken as "true" (Getz et al.,

2007; Fleming et al., 2017; Cross et al., 2016).

(6) Local convex hull (LoCoH)

Local Convex hull (LoCoH) is both a generalization of the minimum convex polygon (MCP)
method and a non-parametric kernel method (Getz et al., 2007). The distribution ranges are
constructed by associating a local distribution function with each species record and then
adding and normalizing these local distribution functions to obtain a function of distribution
that belongs to the data as a whole (Getz and Wilmers, 2004). If the local distribution function
is a parametric distribution, such as a symmetric bivariate normal distribution then the method
is referred to as a kernel method (a parametric kernel method). On the other hand, if the local
kernel element associated with each point is a local convex polygon constructed from the
point and its k-1 nearest neighbours, then the method is nonparametric and referred to as a k-
LoCoH (or fixed point LoCoH. There are two modifications of the k-LoCoH method. The

first modification is a “fixed radius” r, or r-LoCoH, in which all the points in a fixed “sphere
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of influence” of radius r are used to construct the local hulls. The second modification is the
adaptive method, or a-LoCoH, in which all points within a variable sphere are used to
construct the local hulls such that the sum of the distances between nearby points is less than
or equal to a. The LoCoH methods require selecting the values of K, r and a parameters that
have a strong influence over the resulting range estimate. Getz et al., 2007 provides a guide
for selecting the values of these parameters. LoCoH methods are advantageous for precisely
mapping the species distributions for which the absence of records indicates true gaps in

occurrence (Chirima and Owen-Smith, 2017; Getz et al., 2007; Doherty and Witt, 2017).

(7) Indicator kriging

Indicator kriging is a non-linear geostatistical technique that interpolates site-specific point
data over surfaces. It was introduced by Journel (1983) and it is mainly used to predict species
occurrence probabilities, later transforming the probabilities into area. This method has been
pointed out as a suitable approach for both frequent and rare species with highly biased
records (Stelzenmiiller et al., 2004). Indicator kriging estimates the probability of exceeding
specific threshold values, z;, at a given location. In indicator kriging, the data, z(x), are

transformed into an indicator variable as follows

. (1, if z(x) < zk}
i, 2e) = {O, otherwise

At an unsampled location, x,, the probability that z(x) < z, can be estimated using a linear

combination of neighbouring indicator variables. This ordinary indicator kriging estimator is,

n
Prob [Z(XO) < ng] = Z Al (g Zi)
a=1

where i(X,; Z;) represents indicator values at x,, a=1,...,n, and A,, determined by solving the

following kriging system, is the kriging weight of i(x,; z, )used in estimating Prob [Z(xo) <
Zk
o

An ordinary indicator kriging system can be solved using,
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n

lﬁYi(Xa — Xg; Zk) +u= Yi(Xa — Xo; Zk)
B=1

n
and z A = 1
=1

where p is the Largrange multiplier; yi(xa —x/;;zk) is the indicator variogram between
indicator variables at the ath and Pth sampling points; v;(x, — Xo; Zx) is the variogram
between indicator variables the ath sampling point and x,, and o= 1,..., n. This technique
provides reliable interpolation results when there are gaps in sampling effort, reducing time
and money to achieve this collection of data in the field. Its main disadvantage lies in the
computational complexity of the method that tries to determine what should be the sampling

density.
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Table 2: Description of the most common methods used to generate species distribution ranges.

Method Definition Expression Parameter Uses References for
values description of
methods
Cartographic It uses a regular gridto ~ Geometric unit = Grid size Atlas (Gasc et al., Hernéndez and
summarize the position  side * side 1997); suggested by Navarro, 2007; Mota-
of species records. TUCN for Vargas and Rojas-
measuring the Soto, 2012
species area of
occupancy (IUCN,
2010).
Minimum Convex polygon the A where(x;,y;),1 = Home range of any ~ Morh, 1947.
Convex Polygon lower perimeter that 1,2, ...n are the animal; to build
(MCP) contains the set of points = <x1 Vn = ¥2) coordinates of the species distribution
in the plane and no 1 locations maps; to generate
exceeds 180 degrees. extent of
+ ) x(Yia
—~ occurrence by
— Yis1) TUCN.

+ xn(yn—l - y1)>
/2
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Kernel Density
Estimation
(KDE)

Indicator
Kriging

Alpha-Convex
Hull
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continuous values to
binary values obtaining
a new set of binary data
for each quantile.

Family of piecewise
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associated with the
shape of a finite set of
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(X1,X5, ..., X ) IS an
independent and
identically
distributed sample
with an unknown
density f, k(+) is the
kernel and h> 0 is a
smoothing parameter
called the bandwidth.

Quantile Z, €
{d0.25: 9050, 90.75

X =set of
geographical
coordinates, a can
take values between
zero and infinite.

To estimate the
home ranges of
animals from radio-
tracking data and to
constructed
distribution range
maps.

To predict
probabilities of
species occurrence;
and then transform
those probabilities
into distribution
ranges.

To estimate species
range maps; to
evaluate species
distribution patterns
and path planning.

Worton, 1989; Diggle
et al., 2005.

Kondoh et al 2013;
Stelzenmiiller et al
2010.

Edelsbrunner et al.,
1983.
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Alpha-Concave
Hull

Local Convex
Hull (LoCoH)

For a set P of points is
the enclosing o —
polygon (all interior
angles are less than or
equal to 180 + a
degrees) with smallest
area that contains P.

k-LoCoH

r-LoCoH

a-L.oCoH

Set of convex hulls
where each convex
hull is built from a k-
point and its nearest
neighbours k.

Set of convex hulls
where each convex
hull is built from a
record within a
“sphere of influence’
of radius r around
each record.

9

all points within a
variable sphere
around a root point
are used to construct
the local hulls such
that the sum of the

0>a<130

k = /n, n is number
of points in the total
set.

r is half of the
maximum nearest
neighbour distance
between points (i.e.
the radius of a sphere
that will allow all
points to be joined)

a 1s maximum
distance between any

two points in the data

set.

The most common
applications are in
computational
geometry, shape
approximation, roof
design and
geometry modeling.

To estimate the
range size of a
specie or taxon; to
construct a
probability
distribution that
represents the
probability of
finding a species
within its range.

Moreira and Santos,
2007; Meyer et al.,
2017.

Getz and Wilmers,
2004; Getz et al., 2007
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Expert

The records are placed
on a map and a polygon
is drawn free hand. The
lines are not drawn from
one point to another, but
instead, they pass either
close to or distant from,
the locality records at
the discretion of the
author.

distances between
nearby points and the
root point is less than
or equal to a.

They take into To draw species
account specific distribution range
criteria, such as maps.

vegetation or habitat,

omission or

exclusion of areas,

knowledge of the

species studied or

environmental

suitability

Graham et al., 2006;
Hurlbert et al., 2007;
Jetz et al., 2012
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Figure 1. Example of distribution ranges generated using different algorithms for the
Pyrenean oak (Quercus pyrenaica Willd.) using different geographical methods from GBIF
records. (a) Distribution range from the Atlas Florae Europacae (AFE, Jalas and Suominen
1988). (b) Filtered GBIF records used to build the range maps. (¢) Presence grids with a size
of 10 Km. (d) Representation of 85-100% overlapping area by expert method. (¢) Range map
not including 5% of the records furthest from the total records density. (f, g h) Range maps

with the LoCoH methods where the legend value is the input parameter selected in each



method. (i) KDE range map where legend value is the bandwidth selected. (j) Range map with
probability > 75%. (k, 1) Range map of concave and convex hull methods where legend value

is the input parameter selected in each method.

GENERAL CONSIDERATIONS AND RECOMMENDATIONS

The distribution of life on Earth shows complex spatial and temporal patterns (Brown et
al., 1996; Graham and Hijmans, 2006). Any characterization of species distribution ranges is
necessarily a simplification of such complex patterns. Therefore, we need to be aware that in
that simplification we make many important decisions that need to be explicit in order to
properly communicate our work. First, it is necessary to define beforehand and depending on
the research question, the explicit definition of distribution range to be used, the data available
and its quality, and the method that best fits the purpose of the research. The literature review
shows that many methods are currently used and that they can generate different distribution
range maps from the same spatial data. Given the wide choice available, we consider that it is
convenient to establish some criteria to standardize the delineation of distribution ranges. A
potential approach could be to overlap all the individual distribution maps obtained with each
geographic method to obtain an ensemble range. In this way, we can establish comparative
measures based on the percentage of concordance and discordance between methods. As a

general recommendation, we should always provide standardized distribution maps.

Given a definition of the distribution range, and before selecting the geographic method
to generate the distribution range, we must decide if we are going to work with all the
observations recorded for the species or not. Applying filters to debug the available records is
a fundamental process that should not be overlooked. This is because debugging data
according to some previously established criteria and described in a clear and transparent
manner would help to reduce the possible spatial biases and errors of the data while still
allowing for replicated analyses by other researchers. Nevertheless, after filtering for errors
the database can still be spatially biased. Therefore, we must consider the fact of selecting a
method with the potential to generate a single or multiple polygons. If we work with spatially
biased data and select methods that do not fragment the areas, the resulting distribution range

may tend to overestimate the total area, including areas where the species is not present
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(commission error, Hurlbert and Jetz, 2007). In short, commission errors could be more
problematic than omission errors if they lead to the false belief that species are present when
they are not (Rodrigues et al., 2004). If we work with all the records available, with data that
contain biases and we select methods that tend to fragment, the distribution range tends to be
reduced and consequently, it can give rise to omission errors (when a species is considered
absent in a place where it occurs, Burgman and Fox, 2003), underestimating the distribution
range (Cantu-Salazar and Gaston, 2013). Overall, the possibility of producing commission
and omission errors reinforce calls for caution in the using uncritically range maps as sources
of data on the presence or absence of species (Hurlbert and Jetz, 2007). Omission errors can
affect the efficiency of conservation planning by biasing results towards known species

occurrences, potentially missing important areas where a species also exists.

CONCLUSIONS

The accumulation of large quantitative databases, the development of computer software
for statistical and spatially explicit analyses, and advances in mathematical and computer
simulation modelling are helping in providing a more synthetic view of the distribution range
concept. The discovery of quantitative patterns in the characteristics of ranges has led
inevitably to the search for the causal processes and the development and testing of
hypotheses on the mechanisms. Although there is much to learn about the patterns and the
processes that generate them, it is necessary to establish explicit criteria when using these
methodologies that allow us to compare ranges to, for example, identify priority areas for
conservation or to investigate evolutionary relationships through space (Margules et al., 2002;

Rondinini et al., 2011).

Finally, the choice of a methodology should be guided by the amount and quality of data
available to delineate ranges, the quality of the data available, and the questions we want to
answer. In addition, a number of technical challenges related to spatial and temporal data
resolution and the management of uncertainty and biases associated with input data should be
highlighted. At this point we can state that, depending on the quantity and quality of the data
and their spatial distribution, it is necessary to make a rigorous selection of the geographical

method to build the distribution range, including its parameterization. We hope that following
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these guidelines will help in obtaining a more accurate representation of the current

distribution of species on Earth.
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Appendix 1.S2: An example application with Quercus pyrenaica Wild.

Information source

We downloaded all records for Pyrenean oak (Quercus pyranaica Wild.) available
via GBIF in March 2015. There were 12590 georeferenced records, which were
contributed by 103 data publishers from 9 countries. We excluded all records located at
sea because they were considered location errors and, eliminated the duplicate rows
(records with the same geographic coordinate values) from the database set. These steps
led to a reduction of 12355 raw records.

An approximation of the distribution range of the Pyrenean oak using the
cartographic method was obtained from the Atlas Florae Europaecae (AFE; Jalas and
Suominen 1988), which provides current and historical ranges of native and naturalized
European tree species using 50 x 50 km grid. According to AFE, the Pyrenean oak has
an Atlantic-Mediterranean distribution, covering mainly from western and south-
western France, to the Iberian Peninsula and northern Morocco, with about 95% of the
range being included in Spain and Portugal. We build distribution ranges from the
previously obtained GBIF data and applied the geographic methods: cartographic,
expert-drawn range, MCP, k, r and a-LoCoH, KDE, indicator kriging and convex and
concave hull methods (see Figure 1). To build expert-drawn range maps, we randomly
selected 20 participants from a group of scientists from the Dofiana Biological Station
(EBD-CSIC) who were either knowledgeable about the tools to build species
distribution ranges or were knowledgeable about the biology and distribution of
Quercus pyrenaica, or both. The 20 participants were given a sheet where the Spain
map and the geo-referenced points of the filtered GBIF database were drawn. They were
asked to draw a free hand the species distribution range. A priori, we indicated that the
points that appeared represented on the map corresponded with the geographic
coordinates obtained from the GBIF database for the species of study. Once we
obtained the 20 expert-drawn range maps, we proceeded to digitize them and then
superimposed the ranges. Our final distribution range corresponded to the distribution
range where we assume an overlap equal to or greater than 85%. For the rest of the
geographic methods we followed the methodological procedure indicated in the

previous section.
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The results showed that, as expected, the distribution ranges reported by each of the
methods were different in relation to the total area size, number of fragments and
distribution sites (Table 3; Figure 1). For the available records of the species, the
cartographic method reported a total of 1,643 presence grids using a grid size of 10 Km
(Figure 1c). The average total size of the distribution ranges was 333,312.2 Km?, being
the k-LoCoH method that generated the largest size of distribution range followed by
MPC and concave hull. The largest total range showed an increase of 79% over the size
of the smallest range, which was built with the cartographic method. The average
number of fragments obtained in the construction of the distribution ranges was 15.7
fragments, being the methods that obtained the highest number of a- and r-LoCoH
fragments. The MPC and concave hull methods are methods that do not fragment
ranges, a necessary characteristic to take into account when choosing geographic

methods as this makes it possible to include large areas without information.

Table 1.S2: Results obtained from the total area and number of fragments of the

distribution range maps with each geographic method and their corresponding input

parameter.
Methods Input Total size Number
parameter (Km?) fragments
Cartographic 10 km grid 164,300.0 -
Expert > 85% concordant range 251,781.4 18
MCP 95% records 517,813.4 1
r-LoCoH =30 Km 282,250.0 29
k-LoCoH k=10 778,133.1 1
a-LoCoH a= 80 Km 198,225.0 42
KDE h=1.2 298,315.1 15
Indicator Kriging >25% 271,294.7 13
Concave hull 10 Km 305,294.1 1
Convex hull 30 Km 265,714.7 21
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Outlining distribution ranges with geographic

algorithms when data quality is heterogeneous

ABSTRACT. Accurate mapping of the areas where a species is present is
fundamental in sciences such as biogeography, macroecology and conservation
biology, both for basic and applied purposes. The method used to delineate
distribution ranges influences the results and until now, these methods have
been insufficiently evaluated in relation with the amount and quality of the
information used. The accuracy of the geographic algorithms most commonly
used to generate species ranges depends, to a large extent, on the quality of the
data, and this dependence is complex. Here, we evaluate by simulation how
precise are five geographical algorithms in the estimation of reference ranges
with the same total area but varying in shape, number of fragments and
heterogeneity in the size of the fragments, and with sets of observations that
vary in sample size, spatial distribution, and presence of errors and biases.
Adaptive Local Convex Hull (a-LoCoH) and Kernel Density Estimation
(KDE) algorithms are the recommended algorithms, with KDE algorithm
having the highest sensitivity and a-LoCoH the lowest Type I error rate. Both
behaved similarly when describing range fragmentation. Finally, we offer
recommendations to minimize the effects of data amount and quality, and
provide a guide to help in choosing algorithms when we have to define species

distribution ranges based on species observations.

Key words: bias and errors in datasets, geographic algorithms, range maps,

reference range, sensitivity, type I error rate.

Rios-Pena, L., Varela, S., Clavero, M., & Revilla, E. Outlining distribution ranges with

geographic algorithms when data quality is heterogeneous (In prep).



RESUMEN

El mapeo preciso de las areas donde estd presente una especie es fundamental en
ciencias como son la biogeografia, macroecologia y biologia de la conservacion, tanto para
fines basicos como aplicados. El método utilizado para delinear los rangos de distribucion
influye en los resultados y hasta ahora, estos métodos han sido evaluados de manera
insuficiente. La precision de los algoritmos geograficos mas comunmente utilizados para
generar areas de distribucion de especies depende en gran medida de la calidad de los
datos, y esta dependencia es compleja. Aqui, evaluamos por simulacién qué tan precisos
son cinco algoritmos geograficos en la estimacion de areas de referencia con el mismo
tamaio de area total pero variando en forma, nimero de fragmentos y heterogeneidad en el
tamafo de los fragmentos y, con conjuntos de observaciones que varian en tamafo de
muestra, distribucion espacial y presencia de errores y sesgos. Los algoritmos
recomendados son Adaptive Local Convex Hull (a-LoCoH) y Kernel Density Estimation
(KDE), el algoritmo KDE tiene la sensibilidad mas alta y a-LoCoH contempla la tasa de
error de tipo I mas baja. Ambos se comportaron de manera similar cuando describieron la
fragmentacion de rango. Finalmente, ofrecemos recomendaciones para minimizar los
efectos de la cantidad y calidad de datos, y proporcionamos una guia para ayudarnos a
elegir un algoritmo cuando tenemos que definir areas de distribuciéon de especies en

funcion de las observaciones de las especies.

Palabras clave: sesgo y errores en bases de datos, algoritmos geograficos, mapas de areas,

areas de referencia, sensibilidad, tasa de error tipo L.
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INTRODUCTION

A distribution range is a conceptual construct describing the area where a taxon
occurs. The distribution range is a central concept in biogeography, macroecology and
conservation biology that is used to describe biodiversity patterns, to inform the
management and conservation of natural resources, to identify priority areas for
conservation or to investigate evolutionary relationships across space (Margules et al.,
2002, Myers et al., 2000, Rondinini et al., 2011). Reliable descriptions of species
distribution ranges at different spatial and temporal scales are fundamental for
conservation (e.g, replicability is critical to define trends) and other research purposes (e.g,
a range based on true presence data) (Cox and Moore, 2004; Dormann, 2007). As a
conceptual tool, the distribution range is so successful because it provides an upscaled
description of the complex spatiotemporal dynamics of populations. Characterizing
distribution ranges is fundamental to answer questions dealing with the patterns and
processes determining the location of species in space and time. This characterization is
usually done through variables such as area, shape and descriptors of boundaries,
fragmentation or internal structure (Brown et al., 1996, Beselga et al. 2012). However,
these properties depend on how distribution ranges are defined, which is in turn influenced
not only by the definition and methodological approach chosen, but also by the quality and

quantity of data available, issues that are frequently overlooked in the scientific literature.

Many different methods have been developed to generate distribution ranges from
observation records. Geographic algorithms use those records to define a topological space
representing the area where a species is assumed to be present, given the spatial structure
and resolution of the baseline data (Burgman and Fox, 2003; Bronstein et al., 2007). These
geometric algorithms are substantially different from methods that require additional
environmental predictors, such as niche modelling approaches (species distribution models
SDM; Boitani et al., 2011, Elith et al., 2006). While the former generate phenomenological
distribution ranges based only on where a species has been observed, the latter generate
estimates of environmental suitability. However, the results of SDMs are often translated
into areas of probable presence (where the environmental requirements are assumedly
covered) and used as if distribution ranges. This usage may be problematic because

distributions are also determined by factors not necessarily related to habitat suitability,
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such as dispersal barriers, biotic interactions, local population dynamics, human impacts
and historical processes (Sexton et al., 2009; Peterson et al., 2011). Expert maps can be
considered a type of informal SDMs, since experts tend to use environmental proxies, such
as habitat types or geographic accidents, to delineate range areas (Maréchaux et al., 2017;

Herkt et al., 2017).

Geo-referenced observations are the basic data used to construct distribution ranges
(Hirsch and Chiarello, 2012). The availability of such records is improving due to national
and international networks of data mobilization, including citizen science initiatives, and
storage (Garcillan et al., 2003). The combination of these sources of information have the
potential of offering large amounts of data with a broad temporal and geographic coverage
(Sousa-Baena et al., 2014). However, their heterogenecity may also induce biases
(taxonomic, spatial and temporal) and uncertainty (e.g., errors) that may hamper the
usefulness of data repositories (Rocchini et al., 2011). The dynamic nature of the
distribution of species, the quality and quantity of available observations, the process of
mapping them and the methods used to delineate range areas will affect the outcome in
arguably non-trivial ways (Graham and Hijmans, 2006). There is thus a need to understand

how different methods respond to changes in the quantity and quality of the baseline data.

Here, we evaluate the accuracy of five commonly used geographic algorithms when
generating distribution areas from records varying in number, spatial distribution and
presence of errors and biases in order to provide guidelines on how to delineate distribution
ranges while minimizing Type I error rate and maximizing sensitivity. To that aim, we
generate hypothetical reference ranges of equal total area, but varying in shape, number of
fragments and heterogeneity in fragment size, and simulated sets of records varying in
sample size, spatial distribution and presence of errors. These sets of records emulate the
variability of available data on real species, based on the patterns observed in the
information provided by the Global Biodiversity Information Facility (GBIF) and the
International Union for Conservation of Nature (IUCN). We evaluate how accurate the
different geographic algorithms are in reproducing reference ranges under several

constraints, which reproduce the limitations found in commonly used data sources.
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MATERIAL AND METHODS
Reference areas

We constructed nine hypothetical distribution ranges with the same total area, but
varying in shape (circle, half bagel and star), number of fragments (one or three) and
heterogeneity in the size of the fragments (equal or different, Figure 1). We introduced this
variability in order to represent the heterogeneity of shapes that distribution ranges may
have (Burgman and Fox, 2003). These hypothetical ranges were latter used as reference
ranges to test the accuracy of geographic algorithms in reproducing them using different

sets of simulated records.
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Figure 1. Representation of the reference ranges used to generate the simulated datasets:
circular shapes (a, b, c¢), half bagels (d, e, f) and stars (g, h, 1), ranging from one to three
fragments (a, d, g), of equal (b, e, h) and different size (c, f, 1). The total area is constant in
all reference ranges. In this figure simulated records are randomly distributed with a
sample size of 100 with no spatial errors (a, d, g) and with the effect of spatial error at 5%

(b, e, h) and 10% (c, £, 1) of the total sample size.
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Simulated species records

We simulated species records within the reference ranges, introducing variability in: 1)
the number of records; ii) their spatial distribution; and iii) presence of errors (locations
outside the reference range). In order to approximate the variations in real species data we
described the patterns observed in GBIF data and the IUCN Red List of Threatened
Species (The IUCN Red List; [UCN 2014; 2017). GBIF (www.gbif.org) is an international
initiative that compiles and distributes data gathered from diverse sources, including
museum collections, standardized biological surveys, national and regional databases,
citizen science initiatives and direct inputs from individual scientists (Graham et al., 2004).
The IUCN Red List provides complete and updated distribution ranges of several species

(http://www.iucnredlist.org/technical-documents/spatial-data). From these two sources we

collected data involving mammals (Class Mammalia). Mammals are a species-rich,
globally distributed and thoughtfully studied group that is well represented in the currently
available online databases (Meyer et al. 2016; Ceballos and Ehrlich, 2006). We used the
taxonomy provided by Schipper et al., (2008).

We downloaded mammal geo-referenced records collected between 1980 and 2016
from GBIF (accessed December 2016) to obtain a reference of the amount of data recently
collected in Mammals. We used that information to set the range of values to be used in the
generation of datasets. From the [IUCN Red List we obtained range maps of 4,440 mammal
species, selecting only parts of the species’ ranges coded as “extant”. Only 3,392 species
were taxonomically coincident between GBIF and IUCN, and they accumulated 3,012,333

geo-referenced records in GBIF during the time of reference.

To test how the spatial distribution of records affects the characterization of species
ranges, we simulated records using three types of spatial distributions: 1) random, with
randomly distributed records; 2) uniform, with records distributed at regular distance
intervals; and 3) clustered, with records distributed in groups of heterogeneous size. To
simulate the clustering structure of real species records, we focused on the 2,224,505 geo-
referenced records provided by GBIF for terrestrial, continental mammals (i.e. eliminating
all records in the sea, in islands with a surface area equal to or less than 50,000 km” and the
Antarctica, Figure 2a). We assigned each record to one of the following five main

landmasses: North America, South America (both separated by the Isthmus of Panama),
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Africa, Eurasia and Australia. We used a density-based clustering algorithm (DBSCAN,
Ester et al., 1996) to characterize the spatial aggregation of species records and identify the
main clusters, defined as dense regions in the data space separated by areas with a lower
density of records. DBSCAN searches for an optimal number of clusters on the basis of
two parameters: a distance threshold (€) that defines the neighborhood of a record and a
minimum number of records (m) required to define a dense region. The DBSCAN
algorithm starts by randomly selecting a record, then it takes its e-neighborhood and, if it
contains at least m elements, it aggregates the records into the same cluster. The process
goes across all records, creating density-connected clusters. The optimal & value is
estimated with the average of the average distances of every point to its k-nearest
neighbors, where k value is specified by the user. Next, these k-distances are plotted in an
ascending order. The aim is to determine the knee in the distribution, which corresponds to
the optimal ¢ (the threshold where a sharp change occurs along the k-distance curve) (Ester
et al., 1996). We calculated the optimal & for each continent, obtaining the following
values: Africa 2.5 km, Australia 1.0 km, Eurasia 2.2 km, North America 2.0 km, and South
America 1.8 km, along with an m of 100 in Africa and South America and 150 for the
remaining 3 continents. We run this procedure with each of the continents using dbscan
function of the fpc R package (Hennig, 2015) (R Core Team, 2016; version 3.2.5). We
calculated the center of gravity of each cluster to obtain the frequency distribution of the
number of records as a function of the distance to it (Figure 2b). Then, we calculated the
number of clusters and centers of gravity that fell within the distribution range of each
mammal species (based on the distribution polygons provided by the [UCN Red List) and
used the mean number of clusters per species and the probability distribution of the
distance of records to the center of gravity of clusters to generate simulated spatially biased

datasets.
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Figure 2. Spatial distribution of the 2,387,155 geo-referenced records in GBIF for
terrestrial mammals between 1980 and 2017 (geo-referenced records in the ocean, islands
with a size equal to or less than 50,000 km? and Antarctica were not considered) matching
the binomial or trinomial scientific name of species with IUCN distribution maps. Shown
are spatial distributions of the geo-referenced records in clusters as obtained using the
DBSCAN algorithm per continents and to global scale (b): North America (orange), South
America (purple), Eurasia (green), Africa (red), Australia (blue) and, global spatial
distribution (grey). Plots with bars ordered proportionally to the number of records and the

distances in Km to the centers of gravity of clusters for each continent and at global scale.

From the several potential sources of error of species records, here we refer only to
spatial misallocations, which result in records in areas where the focal species is absent
(Hurlbert and Jetz, 2007). In order to approximate a lower bound for the error rates that
might be present in the available data, we estimated the proportion of records
corresponding to terrestrial mammal species that lay in the ocean or the Antarctica, which
we consider a conservative estimate of the error rate (i.e. only part misallocations are
detected). For the upper bound of the error rate we assumed the IUCN range maps as

ground truth and calculated for each species the proportion of GBIF records that fell
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outside the range map. Also, we calculated the measures of central dispersion of records
falling outside IUCN range maps. We consider this proportion as a high potential error rate
(an overestimate of the real errors), since an unknown proportion of records outside [UCN
maps do indeed correspond to true records. Within this two extreme bounds we simulated
four error rates in our dataset: 0.05, 0.1 and 0.2 (supplementary Table 1.S1). Finally, on the
data set that contained 10% errors, we eliminated 5% of the most extreme values and

recalculated scenarios of errors.

We used spsample function of the sp R package (Pebesma and Bivand, 2005) to
produce the different sets of simulated species records, introducing the variability in

numbers, spatial distribution and error rate.

Geographic algorithms

We selected five widely used algorithms to generate species range maps: Minimum
Convex Polygon (MCP), Kernel Density Estimation (KDE) and k, r and a Local Convex
Hulls (LoCoH).

MCP generates the smallest convex polygon that contains all records and has no
internal angles exceeding 180° (Rapoport, 1982; O’Rourke, 1998). This method generates
a single polygon (i.e. it does not consider the possible fragmentation of a range) and does
not require input parameters. Polygons can be generated for any given percentage of the
available records by excluding the most extreme observations. We generated species
ranges with 100%, 95%, 90%, 85% and 80% of our simulated records using “mcp”
function of the adehabitatHR package (Calenge, 2015) in R.

KDE requires the selection of a bandwidth parameter (h), a free parameter that has a
strong influence over the resulting range estimate. The bandwidth determines the
relationship between the distance of a given observation from an evaluation point and the
contribution of the location to the density estimate at that point. We selected the fixed
kernel method (method where h remains constant for all records), estimating the bandwidth
through least-squares Cross-Validation method because it uses a resampling, cross-
validation approach that minimizes error between true and estimated distributions (LSCV,

Li and Racine, 2003; Gitzen et al., 2006). We used “npudens” function of the np R
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package, which uses the method of Li and Racine (2003) to obtain the kernel density
function. We obtained range maps applying a Thin Plate Splines (TPS) model (Donato and
Belongie, 2002) to the weighted density of records. TPS are a spline-based technique for
data interpolation and smoothing. We used the 0%, 5%, 10%, 15% and 20% isolines to

plot the density map.

LoCoH methods (k-LoCoH, r-LoCoH and a-LoCoH; Getz et al., 2007) have in
common the construction of small convex hulls for each observation and its neighbors.
Convex hulls are merged together starting from the smallest to the largest until all records
are included. k-LoCoH constructs convex hulls associated with each observation and its
(k — 1) nearest neighbors. 7-LoCoH constructs convex hulls from all records at distance r,
being r half of the maximum nearest neighbor distance between records. Finally, a-LoCoH
generates convex hulls from all records within a radius a such that the sum of the distances
between the records is less than or equal to a parameter. The three LoCoH methods require
the estimation of their respective input parameters (k, r and a). This is a key issue because
relatively low values of the parameters can generate a high level of fragmentation in the
resulting ranges, which disappear with higher values (Getz et al., 2007). We used the
Minimum Spurious Hole Covering (MSHC) rule (Getz and Wilmers, 2004) to select k,
r and a values of the parameters. The values obtained with the MSHC rule were a first
approximation for the selection of input parameters. We chose two values above and two
values below the value obtained with MSHC (supplementary Table 1.S1), resulting in five

values of parameter studied for each LoCoH method.

In summary, we generated 9 reference ranges, and for each of them we considered 7
values of sample size (number of records), with three types of spatial distribution and four
levels of error. For each of these scenarios we used the five geographic algorithms with
five values of input parameters in each algorithm, to generate species ranges aimed at
reproducing the reference ranges. This approach generated 18,900 combinations of factors
to study (9 x 7 x 3 x 4 x 5 x 5), each one of which was replicated 50 times, so we
generated a total of 945,000 distribution ranges that provide us with acceptable estimates

of the mean and 95% confidence intervals (Manly, 1997) for the accuracy metrics.
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Accuracy of distribution ranges

For each of the estimated ranges we calculated the total area (Ag) and the total number
of fragments (Fgr) and compared these values with its reference range. We based this
comparison on three metrics: 1) sensitivity; ii) Type I error rate; and iii) Observed to
predicted fragments ratio (henceforth fragment ratio) (see definitions in Table 1).
Sensitivity and Type I error rate have values between 0 and 1. A sensitivity equal to 1
implies that the range generated by the geographic algorithm encompasses all the reference
range, while a sensitivity of 0 would indicate no coincidence. Likewise, Type I error rate
would be 1 if the range generated by the geographic algorithm did not overlap with the
reference range, and 0 when all the range generated by the algorithm was included within
the reference range. Values of the ratio of predicted fragments range between 0 and c. A
value of 1 would indicate that the range generated by the geographic algorithms had the
same number of fragments than the reference range, while smaller and larger values would

indicate less and more fragments, respectively (Table 1).

Table 1. Descriptors of the distribution ranges estimated with the geographic algorithms

and for their comparison with the reference ranges.

Measure Description Symbol/Formula
Area Area of the reference ranges. AR
Estimated area Area of the ranges generated with the Ag

geographic algorithms.

Number of Number of fragments of the reference ranges Fr
fragments

Estimated number Number of fragments generated by the Fg
of fragments geographic algorithms.

True positive area  Overlapping area between the reference a

ranges and the estimated ranges.
False positive area Area included in the estimated ranges but not Ac-a
in the reference ranges.

False negative Area included in the reference range but not Ar-a
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area in the estimated ranges.

Sensitivity True positive area in relation to the area of alAr
the reference range: proportion of the
reference range correctly predicted by the
estimated range.

Type I error rate False positive area in relation to the area of (Ae—a)/ A
the estimated range: proportion of the
estimated range that is not included in the
reference range.

Type Il error rate ~ False negative area in relation to the area of (Ar—a)/ Ar
the reference range: proportion of the
reference range that is not included in the

estimated range.

Ratio of predicted Ratio of the number of estimated fragments Fg/Fg
fragments to the number of fragments of the reference
ranges.

We analyzed the variations in sensitivity and Type I error rate obtained in each
simulated scenario using generalized linear models (GLMs, McCullagh and Nelder, 1989)
with beta distribution and a logit link, using shape, number of fragments, number of
records, spatial distribution, error rate, algorithms and parametrization as explanatory
variables. Beta regression is suitable for modelling continuous variables restricted to the
standard unit interval, as it incorporates the natural asymmetry and heteroscedasticity of
these data (Ferrari and Cribari-Neto, 2004). These models were constructed using the
“betareg” function in the betareg R package (Cribari-Neto and Zeileis, 2010) and were
fitted via Maximum Likelihood estimation of regression parameters. The variation in the
ratio of predicted fragments was analyzed using log-normal GLMs. Model fitting via
Maximum Likelihood estimation of regression parameters were done using the “glm”

function in the stats R package.

To construct the regression models, we first set the 3 levels of spatial distribution

(uniform, random and clustered) and construct the models for each algorithm with its 5
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input parameters. We then analyze the effect of a biased spatial distribution and the
proportion of errors (5, 10 and 20%) on the predictors for the three dependent variables,
that is, we establish two factors and calculate the estimates per algorithm. Finally, we
calculated the regression models incorporating the effect of the shape of the reference
range as a categorical variable for the three spatial distribution levels fixed and added the
effect of spatial errors as a continuous explanatory variable for each algorithm. A total of

154 regression models were constructed.

RESULTS
Effect of the amount of information available

A total of 4,403 species had at least one record (i.e. around 20% of the species lacked
recent records). In the group of species with information, 370 (8%) had a single record and
1432 (33%) had less than 10. The mean number of records per species (considering only
species with at least one record) was 928.4, median 29, denoting a strongly right-skewed
distribution (Table 2). These values do not change much if we consider all data available in
GBIF (Table 2). We chose the number of records for our simulated datasets as a function
of the observed frequency distribution of mammal records, selecting seven different levels
of sample size, ranging between 10 and 1000 records, corresponding approximately with
quantiles 0.30, 0.60, 0.70, 0.80, and 0.85 (8, 56, 114, 267 and 473, respectively), the

median value (29) and the mean value (929).
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Table 2: Number of records available and measures of central dispersion during different
periods and total across Mammalia class registered in GBIF. Only species with at least one

record are considered. Data downloaded in December 2016.

Time N records N N N N Range Avg (SD) Median
window Species Genus Families Orders (Min- Isp (Q1;Q3)
Max) /sp Isp

Before 1980 | 1,785,955 4,300 1,136 209 29 1-114,849  415.3 30 (6;156)
(2683.2)

1980 - 1989 | 618,963 2,945 1,102 192 28 1-39,057 210.2 16 (4;84)
(1004.7)

1990 - 1999 | 943,627 3,064 1,084 195 29 1-103,028  308.0 15 (4;87)
(2343.8)

2000 -2009 | 1,132,152 3,094 1,134 216 29 1-64,368 365.9 14 (3;81)
(2330.2)

2010 - 2016 1,392,915 2,440 1,000 203 28 1-495,474  570.9 9(2;51)
(10696.9)

Total 5,873,612 4,404 1,456 263 29 1-496,872 9384 30 (6;170)
(9417.0)

Sensitivity improves with increasing number of records for all algorithms when
records are distributed uniformly or randomly, reaching values above 0.75 with as few as
100 records (Figure 3a, 3b and supplementary Fig 1.S2, a and d). The highest sensitivities
were obtained with k-LoCoH and kernel algorithms at small sample sizes, while at high
sample sizes the three LoCoH algorithms performed better (Figure 3a, 3b). Type I error
rates increased with sample size for the r-LoCoH and were quite stable for the MCP at
around 0.5 (Figure 3f, 3g). The remaining algorithms show decreasing Type I error rates
with increasing sample size. The a-LoCoH had low Type I error rates (bellow 0.25) even
for low sample sizes (Figure 3f, 3g). At low sample sizes all methods underestimated the
number of fragments (Figure 3k, 31). Kernels severely overestimated the number of
fragments with increasing sample size, while k-LoCoH and, especially, a-LoCoH tended
to provide accurate estimations of the number of fragments (Figure 3k, 31). The shape,
number of fragments and the heterogeneity of the reference ranges affect the quality of the

range estimates obtained with the different algorithms, especially when their shape is

68



CHAPTER 11

irregular and concave, i.e., half bagel and star shapes, but their relative performance is

coarsely maintained (Table 3, supplementary Fig 3.S2).

Bias, 10% errors
Bias and 10% and removed 5%

Uniform Random Biased errors extreme values

Sensitivity
P = =
= a3 =

5

000

Type I error rate

Predicted fragments
proportion
=S

25 /,/ .
S :
¥ e |
1 2% 500 750 1000 1 2% 500 750 1000 1 230 500 75 1000 I 250 500 730 1000 1 250 500 750 1000
Sample size
Algorithms —— a-LoCoH —— k-LoCoH KDE r-LoCoH — MCP

Figure 3. Example plots of the prediction of generalized linear models with beta
distribution describing the sensitivity and type I error rate with records following uniform
spatial distribution (a, f), random spatial distribution (b, g) and biased spatial distribution
of data (c, h) and generalized linear models with log-normal distribution for explaining the
proportion fragments predicted respect to size sample with uniform spatial distribution (k),
random spatial distribution (1) and clustered spatial distribution (m). We also show the
sensitivity, type I error rate and proportion of predicted fragments when the data present
bias and 10% errors (d, i, n) and bias and 10% errors but extract 5% of the most extreme

errors (e, j, 0). The solid lines depict the prediction and the shaded areas depict 95%
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confidence intervals for a reference range where the sample size responds to a continuous

explanatory variable.

Table 3. Qualitative summary of the results obtained when evaluating the accuracy of the

five geographical algorithms when the quality and quantity of information available varies

in sample size and presence of spatial bias and presence of errors. X: adequate behavior

with increasing sample size; XX: good performance; XXX: best performing algorithm; ( ):

classification when a fraction of the observations (extreme) is left unused to control for

errors.
Methods Data quality Aims
uniform random biased biased + errors
MPC XX X XX X sensitivity
Type I error rate
spatial structure
KDE XX X X X sensitivity
X X X X Type I error rate
- X spatial structure
a-LoCoH XX X X X sensitivity
Type I error rate
spatial structure
k-LoCoH XX X X X sensitivity
X X X Type I error rate

r-LoCoH
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Type I error rate

X (X) spatial structure

These results indicate that if our sample size is small and we need to maximize the true
area included in the estimated range we should favor k-LoCoH and kernel methods. At
larger sample sizes, the three LoCoH methods behave reasonably well. However, if our
objective is to minimize the true area included in the estimated range we should favor the

use of the a-LoCoH method.

Effect of biases in the spatial distribution of records

The density of records available per continent shows a strong spatial bias in sampling
effort. Of a total of 2,224,505 records, Eurasia had the greatest data density with 103,987.5
records/10° km? (47.6% the available records), followed by Australia with 77,050.9, North
America with 14,434.3, South America 4,232.6 and Africa with 1,682.1 records/10° km’
(29.5%, 17.1%, 3.4% and 2.3% of the available records, respectively). Within continents,
the spatial distribution of records was far from homogeneous, reaching maxima in parts of
Europe, North America and Australia and minima in large parts of Asia, Africa and South
America (Figure 2a). We identified a total of 26, 23, 13, 8 and 6 clusters in Eurasia, Africa,
Australia, North America and South America, respectively. The number of records
available decreased very fast as we move away from the center of gravity of those clusters,
both at continental and global scales (Figure 2b). On average, IUCN species ranges
overlapped with 3.2 clusters (SD= 7.85, median = 1.0, 3rd quartile = 3.0). The average
number of centers of gravity within those species ranges was 1.1 (SD = 2.54, median = 0.5,
3rd quartile = 1.6). For 84 out of the 3,005 terrestrial species evaluated here, the range
provided by the IUCN Red List did not overlap with any cluster, while 1462 species ranges
did not contain any center of gravity. Based on these results we selected the mean value of
the number of clusters overlapping IUCN ranges on a global scale to simulate spatial bias

in the distribution of records.
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As expected, spatially biased data strongly influences range estimation (Table 3,
Figure 3c, h, m). Sample sizes higher than 200 records are required to obtain sensitivities
above 0.5, and, even with large sample sizes (= 500 records), only r-LoCoH and MPC
were able to reach sensitivities above 0.75 (Figure 3c). Most of the reduced sensitivity due
to spatially-biased data occurs in irregular or fragmented reference ranges, while the
sensitivity of the circular reference ranges was barely affected by this bias (supplementary
Figure 3.S2). Type I error rate increased with sample size for the r-LoCoH and was high
for the MCP at any sample size (Figure 3h). For the remaining algorithms Type I error
rates behaved properly, decreasing with increasing sample size. The a-LoCoH had low
error rates (below 0.25) even at low sample size (Figure 3c, h, m). The algorithms that
estimated correctly the number of fragments when data were unbiased (a-LoCoH and k-
LoCoH), overestimate the number of fragments with increasing sample size when using

spatially-biased baseline data (Figure 3m).

Additional effect of spatial errors

Of the 3,005 species of coincident terrestrial mammals between GBIF and IUCN
ranges, 1,305 species had at least one record in the ocean, water bodies or the Antarctica.
Assuming all these records as errors, the average lower bound error rate was 7.6% errors
per species (SD = 18.99, median = 0.00, 1°quantile = 0.00). A total of 307 species (10.2%)
did not contain any GBIF record within their [UCN distribution range, while 536 (17.8%)
had all records within it. Of the remaining 3,005 species, 51.1% had less than 25% of their
records outside their [IUCN range, 32.8% of the species had between 25% and 75% of their
records outside and 16.1% of the species had more than 75% of their records outside. The
median percentage of records outside the IUCN range was 23.3% (average 33.7%, SD =
32.84, 1°quantile = 6.1 and 3°quantile = 50.0) which we took as an upper estimate of the
error rate. Based on this information, we selected three levels of error, 5, 10 and 20%, and

investigated the combined effect of spatially biased data with errors.

In the presence of spatial errors, the algorithms tend to overestimate ranges (i.e. higher
Type I error rates) a trend that is more evident as the percentage of error increases (Table
3, supplementary Figure 1.S2j and Figure 2.S2). Increasing sample size improves

sensitivity, at the cost of reaching high Type I error rates (Figure 3d, 31). KDE was the only
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algorithm showing a slightly decreasing Type I error rate with increasing sample size in the
presence of errors and was performing reasonably well in describing the number of
fragments (Figure 3n). Finally, when errors are present, eliminating extreme records may
potentially help in reducing the impact of errors. The elimination of the 5% most spatially
extreme records from the simulated datasets (note that they are not necessarily errors)
reduced type I error rate and improved the estimation of the number of fragments, but
sensitivity decreased for all algorithms except r and a-LoCoH that barely noticeable

(Figure 3e, j, o, supplementary Figure 1.S2, m-o).

DISCUSSION

The algorithms we have explored have been evaluated mostly in relation with the
delineation of home ranges, normally with data of high quality, with virtually no errors or
biases and from the perspective of defining a good spatial representation (spatial structure
of the home range) as a function of sample size (Gaston and Fuller et al., 2009). Our work
shows that the accuracy of geographic algorithms used to generate species ranges largely
depends on the interaction between the quality of data and the method used, and that this
relationship is complex. This problem has long been acknowledged, but there are no clear
recommendations on how to build a distribution range using data on species presence of
heterogeneous quality and it is still too often the case that ranges are delineated without

offering information on the quality of the data used or even the method used.
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I[UCN MCP KDE a-LoCoH

Figure 4: Examples of distribution ranges for three species, Chaetodipus pernix (a-d),
Vespadelus pumilus (e-h), and Cricetus cricetus (i-1), as provided by the IUCN (extant) and
estimated using georeferenced records available in the Global Biodiversity Information
Facility (GBIF) using MCP, KDE and a-LoCoH algorithms. The three species represent
cases with a good coverage (Chaetodipus) and biased sampling effort (Vespadelus and

Cricetus).

The impact of data quality

Most often, the data available to define ranges is of heterogeneous quality. We
explored three components of data quality, the quantity of data, their spatial bias and the
presence of errors, of which sample size was the easiest to evaluate (Boitani et al., 2011;
Burgman and Fox, 2003). In general, when baseline data were randomly or uniformly
distributed the accuracy of all geographic algorithms improved with sample size, levelling
with as few as 200 to 250 records. Algorithms are robust even at small sample sizes, but
the tradeoff between sensitivity and type I error rate that occurs in MCP and r-LoCoH
make these two methods a non-preferred choice. This is good news since most of the
species have few data available, with median data availability as low as 30 records. If the
distribution range of the focal species is irregular or fragmented, a-LoCoH and KDE are
the methods of choice, with the first yielding the lowest Type I error rates and a more

accurate representation of the fragmentation of the range.
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Data originated from a uniform or an unbiased random sampling are rare or lacking for
most regions and species (Gaston and Rodrigues, 2003; Rocchini et al., 2011). This type of
data is normally produced in specific surveys, as may occur with species subject to
monitoring, species with a restricted distribution range in areas with a high density of
records or data generated in systematic national inventories. In the rest of the cases, the
heterogeneity of sampling effort induces a background bias that may affect the estimation
of ranges (Meyer et al., 2016; Pimm et al., 2014). A simple look at the distribution of all
records across species shows that data density varies in space and that we can easily
identify clusters of data overlapping with the distribution ranges defined by the IUCN for
most species. This type of bias strongly decreased the sensitivity of all methods, especially
when the reference distribution range is irregular or fragmented. This means that the
distribution ranges generated with the data currently available will leave undetected areas
where the focal species are present. KDE is the method with the best simultaneous
behavior of both sensitivity and type I error rate, but at the cost of requiring relatively large
data sets, and, even then, leaving as much as 25% to 35% of the reference range
undetected. The existence of spatial biases in the data precludes the detection of complete
ranges, making necessary to increase sample size to improve estimates. Spatial biases in
species records are relevant in GBIF and other global data sources because heterogeneous
factors such as human population density, access to technology, presence of a well-
developed transport system or funding availability may affect their collection, storage and
mobilization (Beck et al., 2013). At this point, it is important to work to characterize and,
if possible, reduce the presence of spatial biases in data repositories (Cantu-Salazar and

Gaston, 2013; Beck et al., 2013; 2014).

Spatial errors are another widespread problem present in biodiversity databases
(Maldonado et al., 2015). They can be generated in many ways and at any moment of the
data lifecycle. Nevertheless, it is very difficult to obtain accurate overall estimates of how
important this problem is. We used a conservative approach to define lower and upper
bounds within which the actual error rates may be located. Our lower bound estimate
shows that errors are indeed a problem, with more than 40% of the terrestrial species
having records in the ocean, water bodies or the Antarctica. The upper bound is much more
difficult to estimate. We used the IUCN distribution ranges, which depict areas of potential

distribution created using a combination of a geographic algorithm and expert opinion (and
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are therefore more akin to SDM), as ground truth to compare how often the available
observations lay outside. As we have seen, geographic algorithms used with biased data
will leave outside an important fraction of the true range, and therefore the median 23% of
observations outside [UCN ranges is an upper overestimate of the actual error rate. The
presence of errors affect the performance of geographic algorithms, being its main
drawback the overestimation of the distribution range (Getz and Wilmers, 2004; Burgman
and Fox, 2003). The reliability of the ranges obtained depends largely on the quantification
and control of spatial errors in the sources of information. If species occupy very small
spatial scales in relation with the errors, the results will be sensitive to the actual location
of the errors. If species have large geographic ranges and the proportion of location errors
is small, the results will be less affected. When data contain errors and sampling effort is
spatially biased, there is a substantial deterioration of Type I error rates, which increase
with sample size in all methods except for KDE. Even at large sample sizes and for KDE
as much as 50% of the area delineated as part of the range may be incorrectly included
within the range. Algorithms, such as a-LoCoH, with a good simultaneous behavior in
sensitivity and Type I error rates are strongly affected by the presence of errors. One
possible way to reduce the impact of spatial errors is to exclude extreme values from the
dataset. The exclusion of extreme records before constructing the ranges helps reasonably
to improve the accuracy of the algorithms to reproduce the reference ranges mostly by
reducing the Type I error rate, but it does not affect qualitatively the overall performance

of the different algorithms.

How to define a distribution range using geographic algorithms

The first recommendation is that when defining a distribution range we must be
explicit with our aims, the data used and its quality, and the method chosen (Rios-Pena et
al., in prep-chapter 1). Geographic algorithms are often used when we need to maximize
sensitivity while minimizing Type I error rates to identify areas actually occupied, while
species distribution models offer a good approximation to the areas with enough quality to
be potentially occupied and therefore tend to overestimate the area occupied (high Type I
error rates). It is too often the case that authors do not provide information on how ranges

are built (Rios-Pena et al., in prep-chapter 1). Some characteristics of the data available

76



CHAPTER I

may have important consequences in the definition of ranges, such as biases in sampling
effort that affect the spatial distribution of records or the existence of errors (Figure 4).
Data quantity and quality should also be explicit to acknowledge the limitations of the
method of choice. The only thing we can do when there is no or few data available is to
collect information, while we can minimize the impact of bias, by resampling data in
oversampled areas, and that of errors by carefully crosschecking the data and by removing

a fraction of extreme observations.

Our results show that based on actual data there is no single best method
simultaneously for sensitivity, Type I error rate and range fragmentation. Depending on
our aims and the quantity and quality of data available, some methods should be preferred
over others (Guillera-Arroita et al., 2015; Qiao et al., 2015; Diniz-Filho et al., 2015). All
methods show a good behavior for sensitivity, as expected since they have been designed
to maximize it, even at low sample sizes. In most cases, this is so at a high cost in Type |
error rate, including large areas where the species might not be present. More importantly,
not all methods behave properly in their Type I error rate with increasing sample size, as is
the case with MCP and r-LoCoH, which increase their error rate with growing sample sizes
and therefore, should be avoided. Range fragmentation is the most difficult property to
reproduce. KDE and a-LoCoH have the best behavior when data is unbiased and errors

free (Figure 4).

In case we have a good quality dataset with a not too complex spatial configuration, it
is straightforward to define the range (Figure 4). KDE offers a good compromise if data is
biased and there is a possibility of errors in the dataset. Again, the estimation of the kernel
value out of the data should be explicit. In case we need to be sure that the area is occupied
by the focal species, a-LoCoH performs well in avoiding the inclusion of false positive
areas, maintain a low error rate when there are no errors in the dataset. At low sample
sizes, a combination of both methods provides a core area defined by the a-LoCoH with a
low Type I error rate plus a larger area defined by the KDE where the error rate may be
higher. Nevertheless, we should differentiate the areas generated by each of the methods
when generating ranges using a combination of approaches since the uncertainty of the
different areas may be substantially different. This recommendation also applies when

combining geographic algorithms with SDM or expert knowledge, as is the case of UICN
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distribution ranges. Doing so would help in controlling the uncertainty when using those

ranges in theoretical and applied research.

CONCLUSIONS

Our results have strong implications for the construction of species distribution maps
based only actual observations and the mobilization of data. Georeferenced records
available in global databases suffer from gaps in data coverage and spatial, taxonomic and
species-level biases (Ficetola et al., 2014; Meyer et al., 2016). The quality of available
information is not homogeneous across species, nor are species lacking information
randomly distributed across families and regions. In short, the heterogeneity in data
availability and quality is a serious limitation to generate unbiased distribution ranges. The
lack of standardized criteria to accept minimum levels in the quantity and quality of
information and in the methods used hinder the potential use of distribution ranges in
applications such as the prioritization of conservation, interspecific comparative studies

and other basic and applied uses in research.

Our study demonstrates that a correct estimate of distribution ranges requires data of
good quality. To this end, we should apply substantial amounts of taxonomic knowledge,
time and funding to collect, verify and clean up public databases. Additionally, users
should carefully clean up the datasets before use by conservatively removing poorly
annotated records and those that may have an erroneous location. We have to be aware of
the requirements and limitations of the different geographic algorithms to estimate
distribution ranges depending on the type of data and research question that we want to
address and accordingly select the one that most suits our needs. Finally, in all cases we

must be transparent with the data and the method used.

ACKNOWLEDGEMENTS

We are grateful to the GBIF and IUCN Red List team for making and maintaining
their databases freely available online. We also acknowledge the Conservation Biology

group of Estacién Biologica de Donana, CSIC for helpful suggestions. This work was

78



CHAPTER I

supported by the following grants and projects: Spanish Ministry of Economy, Industry
and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in
R+D+I (SEV-2012-0262) and Agencia Estatal de Investigacion from Ministry of
Economy, Industry and Competitiveness, Spain with projects CGL2012-35931 and
CGL2017-83045-R AEI/FEDER EU, co-financed with FEDER to E.R., R.B.M., M.G.S.

79



80




CHAPTER I

Supporting Information

81



82




CHAPTER I

Appendix 2.S1. Supplementary methods

Table 2.51. Summary table with the different levels for reference ranges, records and

algorithms used in the simulations

Reference ranges Symbol Levels

Shape Shape Circle, half bagel, star
Fragments N_frag 1, 3 equal, 3 different
Recods Levels

Size N_sample 10, 25, 50, 100, 250, 500, 1000
Distribution Sampling_method Random, uniform, clustered
Errors errors 0, 5,10, 20%

Algorithm Parameters

MCP perc 100, 95, 90, 85, 80

k-Local Convex Hull k 10, 15, 20, 25, 30

r-Local Convex Hull r 2,22,24,2.8,3

a-Local Convex Hull a 5,5.5,6,6.5,7

Kernel thresh 1, 5,10, 15, 20
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Figure 2.S1. Graphical representation of the spatial layout, clusters and number of clusters

per continent: a) North America, b) South America, c) Eurasia, d) Africa and, e) Australia.
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Appendix 2.S2. Supplementary results

Table 2.52. Results of the generalized linear models with beta distribution for explaining the sensibility and type I rate error and with log-normal
distribution for explaining the predicted fragments proportion respect to sample size with three spatial distributions (uniform, random and biased

spatial distribution) and of the spatial errors when the distribution of the records is biased. We report the coefficient estimated and standard error

(SE) for intercept, log (N_sample), log (Error) and types of shape included in the models.

Model Intercept Circle dif Circle equal Half bagel Half bagel Half bagel Star Star dif Star equal Log (N Log (Error)
(Circle) dif equal sample)
Sensitivity (uniform spatial distribution)
MCP -0.71 (£0.02)  0.14 (£0.02)  0.10 (£0.02)  -0.01 (£0.02)  0.12 (£0.02)  0.08 (£0.02) = 0.47 (£0.02)  0.34 (£0.02)  0.27 (£0.02)  0.04 (£0.02)
KDE 0.34 (£0.02)  0.04 (0.02)  -0.14 (£0.02) -0.12 (x0.02) ~ -0.12(£0.02) -0.19 (0.02) 0.38 (x0.02) 028 (£0.02)  0.25(x0.02)  0.27 (£0.01)
k-LoCoH -0.14 (0.02)  -0.16 (¥0.02)  -0.39 (0.02)  -0.08 (x0.02) = -0.20 (£0.02) -0.39 (+0.01) ' 0.54 (x0.02)  0.37 (0.02)  0.23 (0.02)  0.42 (£0.01)
r-LoCoH -1.83 (20.02) -0.36 (£0.02) -0.43 (0.02)  -0.06 (x0.02) = -0.16 (£0.02)  -0.53 (0.02)  1.01 (¥0.03)  0.37 (0.02)  0.24 (0.02)  0.80 (£0.01)
a-LoCoH -1.40 (£0.01)  -0.69 (£0.02) -0.86 (0.01) -0.21 (x0.02) -0.79 (£0.01)  -0.88 (x0.01) ~ -0.11 (£0.02) -0.46 (0.01) -0.53 (x0.01) 0.71 (£0.01)
Type | error rate (uniform spatial distribution)
MCP -0.18 (£0.01)  0.20 (0.01)  0.22 (£0.01)  -1.57 (£0.01)  0.22 (0.01) ~ 0.54 (£0.01)  -0.94 (x0.01) 0.39 (£0.01)  0.49 (x0.01)  0.05 (x0.01)
KDE -0.50 (£0.07)  1.40 (£0.07)  1.24 (£0.07)  0.97 (0.07)  2.40 (£0.06) = 2.68 (£0.06)  2.21 (¥0.06)  2.97 (0.06)  3.02 (0.06)  -0.66 (£0.01)
k-LoCoH 3.36 (£0.04)  -0.28 (¥0.03) -0.26 (£0.05)  -2.22 (0.05) -0.34 (£0.04)  -0.62 (+0.04) -1.18 (£0.04) 0.16 (£0.04)  0.15(x0.04)  -0.83 (£0.01)
r-LoCoH -1.79 (£0.03)  0.19 (0.03)  0.18 (0.03)  -0.83 (£0.03) 0.57 (0.02) ~ 0.23 (£0.03)  0.51(£0.02)  0.98 (0.02)  1.01(£0.02)  0.21 (x0.01)
a-LoCoH 1.02 (£0.25)  -0.29 (£0.12)  -0.32(¥0.12)  0.21 (¥0.13)  -0.45(+0.12) -0.70 (¥0.12) 025 (£0.13)  -0.07 (x0.13)  -0.26 (£0.12)  0.01 (+0.01)
Predicted fragments proportion (uniform spatial distribution)
KDE -0.60 (0.02)  -0.51 (¥0.02) -0.18 (0.01) -0.01 (x0.01) -0.48 (£0.01)  -0.45(£0.01) -0.02 (£0.01) -0.52 (0.01) -0.64 (x0.02) 0.12 (£0.01)
k-LoCoH 0.15(£0.01)  -0.55(x0.01) -0.52(x0.01) 0.00 (0.01)  -0.92 (£0.01) -0.60 (x0.01) 0.11 (x0.01)  -0.94 (0.01) -0.94 (0.01) -0.03 (£0.01)
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r-LoCoH
a-LoCoH

MCP
KDE
k-LoCoH
r-LoCoH
a-LoCoH

MCP
KDE
k-LoCoH
r-LoCoH
a-LoCoH

KDE

k-LoCoH
r-LoCoH
a-LoCoH

MCP
KDE
k-LoCoH
r-LoCoH

-0.12 (£0.01)  -0.08 (£0.01)  -0.01 (=0.01)  -0.01 (0.01)
-0.60 (£0.02)  -0.51 (£0.02) -0.18 (0.01)  -0.01 (+0.01)
Sensitivity (random spatial distribution)
-1.34 (£0.02)  0.14 (£0.02)  0.11(£0.02)  0.11 (+0.02)
0.47 (£0.04)  -0.04 (£0.03)  -0.05 (+0.03)  0.02 (+0.03)
-0.72 (£0.03)  -0.17 (£0.02)  -0.35(£0.02)  -0.02 (+0.02)
-2.73 (£0.02)  -0.46 (£0.02)  -0.54 (+0.01)  0.13 (+0.02)
-2.28 (£0.02)  -0.59 (£0.02)  -0.78 (£0.02)  -0.22 (+0.02)
Type | error rate (random spatial distribution)
-0.28 (£0.01)  -1.51 (£0.01)  0.28 (+0.01)  -1.49 (+0.01)
0.16 (£0.03)  1.80 (£0.03)  1.78 (0.03)  0.96 (+0.03)
3.17 (£0.05)  -2.86 (£0.04) -0.21 (£0.05)  -2.35 (+0.05)
-1.89 (£0.03)  -1.03 (£0.02)  0.13 (+0.03)  -0.83 (+0.03)
-0.36 (£0.05)  -1.42 (£0.05) 0.11 (=0.10)  -1.69 (0.06)
Predicted fragments proportion (random spatial distribution)
-2.01 (£0.04)  -0.73 (£0.02)  -0.86 (+0.03)  -0.05 (+0.01)
-0.75 (£0.04)  -0.61 (£0.04)  -0.36 (+0.03)  -0.06 (+0.03)
0.21 (£0.01)  -0.48 (+0.01)  -0.52 (=0.01)  0.00 (+0.01)
0.14 (£0.01)  -0.25(£0.01)  -0.21 (0.01)  -0.10 (+0.01)
Sensitivity (biased spatial distribution)
-2.47 (£0.03)  -0.31 (£0.03)  -0.47 (+0.02)  -0.04 (+0.03)
-0.50 (£0.04)  -0.74 (£0.03)  -0.90 (+0.03)  -0.15 (+0.03)
-0.14 (£0.05)  -1.05 (£0.04)  -1.24 (£0.04) -0.25 (+0.04)
-3.61 (£0.04)  -1.29 (£0.03)  -1.50 (+0.03)  -0.18 (+0.03)
-2.52 (£0.03)  -1.51 (£0.02) -1.67 (+0.02)  -0.48 (+0.02)

a-LoCoH

-0.07 (£0.01)
-0.48 (£0.01)

0.29 (+£0.02)
0.01 (£0.03)
-0.12 (£0.02)
-0.10 (£0.02)
-0.69 (£0.02)

0.20 (£0.01)
2.08 (£0.03)
-0.33 (£0.04)
0.52 (£0.02)
-0.30 (£0.04)

-0.80 (£0.02)
-0.61 (£0.04)
-0.88 (£0.01)
-0.28 (£0.01)

-0.24 (£0.02)
-0.64 (£0.03)
-1.03 (£0.04)
-0.10 (£0.03)
-1.57 (£0.02)

-0.30 (£0.01)
-0.45 (£0.01)

0.13 (£0.02)

-0.05 (£0.03)
-0.30 (£0.02)
-0.37 (20.02)
-0.82 (£0.02)

0.57 (£0.01)
2.39 (£0.03)
-0.52 (£0.04)
0.37 (£0.02)
-0.17 (£0.04)

-0.96 (£0.03)
-0.68 (£0.04)
-0.65 (£0.01)
-0.45 (£0.01)

-0.61 (£0.02)
-0.99 (£0.04)
-1.47 (£0.04)
-1.51 (20.03)
2.02 (£0.02)

-0.01 (+0.01)
-0.02 (+0.01)

0.44 (£0.02)
0.11 (£0.03)
0.40 (£0.02)
0.86 (0.02)
-0.20 (+0.02)

-0.99 (£0.01)
2.06 (£0.03)
-1.31 (£0.04)
0.42 (£0.02)
-0.83 (£0.05)

-0.03 (20.01)
-0.06 (£0.03)
0.01 (20.01)
-0.10 (£0.01)

0.16 (+0.02)
-0.77 (+0.03)
-1.01 (£0.04)
-0.43 (£0.03)
-1.55 (+0.02)

-0.11 (£0.01)
-0.52 (£0.01)

0.34 (£0.02)
0.10 (£0.03)
0.21 (£0.02)
0.16 (20.02)
-0.50 (+0.02)

0.40 (£0.01)
2.81 (20.03)
0.17 (£0.04)
0.90 (£0.02)
0.23 (+0.04)

-0.96 (£0.03)
-0.66 (£0.04)
-0.85 (£0.01)
-0.33 (20.01)

-0.41 (£0.02)
-0.90 (£0.03)
-1.42 (£0.04)
~1.25 (£0.03)
2.11 (£0.02)

-0.16 (£0.01)
-0.64 (£0.02)

0.25 (£0.02)
0.07 (£0.03)
0.09 (+0.02)
0.02 (20.02)
20.60 (+0.02)

0.53 (£0.01)
2.94 (20.03)
0.13 (£0.04)
0.99 (£0.02)
0.36 (+0.04)

-0.95 (£0.03)
-0.85 (+0.04)
-0.88 (£0.01)
-0.40 (£0.01)

-0.66 (£0.02)
~1.10 (£0.03)
-1.73 (£0.04)
-1.56 (£0.03)
2.34 (£0.02)

0.02 (+0.01)
0.12 (£0.01)

0.49 (£0.01)
0.18 (£0.01)
0.48 (20.01)
0.96 (20.01)
0.81 (£0.01)

0.07 (20.01)
-0.68 (£0.01)
-0.78 (£0.01)
0.23 (£0.01)
-0.39 (£0.01)

0.56 (20.01)
0.19 (£0.01)
-0.42 (£0.01)
0.02 (20.01)

0.68 (£0.01)
0.30 (£0.01)
0.27 (20.01)
1.08 (+0.01)
0.77 (£0.01)
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Type | error rate (biased spatial distribution)

MCP
KDE
k-LoCoH
r-LoCoH
a-LoCoH

KDE

k-LoCoH
r-LoCoH
a-LoCoH

MCP
KDE
k-LoCoH
r-LoCoH
a-LoCoH

MCP
KDE
k-LoCoH
r-LoCoH

-0.47 (£0.02)  0.15(£0.02)  0.32(£0.02)  -1.48 (+0.02)
-0.94 (0.03)  1.56 (¥0.03)  1.69 (0.03)  0.76 (+0.03)
3.03 (£0.06)  -0.07 (£0.05)  -0.08 (£0.06)  -2.12 (+0.06)
233 (£0.05) 027 (£0.04)  0.12(£0.04)  -0.77 (+0.04)
0.48 (£0.06)  -0.12 (£0.07)  0.11 (=0.08)  -1.41 (+0.07)
Predicted fragments proportion (biased spatial distribution)
-2.57 (0.06)  -0.97 (¥0.03)  -1.06 (0.03)  -0.11 (£0.01)
-3.57 (£0.11)  -0.36 (£0.05)  -0.34 (£0.05)  0.11 (+0.04)
0.28 (x0.01)  -0.41 (£0.01)  -0.44 (0.01)  0.01 (+0.01)
-1.20 (£0.03)  -0.19 (£0.02)  -0.19 (+0.02)  0.15 (+0.02)
Sensitivity (spatial bias and errors)
-2.38 (£0.04)  -0.28 (£0.03)  -0.51 (£0.03)  -0.12 (+0.03)
-0.92 (£0.05)  -0.37 (£0.04)  -0.50 (£0.04)  -0.08 (+0.04)
-1.87 (£0.06)  -0.96 (£0.04)  -1.01 (£0.04)  -0.35 (+0.04)
-5.81 (0.06) -1.48 (x0.03) -1.79 (0.03)  -0.30 (x0.04)
-4.82 (£0.03)  -1.47 (£0.02)  -1.65(£0.02)  -0.54 (+0.02)
Type | error rate (spatial bias and errors)
-3.95 (£0.04)  2.46 (£0.03)  2.62 (+0.03)  1.85(+0.03)
-1.05 (£0.04)  0.82(x0.02)  0.81 (0.02)  0.50 (x0.02)
-1.98 (£0.02)  0.41 (£0.01)  0.41(£0.01)  0.13 (+0.01)
-4.51 (£0.03)  0.24 (£0.02)  0.39 (£0.02)  0.26 (+0.02)
-6.85 (£0.05)  0.45(£0.03)  0.50 (+0.03)  0.16 (+0.03)

a-LoCoH

Predicted fragments proportion (spatial bias and errors)

KDE
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-3.40 (£0.05)

-0.88 (+0.02)

-0.82 (£0.02)

-0.02 (£0.01)

0.12 (0.02)
1.81 (+0.03)
-0.54 (£0.05)
0.36 (£0.04)
-0.48 (£0.06)

-1.14 (£0.03)
-0.46 (£0.06)
-0.71 (£0.02)
-0.32 (£0.02)

-0.37 (£0.03)
-0.41 (£0.04)
-0.96 (£0.04)
-1.35 (£0.03)
-1.55 (£0.02)

2.53 (£0.03)
0.99 (0.02)
0.35 (£0.01)
0.55 (£0.02)
0.58 (£0.03)

-0.94 (£0.02)

0.52 (£0.029
2.03 (£0.03)
-0.62 (+0.04)
0.20 (£0.04)
-0.39 (£0.06)

-1.14 (£0.03)
-0.46 (£0.06)
-0.55 (£0.01)
-0.36 (20.03)

-0.61 (£0.02)
-0.60 (£0.04)
-1.27 (£0.04)
-1.78 (20.03)
-1.90 (£0.02)

2.75 (£0.03)
1.06 (+0.02)
0.49 (£0.01)
0.58 (£0.02)
0.74 (£0.03)

-0.95 (£0.03)

-1.23 (£0.02)
1.56 (+0.03)
-1.58 (+0.05)
0.10 (£0.04)
-0.92 (£0.06)

-0.15 (20.01)
0.49 (£0.04)
0.05 (£0.01)
0.46 (£0.02)

-0.14 (£0.03)
-0.23 (£0.04)
-0.78 (£0.04)
-0.88 (£0.03)
-1.48 (£0.02)

1.85 (£0.03)
0.93 (20.02)
0.28 (£0.01)
0.41 (£0.02)
0.55 (0.03)

-0.03 (£0.01)

0.25 (£0.02)
2.36 (20.03)
20.14 (+0.05)
0.51 (£0.04)
0.09 (0.06)

~1.20 (£0.03)
-0.18 (£0.05)
-0.64 (£0.02)
-0.37 (£0.03)

-0.34 (£0.02)
-0.49 (+0.04)
-1.26 (£0.04)
-1.66 (£0.03)
-1.95 (+0.02)

2.61 (20.03)
1.17 (£0.02)
0.58 (£0.01)
0.66 (£0.02)
0.94 (0.03)

-0.91 (£0.02)

0.49 (£0.02)
2.50 (0.03)
20.19 (+0.05)
0.63 (£0.03)
0.08 (0.06)

-1.07 (20.03)
0.07 (£0.04)
-0.65 (£0.02)
-0.45 (£0.03)

-0.56 (£0.03)
-0.53 (£0.04)
-1.34 (£0.04)
-1.93 (£0.03)
22.05 (£0.02)

2.73 (£0.03)
1.23 (£0.02)
0.59 (£0.01)
0.69 (£0.02)
0.93 (20.03)

-0.93 (+£0.03)

0.10 (20.01)
-0.32 (£0.019
-0.74 (£0.01)
031 (£0.01)

-0.47 (£0.01)

0.79 (20.01)
0.78 (£0.02)
-0.06 (£0.01)
0.34 (20.01)

0.54 (£0.01)
0.32 (£0.01)
0.47 (20.01)
1.55 (+0.02)
1.09 (0.01)

0.16 (20.01)
-0.15 (£0.01)
0.28 (£0.01)
0.60 (£0.01)
0.73 (20.01)

0.43 (x0.01)

0.53 (£0.01)
0.65 (£0.01)
0.80 (20.01)
0.50 (20.01)
0.47 (£0.01)

0.47 (£0.01)
0.56 (20.01)
0.45 (£0.01)
0.61 (£0.01)
1.02 (+0.01)

0.61 (£0.01)



CHAPTER II

k-LoCoH 3.55(£0.07)  -0.25 (£0.03)  -0.26 (£0.03)  0.44 (£0.03)  -0.26 (x0.03) -0.28 (0.03) 0.83 (£0.02)  -0.20 (£0.03) -0.09 (£0.03) 0.78 (0.01)  -0.07 (£0.01)
r-LoCoH 0.49 (£0.02)  -0.84 (£0.01) -0.80 (£0.01)  0.01 (£0.01)  -0.96 (+0.01)  -0.83 (£0.01)  0.03 (+0.01)  -0.90 (£0.01) -0.86 (£0.01) -0.07 (£0.01) -0.01 (0.01)
a-LoCoH 2.80 (£0.03)  -0.57 (0.01) -0.54 (0.01) 0.18 (£0.01)  -0.62 (£0.02) -0.60 (£0.02)  0.45 (£0.01)  -0.68 (£0.01) -0.72 (x0.02)  0.60 (0.01)  0.25 (£0.01)
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Figure 2.S2. Performance of the geographic algorithms when estimating sensitivity (a, d, g, j
and m), type I error rate (b, e, h, k and n) and rate of predicted fragments (c, f, i, | and o)
respect to the number of records available (sample size) when these data are uniformly (a, b,
¢), randomly (d, e, f), bias distributed (g, h, 1), bias distributed and 10% errors (j, k, 1) and bias
distributed, 10% errors and removed 5% the most extreme values (m, n, o) . The black line

represents the correct value describing the reference ranges.
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a) Bias and 5% error b) Bias and 20% error
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Figure 2.S3. Generalized linear models with beta distribution for explaining the sensitivity (a-

b) and type I error rate (c-d) and, generalized linear models with log-normal distribution for

explaining the predicted fragments proportion (e-f) respect to size sample with biased spatial

distribution and error (5 and 20%) in database. The solid lines to color depict the mean

relationship and the shaded areas depict 95% confidence intervals.
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Random spatial distribution
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Figure 2.54. Performance of the geographic algorithms when estimating sensitivity (a, d, g,
1), type I error rate (b, e, h, k) and predicted fragments proportion (c, f, i, m). The samples
were random (a, b, ¢) and bias (d-1) distributed with a sample size of 50 records and without
errors spatial (a-f), 10% errors spatial (g-i) and 10% errors spatial and removed 5% the most
extreme values (j-1). The black line represents the correct value describing the reference

ranges.
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Towards systematic species range maps

ABSTRACT. Range maps of thousands of species, compiled and made freely
available by the International Union for Conservation of Nature (IUCN), are
being increasingly used to support spatial conservation planning and in basic
ecological research. However, the methodology used for building these maps is
non-replicable, and the coarse nature of these maps makes them prone to
commission and omission errors, calling into question their informative value.
Here, we offer a systematic and easily replicable methodology to build species
distribution ranges, which we compare with the already existing IUCN maps.
Our results suggest that combining IUCN range maps with available
georeferenced data in Global Biodiversity Information Facility (GBIF data) is a
promising route to provide information on where the mapped distributions are
reliable and where they are uncertain, to obtain a unified and easily repeatable
methodology. The lack of information or availability of information in certain
areas makes it difficult to implement systematic approaches to the construction
of distribution range maps. We also disclose the priority sites where sampling
effort should be increased. This is all the more urgent in the little-known hyper-
diverse regions where decisions relevant to conservation must continue despite

the scarcity of biodiversity data.

Key words: Conservation priority areas, Distribution ranges, GBIF data,

geographic algorithms, IUCN range maps, omission and commission errors.

Rios-Pena, L., Clavero, M., & Revilla, E. Towards systematic species range maps (In prep).



RESUMEN

Los mapas de éareas de distribucion de miles de especies, compilados y distribuidos
gratuitamente por la Unidén Internacional para la Conservacion de la Naturaleza (UICN), se
utilizan cada vez més para apoyar la planificacion de la conservacidn espacial y en la
investigacion ecoldgica basica. Sin embargo, la metodologia utilizada para la construccion de
estos mapas no es replicable, y la naturaleza gruesa de estos mapas los hace propensos a
errores de comision y omision, poniendo en duda su valor informativo. Aqui, ofrecemos una
metodologia sisteméatica y facilmente replicable para construir areas de distribucion de
especies, que comparamos con los mapas ya existentes de la UICN. Nuestros resultados
sugieren que la combinacién de los mapas de areas de distribucion de la UICN con los datos
georreferenciados disponibles en el Fondo Mundial para la Informacion sobre la
Biodiversidad (GBIF) es una ruta prometedora para proporcionar informacion sobre dénde
son confiables las distribuciones cartografiadas y donde son inciertas, a fin de obtener una
metodologia unificada y facilmente repetible. La falta de informacion o de disponibilidad de
informacidn en ciertas areas dificulta la implementacién de enfoques sistematicos para la
construccion de mapas de distribucion. También revelamos los sitios prioritarios donde el
esfuerzo de muestreo debe ser incrementado. Esto es aln mas urgente en las regiones hiper-
diversas poco conocidas donde las decisiones relevantes para la conservacion deben continuar

a pesar de la escasez de datos sobre biodiversidad.

Palabras clave: Areas prioritarias de conservacion, areas de distribucion, datos de GBIF,
algoritmos geograficos, mapas de areas de distribucion de la UICN, omisiones y errores de

comision.
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CHAPTER I

INTRODUCTION

Accurate mapping of species distribution ranges is a fundamental goal of modern
biogeography, both for basic and applied purposes. Range maps provide information about
the places where species occur, through a simplified abstraction of the complex spatio-
temporal dynamics of the species’ populations (Sexton et al., 2009). These maps constitute
the baseline information for multiple proposes in fundamental and applied ecology and
biogeography, including the identification of priority conservation actions (Wilson et al.,
2007; Carwardine et al., 2008) and areas (Venter et al., 2014; Watson et al., 2014), or the
description of biodiversity patterns (Orme et al., 2006; Di Marco and Santini, 2015; Faurby
and Svenning, 2015), impacts of climate change (Lawler et al., 2010), or patterns in species

distribution changes (Rodrigues et al., 2017).

The basic information units to build range maps are species records, which inform about
the presence of a species in a given place and time. There are multiple methods that allow
transforming sets of georeferenced records into species ranges (Burgman and Fox, 2003; Getz
and Willmers, 2004; Getz et al., 2007) and in recent years there has been an important debate
on the accuracy of these methodologies (Rondinini et al., 2006; Gaston and Fuller, 2009;
Guisan et al., 2013). However, authors and institutions often overlook the availability of
specific methodologies to generate range maps and build those maps on the base of expert

knowledge or outputs of species distribution models (Herkt et al., 2017).

Species ranges provided by the Red List of the International Union for Conservation of
Nature (IUCN) are the most comprehensive (taxonomically and geographically) global
dataset on the distribution of species (IUCN, 2017). These maps were constructed following
expert-knowledge approaches, through which experts apparently combined species records
and their own knowledge to establish the boundaries, fragmentation, shape and size of the
distribution area of each species (Rodrigues et al., 2006; Rodriguez et al., 2011). The expert
knowledge approach is essentially an informal species distribution modeling, the procedures
and outputs of which are non-repeatable (Johnson et al., 2012). The non-repeatability of
IUCN maps is a common feature of other repositories of species distribution ranges and might
introduce uncertainties to the uses and applications of those distribution maps. There is thus a
need to construct distribution maps using systematic, repeatable approaches in which the

exclusive source of information are temporally and spatially explicit species records. Such
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approaches should take advantage of the exponential increase in the availability of species
records, generated by both specialists and citizen scientists, and their storage and distribution
through web-platforms, such as the Global Biodiversity Information Facility (GBIF) (Boitani
et al., 2011; Jetz et al., 2012). These data repositories have been, however, shown to have
several problems, including unequal and non-transparent quality of the original data or spatial
and temporal biases due to the unequal sampling efforts (Graham et al., 2008; Yesson et al.,
2007). Therefore, the election and implementation of methods for a systematic production of
range maps should take into account the variability in the availability and quality of the
original species records.

This work explores the options for a systematic and replicable generation of range maps
that take into account different sources of variability in the quality of species records. We
constructed species ranges applying two geographic algorithms, the adaptive Local Convex
Hull (a-LoCoH) and the kernel Density Estimation (KDE), to the available georeferenced
records in GBIF for mammalian carnivores (order Carnivora), a diverse, relatively well-
known and widely distributed group of species. We compared the ranges generated for each
carnivore species with those provided by IUCN and identified the concordant and discordant
areas. We further used the whole dataset extracted from GBIF to generate a spatially-explicit
estimate of sampling effort, aiming at discerning between commission and omission errors in
discordant areas. Finally, we used the crossing of estimated species ranges and the
distribution of sampling effort to identify areas across the world that require an effort of
record gathering to allow an appropriate functioning of the systematic approaches for the
generation of species distribution maps.

MATERIAL AND METHODS
Species distribution data

Two databases with geographic information on species distributions have been used in
this study: i) geo-referenced species occurrence records (i.e. points) collected from GBIF; and
i) species distribution areas (i.e. polygons) obtained from IUCN. Occurrence records provide

direct evidence that a particular species was present at a specific geographical point at a
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CHAPTER IlI

certain point in time (Soberon and Peterson, 2004), while range maps intend to delimit the

whole area where a species is known or assumed to occur (Graham and Hijmans, 2006).

We downloaded the 1642820 records of mammalian carnivores stored by GBIF
(http://www.gbif.org) on October 6™ 2017, selecting the following metadata: 1) scientific
name, 2) year of registration, 3) geographical coordinates, 4) institution to which the data
belong, and 5) basis of record (observation, literature, preserved specimen, fossil specimen,
living specimen, human observation, machine observation, material sample or unknown).
From this dataset, we excluded records when they: 1) did not have geographic coordinates or
they were (0, 0) (reduced to 1341335 records); ii) did not have a scientific name or were
based on a fossil specimen (reduced to 1105494 records); iii) were placed in the sea (reduced
to 728861 records); and iv) were coastal records referred to marine species and records
located in Antarctica (reduced to 669914 records). Finally, we reduced all rows (i.e. records)
with identical values in all fields to a single record (392845 records retained) and kept only
the information for species that had at least 10 valid records. The final dataset retained after
this filtering process contained 338770 records (Figure 1), which referred to 175 species,

included in 86 genera in 14 families.

We downloaded the IUCN polygons where origin is coded as extant (resident and
introduced) distribution ranges of mammalian carnivores for the 175 species selected in
GBIF.

Figure 1: Global map of the distribution of point-occurrence records mobilized via GBIF
after the filtering of database for the terrestrial Carnivorous Order (October, 2017). Antarctica

has not been considered.
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Species range maps by geographical algorithms

We used two geographic algorithms to build the distribution ranges: 1) Kernel Density
Estimation (KDE); and 2) adaptive Local Convex Hull (a-LoCoH).

KDE algorithm is based on a kernel density function and is frequently used to estimate
distribution ranges (Worton, 1989; Gitzen et al. 2006). It requires selecting a bandwidth
parameter (h), which controls the degree of smoothing applied to the data and has a strong
influence over the resulting estimates of range area. We applied the fixed kernel method,
selecting h through the Maximum Likelihood Cross-Validation method (CVh, Habbema et al.,
1974; Duin 1976). We used “npudens” function of the “np” package in R (Hayfield and
Racine, 2007; R Core Team, 2017), which uses the method of Li and Racine (2003) to obtain
the kernel density function. Range maps were constructed through a Thin Plate Splines (TPS)
model, a technique based on providing a smooth interpolation of the data given in two or

more dimensions (Donato and Belongie, 2002).

Adaptive (a)-LoCoH algorithm uses all records to generate the range within a variable
circle around a root record such that the sum of the distances between the records and the root
record is less than or equal to the parameter a (input parameter), which has to be specified.
This method adjusts the radius of the circle that circumscribes each local convex hull, such
that smaller convex hulls are placed where there is more concentration of records and larger
convex hulls where the records are more distant from each other (Getz et al., 2007). We
selected the value of a as the value of the maximum distance between occurrence points for
each species and constructed species range with a-LoCoH using adehabitatHR package in R
(Calenge, 2006) (Figure 2, a-d).

Methodology for the build of range maps

Out of the final set of records obtained from GBIF after filtering, and to obtain the
species distribution ranges, we excluded 5% of the records farther from the total density of
points by species. This exclusion was intended at avoiding in a systematic way the occurrence
of geographically anomalous locations, such as erroneous locations or those of records for
which the coordinates reported are those of the museum where the specimen is stored.
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Georrefencing errors of this kind are difficult to identify systematically (i.e. not through an

expert-dependent species per species filtering) from the original database.

For each species, we obtained 3 ranges: 1) Distribution range built with a-LoCoH (a-
LoCoH range) algorithm, 2) distribution range built with KDE (KDE range) algorithm and, 3)
distribution range obtained through ITUCN Red List (IUCN range) (Table 1). We defined
GEOGAL range as the union of both geographic algorithms (a-LoCoH and KDE ranges) and
TOTAL RANGE as the union of the ranges of both geographical algorithm and IUCN range
(GEOGAL and IUCN ranges). We calculated the concordant and discordant areas between
both geographic algorithms and defined two levels in the overlap of ranges: (i) confident
range and (ii) possible range. Confident range was designated as the concordant area between
the ranges described through the a-LoCoH and KDE algorithms. Possible range, in contrast,
describes the discordant area between the ranges resulting from the two geographical
algorithms. In addition, we calculated the concordant and discordant areas between GEOGAL
and IUCN ranges and defined three levels based on the overlap of ranges: (i) presence, (ii)
possible presence and (iii) possible absence or lack of information. Presence was the
concordant area between IUCN, KDE and a-LoCoH ranges. Possible presence described the
concordant area between KDE or a-LoCoH range and IUCN range and, possible absence or
lack of information was not concordant area between GEOGAL range and IUCN range. Here,

there was not information of records of the focal species (Table 1, Figure 2 a-e).

Table 1. Variables used to quantify the proportion of concordant and discordant ranges
between the geographical ranges constructed from GBIF geo-referenced records and the

ranges obtained directly from IUCN.

Metrics Description Symbol
a-LoCoH range Range generated with a-LoCoH algorithm Au_Locor
KDE range Range generated with KDE algorithm Axpe
IUCN range IUCN polygons where presence is coded as extant Auen
GEOGAL range Akpe Y Ag_rocon AGEoGaL
TOTAL range Akpr VU Au_1ocon Y Aucn Ar
Confident range Agpe N Aa-Locon AconGE0GAL
Possible range (Akpe U Ag—rocon) — (Akpe N Ag—rocon) AgisceocaL
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Possible presence
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lack of information
% concordant
GEOGAL
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Figure 2: Distribution range maps of the spotted hyena (Crocuta crocuta). (a, b) Range maps
generated with the KDE (a) and a-LoCoH (b) algorithms using 95% of the GBIF records for
the species, which are also plotted in both panels. (c) IJUCN range map for the spotted hyena.
(d) TOTAL range resulting from the union of IUCN, KDE and a-LoCoH ranges. (f) Different
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polygons representing the concordant and discordant areas resulting from the overlap of the
IUCN, KDE and a-LoCoH ranges: 1, discordant area between A;,cy and Aggocar ranges; 2,
concordant area between A;ycn, Axpe @Nd A4_1ocon TaANQES; 3, concordant area between A,ycn
and Agpe ranges but discordant between them and the A,_,,con range; 4 discordant area
between the Axpr range and both A;ycy and A,_,.con ranges and finally; and 5, discordant

area between the A;gocar range and the A,y ¢y -

We tried to discern whether the discordances between the ranges defined through
geographic algorithms and those contributed by IUCN may be due to geographic biases in the
amount of information generating areas that lack species records (i.e. areas not identified
through geographic algorithms) or due to inaccuracies of IUCN range maps (e.g. areas with
records not included in ITUCN ranges). To do so, for each focal species we selected all
carnivore records, except those of the focal species, which fall within the TOTAL range (Ar)
polygon, made a KDE with those records and cut it in three isopleths, generating areas that we
interpreted as different sampling intensities (Figure 3): i) In the area defined by the 75%
isopleth within A we assumed that there was enough accumulated information on other
carnivore species to think that records of the focal species would had been generated if
present; ii) in the area limited by the 75% and 90% isopleths (i.e. including between 10 and
25% of the records) we assumed a low density of information of the focal species, but the
species could be present; iii) in the Area limited by the 90% isopleth (i.e. less than 10% of the
records), we assumed that the scarcity of information did not allow a solid assessment of
absence of the focal species. We highlight this as a priority area of information search.
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Figure 3: Graphic répresehtation of distribution range of the tayra (Eika barbara) and of the
information on other carnivores that is available within it. (a) Tayra range as resulting from
the use of the two geographical algorithms and that provided by IUCN. (b) Representation of
the TOTAL range of the tayra and all records of other carnivores reported by GBIF within it.
The TOTAL range is divided in three polygons delimited by the 75% and 90% isopleths of
the KDE applied to carnivore records except those of the tayra itself.

Global priorities for information gathering

After identifying areas poorly-sampled that hinder the systematic construction of species
ranges, we summarized this information for all carnivores at the global level. Our aim was to
highlighting regions that concentrate discrepancies in range descriptions due to an apparent
lack of information, and that should consequently be considered as priority for gathering
biodiversity records. ). We used a 2°-square grid to count the number of KDE polygons that
while being included in the TOTAL range of particular species contain less than 10% of the
total density of records of carnivore species, excluding the focal one (isopleths 90-100%).
This count reflects the number of species in need of reducing uncertainties in the definition of
distribution ranges through the collection of biodiversity information. This metric already
reflects the spatial variation of the information needs to build solid, systematic species
distribution ranges, but can however be strongly influenced by the spatial variation in the
species richness of carnivores. To take this possible relationship into account, we estimated

the number of carnivore species present each 2°-square by counting the number of polygons
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of IUCN ranges that intersected each square. We then calculated the ratio between the count
of KDE polygons and polygons of UICN range, a metric that should inform on the proportion
of carnivore species in need of better biodiversity information in each given square. However,
the value of this metric does not have 1 as its upper limit because the numerator and
denominator derived from different data sources (a combination of GBIF and IUCN and
exclusively TUCN, respectively). The grids containing information on species distribution
were grouped into 5 quantiles (0.10, 0.25, 0.50, 0.75, 0.90) (Figure 4).

RESULTS
Analyses of species distribution data

In our dataset, the mean record count per species with GBIF records was 1935.8 (SD=
5487.9, 1st quartile = 27.5, median=104.0, 3rd quartile = 642.5). North/Central America had
the greatest number of species in our data set but the largest number of presence records was
in Europe. Oceania had the fewest species and South America the lowest number of presence
records (Table 2). After superimposing the GBIF records on the IUCN range by species, on
average, 24.5% of GBIF records were outside their UICN ranges (SD = 27.97, 1st quartile =
4.98, median = 12.70, 3rd quartile = 33.60). Only 6 carnivore species had all GBIF records
were within IUCN ranges, while all GBIF records were outside IUCN ranges for 3 species
(Genetta pardina, Genetta tigrina, and Herpestes javanicus). The number of records falling
outside the UICN ranges was strongly correlated with the total number of records of the
species (Pearson's correlation on log-transformed data: r= 0. 83, df= 173, p < 0.0001, Figure
3.S1). Europe and North America had the highest proportion of records within the IUCN

range, followed by Africa and Oceania. Range fit was lowest in Asia and South America.

Table 2: Summary of number of records of terrestrial carnivore species used for the analyses

records by Continents and globally.

Record count N species N records Min Max  Mean SD  Median

Global 175 338770 10 34970 1936.0 5487.9 104
North/Central 90 62955 1 6844 6995 13524 54
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America

South 70 5618 1 970 80.3 1554 15
America

Europe 45 220249 1 33620 4894.0 7825.0 53
Africa 65 6214 1 1074 956 1515 46
Asia 72 13364 1 3250 185.6 494.4 20
Oceania 9 30369 2 14310 3374.0 6028.0 36

IUCN and GBIF-based ranges

The comparison of the area of the ranges generated with a-LoCoH and KDE and IUCN
showed that, on average, the smallest species ranges corresponded to those constructed with
the a-LoCoH algorithm, followed by the IUCN ranges (59.6% larger than a-LoCoH) and the
larger ranges were those generated with KDE algorithm (21.6% larger than IUCN range). The
proportion of A yncrocar respect to a-LoCoH range was high (mean= 92.6%, median= 100.0,
3" quartile = 100.0). In fact, the KDE range included totally the a-LoCoH range in 78.1% of
cases. Contrastingly, the proportion of concordance range between a-LoCoH and KDE respect
to KDE total range was low (mean= 33.5%, median= 30.0, 3 quartile = 50.0). These
differences in concordance seem to be generated by an overestimation of the range through
KDE. The concordant range between a-LoCoH and KDE ranges is designated as the
“confident range” of the focal species studied. On average, we had a 21.4% discordant range

between methods (4,4iscr0c4z) that was designated as a “possible presence”.

There was a rather high agreement between the species ranges defined from GBIF
records and those provided by IUCN. On average, 75.1% of the IUCN range was included in
the (Agzocas) (1 quartile= 27.3, median= 58.1, 3" quartile= 76.3) and 70.4% of Ao, WaS
included in IUCN range (1% quartile= 53.2, median= 80.1, 3" quartile= 0.95). We found a
positive association between the size of the A;gogar and A;ycy CcOncordance range (Pearson's
correlation: r= 0.55, df= 173, p < 0.0001, Figure 3.S2) and a strong positive association
between the size A,y range and A;goca, CONcordance range (Pearson's correlation: r= 0.70,
df= 173, p < 0.0001, Figure 3.S3). In the discordant areas (Agisroras), IN Which we did not

have presence information of the focal species (“"range of absence or lack of information™) we
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obtained on average a 24.6% of discordant range (1 quartile = 4.5, median = 19.9, 3"
quartile = 46.8).

Global priority areas for information gathering

The results obtained after estimating the number of distribution ranges per grid with the
IUCN ranges on a global scale showed on average 8.48% ranges (SD= 5.80, median= 8.0, 3"
quartile= 12.0) while for the areas that correspond to the isopleths 90-100 of KDE range per
grid on average was 5.29% (SD= 5.82, median= 4.0, 3" quartile= 8.0). On a continental scale,
the highest average values of number of IUCN ranges per grid were Africa, followed by
South America and Asia, and the least average value corresponded to Oceania. This
circumstance also occurred when we calculate the number of polygons of isopleths 90-100 of
the KDE range, although with lower average values in relation to those obtained in ITUCN
range (Table 3, Figure 4 a-b). The results obtained from the ratio between the isopleth 90-100
and the UICN ranges showed that of the 5,441 study grid cells, 5.9% could not be evaluated
because they represent: 1) places where there were no carnivores naturally (as was the case in
Australia or New Guinea), but where some species had been introduced, or 2) cells without
information of both IUCN and KDE ranges. In 94.1% of the remaining grid cells, we obtained
information on species distribution (Table 3, Figure 4c). The 0.10 quantile, which
incorporated the zero value, represented 27.9% of well-sampled places. The grids with value
1 or higher were integrated into the same group and represented 24.1% of places with lack of
information. At a continental level, North/Central America followed by Europe contained the
highest percentages of well-sampled places. The continent with the highest percentage of

grids lacking information was Africa, followed by Asia and South America (Figure 4c).

Table 3: Summary of the polygon count of IUCN and isopleths 90-100 corresponding to the

KDE range by grids shown by continents and on a global scale.

Continent Polygon Mean Median 3" quartile SD
Global IUCN 8.48 8.0 12.0 5.80

KDE 90-100 5.29 4.0 8.0 5.82
North/Central IUCN 7.53 8.0 12.0 5.34
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America KDE 90-100 2.00 1.0 3.0 3.02
South America IUCN 12.02 14.0 16.0 5.47
KDE 90-100 10.87 12.0 15.0 5.49
Europe IUCN 6.86 8.0 9.0 3.53
KDE 90-100 4.13 4.0 7.0 4.08
Africa IUCN 13.4 14.0 19.0 6.98
KDE 90-100 12.6 11.0 19.0 7.06
Asia IUCN 8.1 8.0 10.0 4.57
KDE 90-100 4.7 4.0 7.0 3.97
Oceania IUCN 0.82 1.0 1.0 0.38
KDE 90-100 0.13 0.0 0.0 0.52
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Figure 4: Global inequalities and gaps in the information on the distribution of terrestrial
carnivores. (a) Count by cells of the number of IUCN polygons. (b) Count by cells of the
number of polygons the isopleth 90-100 of KDE. (c) Quotient between the counts obtained in
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(b) and in (a). Plots (a) and (b) have a legend that represents the real values in 5 categories
(quantiles) obtained after the count and, the zero category, which represents the areas where
there were no polygons. The graph (c) represents with its legend the real values in 5 levels
(quantiles) obtained from the quotient and includes two more categories, not available, which
represents the places without polygons and the one that represents the places with the highest

information priority.

DISCUSSION

Our evaluation of range maps generated systematically for the carnivore order provides
important information about possibilities of implementing such approaches for other
biological groups. On the one hand, there was a rather high correspondence of the ranges
obtained through geographic algorithms (KDE and a-LoCoH) and those provided by IUCN,
suggesting that the systematically generated range maps provide a reasonable and useful
description of the species distribution. On the other hand, there was a large geographic
variation in the adjustment between maps generated with geographic algorithms and those of
IUCN, which is parallel to the global bias observed for the research efforts and the ecological
observations (Martin et al., 2012). The current study demonstrates the urgent need for
increased investment to update, improve and complete the information sources, particularly in
the especially rich areas of Asia, Africa and South America (Meyer et al., 2015). This
improvement in the sources of information would allow us to obtain distribution ranges with a
systematic approach. Its main advantages would lie in transparent analysis of more consistent
data; being explicitly target-driven; and combining two forms of flexibility, namely
opportunities to change data and targets, and opportunities to assess the options for achieving
targets (Pressey and Cowling, 2001; Cowling et al., 2003). This is possible thanks to the
expert knowledge based on approach on biodiversity persistence and pragmatic management
and implementation issues not normally included in biodiversity feature-site data matrices
(Dinerstein et al., 2000; Maddock and Samways, 2000).

This study demonstrates the existence of significant gaps in Global data. We have shown
that there are geographical, temporal and taxonomic gaps in the quantity and quality of

information mobilized through GBIF, which is very variable among species, even when, as
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we do here with mammalians carnivores, a small and taxonomically coherent group of species
is analyzed (Boakes et al., 2010; Amano et al., 2016). A substantial proportion of carnivorous
mammals (18%) did not have geo-referenced records. The usefulness of GBIF as a repository
of species records might be hindered by the lack of appropriate error-detecting filters, causing
a significant occurrence of spatial errors (inaccurate geographical coordinates) in datasets
(Yesson et al., 2007). Precision problems can be particularly problematic in old records, due
to both positional errors and taxonomic changes (Boitani et al., 2011). For example, we found
that 8% of carnivore georeferenced records were located in the sea, almost half of the records
(41.4%) were exact repetitions of other records (i.e. all metadata fields were identical). Many
of these errors can be identified and deleted through a species-per-species expert knowledge
inspection of the available records, but such an inspection may be feasible only when the
number of species is relatively low, becoming unworkable for larger datasets. Thus, in order
to maintain the systematic nature of our approach and avoid the expert knowledge
intervention, we excluded for each mammalian carnivore species the most geographically
extreme 5% of the records (Ficetola et al., 2013; Hurlbert and Jetz, 2007).This procedure can
reduce considerably positioning errors of the GBIF records and thus increase the quality the

range maps constructed using them (Boitani et al., 2011).

In fact, true errors of omission (caused by ignorance of the presence of species or
imprecise mappings) probably correspond to regions where the species are relatively rare, and
therefore sites of low specific richness, not very different from the zero value obtained from
the presence maps. The precision between species ranges reflected a global bias towards
regions of the world better sampled with easier access to the information (Martin et al., 2012),
and possibly certain taxonomic groups as well, that is, the coincidence between the range
maps generated from GBIF and those from the IUCN is greater where there is more basic
information about species records. This variability in the adjustment can also have a
taxonomic reflection, so that the species or groups of species that accumulate more
information will be those for which systematic distribution maps can be constructed more
robustly. For example, the continent with the highest adjustment range (i.e., Europe) was also
the continent with the most observations (Figure 1). For a more complete evaluation of the
unoccupied areas (areas without information), additional analysis based on grid squares
covering all continents was needed. Obvious data gaps in parts of Asia, Africa and South

America highlight the need to identify the causes of the lack of information in these areas
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(Meyer et al., 2015). Comprehension of the key factors that drive the biases in the availability
of species records is important to prioritize the activities in data mobilization. In addition, bias
drivers could be explicitly incorporated into the construction tools of species distribution

ranges.

Identifying the best way or a consensual way to build distribution ranges maps is still a
matter of debate. The horizon pursued in this study is to provide a transparent and easy to
implement method for the construction of standardized and temporarily dynamic distribution
maps that allow generating a more robust knowledge of the distribution patterns of
biodiversity on Earth. However, gaps in accessible digital information on the distribution of
species block the prospects of safeguarding biodiversity and ecosystem services. Therefore,
we identify the regions with areas with lack of information (Figure 4) in order to make known
the places where it is necessary to invest resources to improve the accuracy of the range
presence maps. Finally, filling the current data gaps on a global scale will allow us to know
all the places where the species are distributed, improve and update the species distribution
maps and also help us when establishing strategies for biodiversity conservation little known
of the Earth, so it is urgently needed a more effective use and mobilization of data and, a

cultural change on the exchange of data.
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The southern water vole as a case study:

systematic vs. non-systematic data sources to build range maps

ABSTRACT. Range maps are among the most frequently used distribution
data in biodiversity studies. As with any biological data, range maps can have
some level of measurement error, but this error is rarely quantified. We
assessed the error by comparing range maps obtained with systematic surveys
and non-systematically by accumulating the available biodiversity information
for the Southern water vole, Arvicola sapidus, in Spain. We built distribution
maps using two geographic algorithms and provided explicit measures of
spatial accuracy of ranges (omission and commission errors) that can allow us
to reduce the risk of omitting undetected areas from range maps. The results of
our study provided information on the nature of the distribution maps and the
errors associated with the range maps that were explained through taxonomic
errors, heterogeneous sampling effort and actual changes in the range due to
the different sampling periods of the two datasets. This study provides
precision measures that can be useful to understand the distributional changes
over time and for future research using range maps as reference data. Finally,
we emphasize the need to be cautious when using the available information
sources to generate these range maps, particularly in areas with few data or

with signs of heterogeneous spatial coverage.

Key words: Commission and omission errors, sampling effort, GBIF data,

geographic algorithms, distribution ranges, taxonomic errors.

Rios-Pena, L., Roman, J., Clavero, M., & Revilla, E. The southern water vole as a case study:

systematic vs. non-systematic data sources to build range maps (In prep).



RESUMEN

Los mapas de areas de distribucion se encuentran entre los datos de distribucion mas
utilizados en los estudios de biodiversidad. Al igual que con cualquier dato biologico, los
mapas de rango pueden tener algun nivel de error de medicidn, pero este error rara vez se
cuantifica. Evaluamos el error asociado con Arvicola sapidus al comparar los mapas de areas
de distribucion obtenidos con los enfoques de recoleccion de datos sistematicos (encuesta) y
no sistematicos (acumulaciéon de informaciéon de biodiversidad disponible). Construimos
mapas de areas de distribucion utilizando dos algoritmos geograficos y proporcionamos
medidas explicitas de precision espacial de rangos (errores de omision y comisién) que
pueden permitirnos reducir el riesgo de omitir areas no asignadas de los mapas de rango. Los
resultados de nuestro estudio proporcionaron informacion sobre la naturaleza de los mapas de
distribucion y los errores asociados con los mapas de distribucién que se explicaron a través
de errores taxondmicos, esfuerzo de muestreo heterogéneo y cambios reales en el area debido
a la depredacion. Este estudio proporciona medidas de precision que pueden ser utiles para
comprender los cambios de distribucion a los que estan expuestas las especies a lo largo del
tiempo y para futuras investigaciones utilizando mapas de rango como datos de referencia.
Finalmente, enfatizamos la necesidad de tener cuidado al usar fuentes de informacion
disponibles para generar estos mapas de rango, particularmente en areas con pocos datos o

con signos de cobertura espacial heterogénea.

Palabras clave: errores de comision y omision, esfuerzo de muestreo, algoritmos

geograficos, areas de distribucion, errores taxondmicos
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INTRODUCTION

In recent years, a growing number of studies have investigated patterns of biodiversity at
broad spatial scales. These studies have helped us to understand the factors determining
species distributions, richness and abundance, thus providing the information needed to set up
conservation strategies (Lawler et al., 2010; Rondinini et al., 2011; Sandel et al., 2011;
Hof et al., 2012). Since direct field sampling over large spatial scales is rarely feasible, as it
requires significant resources and time, these broad-scale analyses must rely on compilations
of data obtained from databases, faunistic atlases and geographical range maps.
Unfortunately, our knowledge of biodiversity distribution is far from complete, and we have a
limited knowledge of actual species distribution even for the best-studied taxa
(Lomolino, 2004; Mokany and Ferrier, 2011; Ficetola et al., 2013). The strength of broad-
scale biodiversity analyses and their usefulness for conservation purposes is directly related to
the quality of the baseline data. Among species distribution data, errors are routinely
quantified for some data types (point localities) but not for others (geographical range maps)
(Rondinini et al., 2006; Rocchini et al., 2011). Geographical range maps encompass the areas
where a species is thought to be found, and assume the species' presence inside the range and
its absence outside. Even with this assumption, tests are needed to estimate the reliability of

the range edge (Gaston, 2003; Rocchini et al., 2011).

Species range maps may be affected by multiple sources of error, such as incomplete
information on some species or in some areas, limited spatial resolution, or errors when
digitizing the distribution ranges, which may influence the output of analyses based on these
maps (Hurlbert and Jetz, 2007; Foody, 2011; Cantt-Salazar and Gaston, 2013). Determining
the level of accuracy of range maps can improve their usefulness in ecology, conservation and
evolutionary biology, allowing for a better understanding of the strengths and limitations of

analyses that use maps as baseline data (Hurlbert and Jetz, 2007; Rocchini et al., 2011).

The availability of information on species occurrences is currently growing at an
exponential rate, but this information is most often collected in a non-systematic way and
have several biases, mainly geographical, due to wrong spatial information, and taxonomic,
when the species is incorrectly classified (Meyer et al., 2016a; Troudet et al., 2017). Several
of these biases are overcome when the information on species occurrences is originated

through systematic surveys, but this approach is much more costly in terms of effort and
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money. It is thus necessary to compare the descriptions of the species distributions that can
result from the use of systematic versus non-systematic information sources, in order to

evaluate whether the effort required for systematic surveys is worthwhile.

Here we compare the range generated based on non-systematic and systematic data-
collection strategies, using the southern water vole (Arvicola sapidus; henceforth water vole)
in Spain as a study case. We used two sources of information on the distribution of the water
vole: 1) records contained in the Global Biodiversity Information Facility (GBIF) (i.e. non-
systematic source); and ii) information from a stratified systematic survey, specifically

designed to describe the status of the species in Spain (http://elrateador.blogspot.com.es/;

Roman, 2010). We constructed range maps based on the two information sources and using
two different geographic algorithms. Finally, we investigated the factors that could be
associated with omission and commission errors and that may allow us to reduce the risk of
omitting unmapped areas of range maps. The results of our study provide insights into the

nature of the maps and presence records, but also identify priorities for future research.

MATERIAL AND METHODS
Water vole data

We compared water vole range maps in Spain generated from two sets of records: i) a
dataset extracted from the GBIF (“GBIF data”), which includes information from a wide,
often unknown temporal window and is subjected to different biases and sources of error
(Boakes et al., 2010; Troudet et al., 2017); and ii) a dataset based on a systematic survey
designed specifically to detect the presence of the water vole (“survey data”), in which spatial
biases are not present and some sources of error (e.g. taxonomic identification) can be
assumed to be reduced (Roman, 2010; Peralta et al., 2016). Records from both data sources
were summarized using a grid of UTM 10x10 km cells, considering that a cell was positive

for the water vole when it contained at least one record.

GBIF is a data portal established in 2001 to allow free and open access to global
biodiversity data. It currently (April 2018) holds more than 977,000,000 species records,
approximately half of the records localities originated from museum records and the rest from

field studies (Edwards, 2004; Boitani et al., 2011). We downloaded all records stored by
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GBIF for the water vole on January 12" 2018, resulting in 6,676 records from three countries
(Spain, Portugal and France). We selected only the 5,567 records from peninsular Spain, in
order to compare them with the data obtained from the systematic Spanish survey. We further
excluded records that did not have geographical coordinates (X, y), had location errors (i.e.
records at sea) and repeated geographical coordinates. We also excluded the observations of
the systematic survey (see below) which are also available in GBIF. In total 1,134 records
were eliminated. After these different filtering, the GBIF data contained 4,433 records that

represented 1,968 positive UTM grid cells (Figure 1a, c).

The survey data were generated through a citizen-science based systematic survey,
designed specifically to identify the presence of the species (Roman, 2010). The survey used
UTM 10x10 km cells as spatial sampling units and selected for sampling 1000 cells regularly
distributed across peninsular Spain. Cells were assigned to local teams that were previously
trained in the identification of water vole signs and tracks through different one-day
workshops carried out across Spain. Surveyors visited 3 points within each cell, chosen due to
the existence of a priori favorable habitat (i.e. rivers, wetlands or any type of aquatic system
with abundant herbaceous vegetation, flood-prone meadows). Any given cell was considered
positive if the water vole was detected in any of the 3 visited points, and negative otherwise.
The survey involved visits to 2914 points, the water vole being detected in 1018 of them

(Figure 1b), resulting in 587 positive UTM 10x10 km cells (Figure 1d).
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Figure 1: Records (above) and UTM 10x10 km cells (bellow) with presence of the water vole
(Arvicola sapidus) using data obtained from GBIF (left) and the Spanish water vole survey

(right).

Range maps

Range construction for both the GBIF and Survey datasets was done by using the
centroid of the UTM 10x10 km cells containing at least one water vole record as the
geographical point of reference. We used two methods for range building, the adaptive Local
Convex Hull (a-LoCoH; Getz, et al., 2007) and Kernel Density Estimation (KDE; Worton,
1989) (Figure 2).

KDE algorithm requires the selection of a bandwidth parameter (h), a free parameter that
affects the resulting range estimate. The bandwidth determines the relationship between the
distance of a used location from an evaluation point and the contribution of the location to the
density estimate at that point. We estimated the bandwidth through Maximum Likelihood
Cross-Validation (CVh, Habbema et al., 1974; Horne and Garton, 2006). We applied
“npudens” function of the np R package, which uses the method of Li and Racine (2003) to
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obtain the kernel density function. We obtained range maps applying a thin plate splines
(TPS) model (Donato and Belongie, 2002) to the weighted density of observations. TPS are a
spline-based technique for data interpolation and smoothing. We created one threshold that
allows cutting the records density map. The value assigned to TPS was 0%, i.e., the zero

value included all observations within the estimated distribution range.

The a-LoCoH algorithm was developed by Getz et al. (2007) and is based on the
construction of small convex hulls for each record and its neighbors. Convex hulls are merged
together from smallest to largest and are ordered from the smallest to the largest. The a-
LoCoH uses all points within a variable sphere around a root point such that the sum of the
distances between these points and the root point is less than or equal to the a parameter, the
value of which must be selected. We obtained the parameter using the Minimum Spurious

Hole Covering (MSHC) rule (Getz and Wilmers, 2004; Getz et al., 2007).

GBIF data Survey data

KDE

a-LoCoH

d)
Figure 2: Range maps of Arvicola sapidus obtained using the KDE (above) and a-LoCoH

(bellow) algorithms from GBIF (left) and survey (right) databases.
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Commission and omission errors

We evaluated commission and omission errors in the representation of the water vole
range using the maps resulting from the water vole survey as ground truth (Table 1). The
survey data might contain errors, resulting in both false presences and false absences, but we
assumed that the probability of these errors would be low due to the narrow focus of the water
vole survey and the specific formation of the surveyors (Roman, 2010; Peralta et al., 2016).
We thus considered commission errors as those included in the water vole range when
analyzing GBIF data but not when using survey data and omission errors as areas not
included in the water vole range when using GBIF data but included when using the survey
data (Table 1). Both commission and omission errors were quantified in terms of UTM cells
within each one of these error categories. We hypothesized that commission errors could
occur due to taxonomic errors and/or due to actual temporal changes in the presence of the
species, while omission errors could result from spatial heterogeneity in sampling effort,
which in turn, can be described using the total amount of information available for any

species (i.e. sampling effort) and/or from taxonomic errors.

We analyzed the occurrence of commission and omission errors using binary logistic
regression models and a link logit (McCullagh and Nelder, 1989). For each geographic
method (KDE and a-LoCoH), we had the 10 Km UTM squares classified according to Table
1. In order to evaluate the commission errors, the response variable took value 1 when the
grid cells belonged to commission errors and value 0 when they belonged to concordant area;
and to evaluate the omission errors, the response variable took value 1 when the grids
belonged to omission errors and value 0 when they belonged to concordant area. The
explanatory variables used in the regression models to explain the discordance between

distribution ranges are associated to multiple processes among which we have considered:

1) Taxonomic errors, which cause the distribution range to consider the presence of the
species in an area where it is really absent and vice versa. We considered that rodent species
that might be involved in the misidentification of the water vole, either through signs or direct
observations were Rattus norvegicus, Microtus cabrerae, Microtus agrestis and Arvicola
terrestris/shermann. We downloaded GBIF records for these species and counted the number

of species present in each UTM cell, resulting in a count ranging from 0 to 4.

118



CHAPTER IV

2) Sampling effort, we downloaded all the records of mammals in peninsular Spain and
counted the number of records in 10 x 10 UTM squares, as an indicator of total sampling

effort. The explanatory variable that represents the sampling effort is designated COUNT.

3) Predation by invasive exotic species, which could produce changes in the distribution
range of the water vole as has been shown for Arvicola terrestris in other areas. Here we
evaluate the specific case of Neovison vison (Aars et al., 2001), considering that the presence
of at least one GBIF record in a grid corresponded to a presence grid and took value 1, when

it did not record data, the grid was assigned the value 0.vison

The models were constructed and adjusted by estimation of maximum likelihood of the
regression parameters using the "glm" function of R version 3.3.2 (R Development Core

Team, 2017).

Table 1: contingency matrix to record commission and omission errors through the

comparison of the water vole ranges constructed through information sources from GBIF and

survey data.
Survey data
Presence Absence
Presence Concordant Commission errors
GBIF data Absence Omission errors Empty
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Figure 3: Concordant and discordant areas of water vole using the KDE (above) and a-
LoCoH (bellow) algorithms with the GBIF and survey data. (a, d) Concordant ranges between

GBIF and survey data, (b, ¢) Commission errors and, (c, f) omission error (see Table 1).

RESULTS
Range maps

The KDE method generated larger water vole range areas with respect to the a-LoCoH
method for both data sources. Range areas constructed using the survey data were consistently
larger than those obtained based on GBIF data (Table 2). The larger size of the range based on
the survey data is surprising due to the smaller number of positive cells in this dataset (587)
than in the GBIF data (1968), indicating a more heterogeneous spatial distribution of

observations in the GBIF dataset. Both methods generated unfragmented ranges.
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Table 2: Description of the distribution ranges resulting from the two geographic methods

(KDE and a-LoCoH) by the two data source (GBIF and survey)

Range area (Km”) Concordant area (Km?)
GBIF Survey
KDE 439,548.5 477,049.5 423,976.1
a-LoCoH 398,629.8 402,067.9 325,427.4

The percentage of concordant area between the ranges generated from the two databases
and for both geographic methods was high. The percentage of coincident area when using the
KDE algorithm was 96.4% and 88.9% for GBIF and survey data, respectively, while with the
a-LoCoH algorithm these figures were 81.6% and 80.9% (Table 2).

Commission and omission errors

We evaluated the discordant area for both geographical methods (KDE and a-LoCoH
respectively) and we obtained a size of 15,572.4 and 73,202.4 km’ (3.6 and 18.4 %
commission errors) for the GBIF data and, 53,073.4 and 76,640.5 km2 (18.4 and 19.1%
omission errors) with the survey data (Figure 3). The number of discordant cells was much
higher when using the a-LoCoH method than that obtained with the KDE method (Table 3).
While omission errors were around three times more common than commission ones when
ranges had been constructed using KDE, both types of errors were approximately as common
when using the a-LoCoH (Table 3). Cells not included in any of the distribution ranges were

excluded from the regression analyses (Table 3).

Table 3: Number of cells and percentage associated with the concordant and discordant areas
between the two species information sources (GBIF and survey) for a-LoCoH and KDE
algorithms. Percentages were calculated in reference to the 5314 UTM 10km cells in

peninsular Spain.
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a-LoCoH KDE

Concordant range 3687 (69.4%) 4573 (86.1%)
Commission 738 (13.9%) 184 (3.5%)
Omission 659 (12.4%) 548 (10.3%)
Empty 230 (4.3%) 9 (0.02%)

The models that best explained the probability of incurring in errors where those that
included all the explanatory variables, bith for commission (i.e. taxonomic errors and
predation) and omission (i.e. taxonomic errors and sampling effort) errors. When we
evaluated the commission errors obtained with the KDE method, the models showed that the
probability of incurring in commission errors increased in areas where there are many species
of rodents that can be confused with the southern water vole. When we used the a-LoCoH
method, the probability of incurring commission errors was related to the existence of species
of rodents that can be confused with the southern water vole and predation by American
mink, which is driving the decline and range contraction of the water vole. When we
evaluated omission errors with the KDE method, the probability of incurring in omission
errors increased in areas with little GBIF information (i.e. small sampling effort) and the
existence of rodents easily confused with the study species. The omission errors generated
with the a-LoCoH method increased mainly due to the lack of sampling effort and, to a lesser

extent, by the existence of species easily confused with the southern water vole (Table 4).

Table 4: Results of regression analyses based on binomial logistic regression models (GLM)
to explore the effect of taxonomic errors and predation on the discordant distribution ranges
with GBIF data respect to survey data and the effect of taxonomic errors and sampling effort
on the discordant distribution ranges of the survey data with respect to GBIF data. We report
the coefficient estimate and its standard error [B (SE)] for all variables and the Akaike

Information Criterion (AIC) of each model for comparison.
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Model B (SE) Model
comparison
Predation Sampling effort =~ Taxonomic error AlIC

COMMISSION - KDE (N=4757)
Predation -15.47 (292.286) - - 1520.1
Taxonomic error - - 0.80 (0.097)*** 1495.7
Pred + Tax -16.64 (471.094) - 0.85 (0.096)*** 1447.6
COMMISSION - a-LoCoH (N=4425)
Predation -1.28 (0.196)*** - - 39334
Taxonomic error - - 0.92 (0.058)*** 3724.9
Pred + Tax -1.55 (0.200)*** - 0.98 (0.058)*** 3638.8
OMISSION - KDE (N=5121)

Sampling effort - -0.04 (0.003)*** - 3146.2
Taxonomic error - - -0.31 (0.069)*** 3467.5
Sam + Tax - -0.05 (0.003)***  0.47 (0.087)*** 31195
OMISSION - a-LoCoH (N= 4346)

Sampling effort - -0.03 (0.002)*** - 3442.9
Taxonomic error - - -0.58 (0.070)*** 3630.3
Sam + Tax - -0.03 (0.003)*** -0.14 (0.080) - 3442.1

**¥p<0.001; **p<0.01; *p<0.05; -p<0.1

DISCUSSION

Range maps provide important information on the properties of critical elements of
biogeographical, large-scale ecology and biodiversity conservation studies. In our case, range
maps represent the actual and most current distribution range of the studied species, and
omission errors have relatively small, although significant, effects on the estimated range,
particularly in certain geographic areas. On the other hand, the fit between the range maps
suggests a strong variation, and the geographical variation is parallel to the bias observed for
the research efforts and the ecological observations (Martin et al., 2012). This measures of
range accuracy that may be useful for future research using the southern water vole range
maps as baseline data, and demonstrates a need for greater investment in the continuous

update and improvement of the data necessary to generate the distribution ranges.
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A general characterization of the data showed that the GBIF data provide more amount of
information along with a more heterogeneous distribution, causing a strong spatial bias, with
areas with lots of coverage while others have no observations. Nevertheless, GBIF is
configured within the framework of a platform where a large amount of spatial information
accumulates over time (Boitani et al., 2011). The survey data includes only recent data (data
of the year in which the survey was conducted) and a more homogeneous distribution
throughout the peninsular Spain. Direct field sampling provides full coverage of the species
distribution reducing the spatial bias. Nevertheless, this type of sampling is rarely feasible
over large spatial scales, as it would require significant resources and time (Meyer et al.,
2016), but the use of this data and particularly those from specific samplings in areas of low
data coverage, even on a small scale, could be used to improve or refine ranges on a global

scale.

The analysis of range maps involved several steps that could explain some of the
observed errors (Chanson et al., 2008). In agreement with previous studies (Hurlbert and
Jetz, 2007; Canta-Salazar and Gaston, 2013), we found that range maps contained errors,
being the omission error rates higher than the commission error rates. This was unexpected
since range maps are considered much more prone to range overestimation than to
underestimation (Rondinini et al., 2006), even though other studies had also found non-trivial
levels of omission errors in range maps (Beresford et al., 2011, Cantt-Salazar and
Gaston, 2013). Omission errors may result from an underestimation of species' range
extension (Canti-Salazar and Gaston, 2013). In our analysis, omission errors are due to areas
where there is little GBIF data (unequal sampling effort). The accuracy of the ranges reflects
the bias towards better sampled regions with easier access to information (Martin et
al., 2012). The accumulation of information over time (GBIF data) often does not necessarily
serve to overcome the biases (in this case, spatial) (Meyer et al., 2016) of the sources of
information, but it can make lose the temporal dynamics of the distributions, as happens with
the disappearance of the southern water vole in the areas where the American mink has
arrived. The rapid expansion of this invasive exotic species is threatening the survival of the
southern water vole and the patterns found throughout the distribution areas they show this
fact by producing a decrease in their distribution area that is starting in the NE of peninsular
Spain. The loss of temporal dynamics happens not only because of how GBIF accumulates

the data temporarily, but because some data providers themselves give the data in blocks
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without temporal information, giving only the year in which this information is added. As
occurs with some museum data, sometimes the data provided covers long periods of
information that is not properly metadated. Although these platforms are making a great effort
to encompass all biodiversity information on a global scale, both users and providers should
be cautious and careful with the detail of the information used and provided if we want it to

be useful for future research.

The concordant areas can be interpreted as a good approximation of the real area
presence of the species, given the high percentage of overlap of the areas generated with
different sources of primary information and methods. In spite of obtaining large concordant
areas, the identification of the causes that lead to omission and commission errors, make clear
that we need data workflows with integrated feedback loops and analysis of the places lacking
information or with low sampling effort to determine where the efforts are sufficient and

where additional data should be collected (Kissling et al., 2017).

The lack of sampling effort arises not only because the data do not exist or are not
accessible, but because of low detectability (Ruete, 2015). This is of particular relevance in
the case of time-explicit data, which are fundamental to understanding the trends of
biodiversity, and where the only way to fill in the gaps is to make data recognizable (Mihoub
et al,, 2017). The availability of standardized and complete metadata when providing
information on the basic characteristics of the data, including taxonomic, spatio-temporal
information, as well as methodology, is very important too. Such metadata allow a for a rapid
assessment of the quality of the data and the aptitude for its intended use. The improvement of
metadata can act as an interim solution in cases where there are difficulties in avoiding full
access to data. Conservation actions and strategies require data of sufficient quality. These
data must have a minimal geographical, taxonomic and temporal resolution (Westgate et al.,
2013). Without such data, inappropriate actions in conservation management become more
likely. In the absence of these data, at least the interpretation of such data should be made
considering the influence of possible errors on the distribution maps. We emphasize that
efforts are required to increase the spatial uniformity of the sampling effort and, that data
providers must put all available detail and possible care to allow for making the most out of

their data.
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This thesis documents the knowledge, construction, analysis and evaluation of the
complex spatial and temporal patterns in which individual organisms are distributed on the
Earth's surface and provides important information on the properties of these data. The update
and continuous improvement of distribution range maps deepens our knowledge on the
distribution of species and this is desirable when seeking to guide decisions on priority
conservation actions based on threat levels. (Ficetola et al., 2013; Di Marco et al., 2013). Each
of the four chapters of this thesis provides an exhaustive discussion of the relevant issues, so
this final section represents a synthetic effort to integrate its main findings into a macro-

ecological framework.

Defining species distribution ranges

The process of constructing a species distribution range begins with the definition of the
range. This definition must be clear and concise and is essential for the subsequent selection
of the geographic algorithm that best suits the purpose of the research (Rios-Pena et al.,
Chapter 1). The different methodologies used in the construction of distribution ranges
produce different distribution range maps for the same pattern of spatial data, highlighting the
importance of considering the benefits and shortcomings of the method used to create the
maps. Nowadays, the efforts to do comparative, and especially quantitative, research are
complicated by problems of defining and mapping distribution ranges (Brown et al., 1996;
Graham and Hijmans, 2006). This is therefore a priority objective to be pursued by the

scientific community in future research.

To construct species' ranges, researchers often use georeferenced records available in
global databases. These databases suffer from gaps in data coverage and spatial, taxonomic
and species-level biases (Ficetola et al., 2014; Meyer et al., 2016). The quality of the available
information is not homogeneous among species, nor is species that lack information randomly
distributed among families and regions. Heterogeneity in data availability and quality is a
serious constraint to generating unbiased distribution ranges. The quantity and quality of data
must also be explicit in order to recognize the limitations of the chosen method (Rios-Pena et
al., in prep-chapter 2). Our study shows that a correct estimation of distribution ranges

requires good quality data. To this end, we must apply substantial amounts of taxonomic
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knowledge, time and funding to collect, verify and clean up public databases. Users should
carefully clean the datasets before using them by conservatively eliminating poorly annotated
records and records that may be misplaced (Ficetola et al., 2015). It is necessary to establish
standardized criteria with minimum levels in the quantity and quality of information to

facilitate the use of the distribution ranges.

Characterization of the information used to construct range maps

Three components have been explored to understand how the quality of data in
biodiversity databases affects the construction of distribution ranges using geographic
algorithms: data quantity, spatial bias and the presence of errors. The amount of information
is a very limiting factor and therefore it is necessary to set a minimum number of observations
from which we believe it is possible to generate a distribution range. Throughout this thesis,
the minimum value for the analyses was 10 records per species, but a much higher number is
required to improve the estimates. The only thing we can do when there is no or few data
available is to go out and collect it. We can minimize the impact of spatial biases in sampling
effort by resampling data in oversampled areas, and that of errors by carefully crosschecking
the data and by removing a fraction of extreme observations (Rios-Pena et al., Chapter 2).

In general, when data are distributed randomly or uniformly, the accuracy of all
geographic algorithms improves with sample size. Data from uniform or unbiased random
sampling are rare or non-existent for most regions and species (Gaston and Rodrigues, 2003;
Rocchini et al., 2011). Heterogeneity of sampling effort induces a bias that may affect the
estimation of ranges (Meyer et al., 2016; Pimm et al., 2014). This type of bias significantly
decreases the sensitivity of all methods, especially when the range is irregular or fragmented.
This means that distribution ranges generated with currently available data leave undetected
areas where focal species are present. The existence of spatial biases in the data prevents the
detection of complete ranges, making it necessary to substantially increase the sample size to
improve estimates (Boitani et al., 2011; Burgman and Fox, 2003). Spatial biases in species
records are relevant in GBIF and other global data sources because heterogeneous factors
such as human population density, access to technology, the presence of a well-developed

transport system or the availability of funds can affect their collection, storage and
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mobilization. (Beck et al., 2013). At this point, it is important to work to characterize and, if
possible, reduce the presence of spatial biases in data repositories (Canti-Salazar y Gaston,
2013; Beck et al., 2013; 2014).

Spatial errors are another widespread problem in biodiversity databases (Maldonado et
al., 2015). They can be generated in many ways and at any point in the data lifecycle.
However, it is very difficult to obtain precise overall estimates of the importance of this
problem. The presence of errors affects the performance of geographic algorithms, with the
main disadvantage being the overestimation of the distribution ranges (Getz y Wilmers, 2004;
Burgman y Fox, 2003). The reliability of the intervals obtained depends to a large extent on
the quantification and control of spatial errors in the information sources. When the data
contain errors and the sampling effort is spatially biased, there is a substantial deterioration in
Type | error rates that increase with sample size. A possible way to reduce the impact of
spatial errors is to exclude extreme values from the data set. The exclusion of extreme records
before building ranges reasonably helps to improve the accuracy of algorithms for
reproducing reference ranges, especially by reducing the Type | error rate, but does not
qualitatively affect the overall performance of the different geographic algorithms (Rios-Pena
et al., Chapter 2).

Based on actual data, there is no single best method for sensitivity, type | error rate and
range fragmentation (Guillera-Arroita et al., 2015; Qiao et al., 2015; Diniz-Filho et al., 2015).
Depending on our objectives and the quantity and quality of the available data, some
geographic algorithms should be preferred to others. All geographic algorithms show good
behaviour in terms of sensitivity, even with low sample sizes. In most cases, this is at a high
cost in the Type | error rate, including large areas where the species may not be present. More
importantly, not all methods behave adequately in their Type | error rate with increasing
sample size and should therefore be avoided (Rios-Pena et al., Chapter 2). Range
fragmentation is the most difficult property to reproduce. We must be aware of the
requirements and limitations of the different geographical algorithms to estimate distribution
ranges according to the type of data and the research question we want to address and,
consequently, select the one that best suits our needs. Finally, in all cases we must be

transparent with the data and the method used.
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Systematic mapping of distribution ranges

Our study and evaluation for the production of systematically generated range maps for
the order of carnivores provides important information on the possibilities of implementing
such approaches for other biological groups (Rios-Pena et al., Chapter 3). On the one hand,
there is a fairly high correspondence between the ranges obtained through geographic
algorithms (study conducted with KDE and a-LoCoH methods) and those provided by IUCN,
suggesting that systematically generated range maps provide a reasonable and useful
description of the species distribution. On the other hand, there was a large geographical
variation in the fit between maps generated with geographical algorithms and those of IUCN,
which is parallel to the overall bias observed for research efforts and ecological observations
(Martin et al., 2012). This thesis demonstrated the urgent need for increased investment to
update, improve and supplement information sources, particularly in the particularly rich
areas of Asia, Africa and South America (Rios-Pena et al., Chapter 3). This improvement in
the sources of information would allow us to obtain distribution ranges in a more systematic
way. Its main advantages would be more transparent analysis of more coherent data; be
explicitly goal-oriented; and combine two forms of flexibility, namely, opportunities to
change data and objectives, and opportunities to assess options for achieving the objectives
(Pressey and Cowling, 2001; Cowling et al., 2003; Meyer et al., 2015).

Systematic vs. non-systematic sampling

For the specific case of Arvicola sapidus in peninsular Spain, the information for the
focal species was obtained through GBIF and a homogeneous systematic sampling throughout
peninsular Spain. GBIF provided more information, but more heterogeneously distributed in
space, causing a strong spatial bias, with areas of high coverage while others had no
observations. In addition, GBIF is configured within the framework of a platform on which a
large amount of spatial information is accumulated over time (Boitani et al., 2011). The
accumulation of information over time often does not necessarily serve to overcome biases, in
this case spatial, of information sources (Meyer et al., 2016), but it can cause the temporal
dynamics of distributions to be lost. Although these platforms are making a great effort to

cover all biodiversity information on a global scale, the citizen scientists and administrations
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that are data providers of the platforms need to be cautious and careful with the detail of the
information used and provided if it is to be useful for future research. Survey data included
only recent data (data from the year the survey was conducted) and had a more homogeneous
distribution throughout the peninsula, reducing spatial bias in the estimation of Arvicola
distribution However, this type of sampling is rarely feasible at large spatial scales, as it
would require significant resources and time (Meyer et al., 2016), but the use of these data,
and particularly those from specific sampling in areas of low data coverage, even at small

scales, should be used to improve or refine ranges at global scales.

The analysis of overlapping distribution ranges built with KDE and a-LoCoH algorithms
through systematic and non-systematic sampling showed that the concordant areas can be
interpreted as a good approximation of the real presence of the species' area (Rios-Pena et al.,
in prep-chapter 4). The identification of the causes leading to errors of omission and
commission, in turn, makes it clear once again that we need data workflows with integrated
feedback loops and analyses of missing or under-sampled sites to determine where efforts are
sufficient and where additional data should be collected (Rios-Pena et al., Chapter 4). The
lack of sampling effort is due not only to the fact that the data do not exist or are not
accessible, but also to the low detectability (Ruete, 2015). This is particularly relevant in the
case of time-sensitive data, which are fundamental to understanding biodiversity trends, and
where the only way to fill the gaps is to make the data recognizable (Mihoub et al., 2017).
Conservation actions and strategies require data of sufficient quality. These data must have a
minimum geographic, taxonomic and temporal resolution (Westgate et al., 2013). Without
this type of data, inappropriate actions in conservation management are more likely. In the
absence of these data, at least the interpretation of these data should take into account the

influence of possible errors in the distribution maps (Kissling et al., 2017).

Synthesis

In this thesis we have shown that, the scientific literature often overlook to make an
explicit interpretation of the distribution range concept, causing serious difficulties in the
description of the patterns related to species distributions. There are many geographical
algorithms to generate distribution ranges from occurrence data but they are rarely used for
this purpose, and it is more common to use the distribution maps provided by the IUCN Red
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List. But reported macro-ecological patterns may depend on the characteristics of the
distribution ranges used as baseline data, which are, in turn, dependent of the methodologies
used, even when working with well-studied taxonomic groups such as terrestrial mammals.
We attribute the differences observed in size, shape and geographical location derived
primarily from the precautionary principle that underpins the IUCN expert maps and makes
them relatively sensitive to geographical variation in the sampling effort, which is common in
most parts of the world. Finally, we urge caution in the process of defining, using data and
building range maps. We provide a systematic tool for the construction of species distribution
ranges in order to allow for comparisons between species distribution maps, since there is no
geographic algorithm that works best, but everything will depend on the research question we
want to answer.
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