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Plant survival monitoring with UAVs and multispectral data in difficult access 

afforested areas 

  

Water supply devices enable afforestation in dry climates and on poor lands with generally 

high success rates. Previous survival analyses have been based on the direct observation of 

each individual plant in the field, which entails considerable effort and costs. This study 

provides a low-cost method to discriminate between live and dead plants in afforestations 

that can efficiently replace traditional field inspections through the use of UAVs equipped 

with RGB and NIR sensors. The method combines the use of a conventional camera with an 

identical camera modified to record the NIR channel. Survival analysis was performed with 

digital image processing techniques based on calculated indices associated with plant vigour 

and PCA-based decorrelation. The method yielded results with high global accuracy rates 

(~96.2%) with a minimum percentage of doubtful plants, even in young plantations 

(seedlings < 30 cm tall). The procedure could be particularly useful in hazardous areas. 
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1 Introduction  

 

Afforestation is one of the most studied and widely used methods for combating the effects of 

climate change (García-Valdés et al. 2015). However, the afforestation of arid or degraded areas 

faces many challenges, such as the exposure of new plantations to water- and temperature-related 

stresses. Extreme temperatures, low relative humidity, high evaporation and strong winds are 

common in degraded areas. Plants must recover from the potential stress experienced during 

handling and establish root contact with the soil to resume vital functions of water and nutrient 

absorption in the new environment (Haase & Rose 1993). Irrigation systems and/or alternative 

systems (plant protectors, hydrogels, pads, etc.) that provide water to the new plants and protect 

them from extreme temperature are commonly used to increase plant survival rates during early 

growth stages. The comparison of irrigation systems from a cost-efficiency perspective has been 

widely studied in works such as those of Bainbridge, 2002 and Tang, Folmer and Xue, 2015. 

However, irrigation is almost always economically unviable in forest restoration projects. 

 

The Waterboxx system (Groasis, Netherlands), consists of a container that serves as a water reservoir 

and provides housing for the seedlings inside (Fig. 1). The water stored in the tank provides thermal 

protection to the plant and acts as a buffer against high daytime temperatures and possible night 

frosts. This system is designed to collect rainwater and condensation from nocturnal dew, providing 

a constant moisture supply to the plant (Marcos-Robles et al. 2013). This type of device offers a 

viable approach to adapting forest crops to the conditions in degraded lands to improve plantation 
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success. The Waterboxx system (www.groasis.com) is supported by experimental results in different 

regions (Del Campo et al. 2013; Liu et al. 2014). Climate change has made such devices receive 

increasing attention and interest for afforestation in dry climates or poor lands. 

 

Fig. 1. Waterboxx device. Courtesy of Groasis. 

 

Plant survival analysis is traditionally performed through systematic sampling (Johnson et al. 2008). 

This method is based on field observation, in which approximately 5% of the plants are inspected, 

starting from a randomly selected point and following a certain pattern. The phenological status of 

each plant is recorded individually, and each sample is georeferenced with a GPS to create a 

locational inventory of all monitored plants. Annual monitoring should be planned for the first few 

years. The main problem with the traditional method, apart from the laboriousness entailed, is that 

checking only a sample of plants does not provide knowledge of the total number of plants that must 

be replenished. Systematic field sampling is expensive and complex in areas of complicated 

topography, those that are difficult to access and those with extreme environmental conditions. 
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The use of unmanned aerial vehicles (UAVs) is especially popular for forest monitoring and 

management (Perea-Moreno et al. 2016). These aerial platforms allow sensors or data capture 

devices to be elevated to a predetermined altitude (Eisenbeiß 2009). The spatial resolution of images 

(i.e., ground sample distance, GSD) is a function of mainly the height of the flight platform above 

the ground and the focal length of the camera. An adequate combination of both parameters can 

provide very high spatial resolution data that enable identification of even small trees and seedlings. 

Studies such as Mesas-Carrascosa et al. 2015 focus on the establishment of an optimal balance 

between spatial resolution and spectral discrimination as a requirement to optimize the mission 

planning and image processing to achieve every plant analysis objective. 

 

In addition to the flight platform itself, the type of sensor used is key in monitoring studies. 

Vegetation has a unique spectral signature that enables it to be readily distinguished from other types 

of coverage in multispectral images. In particular, NIR information can be very helpful for 

discriminating smaller plants from the background due to the high reflectance of vegetation in this 

spectral region. Multispectral image processing has been widely used in vegetation analysis and 

classification through the use of indices (Agapiou et al. 2012). The Normalized Difference 

Vegetation Index (NDVI) (Tucker 1979) is the most widely used index in multispectral remote 

sensing research for detecting and quantifying vegetation (Lloret et al. 2007; Cristiano et al. 2014; 

Helman et al. 2015). The Soil-Adjusted Vegetation Index (SAVI) was proposed by Huete (1988) to 

minimize the effects of soil background on the quantification of greenness by incorporating a soil 

adjustment factor into the basic NDVI formula. The SAVI and its variants, such as L-SAVI, are 

typically used in arid zones (Zhou 2014), decreasing the NDVI variability in which the same value 

of NDVI could correspond to vigorous but sparse cover or to dense but low-vitality cover. All these 
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indices are based on the red (R) and near-infrared (NIR) spectral domains. By contrast, indices using 

the green (G) band are indicators of active chlorophyll production, which is related to leaf nitrogen 

concentration (Salamí et al. 2014). The Green Normalized Difference Vegetation Index (G-NDVI) 

is probably the most widely used within this category and is less influenced by factors other than 

chlorophyll (Hunt et al. 2005). Compared with the NDVI, the G-NDVI is sensitive to plant pigment 

concentration and can be discriminatory in young plants or plants with little vegetative development, 

such as those in the present study. The maximum sensitivity of the G-NDVI was demonstrated to 

occur from 520 nm to 630 nm (Gitelson & Merzlyak 1997). 

Studies such as that by Gnädinger and Schmidhalter (2017) confirm the validity of the simplest 

digital techniques, including contrast enhancement for counting crops, obtaining a close correlation 

between in situ and image-based plant counts. In addition, spatial contrasts can be softened or 

reinforced by filtering techniques. Since high frequencies are associated with sharp changes in 

density, high-pass filters improve edge detection by reinforcing contrast (Chuvieco et al. 2002). The 

use of the Sobel filter (Sobel & Feldman 1973), focused on pixel-to-pixel intensity differences, can 

aid in the detection of contours. Huete and Jackson (1987), Singh and Singh (2011), and Li and Shao 

(2014) suggest that principal component analysis (PCA) transformation can significantly improve 

vegetation signal extraction compared with various vegetation indices. One of the most effective 

enhancements in aerial images with high correlation between bands is the PCA-based "decorrelation 

stretch" (Gillespie et al. 1986). 

To replace field inspections and to increase the efficiency of afforestations, we present a method to 

identify live plants in Waterboxx plantations from images captured by airborne sensors and image 

processing techniques. This method is especially useful in areas that are difficult to access, enabling 

the detection and georeferencing of possible gaps to replace and fill them. 
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2 Materials and methods 

 

2.1  Study site description 

 

The monitoring study was performed in approximately 0.50 ha of the total 13.70 ha reforested in the 

Ski Resort of San Isidro (43°2'N, 5°23'W, altitude 1,756 MAMSL) within the Provincial Council of 

León (Spain). The area has a steep slope and an unstable sandy soil with abundant loose rocks. 

Following the landscape criteria, the plot has been planted with various species of both conifers and 

hardwoods in Waterboxx devices: Pinus sylvestris (Scots pine), Betula pendula (birch) and Sorbus 

aucuparia (rowan). In some cases, two species were planted in the same Waterboxx device (Fig. 2a). 

During pre-field inspection, some dead plants were observed (Fig. 2b), and the average plant height 

at the time of the flight never exceeded 60 cm. 

 

Fig. 2. Waterboxx device with a) two seedlings (pine and rowan) and b) a dead plant (gap). 
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2.2 Flight campaign 

 

The flight campaign was conducted in the summer of 2015 using a vertical take-off and landing 

(VTOL) rotating-wing UAV with 8 rotors. The UFOCAMXXL V3 MikroKopter 

(www.mikrokopter.de) (Fig. 3a) with 2.5 kg of payload was used. For this experiment, the UAV was 

equipped with a specially designed gimbal that supported two cameras taking synchronized shots 

(Fig. 3b): two conventional Olympus (www.olympus-global.com) PEN E-P1 mirrorless cameras 

with 12.3 megapixels (4,032 x 3,024) and Live MOS sensor. One of the cameras was modified with 

a high-pass filter that cut at 720 nm instead of the original camera’s low pass filter. The new filter 

blocked the visible spectrum recorded by the CCD and enabled the capture of the NIR channel 

(Lehmann et al. 2015). Both cameras employed M. Zuiko Digital ED 12 mm f/2 lenses. As its sensor 

is an Olympus micro 4/3 sensor, the lens is equivalent to approximately 24 mm in a full-format 

camera. The total cost of this dual-camera system does not exceed $1,000 (including modification 

of the camera and adaptation of the gimbal). However, the market offers fully integrated 

multispectral systems that are increasingly affordable. The ground control station and the UAV were 

radio linked, transmitting altitude, position and status data, although the UAV is controlled by an 

autopilot for fully autonomous flights. The MikroKopter MK Tool control software allowed precise 

flight path planning with waypoints for the optimal definition of the passes. 
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Fig. 3. a) Octocopter UFOCAMXXL8 V3. b) Special gimbal adapter for the two Olympus E-P1 

cameras (RGB and modified for NIR) and c) camera positions, image overlap and GCPs 

distribution. 

 

The flight was performed at an altitude of 109 m, and 201 high-resolution images of the plot (Fig. 

3c) with each of the cameras and with overlaps (40% across the flight direction and 70% along the 

flight direction) were obtained. A Leica SR530 RTK GPS (3 mm + 1 ppm in static mode) was used 

to take 11 ground control points (GCPs) of predefined identifiable points in the photographs for 

subsequent geometric correction and georeferencing of the plot mosaics. Although several studies 

have thoroughly discussed this issue (Tonkin & Midgley, 2016 and Agüera-Vega, Carvajal-Ramírez 

and Martínez-Carricondo 2016), there is no distinct, accepted criterion for establishing the number 

of GCPs. The choice depends largely on the size of the area, among other factors. The results 

obtained by Agüera-Vega et al. 2016 in a 17.64 ha test field suggest that DSM and orthoimage 

generation with 15 GCPs yielded optimal horizontal and vertical accuracy. Accordingly, we have 

tried to use an equivalent GCP density (approx. 0.8 GCPs/ha). 
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2.3 Orthoimage generation 

 

The flight images from each camera were used to generate the corresponding orthomosaics (RGB 

and NIR) using a PC with a 2.80 GHz Intel Core i7-7700HQ, 32 GB RAM, NVIDIA GeForce GTX 

1070 8 GB and running PhotoScan Professional Edition version 1.4.1. (Agisoft LLC, Russia). This 

automated image correlation (AIC) software performed the processes of (1) automatic aerial 

triangulation, (2) bundle block adjustment and (3) orthomosaic creation. The structure from motion 

(SfM) computation enabled automatic image alignment, calibration and reconstruction of three-

dimensional scene geometry and camera motion parameters. The program detected image feature 

points (i.e., geometrical similarities such as object edges or other specific details). The three phases 

of the process were automated, only requiring the introduction of GCPs at the end of phase (1). A 

total of 11 GPS points identifiable in several photographs were required to ensure the accuracy of the 

results and the correct fit of spectral bands between the two shots. All steps of the workflow were set 

at "very high" input to ensure the maximum resolution possible. The Waterboxx devices selected for 

method validation were located in the orthomosaic and labelled in a vector layer for identification in 

the following steps. 

 

2.4 Image post-processing 

 

To work with the data from both cameras, the resulting orthoimages were integrated with Geomatica 

software (PCI-Geomatics, Canada) to obtain a single file with the blue (B), G, R and NIR bands. 

The use of precise GCPs in the orthoimage generation process ensured an accurate overlap between 

the visible and NIR channels in the resulting multispectral image. With these data, digital treatments 

were performed to improve certain image characteristics that enabled the discrimination of live and 
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dead plants. Following previous studies (Hunt et al. 2005; Zhou 2014; Helman et al. 2015), the 

vegetation indices NDVI, G-NDVI and SAVI were tested.  

When image channels are highly correlated, conventional enhancements (i.e. independent image 

contrast modifications) are not an effective approach. A general estimation of band correspondence 

can be obtained by simple correlation analysis (correlation matrices or scattergrams). On this basis, 

a contrast enhancement was also performed on the multispectral image via the decorrelation 

procedure. This 3-dimensional procedure used the full range of colours for the display of an image 

with less redundancy and maintained most of the information of the original image. However, when 

the number of image channels N is greater than three, the projection of the N-dimensional data space 

onto the three-dimensional colour space requires selection of a part of the available information to 

reduce the degree of freedom to 3. The first three components of the PC transformation contain the 

major possible proportion of the variance in the original image. Therefore, the N-dimensional 

solution (N > 3) involves PCA. The first three PC channels are linearly transformed, with the three-

dimensional decorrelation balancing their signal-to-noise ratio (SNR's) while maintaining their 

decorrelations. 

Edge-enhancement filters (Sobel-type filters) were tested on the images to verify their usefulness in 

the gap detection process, and in the contour identification of the Waterboxx cover and its central 

aperture. The results obtained by digital treatment of the images were checked in the field to validate 

the proposed method. 

2.5 Survival analysis  

The actual data of the phenological status of each plant were collected from a sample of 132 devices 

using visual field inspection. The status of each device was registered and georeferenced with GPS 
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to create an inventory of all monitored plants. Results are validated comparing image interpretation 

with ground-truth observation to compute categorical verification scores (true/false positives and 

true/false negatives) and the probability of detection, probability of false detection and false alarm 

ratio metrics. 

 

3 Results and discussion  

3.1 Flight campaign and orthoimage generation 

 

The photogrammetric processing of aerial images results in a single fused orthomosaic (RGB and 

NIR bands) covering the study area with a GSD ~2.74 cm pixel-1. The overall RMSE value based 

on GCP (3.523 cm) after the bundle block adjustment, can be considered acceptable for obtaining a 

georeferenced positioning of the water supply devices. 

The lighting conditions during the flight allowed RGB (Fig. 4a) and NIR (Fig. 4b) orthoimages with 

good radiometric quality to be obtained. The overlap between these images was somewhat worse 

than expected due to a slight inclination of the UAV caused by the wind, with a deviation of 

approximately 2 pixels (<4 cm). From the total modelled area of 13.70 ha, a pilot area of 0.50 ha 

was selected for analysis where a total of 132 Waterboxx devices were located. 
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Fig. 4. a) RGB and b) NIR orthomosaics; c) 3D model available at https://skfb.ly/EMqH. 

 

3.2 Image post-processing and survival analysis 

 

A composite image with NIR, R and G channels was created, and the NDVI, G-NDVI and SAVI 

were determined, which greatly improve detection compared to that achieved with conventional 

enhancements based on independent contrast modifications or individual input band “stretches”. 

In radiometric terms, some redundancy was identified in the image information with a multivariate 

statistical analysis (Table 1). The correlation matrix between the four image channels showed a high 

correlation between the channels of the visible spectrum (R, G and B). This fact usually produces 

rather dull colour composites because it is not possible to use the full range of colours in the 

representation. To eliminate this problem and to reduce the dimensionality of the image at the same 

https://skfb.ly/EMqH


-------- This is an accepted version of a paper published in Geocarto International (ISSN: 1010-6049) -------- 

 

13 

 To cite this article: M. L. Gil-Docampo, J. Ortiz-Sanz, S. Martínez-Rodríguez, J. L. Marcos-Robles, M. Arza-

García & L. F. Sánchez-Sastre (2018) Plant survival monitoring with UAVs and multispectral data in difficult access 

afforested areas, Geocarto International, DOI: 10.1080/10106049.2018.1508312 

 

time, a common solution involves PCA transformation. Principal components are not correlated, and 

therefore radiometric differences between spectral responses are enhanced. 

 

Table 1. Correlation matrix of multispectral images. 

 
Blue Green Red NIR 

Blue 1.0000       

Green 0.9930 1.0000     

Red 0.9866 0.9965 1.0000   

NIR 0.7329 0.7597 0.7643 1.0000 

 

 

 

Fig. 5. Comparison between image bands 1 and 2: a) original image scattergram and b) destretched 

image scattergram. 
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Figure 6 shows a comparative example of the digital treatments used on a Waterboxx device in one 

of the most unfavourable cases. The images show how digital enhancements and selected indices 

allowed the detection of spectral plant responses that would not have been possible to identify with 

a real colour image. 

 

Fig. 6. Digital treatments of a doubtful Waterboxx device: a) visible RGB image; b) false-colour 

NIR image; c) SAVI image; d) G-NDVI image; e) PCA-based decorrelation enhancement of the 

image; and f) filter composite (Sobel/Average/Sobel) over NDVI. 

 

Live plants could be identified in the infrared composition (Fig. 6b) in the majority of doubtful cases 

in the real colour image (Fig. 6a). The vegetation indices (Fig. 6c and 6d) together with the PCA-

based decorrelation enhancement (Fig. 6e) offered the best results. The identification of less 
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developed seedlings (10-15 cm tall) with indices associated with the level of vigour (NDVI, G-NDVI 

and SAVI) was more problematic and could cause confusion with dead plants. The differences in 

interpretation among the plant indices tested were not significant. PCA-based transformation 

provided better results for small plants, offering a clear signal for live plants (Fig. 6e). 

The Waterboxx device hindered the identification of plants with little vigour, generating a similar 

spectral response in the central aperture. However, for plants with more foliage (e.g., Betula pendula) 

and larger plants, the uniform reflectivity of the polypropylene flap contrasted with the green colour 

of the leaves and aided identification. The application of Sobel filters to vegetation indices (Fig. 6f 

and 7f) was useful to discriminate between the plant and the central edge of the Waterboxx device. 

However, to improve the effectiveness of this filter, GSD values of less than 2 cm would be required 

to unambiguously identify the water pickup hole of the device. 
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Fig. 7. Digital treatments of a clear positive Waterboxx device: a) visible RGB image; b) false-

colour NIR image; c) SAVI image; d) G-NDVI image; e) PCA-based decorrelation enhancement 

of the image; and f) filter composite (Sobel/Average/Sobel) over NDVI. 

 

Overall, the image analysis allowed the identification of 126 living plants with 6 doubtful cases out 

of 132 Waterboxx devices assessed. The doubtful cases were assumed to be gaps because the spectral 

response was too weak to confirm their survival. The comparison with field inspections of the 

analysed samples showed that 4 doubtful seedlings were gaps (successes), 2 doubtful seedlings were 

alive plants partly covered by vegetation that did not allow the correct identification of the plant in 

the device, and 3 plants considered to be alive were actually false positives (failures). The percentage 

of doubtful plants was 4.5% (6/132), and the global accuracy index (total number of hits/total number 
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of plants analysed) was 96.2% (127/132). Categorical verification scores were calculated from the 

confusion matrix (Table 2) showing agreement and disagreement between image-based prediction 

and observed plant status. The probability of detection (POD) is the percentage of alive plants that 

were correctly identified as alive using processed images. The probability of false detection (POFD) 

is the proportion of dead seedlings that were falsely classified as alive. FAR is the proportion of 

incorrectly predicted alive plants from all devices that were predicted to be alive. 

 

Table 2. Confusion matrix and cross-tabulation-based validation metrics. 

  
Ground truth observation   
Alive Gap (confirmed) 

Image-based 

observation 

Alive  True Positive (TP) 

123/132 

False Positive (FP) 

3/132 

Gap (or doubtful) False Negative (FN) 

2/132 

True Negative (TN) 

4/132     

Metric Formula Computed value Optimal value 

Probability of 

detection 

POD=TP/(TP+FN) 0,984 1 

Probability of false 

detection 

POFD=FP/(FP+TN) 0,429 0 

False alarm ratio FAR= FP/(TP+FP) 0,024 0 

 

 

In doubtful cases, and with less vigorous species or individuals less than 30 cm in height, an increase 

in global accuracy would require lowering the flight altitude to increase precision in the analysis. 

However, when doubtful plants represent a small percentage of the total, reducing the flight altitude 

would be unnecessary due to its negative impact on the performance of the method. 
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4 Conclusions 

 

The proposed method enables the monitoring of plant survival with UAVs in afforestation projects 

employing water storage devices such as Waterboxx. This method provides the georeferencing of 

gaps or possible gaps for their replenishment and provides complete information on the reforested 

plot with greatly reduced field work. The UAV monitoring procedure can be particularly useful in 

hazardous areas that are difficult to access on foot. The flight path must be planned according to the 

particular conditions of the terrain to ensure transversal and longitudinal overlapping and to avoid 

possible balancing problems due to the wind. The combination of a conventional RGB camera with 

a modified camera to capture the NIR channel and the synchronized single-shot technology achieve 

greater reliability by precluding the need to conduct different flights with each camera, which would 

produce radiometric variations due to the time lag (i.e., due to differences in plant projections, solar 

height, clouds, etc.). A disadvantage of this method is that the weight of both cameras requires the 

use of a multi-rotor instead of a fixed-wing drone, limiting the performance of the method in larger 

study areas. Advances in technology will solve this problem as new camera models become 

increasingly lighter and provide higher resolution. 

 

The application of indices based on plant vigour and chlorophyll levels (NDVI, G-NDVI and SAVI) 

obtained satisfactory results for well-developed plants or species with more foliage but did not allow 

such clear discrimination in small plants. The PCA-based "decorrelation stretch" algorithm, 

combined with Sobel filters, provided the best results to correctly identify the state of most seedlings. 

This PCA-based transformation can be very efficient for visual interpretation. 
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The test results showed high overall accuracy (96.2%) with a flight height of 109 m (~2.74 cm pixel-

1 GSD), with various species of both conifers and hardwoods that never exceeded 60 cm. However, 

the stage of development of the plant (height and leaf development) vs flight height must be 

considered. It is expected that flying at lower altitudes allows to identify the status of smaller 

seedlings, obtaining close accuracy rates if the GSD remains within an approximate range of 2.5-3 

cm.  

  

The particular shape and the plastic material flap of the Waterboxx device, which is radiometrically 

uniform, facilitate the detection of vegetation, especially of larger plants. However, this design 

hampers the discrimination of small seedlings (< 10 cm tall) because of the spectral response 

produced by the central aperture of the device. This problem diminishes over time as plants increase 

in size. 
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