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Caminante, son tus huellas
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las risas que dio. A Mikel, la organización y el pragmatismo, el mejor trabajador que tiene y
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Summary

This thesis presents a compendium of publications related to transport studies analyzed
from the perspective of dynamical systems. The goal is to address the role that particle
properties and the flow have on the organization of trajectories and hence the transport.

To observe how transport is structured, we focus on the most widely used method: the
Finite Time Lyapunov Exponents. These exponents measure the separation rate of the particles
starting from nearby initial positions, estimating the hyperbolicity of the trajectories. This
method allows us to make a first approach to the problem, obtaining the borders or frontiers
between regions with different dynamics given a simplified vision of transport. The transport
structures related with this method, are called Lagrangian Coherent Structures.

In the first study, the Lagrangian transport in the troposphere was analyzed. The
atmospheric flow is characterized by being turbulent in a continuum of spatiotemporal scales.
Within these scales, it was observed that there are structures such as the Atmospheric Rivers
that maintain a spatial and temporal coherence of the order of days acting as organizers of water
vapor transport and therefore dominating the dynamics of the region at the moment they occur.
At the same time, the persistence and repetition of these structures, together with all the other
tropospheric structures, introduce mixing into the atmosphere. Those areas in middle latitudes
where these structures develop have higher mixing variability. This is mainly due to seasonal
changes. However, those regions with less variability, such as the equatorial zones, the mixing
and its variability on day scales, are mainly associated with inter-annual variability events such
as El Niño or La Niña or the Intertropical Convergence Zone (ITCZ). In addition, the mixing
information of the air masses from a climatic point of view, was used as a predictor of rainfall for
the Iberian region. The Atlantic margin is characterized by an intense activity of Atmospheric
Rivers, being one of the main causes of precipitation. However, the problem of determining the
activity of rainfall months in advance is complex, for this reason the use of new variables as
potential predictors is required. It has been obtained that the mixing, in the Atlantic region, is
related to the precipitation on the Iberian Peninsula.

Addressing on the second study, we focus on the influence of forces on the particles motion
so the resolution of motion equation is required to obtain the trajectories they describe. The
particles are modeled as small spheres with mass, but the fact that their movement is decoupled
from the flow makes their trajectories depend initially on other properties such as the initial
velocity. It was observed that this dependence, for certain flows, is even higher than small
perturbations in its position, mainly in those regions where there is a high spatial variability
of the fluid such as regions with shear. The same happens for bubbles where flotation effects
appear. They are very sensitive to the inertial effects and especially to the disturbances of the
radius as well as the effects of merging with other bubbles, being especially relevant in the
initial instants of the movement. In addition, it has been observed that particles properties and
their collective motion play a key role in the synchronization of finite-size chemical oscillators.
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To experimentally support some of the aforementioned behaviors, experimental data are
needed to measure the trajectories of the particles. Particle Tracking Velocimetry (PTV)
methods, track the trajectories of individual particles in three-dimensional space. In the last
part of this thesis, we present an experimental setup and some preliminary results of trajectories
of the particles mentioned above in a high turbulent flow.

14



Resumen

Esta tesis presenta un compendio de publicaciones relacionadas con distintos problemas
del transporte analizados desde la perspectiva de los sistemas dinámicos. El objetivo es estudiar
la influencia que las propiedades de las partı́culas y el flujo tienen en la organización de las
trayectorias y, por lo tanto, en el transporte.

Para ver cómo se estructura el transporte, nos centramos en el método más extendido:
los exponentes de Lyapunov de tiempo finito (FTLEs, por sus siglas en inglés). Estos
exponentes miden la velocidad de separación de las partı́culas que parten de posiciones
inicialmente cercanas, siendo un estimador de la hiperbolicidad de las trayectorias. Este
método nos permite hacer una primera exploración del problema, identificando los contornos o
fronteras entre regiones con una dinámica diferente, proporcionando una visión simplificada
del transporte. Las estructuras del transporte obtenidas con este método se conocen como
estructuras lagrangianas coherentes (LCSs, por sus siglas en inglés).

En el primer estudio se analizó el transporte lagrangiano en la troposfera terrestre. El flujo
atmosférico se caracteriza por ser turbulento con un continuo de escalas espacio-temporales.
Dentro de estas escalas, se observó que hay estructuras, como los rı́os atmosféricos, que
mantienen una coherencia espacial y temporal del orden de dı́as, actuando como organizadores
del transporte del vapor de agua y, por lo tanto, dominando la dinámica de la región mientras
ocurren. A su vez, la persistencia y la repetición de estas estructuras, junto con todas las otras
estructuras troposféricas, introducen mezcla en la atmósfera. En aquellas áreas en las latitudes
medias, donde estas estructuras se desarrollan, hay una mayor variabilidad de mezcla debido,
principalmente, a los cambios estacionales. Sin embargo, en aquellas regiones con menor
variabilidad, como en las zonas ecuatoriales, la mezcla y su variabilidad en la escala de dı́as
viene principalmente asociado a eventos de variabilidad interanual como El Niño, La Niña o la
Zona de Convergencia Intertropical (ZCIT). Adicionalmente, la información de la mezcla de las
masas de aire desde un punto de visa climático se utilizó como predictor para las precipitaciones
sobre la región Ibérica. El margen Atlántico está caracterizado por tener una actividad intensa
de Rı́os Atmosfericos, siendo una de las principales fuentes de precipitación. Sin embargo, el
problema de determinar la actividad de las precipitaciones con meses de antelación es complejo;
por este motivo, se requiere el uso de nuevas variables como potenciales predictores. Se ha
observado que la mezcla en la región Atlántica guarda relación con la precipitación sobre la
Peninsula Ibérica.

En el segundo estudio nos centramos en la influencia que ejercen distintas fuerzas en la
dinámica de las partı́culas; por lo tanto, se requiere la resolución de la ecuación del movimiento
para obtener su trayectoria. En una primera aproximación, las partı́culas se consideran como
pequeñas esferas con masa, pero el hecho de que su movimiento esté desacoplado del flujo hace
que sus trayectorias dependan inicialmente de otras propiedades, como la velocidad inicial.
Incluso, en determinados flujos, esta dependencia es mayor que pequeñas perturbaciones en
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su posición, observándose principalmente en flujos con una gran variabilidad espacial, como
en zonas con cizalladura. Lo mismo se observó con burbujas, en las cuales existen efectos
de flotación, que hacen que las burbujas sean muy sensibles a las variaciones en el radio, ası́
como a los efectos de unión con otras burbujas, siendo especialmente relevantes en los instantes
iniciales del movimiento. Además, se ha observado que las propiedades de las partı́culas y su
distribución juegan un papel clave en la sincronización de osciladores quı́micos.

Para observar experimentalmente algunos de los comportamientos anteriormente
mencionados, se necesitan datos experimentales de las trayectorias reales de las partı́culas. Los
métodos de Particle Tracking Velocimetry (PTV), permiten obtener trayectorias individuales
de las particulas en un espacio tridimensional. En la última parte de esta tesis, presentamos el
montaje experimental y unos resultados preeliminares de trayectorias de partı́culas, como las
mencionadas anteriormente en un flujo altamente turbulento.
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Chapter 1

Introduction

1.1 Motivation
Transport in physics is movement through a medium. It is ubiquitous in the natural world

which surround us and spans a spectrum of spatio-temporal scales, stretching from the milk
inside a cup of coffee to water droplets, to bubbles or clouds in the air (Fig.(1.1)) or the smoke
from a cigarette, or the debris and foam over the sea surface, these, just a few examples.

Nowadays, the increase in technical capacities has enabled tremendous computational and
empirical capabilities, allow in to observe and understand transport processes in the same way
that we can observe day to day ones with the naked eye. On geophysical scales, thanks to
satellite imaging, we can observe the movement of the atmosphere and hence the motion of
large air masses; the wind, transporting water vapor (Fig.(1.1)b), dust, pollution or temperature,
or the movement of global water masses; the ocean currents transporting plankton, salt and
temperature. At much smaller scales we can observe the motion of blood inside our vessels,
transporting nutrients or also the motion of microparticles inside high turbulents flows. All
these transport processes condition our environment and our daily-life.

In the last few years, many catastrophic events related to transport have grabbed the
attention of the media. In March 2011, in Japan, due to at the Great Tohoku earthquake and the
resultant tsunami Cs-137 radionucleids were released into the sea, exposing marine ecosystems
to radioactive materials. Computer simulations and ocean drifters have measured the impact
of the large scale ocean currents on the radionucleids, showing they are spread over the whole
Pacific Ocean with very high concentrations at the source point, the Fukushima nuclear plant
[1, 2, 3]. The waters surrounding the Fukushima nuclear plant are closed, and fishing or any
other kind of marine activity is not allowed.

Also, on March 7 2014, the flight MH370 from Malaysia Airlines accident, which provoked
an intensive search to find the wreckage of the plane in the Ocean, without success in the
following days [4]. The search was particularly hard due to the unknown location of the crash
landing, the heterogeneity of the pieces found, transport by ocean currents and the sinking of
the wreckage, all these increased its difficulty [5]. Only 17 months later it was possible to find
small parts of the plane in Madagascar and Mozambique, thousands of kilometers away from
the estimated crash site.

This example shows the well known chaotic behavior of turbulent flows introduced by
Lorenz (1963) [6]; despite the well located origin of source material source, the advection
by ocean currents and the presence of different forces cause small disturbances in initial
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Figure 1.1: (a) Global pattern of water vapor obtained from Satellite Himawari-8 (Japan
Meteorological Agency). (b) Mixing pattern process of milk and coffee in a cup.

conditions to lead to very different destinations, making understanding the transport topology
exponentially harder.

In the case of radionucleids, the concentration is many orders of magnitude smaller than
the surrounding water volume, so the physical properties such as size and density are irrelevant
in terms of transport. Its transport will be completely determined by the surrounding amount
of water mass and the oceanic currents behaving like a tracer of motion of fluid. Thus, the
transport of the radionucleids and water masses are totally coupled. For the plane case, the size
and the density of the material are many orders of magnitude higher than the surrounding water
molecules, so its motion cannot be approximated in the same way. Gravity, buoyancy and drag
effects among others, completely change its trajectory with respect to the surrounding water
masses. In this case, the transport of the wreckage and the water masses are uncoupled.

Despite being different events, they share a common frame: there is a free substance or a
material in a given flow and to know which is its final destiny is a key problem to address, to
prevent catastrophic consequences or at least try to be ahead of them [7]. The challenges are
the number of degrees of freedom, non-linearity and chaotic behavior due to the sensitiveness
to initial conditions. Thus, simulating all possible scenarios for a given event to obtain useful
results turns into a overwhelming task. The simplification of transport understanding, extracting
the key information and obtaining the template that organizes the motion is the concern of
dynamic system theory. It focuses on the analysis of trajectories and the evolution rather than
understanding the fluid dynamics from a physical point of view. The main goal is to locate or
segregate these groups of trajectories according to their particular dynamics and hence allow
the understanding of a destination for the substance or material transported.

In this thesis, we will mainly focus on Lagrangian based measures which explicitly track
motion, in order to define those templates organizing transport that remain relevant in space and
time. These are coordinate-frame invariant, and perhaps most importantly convey information
regarding fundamental mechanisms of transport.
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1.2 Transport processes: Advection and diffusion

In nature, like the examples cited in Sec. (1.1), the transport of a scalar property C(r, t) at
a given position r and at a given time t, from one location to another is mostly driven by the
combination of two physical processes: diffusion and/or advection.

Diffusion is an irreversible process due to the molecular random walk motion and it has its
origin in the gradient concentration. As a consequence of this gradient, there is a net flux of
mass transfer from the region with higher concentration to the lower one. Molecular collective
motion is modeled as a continuum quantity, C(r, t), expressed by Fick’s first law,

J(r, t) =−Dm ·∇C(r, t), (1.1)

where J(r, t) is the diffusive flux and Dm is the diffusion coefficient which measure the rate of
the diffusion process and depend on the medium properties. From the mass continuity equation,

∂C(r, t)
∂ t

+∇J(r, t) = 0 (1.2)

and Eq. (1.1), we can derive Fick’s second law,

∂C(r, t)
∂ t

= Dm∇
2C(r, t). (1.3)

Advection is the physical process that governs variations C(r, t) by the effect of the bulk motion
of fluid. In Cartesian coordinates this process is described by,

∂C(r, t)
∂ t

+v(r, t) ·∇C(r, t) = 0 (1.4)

where v is the flow velocity field. Both processes can be combined,

∂C(r, t)
∂ t

= Dm∇
2C(r, t)+v(r, t) ·∇C(r, t). (1.5)

1.3 Lagrangian and Eulerian frames

In the previous section, the variation on a scalar quantity C(r, t) is described in terms of
a function in time and space. The variation of this scalar quantity can be expressed by two
different frames or points of view. The Eulerian and the Lagrangian frames.

Using real word examples, the Eulerian frame description is the equivalent of having a net
of fixed buoys on the sea surface with a sensor measuring a property C at a given position r and
at a given time t, described by a function C(r, t). This field description gives instantaneously
the rate of change, such as the variation of the velocity field v(r, t).

The other intuitive option is the Lagrangian frame. Following the previous example, the
buoys can be released and permitted to be carried by the flow, tracking them as single particles
and measuring the quantity C(r, t) along the trajectory described by r = r(t). This point of view
is the Lagrangian one, so each initially tagged buoy is a representation of an initial fluid parcel,
and ṙ is the velocity at each point along a trajectory of the corresponding fluid element,
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ṙ =
∂r
∂ t

= v(r, t). (1.6)

The goal of the Lagrangian analysis is to understand the motion and evolution of objects,
matter, or properties that are carried along by the flow and any property derived from
the integrated fluid motion, as opposed to an instantaneous Eulerian snapshot, where the
conclusions are taken from instantaneous information causing a misleading perception of the
integrated motion over time.

The material derivative DC(r, t)/DT is the rate of change of a scalar property or function
C(r, t) following a tagged fluid motion as it moves throughout the flow field,

DC(r, t)
Dt

=
∂C(r, t)

∂ t︸ ︷︷ ︸
Local rate of change

+v(r, t) ·∇C(r, t)︸ ︷︷ ︸
Advective change

. (1.7)

If the scalar field is materially conserved (there is no source or sinks for C) then its
material derivative must vanish, and C must satisfy the scalar advection equation (1.4) along
the trajectory described by the tagged element,

DC(r, t)
Dt

= 0. (1.8)

Equation (1.8) expresses the principle that the motion and evolution of a materially
conserved property are completely determined by the fluid trajectories. However, in any
real fluid, it is not exact, since molecular or turbulent diffusion will also influence property
distributions.

Also, the connection between a Lagrangian tracer and the scalar field occurs when a particle
just follows the fluid particle elements due to the action of fluid bulk motion. However, in real
life and regarding to the buoy problem, this is not the case (see above).

The focus of the present text is purely on the advection and inertial motion, and diffusive
effects are therefore neglected.

1.4 Transport scales
The spatio-temporal scales define the physical dimension of a magnitude in space and time

of an object or a process. To estimate them allows us to make simplifications and also to
determine the role of any main key process.

Considering the characteristic scales involved in diffusion and advection processes: U,C,L
and Dm, which are respectively, the characteristic velocity, concentration, length, and diffusion
velocity, we perform a dimensional analysis of Eq. (1.4),

v(r, t) ·∇C(r, t)≈U
C
L

, Dm∇2C(r, t)≈ Dm
C
L2

(1.9)

and comparing both processes, the ratio of their scales is,

advection
di f f ussion

=
UC/L

DmC/L2 =
UL
Dm

= Pe. (1.10)
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This ratio is the Peclet number and it relates the diffusion speed with the advection velocity.
For transport processes with Pe� 1, the advection is the main transport mechanism and the
diffusion can be neglected. When U and L increase, the Reynolds number Re = UL/ν also
increases. There is an energy cascade from higher spatio-temporal scales L, (injection scales)
to the smaller ones (Kolmogorov scales, η), creating flow structures and increasing the flow
variability. In fluid regimes with a high Peclet number, these flow structures dominate the large
scale advection over diffusion.

This work is mainly concerned with fluid flows with the characteristic scales range between
liquids and gases with a Dm ∈ [10-5, 10-1] cm2/s) respectively; a characteristic range speed U ∈
[0.1, 7.8] m2/s, and characteristic length L ∈ [10-6, 106] m. Thus, we are on a regime Pe� 1 so
diffusive effects can be neglected.

When we move from a Lagrangian tracer, to a real particle the presence of inertial effects
compete with the bulk motion of water masses due to advection. The particle also has an inner
characteristic time, τp, the relaxation time. It is defined as the time required by the particle to
respond to changes in the flow field. This, together with U/L = T , the characteristic time flow
scale, defines another dimensionless number. The Stokes number,

St =
τpU

L
=

τp

T
. (1.11)

This measures the degree of coupling between the particle and the fluid. If the Stokes number is
small, St� 1, the particle motion is tightly coupled to the fluid motion and hence the particles
will behave as Lagrangian particle. Such particles are typically being used for quantitative flow
measurements. If St � 1, the particle is not so influenced by the flow and its response time is
longer than the characteristic time of the flow so its motion is dominated by its inertia.

The problems looked at in this work will span a range of St regimes, considering transport
processes due to inertial and Lagrangian motion.

1.5 Dynamical system approach to transport problems
The dynamical systems theory with lead with systems that evolve in time. This perspective

considers any particle as a vector r = (x1, ...,xn) describing a state with a number of d
independent variables under the action of a dynamical system f(r) = ( f1(r), ..., fn(r)) being
the source of change on r [8]. The evolution of the state is described by a set of nonlinear
ordinary differential equations (hereafter, ODEs),

dr
dt

= ṙ = f(r). (1.12)

In terms of transport the state r describes, the particle position and/or velocity at a given
time instant and f is a source of change in the state; the flow action v(r) and/or any forces
applied to the particle.

To find a solution for Eq. (1.12) starting from an arbitrary initial condition r(t0) = r0, we
set an imaginary particle and watch its evolution. As time goes on, the particle evolves and the
sequence of states based at r0 represents the particle trajectory. With the initial time t0 and a
final time t, we can define the flow map φ t

t0 as the map function which takes the particle r0 and
evolves it to r according to Eq. (1.12),
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φ t
t0 : Rn −→ Rn

r0 7 −→ r.

(1.13)

The analysis of the trajectories concerning their destinations, their organization depending
on initial conditions and the phase map, belongs to dynamical systems theory. The information
should be summarized to reveal those features which help us to understand how the motion is
organized, or in other words, the template that organized the trajectories. In terms of dynamical
systems, the picture that summarizes qualitatively different trajectories of the system, is called
a phase portrait.

The fixed points are those points, r∗ where the system solution will be the trivial solution,
f(r∗) = 0, which means in terms of transport that, there is no motion, and the state remains
invariant. The fixed points are very important for steady incompressible fluid flows (the
stagnation points) due to the fact that they define the so-called invariant manifolds. These
are separatrices, segregating those regions with similar dynamics and providing the structures
which organize the trajectories. A more formal definition of these points and their associated
manifolds will be given in the next chapter.

Figure 1.2: (a) Streamlines for a steady vortex dipole. Two hyperbolic saddle-type stagnation
points (black dots) with their associated stable (blue) and unstable manifolds (red). The
heteroclinic connections behave as separatrices partitioning the flow into regions of distinct
dynamics. (b) Heteroclinic tangle formed by transverse intersection of stable and unstable
manifolds when a periodic perturbation is applied to the steady vortex dipole. Figure modified
from [9, 10]

In practical applications, most real problems are time-dependent and/or three-dimensional
and the flows are not integrable. This introduces additional handicaps, making it exponentially
more difficult, just for the two-dimensional unsteady (time-dependent) system. In Fig. (1.2),
we show how a simple periodic perturbation applied to the fixed points turns the associated
invariant manifolds from heteroclinic connection to complex heteroclinic tangles, where the
invariants intersect, being the hallmark of chaos [9].
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The equivalent of these invariant manifolds for time dependent systems have fallen under
the broader category of Lagrangian Coherent Structures (LCS), a terminology adopted from
Haller and Yuan [11]. The definitions and relevancy of these invariants are not obvious, and
research in this area continues to advance, improving the description, and categorization, while
maintaining a practical methodology for revealing “effective ” stable and unstable manifolds
[9].

In the following subsection, we will describe the transport problems we have examined in
this thesis using the approach presented above.

1.5.1 Advective Transport in the atmosphere
The atmosphere is a semi-transparent gas of variable composition interacting with the Earth

surface under the influence of gravity, rotation and heat from solar radiation. The temperature
gradient activates the fluid motion and an energy cascade from thousands of kilometers to
less than millimeters, creates flow structures, spanning a spectrum of unsteadiness, leading
to different atmospheric phenomena around the globe like the jet stream, storms, hurricanes,
monsoons, trade winds... Being the engine of global atmosphere circulation which shapes the
global wind patterns (Fig.(1.3)(a)) and responsible for tropospheric mixing. The transport by the
fluid advection, between persistent organized structures, is often the primary process shaping
tracer patterns and turbulent diffusion, as well as sinks and sources of the tracer which are
secondary.

Figure 1.3: (a) Global wind streamlines colored in green for a fixed time in the wind flow field
(Cameron Beccario, earthschool.net). (b) Satellite image of Atmospheric River event (National
Oceanic and Atmospheric Administration,(NOAA))

The computation of invariant manifolds for the estimation of mixing has previously been
used by [12, 13, 14] for the detection of coherent structures in different models of atmospheric
flows, such as a zonal stratospheric jets [15], a jet-stream [16], a hurricane [17], transient
baroclinic eddies [14] and the polar vortex [18]. More recent studies have used this approach
to study atmospheric mixing [15], the polar vortices [19, 20] and also the transport related with
hurricanes/cyclones [21, 22, 23, 24] and ocean and atmospheric [25] contaminants.

The persistence and repetitiveness of well defined and isolated flow structures make them
suitable for statistical analysis in order to answer the following questions. What is the average
activity of the folding and stretching air parcels in a climate period? How does the deformation
of the air parcels increase over a climate period? Is the mixing modified due to the seasonal
cycle? What is the role that the invariant manifolds play in atmosphere mixing? A case study is
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useless, so the use of statistics over several events is required to move from a Lagrangian case
study to a statistical Lagrangian approach in the same way that statistical analysis of Eulerian
weather variables provide information about climate.

Here, we focus on the motion of air masses in the troposphere, more specifically on
the mesoscale. We will pay attention to a particular jet flow structure: Atmospheric Rivers
(Fig.(1.3)(b)). These meteorological phenomena are defined as elongated regions of Integrated
Water Vapor column (IWV) over 2 cm and winds stronger than 12 m/s, that transport moisture in
the lower troposphere close to the 850 hPa level [26, 27, 28]. They have a jet shape propagating
from lower to medium latitudes carrying high amounts of water vapor and latent heat, being a
key mechanism to redistribute the heat around the globe. More than 90% of poleward water
vapor is transported by these elongated structures (longer than 2000 km and narrower than
1000 km), mostly within the Warm Conveyor Belt (WCB) ahead of cold fronts and within the
Low Level Jet (LLJ) of extratropical cyclones, these being commonly associated with the polar
front [29, 26]. The connection between extreme precipitation and flood events has been shown
over the Western Coast [28] of the US and over Europe [30].

1.5.2 Inertial particles
In the previous section, to study transport in the atmosphere, we focus on the analysis of

fluid particles themselves as ideal tracers in the flow. However, when a finite size particle such
as examples shown in Fig. (1.4) moves in a medium, the flow is one of the sources of motion
among other forces due to finite size effects such as density, size, etc. Requiring the solution
of the motion equation for each individual particle. The inertial particle motion is a dynamical
system with dissipative and/or dumping effects and therefore it is not conservative, so there
is not preservation of phase space volumes, allowing its contraction and/or expansion. This
leads to preferential concentration, clustering and separation of particles which have important
implications in natural phenomena.

During the last years, the dynamics of inertial particles have been studied in many research
fields such as; sedimentation processes [31], turbulent flows [32], rain generation [33, 34],
composite materials [35], volcanic ash transport [36], pollutants and pathogenic spores in the
atmosphere [37, 38] and the formation of planetesimals in the early Solar system [39]. Also,
other processes, dust transportation from soil erosion, combustion and the mixing of sprays.

1.5.3 Lagrangian Particle Tracking
For previous problems, we have considered the solutions of Eq. (1.12) to obtain the particle

trajectories. Besides this, trajectories can be obtained experimentally through flow visualization
techniques and velocimetry methods. This approach, independent of velocity field information,
is possible and indeed desirable since it avoids introduction modeling and computational
errors. Techniques like Lagrangian Particle Tracking (LPT) also known as Particle Tracking
Velocimetry (PTV) allow us to reconstruct the real particle trajectories through a sequence of
pictures (Fig.(1.5)(b)), in the same way that the sequences of states of r(t) give the solution of
Eq. (1.12). This experimental procedure shown in Fig.(1.5)(a), consists of tracking individual
free particles in a fluid flow. In order to trace the water fluid motion as an ideal Lagrangian
tracer, the particles should have a low Stokes number, St � 1 to avoid inertial effects. With
an illumination source applied to the particles, a sequence of pictures is obtained from a
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Figure 1.4: (a) Microbubbles under an optical microscope. Medical grade albumin encapsulated
gas micro-spheres are imaged with a 20X microscope. Reproduced from [40]. (b) Scanning
electron microscopy (SEM) of coal fly ash FA2. Reproduced from [41]. (c) Microscopic
fragments of plastic: microplastics. They are pieces of plastic less than 5 mm in diameter
and are a global marine pollutant. Reproduced from [42] (d) Sneeze droplets (James Gathany,
Public Health Image Library (PHIL)).
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Figure 1.5: (a) PTV setup scheme. Reproduced from [43]. (b) Particle path of outside and
inside flows of an Architectural model (Yohsuke Tanaka, Measurement System Laboratory,
Kyoto Institute of Technology

multicamera system to reconstruct the three-dimensional particle positions. If the particle
density is high, the information obtained from the collective particle motion can be used to
obtain the velocity field on a grid as Eulerian information using Particle Image Velocimetry
(PIV) algorithms.

In this work, we will describe the experimental setup and the preliminary data obtained
using this technique for a high Reynolds turbulent flow generated inside a Von Karman turbine
tracking two kinds of particles; the approximately Lagrangian ones and particles with lower
inertial effects in order to observe their difference under turbulent flow conditions.

1.6 Motivation and outline of the thesis
In this thesis, we analyze the transport of inertial and Lagrangian particles in different

flows using a dynamical systems approach. To distinguish the different nature of the problems
the thesis has been divided into three parts.

In the first part, we present three papers on the role of transport in the troposphere. In
the first paper, we study the transport of water vapor for a well defined atmospheric event; the
Atmospheric Rivers. We characterize these events as attracting Lagrangian Coherent Structures
(LCS) in the wind field as organizing cores of the transport of water vapor. In the second one,
we quantify the mixing in terms of the FTLE and we use it as a potential forecast variable for
seasonal prediction over the Atlantic region and the Iberian Peninsula. Finally, in the third one,
we study the role of climate sources of mixing variability at a day-scale for the climate period
1979-2014 and for the entire globe.

In the second part, we present three numerical studies where we have addressed the
transport in chaotic flows for different kinds of particles. We start by analyzing, the role of the
initial conditions for small rigid spheres (R = const), where the main forces acting over them
are drag and buoyancy. Then, we consider small but non-rigid spheres (R = R(t)); bubbles,
to study their distribution in the Arnold–Beltrami–Childress (ABC) flow and observe the role
of coalescence on path-lines and in particles position distribution. Finally, we analyze the
interaction between inertial and Lagrangian particles through a chemical reaction.

In the third part, we focus on experimental trajectories obtained by PTV methods. We
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show the preliminary results obtained from a experiment in a von Karman Flow Apparatus
in the Göttingen Turbulence Facility 3 (GTF3) at the Max-Planck-Institute for Dynamics
and Self-Organization (MPIDS). To explore the smallest scales flow structures of transport,
microspheres of 20 µm has been tracked using a four multi-system high speed cameras into high
Reynolds number conditions. Also, we have increased the particle size to 120 µm to observe
the role that smaller inertial effects could have. Nowadays, the experimental results are still
under processing, so the experimental setup description and preliminary results are explained
to have a first look about the upcoming results.
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Chapter 2

Concepts and tools

2.1 Stability and fixed points
The fixed points r∗, solutions of ṙ= 0, and introduced in Sec. (1.5) are key to understanding

how the particle trajectories are organized.
However, a particle with its initial position slightly different, rδ = r∗+ δr, due to a small

perturbation δr could have very different behavior depending on the nature of f(r) around the
fixed point. Observing, the dynamics of this perturbation:

ṙδ =
d
dt
(r∗+δr) = f(r∗+δr) = f(rδ ) (2.1)

Performing a Taylor expansion of the perturbed point rδ around the fixed point r∗,

f(rδ ) = f(r∗)+(rδ − r∗)
df
dr

∣∣∣∣
r=r∗

+
1
2
(rδ − r∗)2 d2f

dr2

∣∣∣∣
r=r∗

(2.2)

since f(r∗) = 0 and neglecting high order terms, then:

ṙδ = δr
df
dr

∣∣∣∣
r=r∗

(2.3)

Now, the general solution of the perturbation growth surrounding the fixed point, Eq. (2.3),
will be a linear combination of exponential functions and their exponents depend on eigenvalues
of f, (λ1,λ2). The motion of ideal particles in incompressible fluid flows is conservative,
∇ · f = 0. If a fluid flow verifies this condition, it means that if there is a contraction in one
direction, there should be expansion in the other in the same proportion in order to keep the
physical constraint, so the fixed point that verifies this condition is so-called saddle point. Since
one of the eigenvalues is positive, the saddle is an unstable equilibrium point. Suppose, for
example λ1 < 0 < λ2 shown in Fig. (2.1). The eigenvalues λ1 and λ2 are associated with the
corresponding eigenvectors V1,V2. The straight lines directed along the eigenvectors V1,V2 are
called separatrices. These are asymptotes of other trajectories that have the form of a hyperbola
being the reason why the saddle points are also called hyperbolic points. Each of the separatrices
can be associated with a certain direction of motion.

If the separatrix is associated with a negative eigenvalue λ1 < 0, i.e in our case is directed
along the vector V1, the movement along it occurs towards the fixed point. And conversely, at
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λ2 > 0 i.e, for the separatrix associated with the vector V2, the movement is directed from the
origin.

Figure 2.1: Streamlines (light blue) surrounding a saddle point (black dot) and associated
invariant manifolds; stable manifold (dark blue) and unstable manifold (red).

In forward time, the trajectories are asymptotic to the V2 axis; in backward time to the V1.
In this situation, r∗ = 0 is called a saddle point, and the V1 axis is the stable manifold and V2
axis the unstable manifold.

More formally, we define the stable and manifolds, Ms and Mu , associated with r∗ as
follows

Ms = {r ∈ Rn : r→ r∗ as t→ ∞} (2.4)

Mu = {r ∈ Rn : r→ r∗ as t→−∞} (2.5)

Note that a typical trajectory asymptotically approaches the unstable manifold as t → ∞,
and approaches to the stable manifold as t→−∞.

The fixed points and their stable/unstable manifolds act as separatrices partitioning regions
of different dynamics. In general, at hyperbolic fixed points, fluid is pulled along the stable
manifolds and expelled in diverging directions along the unstable manifolds. Restating, the
fixed points are hubs directing the flow and the invariant manifolds delineate how fluid will be
directed by those hubs as shown in Fig. (1.2)(a).

This behavior remains relevant in unsteady systems, f(r, t). However, fixed or periodic
trajectories are not commonly encountered in most practical applications due to the general
unsteadiness of most flows and the absence of analytical expressions, presenting a big handicap
due to implicit time dependence [9]. The role of fixed points is often replaced by appropriately
behaved moving trajectories carried by the system as we observe in Fig. (1.2)(b), so the problem
of not using a fixed frame to obtain the flow map, increases the difficulty of detection of these
points and the associated manifolds.

Trajectories that are hyperbolic at one instant can change their stability at the next instant,
so the definition of stable/unstable manifolds turns complex. Also, as we have defined above in
Eqs. (??), these definitions require the use of asymptotic limits which is unpracticable on real
world problems. This is due to the fact that system information comes from finite and discretised
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datasets obtained from numerical and/or experimental measures, so trajectories can gain or lose
hyperbolicity over time and we are looking to understand inherently transient phenomena.

To estimate this invariant manifolds for real-world problems, the use of other techniques in
order to compute the perturbation respect to initial conditions and how it grows and evolves in
time requires the use of other approaches as we describe in Sec. (2.4).

2.2 Particle motion: Lagrangian and inertial particles
Lagrangian particles If we consider a phase point r just under the influence of time
dependent system described by the flow field v(r, t) the equation of motion is:

dr
dt

= v(r, t). (2.6)

As we introduced in Sec. (1.2), this case comes when there are no finite size effects, acting as
a point-wise element. There are no forces, so they behave like fluid particles. This condition
occurs when density is conserved along the flow as in incompressible fluids, Dρ f /Dt = 0 and
the volumes are preserved,

∇ ·v = 0. (2.7)

This condition means the absence of sources and sinks in the velocity field and hence the
main fixed points are the stagnation points or saddle points.

Inertial particles The appearance of finite size effects like density, size, shape, viscosity, etc.
Introduce forces and hence accelerations. This increase the dimension of Eq. (2.6), making
necessary the evaluate of position and particle velocity, (r,vp) to describe its state,

ṙ = vp

v̇p = f(v(r, t),vp,R,ν ,ρ f ,ρp,g...),

(2.8)

where vp is the velocity of the particle, v the velocity field of the fluid, ρp the density of the
particle, ρ f the density of the fluid, ν the kinematic viscosity of the fluid, R the radius of the
particle and g the acceleration due to gravity.

Our starting point is the Maxey-Riley-Gatignol equation [44, 45]. It describes the motion
of a rigid spherical particle in a non-uniform fluid flow. For simplification from here on, we do
not note the function dependences in the equations:
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ρpv̇p = ρ f
Dv
Dt

+ (ρp−ρ f )g

−
9νρ f

2R2

(
vp−v− R2

6
∇2v

)
−

ρ f

2

[
v̇p−

D
Dt

(
v+

R2

10
∇2v

)]
−

9ρ f

2R

√
ν

π

∫ t

0

1√
t− τ

[
v̇p(τ)−

d
dτ

(
v+

R2

6
∇

2v
)

r=r(τ)

]
dτ

(2.9)

The terms on the right-hand side are the force exerted by the undisturbed flow on
the particle, the buoyancy force, the Stokes drag, the added mass correction, and the
Basset-Boussinesq history force, respectively. Considering a characteristic length scale L,
characteristic velocity U and characteristic time scale T = L/U , we assume the following
restrictions,

R(vp−v)/ν � 1

R/L � 1(
R2

ν

)(
U
L

)
� 1.

(2.10)

There is a Stokes flow around the particle, the particle size is very small (in that case, the
Faxen corrections, ∇2v≈ 0 are negligible) and the factor R/

√
ν is also very small. We neglect

Basset-Boussinesq history force, as in common practice in the related literature, [46]. We finally
rescale space, time and velocity by characteristic scales, L, T and U , to obtain the simplified
equations of motion:

v̇p =
3β

2
Dv
Dt
− γ(vp−v)+

(
1− 3β

2

)
g (2.11)

with

β =
2ρ f

ρ f +ρp
, γ =

β

St
, St =

2
9

(
R
L

)2

Re (2.12)

and t, vp,v, and g now denoting nondimensional variables.
In Eq. (2.13) St denotes the particle Stokes number and Re=UL/ν is the Reynolds number.

The density ratio β distinguish neutrally buoyant particles β = 2/3 from aerosols (0< β < 2/3)
and bubbles (2/3 < β < 2). The term beginning with 3β/2 represents the added mass effect:
an inertial particle brings into motion a certain amount of fluid that is proportional to half
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of its mass. For neutrally buoyant particles, the equation of motion is simple, D
Dt (vp− v) =

−ν(vp−v).
In this case, ∇ · f = Tr( f ) 6= 0, so the dynamics of inertial particles are not conservative and

hence the contraction and expansion of the volumes in the phase space will happen even for
steady incompressible flow fields.

From the previous equation, other physical parameters can be time-dependent so it could
be modeled as an extra dimension on the dynamical system. For example, to describe spherical
size changes, R = R(t), like a bubble, the radius should be able to expand and contract [47].
The motion of bubbles in non-uniform incompressible flows was modeled by the momentum
equation introduced by [46, 48].

ρpv̇p = ρ f
Dv
Dt

+ (ρp−ρ f )g

−
9νρ f

R2 (vp−v)

− ρ fCL((vp−v)×ωωω)

+
ρ f

2R3

(
d(R3(vp−v))

dt
+2R3 d(vp−v)

dt

)
(2.13)

where ωωω is the fluid vorticity, CL = 0.5 is the lift coefficient for a sphere. The last two terms are
different from Eq. (2.13). The fourth term represents the lift force. The last one, the effect of a
spherical bubble with a time dependent-radius R(t), which is modeled by the Rayleigh-Plesset
equation [49]:

RR̈+
3
2

Ṙ2 =
Pf −P

ρ f
(2.14)

where Ṙ and R̈ are the bubble wall velocity and accelerations respectively. Pf is the pressure at
the bubble interface, and P is the pressure field imposed by the flow.

2.3 Velocity data: Steady, unsteady and active flows

Here, the flow velocity field v(r, t) will always be known regardless of the particle nature. It
can have multiples origins depending on the problem: analytical flows, numerical simulations;
Computer Fluid Dynamics (CFD), hydrodynamic, ocean and weather simulations, and also
from experimental results; satellite data or Particle Image Velocimetry (PIV) among others.
Real data coming from numerical and experimental results are provided in a discretized way.
In this chapter, we will describe the main flows used for the different problems described in the
Introduction (Sec. (1.1)).

Ideal flows Ideal flows are mathematical functions defined on every point on the space being
continuous and differentiable. In general, they are simplified flow descriptions of complex
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problems. For example, the ABC flow is the solution of the simplified version of the Euler
equation. For other flows, like the double-gyre, the shear flow or the meandering jet, the velocity
is expressed as the derivatives of scalar stream functions.

Atmospheric data In the case of the wind field, and to address the Lagrangian advection
problem on the atmosphere we use discrete velocity fields data provided by the reanalysis
database ERA-Interim from ECWMF (European Center for Weather Medium Forecasting) [50].
It is a global atmospheric reanalysis from 1979, continuously updated in real time. The system
includes a 4-dimensional variational analysis with a 12-hour window. The full model resolution
has a spacing of about 0.703125 ◦ with a north-south separation which is close to uniform in
latitude. There are 128 points aligned along the Greenwich Meridian from the equator to pole.
The number of points in the east-west direction varies with latitude, with uniform grid spacing
along a particular line. The vertical resolution consists of 60 pressure levels going from the
surface up to 0.1 hPa.

Lagrangian Particle Tracking and Particle Image Velocimetry Lagrangian Particle
Tracking (LPT), also known as Particle Tracking Velocimetry (PTV) is an optical flow
visualization technique. It determines the position of particles added to the flow in the
three-dimensional space at certain times and assembles these points in trajectories of particles.
These trajectories allow the computation of the velocity and the acceleration of the investigated
particles. To detect the particles an optical method with digital cameras is used. The LPT
method can be separated into three different steps, which will be described individually below.
These steps are, first of all, particle finding on each individual image of the cameras, followed
by stereo matching of all images taken at the same time - in our case 4 images - and finally
connection of the points at different times to trajectories. The information obtained from LPT
trajectories can be processed to obtain the velocity field.

In the case that the velocity field consists of discretized data, the integration requires
the velocity field to be interpolated in space and time. To that end, higher-order integration
and interpolation schemes ensure greater accuracy and smoothness of the computed results,
respectively. As we are interested in measuring the trajectory evolution in different flows, and
also in quantities derived from the flow, the integration and interpolation schemes are critical in
keeping low error results. So both schemes should be chosen with their respective parameters
according to the flow and particle conditions. Here, we have used a fourth order Runge-Kutta
method with a fixed time step together with a multilinear interpolation. In order to speed up the
triangulation of the particles in the interpolation process, the physical coordinates (θ ,φ , t) have
been translated to matrix coordinates using the model resolution. The time step interval was
adjusted depending on the problem going from dt = 0.1 ms to evaluate the faster process (the
bubble contraction and expansion) until dt =3 hours to evaluate the Lagrangian transport on the
atmosphere. On the Lagrangian transport, where irreversible process are not involved, to check
the accumulated errors, an integration of uniform grids of particles has been done in forward
integration from a time t0 to a time t0 +T and then a backward integration was done, reversing
the time till t0 using different dt, to observe the difference between the initial grid positions
and the final one. The error due to integration/interpolation tandem was considered lower if the
accumulated error between all the particles was lower than 5%.
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2.4 Lagrangian Methods

2.4.1 Lagrangian Coherent Structures
As complexity of fluid flows increases, the motivation to identify hyperbolic fixed points

and invariant manifolds for aperiodic flows, becomes compelling. However, fixed or periodic
trajectories are not commonly encountered in most practical applications due to the general
unsteadiness of most flows. Applying the invariant manifolds theory in temporally aperiodic
flows is a challenge [51, 52, 53] due to the absence of fixed points and hyperbolicity can
change their stability (not a problem for steady systems) from one instant to another. Moreover,
the definitions of stable/unstable manifolds require asymptotic limits [54] as we defined on
Sec. (2.1), which struggle with “real world” data.

The invariant manifolds for systems with general time dependence have fallen under
the broader category of Lagrangian Coherent Structures [11]. This categorization extends
the concepts and methodologies of stable and unstable manifolds of steady systems for
time-dependent systems. It provides a more precise and (temporally relevant) depiction of
common fluid mechanics constructs (e.g, eddies, flow separation, and stirring) controlling the
stretching, folding and alignment mechanism underlying kinematic mixing. These structures act
as separatrices of different dynamical regions on the flow delimited by boundaries separating
regions of coherent dynamics, given a similar phase portrait or flow topology in the same way
that stable/unstable manifolds do [55, 56]. Due to their separatrix behavior, Haller [57] defines
these structures, in a broad sense, as the locally strongest repelling or attracting material surfaces
(surfaces of particles).

The Lagrangian Coherent structures have the main following properties:

• They are frame independent. They must be independent of coordinate changes. The
deformation itself over its neighborhood guarantees that the LCS cannot depend on
the frame chosen as any other Eulerian quantity does. For example, the Okubo-Weiss
parameter [58, 59] depends on the point of view from where the data has been taken.
Thus, for example, someone transported in an eddy does not have the same perception
that someone who observes the eddy from outside does.

• They can be computed in forward and backward time directions. Attracting LCS
are analogously computed by reversing time, as expansion in backward time implies
contraction in forward time. In the same way that for steady systems, the stable and
unstable manifolds can be understood in a forward and backward sense regarding the
approximation or moving away from the fixed point.

• The structures are termed Lagrangian because they are defined from the fluid motion, as
opposed to an instantaneous Eulerian snapshot, and they are themselves material surfaces
advected by the flow. The flow shapes the material continuum surfaces approximated in a
discretized way by a tracers grid. This deformation propagates under the flow influence.

• They are material lines (lines of particles). There is no net flux across them acting as
transport barriers shaping the tracers patterns. Comparing to steady analytical flow fields
and the asymptotic streamlines, the invariant manifolds ensures that there is no net flux
towards the invariant manifolds acting as separatrices of different dynamical regions.
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• They are also termed coherent because they have distinguished stability compared to
nearby material surfaces and, consequentially, LCS can often be identified with familiar
flow features.

To detect such manifolds we will use the concept of hyperbolicity in an indirect way.
Instead of testing different surfaces to measure the expansion and contraction around it, we will
use an approach based on the distribution of Finite-Time Lyapunov Exponents (FTLEs), which
will be introduced below. We discretize the fluid domain with a dense grid of material points,
measure the Lagrangian expansion rate (roughly “hyperbolicity”) about each material point,
plot the spatial distribution, and extract surfaces that maximize the measure [? ]. This approach
allows us to understand better the nature of the fluid, however, this notion of hyperbolicity
opposite to steady systems must be associated to a specific time interval which is typical of
finite-time analysis, so this behavior will depend on our ”horizon of knowledge”.

This approach is different with respect to the one used for steady systems where the
invariants are obtained based on linearized systems around the fixed point. It seeks to be
independent of any specific hyperbolic trajectory, whereby the distribution of an appropriate
hyperbolicity measure generally reveals all influential finite time hyperbolic structures (e.g. the
relevant hyperbolic trajectories and their associated stable and unstable manifolds).

The attracting LCS will generally be distinguishable from advection of material points since
the fluid is attracted to and along these surfaces. In general, repelling LCS are hidden from flow
visualization, despite playing a fundamental role in transport. The computation of attracting
and repelling LCS allow us to go further in the understanding of coherent structures in the fluid
flow, revealing unhidden and showing the surfaces that constitute the coherent structures that
organize the fluid flow transport.

In conclusion, Lagrangian-based measures that explicitly track the fluid motion are less
common, and in many cases ad hoc or qualitative and succinctly encode key Lagrangian
information into a single field from which we can define structures that remain relevant in space
and time, are coordinate-frame invariant and perhaps most importantly convey information
regarding fundamental mechanics of fluid transport. The LCS computation proceeds regardless
of the time dependence, making it applicable in more general settings. Together, these LCSs
reveal highly relevant information that is notably absent when employing traditional analysis
techniques (e.g. velocity field, vorticity, streamlines, and Q-criterion [60]).

2.4.2 Finite-Time Lyapunov exponents (FTLE)
In fluid mechanics, hyperbolicity is often synonymous with its manifestation, of stretching.

In a broad sense, a trajectory is hyperbolic if infinitesimal perturbations to that trajectory
expand or contract over time. However, this is not global interpretation mainly due to the
fact that this behavior can change over time, and long-term limits cannot be computed. This
interpretation makes suitable the use of the FTLE (Finite Time Lyapunov Exponent) as a
measure of finite-time hyperbolicity. We focus on the FTLE because it has been most widely
used, and more results exist for this method [57, 61, 62, 63].

Lyapunov exponents, in general, have long been used to determine the predictability or
sensitivity to initial conditions in dynamical systems. They measure the exponential growth
rate of separation between initially close trajectories separated by a distance d for t→ ∞,
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µ = lim
t→∞

1
t

ln
(

d f

d

)
, (2.15)

where d f is the final separation when t→ ∞.
Due to the “real word” limitations mentioned, the use of long term limits t → ∞ is not

feasible, so a finite time version is required. Following the same procedure as in Sec. (2.1) for
a particle state at a time t0, r(t0) = r0 and a perturbed state rδ 0 = r0 + δr0 by a distance δr0,
both, under the flow map action taking a particle at r0 and transporting it, after a time T to
r = φ

t0+T
t0 (r0), the linearized perturbation growth surrounding r0 is,

δr(t0 +T ) = φ
t0+T
t0 (rδ )−φ

t0+T
t0 (r) =

dφ
t0+T
t0 (r)
dr

δr(t0)+O(‖ δr(t0) ‖2)). (2.16)

Neglecting the term O(δ 2) and measuring the norm of the perturbation δr(t0 +T ),

‖δr(t0 +T )‖=

√√√√〈dφ
t0+T
t0 (r)
dr

δr(t0),
dφ

t0+T
t0 (r)
dr

δr(t0)

〉
=

√√√√〈
δr(t0),

dφ
t0+T
t0 (r)
dr

H
dφ

t0+T
t0 (r)
dr

δr(t0)

〉
=
√
〈δr(t0),Gδr(t0)〉, (2.17)

where G is the finite-time version of the (right) Cauchy-Green deformation tensor,

G = ∇φ
t0+T
t0 (r)∇φ

t0+T
t0 (r)

H
= FFH (2.18)

being F the gradient of the flowmap. H denotes the adjoint of the matrix, being the transpose
for a symmetric matrix.

The maximum stretching between rδ and r happens when δr(t0) is aligned with the
eigenvector associated with the maximum eigenvalue of G, µmax. Then,

max
δr(t0)

‖δr(t0 +T )‖=
√〈

δr(t0),µmax(G)δr(t0)
〉
=
√

µmax

∥∥∥δr(t0)
∥∥∥ (2.19)

The asymptotic limits defined in Eq. (2.15) turn into,

lim
t→∞

≈ t→ T

d f

d0
≈ ‖δr(t0 +T )‖∥∥∥δr(t0)

∥∥∥ =
√

µmax,

(2.20)

and the Finite Time version of the Lyapunov Exponent (FTLE) is

σ
T
t0 =

1
T

ln
√

µmax(G). (2.21)
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Figure 2.2: Scheme of numerical derivative of the flow map gradient. Modified from [64]

The largest FTLE µmax = µ1 is often referred to without distinction as the FTLE. The
eigenvector associated to the largest eigenvalues will eventually dominate the perturbation
growth of that component. This can be considered as spherical deformation regarding a material
element where the sphere will be deformed into an ellipsoid due to the action of motion. The
major axis of this ellipsoid will coincide with the eigenvector associated to the maximum
eigenvalue. In the same way, the minor axis will coincide with the lower eigenvector associated
to the minimum eigenvalue. For volume-preserving flows, the sum of Lyapunov exponents must
be zero.

The σ field in Eq. (2.21), measures the exponential growth rate of a small perturbation
for a given finite time T . The FTLE field can be computed in forward and in backward time
directions, thus, maximal regions of FTLE are characterized by a perturbation growth faster
than the surrounding flow allowing us to estimate the LCSs

Numerical computation The standard method to compute the FTLE field is schematized
in Fig.(2.2). It starts with the initialization of a grid of material points equally spaced in a
structured grid at r0i j time t0. This simplifies gradient computation and does not require a
priory knowledge of the flow topology, which makes the discussion most broadly applicable
[9, 62]. The initial locations of these points, as opposed to the final locations, represent the
locations at which FTLE will be computed – the FTLE grid. Then, we solve the trajectory
equation, Eq. (1.12) for each material point for a finite time interval, [t0, t0+T ], and to compute
the numerical gradient of the flow map in Eq. (2.18), we use second order accurate central
differences in the interior points and first order (forward or backwards) differences at the
boundaries as shown in Eq. (2.22).

In Cartesian coordinates and for a two-dimensional problem, r = (x,y)∈R2, the numerical
gradient is:

F =
dφ

t0+T
t (r)
dr0

∣∣∣∣∣
ri, j

=


xi+1, j(t0 +T )− xi−1, j(t0 +T )

xi+1, j(t0)− xi−1, j(t0)
xi, j+1(t0 +T )− xi, j−1(t0 +T )

yi, j+1(t0)− yi, j−1(t0)

yi+1, j(t0 +T )− yi−1, j(t0 +T )
xi+1, j(t0)− xi−1, j(t0)

yi, j+1(t0 +T )− yi, j−1(t0 +T )
yi, j+1(t0)− yi, j−1(t0)

 .
(2.22)

For spherical coordinates fields r(θ ,φ) in a longitude-latitude mesh (Sec. (1.5.1)), we
require the spherical correction S for (2.18), G = F×S×FT , defined in [65] as:
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G(r)i, j =


θi+1, j(t0 +T )−θi−1, j(t0 +T )

θi+1, j(t0)−θi−1, j(t0)
θi, j+1(t0 +T )−θi, j−1(t0 +T )

φi, j+1(t0)−φi, j−1(t0)

φi+1, j(t0 +T )−φi−1, j(t0 +T )
θi+1, j(t0)−θi−1, j(t0)

φi, j+1(t0 +T )−φi, j−1(t0 +T )
φi, j+1(t0)−φi, j−1(t0)

×
 R2

T sin2(θi, j(t0 +T )) 0

0 R2
T

×


θi+1, j(t0 +T )−θi−1, j(t0 +T )
θi+1, j(t0)−θi−1, j(t0)

φi, j+1(t0 +T )−φi, j−1(t0 +T )
φi, j+1(t0)−φi, j−1(t0)

φi+1, j(t0 +T )−φi−1, j(t0 +T )
θi+1, j(t0)−θi−1, j(t0)

θi, j+1(t0 +T )−θi, j−1(t0 +T )
φi, j+1(t0)−φi, j−1(t0)

 . (2.23)

This approach is highly flexible, allowing for variations in the distribution and resolution
of trajectory information, which can ultimately influence the accuracy and performance of LCS
identification.

LCS as ridges in the FTLE field In this work, we focus on the detection of LCS based on
the FTLE ridge extraction introduced by Shadden et al. [62]. A ridge of FTLE is essentially a
curve where it is locally maximized in the transverse direction, leading to a “second-derivative
ridge” definition that required that a ridge was a curve (more generally, hypersurface in high
dimensions), requiring the following conditions:

1. The first derivative of the FTLE field (Eq. (2.21)) must be zero in the normal direction n,

n ·∇σ = 0. (2.24)

2. The second derivative of the field must be negative and minimum in the normal direction,

εmin(∇
2
σ)< 0, (2.25)

where εmin(∇
2σ) is the minimum eigenvalue of ∇2σ .

3. The largest Lyapunov exponent µmax = µ1 must be positive. There should be attraction
within the surface and repulsion normal to it,

µ1 > 0 > µ2 (2.26)

Integration time and domain boundaries The selection of the finite integration time T is
arbitrary and should be preselected depending on the phenomena. It should be long enough to
allow dominant flow features to have a chance to emerge, to let the particle grid “suffer” the
deformation gradient, but no so long that the final positions used to compute the deformation
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gradient are uncorrelated to the flow features we are trying to expose back at the initial time
when the material points were released. Some effort has been made to determine it [66] or at
least to define a lower boundary [57]. Main problems manifest when some ridges can only be
observed within a particular time window, showing different behaviors depending on T . Also,
the observation of segmented LCS, is due to some points revisiting the same region or due to
lower resolution grid velocity field which are not solving correctly lower feature scales. Also,
the appearance of other secondary structures can obscure and disturb the interpretation of the
FTLE. LCS can show variability over time, they can grow, appear or disappear with changes in
the integration time. For long-time and robust LCS, the variations on the FTLE are gradually
increased tending to sharpen along the LCS due to the influence of the hyperbolic regions on
the domain. Most of the FTLE sensitiveness happens at short times where the LCS is not well
defined. From the practical view, when the velocity data is finite, the boundary problem domain
should be taken into account, due to the integration of trajectories not being able to proceed
beyond the time interval or domain boundaries. Tang et al. [16] proposed the use of linearized
information to extrapolate the fluid flow to keep a linear separation homogeneous rate outside
the domain, while other points can remain inside longer times. To summarize, the integration
time is usually determined by grid spacing (computational cost), the time scale of the dynamics,
and/or availability of data.

2.4.3 Drawbacks of the FTLE
This methodology to obtain the FTLE and LCS is already matured and some deficiencies

were noted. As we described above, the FTLE is derived from the largest eigenvalue of
the finite-time strain tensor, however, the information encoded here is not complete due to
the fact that the FTLE does not take into account how the deformation happens. This is
important depending on the type of study and how rigorous the definition of the LCS can be.
Stable/unstable manifolds do not always produce ridges in the FTLE field [11, 62, 67], or despite
being separatrices they are not necessarily the most repelling or attracting surfaces. This has
mainly been demonstrated in simple flows, as noted in [67]. For example, a shear flow [61, 57],
will produce high FTLE values however there is no “hyperbolic” trajectories growth, it being
linear. In the case that we want to be more rigorous and obtain those surfaces that are normally
hyperbolic and ensure that LCS is locally the most normally repelling surface, a refinement
of the FTLE ridge definition should be made. Haller [57] derived necessary and sufficient
conditions for LCS in terms of invariants of the strain tensor to ensure that the direction of
dominant expansion/contraction converges to the normal direction.

Some results [68] show that most of the structures are normally hyperbolic, and in
general this deformation grows exponentially in time while the shear deformation makes it
linear. One might expect, that for sufficient integration time, the hyperbolic structures are
remarked in comparison with shear structures when plotting FTLE, however, this approach
is not straightforward due to any type of growth in finite time will have an associated exponent.
Despite mathematical rigorousness, LCS are physical objects and they are present in the flow
and will exist independent of any method employed to measure LCS. FTLE can be considered
as “less rigorous” than others, but it provides a good first approach to explore the LCS and/or
separatrices in fluid flows.
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2.4.4 Other approaches for LCS detection
The search for mathematically rigorous definitions of LCS continues. Beron-Vera et al. [15]

analyzed the different types of structures that are possible, different from normally hyperbolic.
The combination of shear and hyperbolic expansions or in other words, tangential and normal
deformation will be present in most practical applications and both can change over time and
space, so the formulation of a general theory to distinguish perfectly both deformation and
classify these structures is still in progress.

Haller [69] presents a review of the techniques, providing the complete foliation of the
material surfaces and also detecting other material deformation related with coherent structures
such as elliptical LCS or parabolic LCS.

The methods presented in this review [69] are a continuation from the variational methods
started in [57] regarding variational principle. The key of variational methods is to find functions
which extremize the value of quantities that depend upon those functions. Here, instead of
searching for functions in the pure sense, we seek for material surfaces that maximize a certain
type of deformation in the finite time interval of interest. In the case of hyperbolic LCS
detection, there are two approaches; a local and global one. The main difference between
both is that the local one uses the local deformation associated to a line or set of initial
conditions through its normal and tangential components. The global variational approach uses
the averaged information over a set of lines to find those ones without a particular deformation
(shearless or strainless LCS if we are interested in elliptic LCS).

Elliptic LCSs are closed and nested material surfaces that act as building blocks for the
Lagrangian equivalents of vortices, they are mainly rotation-dominated regions of trajectories
that generally traverse the phase space without substantial stretching or folding. In general,
the methods focusing on the rotational component of the deformation, observe how the tangent
vectors to trajectories rotates. For example, the rotational coherence from the Polar Rotation
Angle (PRA) [70] measures the angle between the eigenvectors associated to the rotation
deformation. Another method, [71], the Lagrangian-Averaged Vorticity Deviation (LAVD),
measures how intense the anomaly of the vorticity is along its trajectory, so high values of the
integrated anomaly show elliptic dominated regions as eddy cores.

A review of the most used LCS detection methods with their advantages and disadvantages
have been recently published [72].
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Lagrangian transport in the atmosphere

3.1 Main goals
One of the problems addressed in this thesis is the study of Lagrangian trajectories of

fluid points in the atmosphere. Here, we have used real aperiodic data obtained from ECWMF
atmospheric reanalysis model [50] described in section (2.3).

The atmosphere is well known to be a complex problem due to its turbulent behavior with a
continuous spatiotemporal scale and nonlinear coupling through their scales of motion. Despite
its complexity, persistent coherent and finite amplitude flow features are also observed and
their role in transport and mixing will be addressed here. We will focus on the deformation
of Lagrangian tracer patterns due to wind field, using some simplifications and spherical
corrections for the equations of motion and the FTLE computation.

However, beforehand, the use of Lagrangian analysis to study the atmosphere has some
drawbacks: the error accumulated due to numerical integration in the atmosphere grows
exponentially in time mainly due to the unresolved processes and scales of motion constraining
the integration limits.

Thus, the Lagrangian approach of transport for the whole atmosphere for all spatiotemporal
scales is an overwhelming problem. All these handicaps require simplifications and focusing
on particular scales to make it affordable: the use of 2D pressure layers focusing on horizontal
transport, consideration of the flow as incompressible, neglection of the vertical deformation,
short finite time advection less than two weeks, or the use of passive fluid particles to follow the
path-line due to bulk motion of air masses, are some of the simplifications performed throughout
this chapter.

Also, it requires reducing each structure individually to make an identification analysis to
observe its role from a Lagrangian point of view. Here, in this section, we address this issue
partially, considering a predefined timescale in order to study the transport at the mesoscale,
focusing in the troposphere where most of the atmospheric phenomena take place.

We pay attention to one kind of coherent structure on the troposphere, the so-called
Atmospheric Rivers. This meteorological phenomenon is a wind jet shape propagating from
lower to medium latitudes, carrying high amounts of water vapor and latent heat, being a key
mechanism to redistribute the heat over the globe. Its length is higher than 2000 km and a width
less than 500 km with a life of a week. Their jet strain shape together with their stability make
them suitable to be studied in terms of dynamical systems and Lagrangian Coherent Structures.

In this section, we present three articles where the tools and the concepts explained in the
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previous chapters have been applied to the mentioned problem.
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3.2 Lagrangian Coherent Structures Along Atmospheric
Rivers.

In the first paper, we focus on the Atmospheric Rivers described above. Our goal has been
to identify this troposphere transport phenomenon as a Lagrangian Coherent Structure (LCS).
To that end, we focus on ten AR selected events over the Atlantic Ocean with a live-time of
days in different seasons. We use three different approaches of a representative vector field
v(r, t) for ARs. First, we have considered a two-dimensional model of the troposphere using
the integrated water vapor flux weighted by the amount of water vapor to obtain a velocity
field which enhances the AR jet region where the vapor is mainly transported. Second, we
have considered a two-dimensional wind velocity field at different pressure levels, slicing the
troposphere from 1000 hPa to 750 hPa. Third, we have performed a case study using the
three-dimensional wind field, to check qualitatively the two-dimensional models previously
defined and the coherence of the horizontal transport. We have computed the FTLE field
in forward and backward time direction using a time integration of 5 days. Then, we have
performed a LCS analysis based on ridge extraction from the FTLE field for two-dimensional
cases. For the three-dimensional case, the LCS has been estimated using the isosurfaces of
the FTLE field. In addition, we compare the reliability of Lagrangian tracers with water vapor
particles. We also compare the patterns of tracer field advected by two AR events; one with a
clear jet shape dominated by passive advection and another mainly dominated by evaporation.

Our results conclude that for winter ARs mainly dominated by a passive advection, there
is an attracting LCS along the AR, compressing the water vapor while it moves towards east.
For an AR with a clear jet shape structure, the LCS keeps its spatial coherence in the vertical
direction shown as a curtain in 3D.

The full content of the article can be consulted on https://aip.scitation.org/doi/

full/10.1063/1.4919768

3.3 Influence of finite-time Lyapunov exponents on winter
precipitation over the Iberian Peninsula.

In the second article, we have used the FTLE statistics as a measure of mixing over the
North Atlantic region to explore its usability as a forecast variable for months in advance.
Using the wind field at 850 hPa, we have performed Lagrangian simulations to obtain the
forward FTLE time series within a 5 day time integration for a climate period of 35 years.
Then, the monthly-average anomaly of FTLE has been computed to estimate the mixing over
the Atlantic Region. It has been correlated with the precipitation over the Iberian Peninsula,
finding a high correlation with the precipitation in the following season. Also, to understand
the meteorological mechanism behind this correlation, the same procedure has been applied to
different Climate Indexes and other meteorological variables, in agreement with the previous
results obtained.

The full content of the article can be consulted on https://www.

nonlin-processes-geophys.net/24/227/2017/
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3.4 Climatology of Lyapunov exponents: The link between
atmospheric rivers and large-scale mixing variability

In the third article, we study the mixing at day-scale in the troposphere over the entire globe
in terms of FTLE. We have analyzed different sources of mixing and its variability through a
climate analysis. Following the same procedure as in previous articles, we have computed in
forward and backward time direction the FTLE time series for the climate period 1979-2014 for
the entire globe. In other terms, we have obtained the evolution of the deformation of air masses
at a day-scale to estimate the tropospheric mixing for the climate period mentioned above. We
have also studied the role that climate sources of variability, like seasonality or ENSO events
play on mixing, through an analysis of intranual and interannual variability of FTLE time series.
In addition, two sources of tropospheric mixing have been considered; first, the baroclinicity
through the Eady Growth Rate as a trigger mechanism on the formation of flow structures.
Second, we have considered the ARs activity over the Atlantic region, filtering the FTLE time
series with an AR detection database to quantify their influence in terms of mixing. To support
this, we compare the precipitation in the Sahara region and the UK. We found that mixing
calculated over statistics of FTLE time series reproduces well the main climate patterns and
also the main variability climate sources. The forward FTLE intrannual variability shows the
influence the pressure centers have, on the mixing over the northern and southern hemisphere.
The backward FTLE intraanual variability has its better agreement with the ITZC area. The
interannual variability of the time series shows its strongest signal over the Pacific Warm Pool
where the El Niño and La Niña events, are the main sources of variability. This fact has been
further studied, analyzing the annual time series of MEI (Multi ENSO Index) and the anomaly
of the FTLE for the defined region obtaining high correlation values in agreement with the
previous results.

The full content of the article can be consulted on https://www.earth-syst-dynam.

net/8/865/2017/

3.5 Conclusions
The FTLE provide a versatile tool to analyze Lagrangian transport in the atmosphere.

Focusing on a particular event, it allows us to characterize the wind flow structures as LCS,
giving us quantitative information about the different dynamical regions on the wind field. Here,
we have found that ARs dominated by strong winds and passive advection behave as attracting
LCSs, over the Atlantic Ocean shaping the water vapor patterns. Its activity together with
other tropospheric flow structures introduces mixing in the troposphere and hence displaces
the air masses, conditioning the regional weather. The use of statistical analysis is essential to
summarize the mixing over the years and over the region in question. We found that the statistic
based on FTLE fields can be used as a forecast variable over the North Atlantic area; the link
between mixing and precipitation some months in advance over the Iberian Peninsula shows an
agreement in terms of meteorological variables and different climatic indexes. The use of the
FTLEs over the entire globe provides a climate description in terms of mixing at a day scale,
reproducing in a climate sense, the same patterns as other meteorological variables. The main
sources of climate variability, seasonal change and ENSO, have been reproduced, showing the
role that they have in mixing at the mesoscale. Also, the link between baroclinic instability and
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mixing at day scale has been computed in average climatic terms, supporting that those regions
with instability coincide with regions of high mixing.

Finally, once a coherent structure like the ARs has been identified as a maximal FTLE
region, we filter the associated time series in terms of dynamical structures, distinguishing their
contribution to the mixing.

The FTLE, as an integrated Lagrangian measure, allows us to explore geophysical flow
structures in terms of mixing. To go further in this analysis, more accurate computations
could be done: for example, the use of more accurate LCS extraction methods, an extended
three-dimensional analysis to other atmospheric events, and/or the use of other advection times
T to explore the role of other flow structures and quantify their contribution to mixing. The
methodology used here can be extended to other regions and other atmospheric levels.
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Transport of inertial particles in chaotic
flows

4.1 Main objetives
For Lagrangian tracers, the time-position vector state is enough to describe the phase map.

However, when we introduce finite size effects to study problems where realistic particles are
involved, the presence of forces and the local flow velocity drive the motion of inertial particles.
Accelerations are required to describe the state of a particle increasing its complexity with
respect to the Lagrangian problem, allowing the particles to overcome the flow constraint and
hence the transport barriers for Lagrangian particles. This makes the problem exponentially
expensive in computational cost and hence making it more difficult to detect separatrices and
invariant manifolds due to the heavy requirements needed to evaluate the whole phase space of
initial conditions to obtain the FTLE fields.

Many studies have been done on the dynamics of inertial particles in model flows to observe
their effects on collective motion and distribution as we introduced in Sec. (1.5.2). The sensitive
dependence on the initial conditions of inertial particle trajectories and clustering was further
studied by [73] using a two-dimensional cellular flow for neutrally buoyant particles. A method
to segregate inertial particles from an initial mixture by different sizes (i.e. Stokes numbers)
was numerically demonstrated in [74].

In this section, we will mainly focus on the simplified form of the Maxey-Riley equation
described in Sec. (2.2). We focus on how the inertial effects modify particle trajectories
and other physical properties relative to their collective motion on different model flows and
compare it with the Lagrangian tracers for three different kinds of particles; rigid spherical,
non-rigid spherical (bubbles) and reactive particles. To that end, we perform particle parameter
variation on Eq. (2.12) like the radius, density relation and also the modification of the initial
conditions; position and initial velocity [75].

To quantify the sensitiveness to these parameters, we use the FTLE field to obtain the
separatrices that organized the motion of particles with a different dynamic, however, the
gradient of the flow map on Eq. (2.18), should be extended to take into account the additional
dimensions. In higher dimensional problems, the computation of this matrix is an overwhelming
task so we should focus on a section of the subspace, which can be considered “slices” of the
full problem. The dimensional slices will depend on which dimensions we would like to study
the sensitivity of. Here, for those highly dimensional problems, we will focus on how these
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perturbations grow in the xy plane by integrating the particle trajectories numerically, from
which the sensitivity field is computed.

Also, for time-dependent vector fields, the location of these separatrices depends on the
choice of initial time, so the locations of ridges depend also on it. In this section, we will not
perform a time variation analysis to measure the change of the FTLE and LCS patterns to
observe its evolution. We will focus on periodic and steady flows.

In this section, we present three articles where the tools and the concepts explained above
have been applied to the problem mentioned.
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4.2 A method to calculate finite-time Lyapunov exponents for
inertial particles in incompressible flows.

In the first paper, we have studied the influence that initial velocity conditions have on
the trajectories for small rigid spherical particles, splitting the space sensitivity from velocity
sensitivity for two model flows considered; the meandering jet and the double-gyre. The
evolution of a perturbation is along four basis vectors. For an arbitrarily oriented initial
perturbation, the growth may not be dominated in the direction of greatest expansion for
short integration times. This can be overcome by sampling multiple perturbations in different
directions. We have considered a finite range of initial conditions r0 ∈ R4 in the range of
flow characteristic scales, to focus on a four-dimensional region of the phase space. After the
integration, we have computed the FTLE using a four-dimensional deformation gradient tensor,
including the deformation of velocity and position with respect to the initial conditions, so each
tensor difference point has eight neighboring points, one along each of the positive and negative
directions in each phase space direction. The deformation is measured with respect to the
perturbation of the initial state conditions of the system, providing a unique value; the maximum
deformation, without knowing its main direction. We should focus on the information contained
on the eigenvectors and the main stretch direction to observe the dimension where the maximum
stretching happens and observe, how relevant it is respect to characteristic scales of the flow.
This allows us to identify the causes of deformation; perturbations on initial position or velocity.
Also, this situation has been tested with heavy and light particles to observe its reliability to
obtain the flow partitions.

The full content of the article can be consulted on https://www.

nonlin-processes-geophys.net/22/571/2015/
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4.3 Mixing of spherical bubbles with time-dependent radius
in incompressible flows.

In the second paper, we have focused on non-rigid spherical particles: spherical bubbles.
The dimensionality increases to include the radius and its rate of change R(t),dR(t)/dt as state
variables. We have used the steady three-dimensional ABC flow with a gradient of pressure
and temperature on the z axis allowing the contraction and expansion of bubbles, modeled by
the Rayleigh-Plesset equation and the equation of state, turning into an 8-dimensional problem.
However, due to its high dimensionality, we focus on a section of the subspace (x,y) to observe
the influence that initial radius R0 = R(t0) conditions have on the particle trajectories in terms
of FTLE spatial distribution comparing it with Lagrangian distribution. In addition, the effect
of coalescence has been considered by means of a geometrical approach to solve the collision
between bubbles, considering a different distribution of initial bubbles controlled by the initial
radius and the initial distance between the bubbles d0. This effect has been assessed obtaining
collision rates and it has been studied in terms of Levy distributions.

The full content of the article can be consulted on https://journals.aps.org/pre/

abstract/10.1103/PhysRevE.93.023107
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4.4 Nonperfect mixing affects synchronization on a large
number of chemical oscillators immersed in a chemically
active time-dependent chaotic flow.

Finally, in this paper, we have studied the problem of mixing/dispersion of chemically
active particles through a Belousov-Zhabotinsky reaction, where mixing is not well realized.
To that end, the chemical reaction is modeled by a large population of Lagrangian particles
(a chemical dissolved in solution) and inertial particles (catalyst-loaded beads) moving in a
double-gyre flow. The chemical reaction between both particles has been modeled using a three
variable Oregonator model. The dynamics of the system have been studied in terms of the
Stokes Time and the density fraction β . The relation number between both kind of particles and
also the role that this parameter has on the synchronization was study in terms of the Kuramoto
order parameter.

The full content of the article can be consulted on https://journals.aps.org/pre/

abstract/10.1103/PhysRevE.94.013103

4.5 Conclusion
Lagrangian analysis provides an excellent tool to summarize the collective motion of

particles. The FTLE has been shown as a useful tool to explore numerically the invariant
manifolds and coherent structures for high order dimensional systems. Its spatial distribution
has revealed the importance of dissipative and dumping effects over different kinds of particles,
shaping the coherent structures and the invariant manifolds as main cores of trajectory
organization and dynamics segregation. Ridges on this sensitivity field act as separatrices,
similar to LCSs, partitioning the corresponding subspace.

The parameter analysis and perturbation of initial conditions to observe its influence on the
particle motion have been analyzed through the FTLE distribution; ridges in the FTLE field
at each spatial point partition phase space into zones of different dynamics. This is enhanced
mainly in regions with a high variability on the velocity field where there are flow structures
such as strain, eddies, or shear regions; we observe how particles located on either side of the
shear area will evolve to different spatial locations after a short time. The same has been shown
for the non-rigid particles: bubbles and reactive particles. Increasing the radius, and hence,
reinforcing the inertial effects, will lead to changes in the FTLE pattern.

The coalescence effect is an irreversible process where two bubbles collapse into one, and
it cannot be studied in FTLE terms due to the fact that at any collision point at a finite time for
neighboring particles their FTLE remains zero. In this case, measuring the rate, the number
of collisions, and how they depend on initial properties was studied through adimensional
number R0/d0, showing that the collision rate follows a Levy distribution, where its shape
highly depends on this dimensionless factor.

The synchronization between reactive particles; Lagrangian (chemicals) and inertial
particles (beads), depends on system parameters and also on the ratio between both types of
particles. Patches of oscillating and nonoscillating particles were found on the domain. The
non-synchronized areas show an agreement with regions separated by the transport barriers
revealed by ridges of the FTLE.
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This study can be extended to any other kinds of particle which require more dimensions to
describe their states. Also, the parameters introduced here to describe the particle motion can
be extended to other non-analytical flows. This dependence can be exploited to make particles
of different sizes cluster in different regions of the fluid and thus separate and segregate them.
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Chapter 5

Advective transport on a Von Karman flow

5.1 Introduction
In this section, the trajectories solution of the equation Eq. (1.8), come from real

experimental data obtained with image visualization techniques. This produces sequences
of pictures of real particles transported under the action of a flow captured with high-speed
cameras. Here, the data obtained correspond to the trajectories inside an isotropic turbulent
flow using the novel Lagrangian Particle Tracking (LPT) algorithm Shake-The-Box (STB) [76].
This section is intended to summarize the basics of the experimental setup and show the first
preliminary results. Due to the amount of data captured on the measuring campaign, most of
the data are still under processing at Munich Supercomputer Center, and just a few test data are
available, so here, we present a summary of the experiment carried out at the in the Göettingen
Turbulence Facility 3 (GTF3) von Karman Flow Apparatus at the Max-Planck-Institute for
Dynamics and Self-Organization (MPIDS) in collaboration between German Aerospace Center
(DLR) and the University of Santiago de Compostela (USC). Part of the experiment described
here has been used in the Jennifer Jucha thesis from earlier experiments [77].

5.2 Experimental setup
The flow visualization techniques are non-invasive experimental methods to measures

physical properties of the fluid flow. These methods do not introduce any perturbation in
the fluid flow due to the measuring processes. The fundamentals consist of injecting seeding
particles into a fluid, illuminating the particles and recording them with capture devices. Then,
the sequence of pictures are processed using mathematical methods to reconstruct the particle
motion and extract the information related to its position, velocity and/or acceleration or other
physical properties (rotation, radius...). Depending on the particle nature and its seeding density
we can obtain information regarding the particles themselves or information regarding the flow.
If there is a enough seeding particle density with a low Stokes number (1.11), they behave
similarly to Lagrangian tracers and it is possible to obtain the flow velocity field. However, for
particles where inertial effects are higher, the particle velocity is different from the fluid flow
and we can not use them as tracers of the flow velocity field.

Here, we focus in a high turbulent flow generated by two counter-rotating propellers. To
study the flow at lower Kolmogorov spatiotemporal scales, we require the use of high seeding
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Figure 5.1: General view of the experimental setup. The 4 cameras look to the center of the
water tank through the attached prisms.

density and four high-speed cameras together with power laser illumination to obtain the 3D
trajectories. In the following section, we describe the experimental setup and the datasets
obtained, followed by the results that are expected to be obtained.

Capture device The technical specifications of the capture device will depend on the flow
characteristics. In turbulent flows, the Kolmogorov length and time microscales, η and τη

respectively, will be the lowest scales where viscosity dominates before turbulent kinetic energy
is dissipated into heat. Depending on which scales of motion, and the corresponding flow
features we want to capture, we have to ensure that, the capture device, has enough spatial
and time resolution. On previous experiments [77], for the same flow configuration, the scales
obtained were η = 104 µm and τη = 10.0 ms.

To capture the image sequence, 4 Phantom CMOS v640 high-speed cameras with an
internal storage capacity of 32 Gb have been used. They have a maximum resolution of
2560x1600 pixels with a frame rate of 1400 fps with 12 bit depth. They are equipped with
100 mm Zeiss macro lenses (f#=16) and Scheimpflug adapters to record the particles in ≈ 45◦

forward scattering. Prisms attached to the tank guarantee the camera windows are perpendicular
to the camera axes. Three cameras are the minimum requirement to get the 3D position in space,
the fourth camera is used to increase the precision of the measurement. The cameras can modify
the resolution and the capture frame rate to adjust to the flow conditions.

With this frame rate capture (∼ 0.701 ms), we can ensure an oversample factor of ∼ 12.5.
However, this is not the case for the spatial scales, where the ratio pixel resolution is not the
only factor. It depends also on the seeding density and hence the distance between particles,
which should be enough to be distinguishable in the camera sensor.
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Figure 5.2: Optical setup to guide the laser inside the tank.

Laser The illumination should be close to uniform in intensity, due to the fact that all the
particles must be illuminated with the same amount of light to have a Gaussian profile in terms
of pixels, to be distinguishable in the image. Also, the illumination source must be synchronized
with the camera capture framerate, in such a way that when the laser beam strikes the particles,
the captured image does not include other sources of light, such as reflections or scattered light.

For the seeding illumination we use a fiber-coupled Nd:YAG laser (IB Chronos 400 MM
IC SHG) with 10 kHz of frequency, a wavelength of 532 nm (green light) and an output power
of 150 W. To synchronize the laser pulse with the cameras, the laser generates a clock pulse
which is used as a synchronization signal for the 4 cameras to capture the same picture at the
same time instant after a light pulse is emitted.

The laser beam is conducted to the water tank through an optical lens system as shown in
Fig. (5.2). It is made by a divergent lens which opens the beam and a cylindrical one, which
expands it in the vertical axis direction to generate an elliptic Gaussian beam with an uniform
power density in the center of the ellipse area. Then, a rectangular area inside the Gaussian
ellipse is removed with a knife edge to generate a rectangular beam to illuminate uniformly the
center of the tank where the homogeneous turbulence takes place (Fig. (5.3)(c)) . The maximum
volume illuminated was intended to be of 50×50×20 mm2.

Seeding Two types of seeding have been used, both of them are spherical particles. The
seeding is inserted into the tank by a syringe with a diluted water-alcohol solution through a
small valve aperture on the top. The first one is made of polystyrene, transparent with a diameter
of 20 µm, with a density of ρ=1.05g/cm3. These particles are intended to be Lagrangian due to
their low radius and a density close to that of water to avoid flotation effects. The second type
has a bigger diameter range, between 106-125 µm and a density of ρ=1.003 g/cm3.

Von Karman turbine The flow chamber shown in Fig.(5.3)(a) is made of stainless steel.
It has a height of 58 cm and an inner diameter of 40 cm filled with deionized water. Inside,
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Figure 5.3: (a) Body of the von Karman turbine. Observe both engines at the top and the bottom.
(b) Black propellers inside the water tank. (c) Scheme of the swirling flow generated inside the
water tank (Modified from [77])

there are two counter-rotating (Fig. (5.3)(b-c)) propellers powered by two 7.5 kW engines. The
frequency speed of the propellers is adjustable from 0.5 Hz to 1.5 Hz. The propellers have a
wheel shape with a diameter of 25 cm and a height of 9 cm. Inside each wheel, there are 8
symmetrically distributed vanes. Between the wheels and the cylinder wall, there are eight
plastic inserts to avoid any large-scale rotational flow, so at the center, there is a homogeneous
turbulent region.

The inner wall was covered with a Plexiglass film to have cylindrical symmetric conditions
and to avoid the generation of large-scale flow structure due to asymmetry created by unused
window holes inside. The Plexiglas, the propellers, and the vans have been built in black
material to diminish the internal light reflections and light scattering. The tank is cooled from
the top and bottom by two plates, with a water pump circulation system. The temperature of the
water was close to being constant at 21±5 degrees to avoid convective effects. The air of the
room is continuously re-filtered to remove dust particles and humidity from the air. To remove
impurities from the deionized water, mainly due to material degradation, a pump with two filters
for 30 µm and 5 µm is used. The filtering process avoids the introduction of impurities; particles
different from the spherical seeding with a different light scattering pattern.

Data collection Each camera is individually connected with an Ethernet Gb to a switch
connected to a Linux cluster via a glass fiber cable. To avoid bottlenecks the download process
is done in parallel with each camera individually. For a propeller frequency of 0.5 Hz, two
kinds of measures have been done. First, short sequences of pictures have been carried out to
compute turbulence statistics. Then, long sequences of pictures (using the full camera capacity)
are taken, to obtain the flow velocity to be able to compute integrated measures and explore the
flow structures and their coherence.

Thus, 1000 time series of 200 time steps and 2000 time series of 40 time steps have been
recorded to obtain converged statistics of velocity and acceleration, to compute the dissipation
rate, the dissipation tensor, and statistics of the velocity gradient tensor, as well as (conditional)
Eulerian and Lagrangian spatial and temporal correlation functions. For the analysis of pair and
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tetraheds dispersion, 40 time series of 14000 time steps (full camera capacity) were recorded. A
total amount of ∼40 Tb of particle image data have been collected. To compare the results for
both particles another dataset of measures have been recorded with the bigger particles. After
recording each sequence, we must wait a few seconds before taking another sequence to ensure
the independence of the measure due to the randomness of turbulent flow.

Due to the repetitiveness of the process, it was automated with a master computer
controlling the trigger signal to start the recording and stopping process and also the download
process. After many recordings, the experiment is stopped to relax the laser and to check
the seeding density. The whole data measurement campaign lasted two weeks (the download
process takes 80 % of whole experiment data time campaign).

LPT algorithm: Shake-The-Box The Lagrangian Particle Tracking methods are intended
to obtain the trajectories of individual particles. Originally these methods find the position of
particles and then connect them to trajectories. The Shake-The-Box approach is able to identify
and track individual particles at numbers of tens or even hundreds of thousands per time-step
due to its exploitation of temporal information. This enables the processing of densely seeded
flows (beyond 0.1 particles per pixel, ppp), which were previously reserved for tomographic
PIV evaluations. A more detailed description of the method can be found in [78, 79, 76]

The core of the technique consists of: given a sequence of images, the positions of the
particles are fit polynomially from n− k to n picture, then it is extrapolated to n+ 1. That
is, it uses a prediction of the particle distribution for the subsequent time-step as a means to
seize the temporal domain. Using the extrapolated position of the projected particle, this is
shaken in order to find a matching particle. Errors introduced by the prediction process are
corrected by an image matching technique (‘shaking’ the particle in space), followed by an
iterative triangulation of particles newly entering the measurement domain. Then the shaken
particles are removed to reduce the complexity in the following time steps. Trajectories of
tracer particles are identified at high spatial accuracy due to a nearly complete suppression of
ghost particles; a temporal filtering scheme further improves on accuracy and allows for the
extraction of local velocity and acceleration as derivatives of a continuous function.

5.3 Expected results
Most of the hard processing, to turn the images obtained into particle trajectories with

the Shake-The-Box algorithm and reconstruction of the Lagrangian path as it is shown in
Fig.(5.4)(b), takes place at the München Supercomputer Center and at the DLR.

Once all the images are turned into manageable datasets of trajectories, the first step is
to check the quality of the data, reproducing previous results obtained from [80], including
Lagrangian and Eulerian velocity moments, and the Kolmogorov scales. Then, it is intended to
compute converged statistics of velocity and acceleration, to compute the dissipation rate, the
dissipation tensor, and statistics of the velocity gradient tensor, as well as (conditional) Eulerian
and Lagrangian spatial and temporal correlation functions over particle dispersion or tetrads,
among others. Also, the turbulence flow field will be studied in terms of FTLE analysis and
Lagrangian Coherent Structures.

Using the turbulent flow field obtained with the Lagrangian particles R =20µm, we will
run simulations of ensembles of inertial particles. Then we will compare statistics relative to
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Figure 5.4: Preliminary results process from a sequence of pictures. (a) Isosurface of
Q-Criteria=2500. (b) Particle trajectories colored by the x-velocity component. (Credits: Daniel
Schanz, DLR)

velocity and acceleration with the results obtained from real inertial seeding R =120 µm. Also,
we want to observe the role that smaller inertial forces play on the results, due to both particles
having different Stokes numbers, and hence a different coupling with the fluid flow.
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Main Conclusions

Throughout this thesis we have used a dynamical systems approach to analyze different
transport problems. The dynamical systems approach to transport in fluid flows focuses on the
particle trajectories instead of mechanical aspects of fluid physics providing a powerful and
versatile tool to analyze the transport and the fluid motion, especially through the concepts
of invariant manifolds and Lyapunov exponents. These concepts have been applied to two
transport problems with different natures: First, we have used a pure Lagrangian approach
to study troposphere transport, to obtain information about the motion related to air masses
themselves, focusing on a particular flow structure: Atmospheric Rivers. Then focusing on the
evolution of mixing at climate scale and finally, the potential use of FTLE as a seasonal forecast
variable for precipitation. Second, we have focused on the influence that inertial effects, have
on particle motion for different kinds of spherical particles; rigid, bubbles and reactive particles.

Measures of hyperbolicity such as the FTLE, extended to measure material stretching have
been used to estimate the structures that organize transport: Lagrangian Coherent Structures.
These can be estimated as maximal regions on the FTLE field differentiating the regions with
different dynamics. Finally the main conclusions of this work can be summarized as:

• We identified the Atmospheric river as an attracting Lagrangian Coherent Structure. We
demonstrate that an Atmospheric River dominated by passive transport turns into the
dominant hyperbolic attracting structure on the wind field, with a coherence of days.

• The summer anomalies of the FTLE analysis over the Atlantic region show a significant
correlation with next winter’s anomalies of precipitation. The same connection has been
found for other circulation and temperature patterns.

• The climate analysis of the FTLE for the period 1979-2015 shows a link between climate
variability and mixing process with a scale of days. Also, the impact of ARs on mixing
plays a key role in regional climate.

• We demonstrate that the use of higher-order dimensional methods to compute the FTLE
can capture the sensitiveness of initial velocity plays on inertial particles for those areas
where there is a intense flow variability.

• Time dependent particle size plays a key role in the formation of coherent structures and
flow partitioning. The effect of merging has its highest influence on neighboring bubbles
and their size. It increases the collision rate in the first moments, and reduces as the flow
evolves, following a Levy distribution.
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• The particle parameters modified the exchange of chemical properties. The presence of
transport barriers affect to synchronization of chemical oscillators, leading to patches of
oscillating and nonoscillating particles

• The LPT Shake-The-Box algorithm, increases by many orders the number of particles
resolved, even for high Reynolds turbulent fluid flows in comparison with previous
techniques such as Tomographic PIV. We tracked up to 70,000 particles in a volume
of 50×50×15 mm3 with a mean inter-particle distance lower than 7 Kolmogorov lengths
in a Von Karman flow with a Reλ = 350µm.
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• V. Pérez-Muñuzuri, D. Garaboa-Paz, and A. P. Muñuzuri, “Nonperfect mixing affects
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