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Abstract

Hyperspectral image registration is a relevant task for real-time applications like
environmental disasters management or search and rescue scenarios. Traditional algo-
rithms were not devoted to real-time performance, the HYFMGPU algorithm having
arisen as a solution to such a lack. Sensors are expected to evolve and thus generate
images with finer resolutions and wider wavelength ranges, so a multi-GPU implementa-
tion seems to be necessary in a near future. This work presents a first approach to such
a multi-device version, identifying some stages of the pipeline as the most suitable to
run in parallel in several GPUs. An MPI+CUDA variation of the original HYFMGPU
algorithm is implemented, achieving speedups of 1.83× in 2 GPUs and 3.08× in 4
GPUs for the stages of the pipeline distributed among several devices. Different issues
related to communications-derived time overloads and to some CUDA-based libraries
particularities, as long as some optimization possibilities out of the currently distributed
stages, were also detected. We plan to tackle them in further development stages of this
multi-GPU implementation.

Key words: Hyperspectral imaging, image registration, Fourier transforms, multi-
GPU, CUDA, OpenMP, remote sensing.
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1 Introduction

The task consisting on estimating the translation, rotation and scaling parameters of a
given image with respect to a second take of the same scene obtained at different times,
viewpoints and/or lightning conditions is known as image registration. During the last
years, a whole family of FFT-based image registration techniques appeared, but most of
them ignored time performance. However, many real-time applications such as the manage-
ment of natural disasters or surveillance operations depend on hyperspectral images being
processed in real-time. GPUs were used to boost tasks like classification, target detection
or segmentation of this kind of images, but few efforts were made to achieve a real-time
implementation of a hyperspectral registration algorithm. In [1], Ordóñez et al. introduced
HYFM, a Fourier-Mellin algorithm for hyperspectral images registration, and implemented
a sequential CPU version of it. That work was followed by HYFMGPU [2], a single-GPU
version whose performance makes it suitable to be used in real-time environments. Never-
theless, as both the image resolution and the wavelength range of the sensors that capture
hyperspectral images improve, both the size of images and the number of bands to be pro-
cessed is expected to increase. In this work we present the first steps taken to achieve a
multi-GPU implementation able to satisfy these needs.

The rest of this extended abstract is organized as follows: Section 2 summarises the
HYFMGPU algorithm, describing then in Section 3 the first approach to a multi-GPU
version of it. The preliminary results obtained by this approach are introduced in Section 4,
and finally in Section 5 we present the conclusions and some brief future research lines.

2 The HYFMGPU algorithm

The HYFMGPU algorithm expects as input a pair of hyperspectral images (reference and
target), the goal being to register the target image, this is, to compute how it is rotated,
shifted and scaled with respect to the reference image. The algorithm comprises six main
stages, which are depicted in Figure 1.

Figure 1: HYFM scheme for registration of two hyperspectral images
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The HYFMGPU algorithm projects these stages to a single GPU by means of a CUDA
implementation that relies on some specific libraries, namely cuBLAS, cuSOLVER, cuFFT,
NVIDIA Performance Primitives (NPP), and Thrust. This implementation can be roughly
decomposed in the following steps:

1. Initialization: Input images are loaded in global memory, and some arrays needed
by further steps are also loaded and/or computed.

2. Preprocessing: In Stage I, a single-kernel Blackman filter is applied first to both
inputs to remove higher frequencies, which might be detrimental for the precision of
the registration. Those filtered images are centered, and then a principal component
analysis (PCA) is applied to each of them in order to extract their most relevant
features by retaining a reduced number of principal components (i.e., transformed
bands of the original images). Both cuBLAS and cuSOLVER operations are used to
implement this analysis. Finally, sizes of both reduced images are expanded to the
nearest common upper power of 2, and data is transformed to complex values.

3. Selected bands processing and composition: In this step, pairs composed of the
same PCA-extracted band from both inputs are processed by computing a high-pass
filter (Stage II), a log-polar map (Stage III), and a phase correlation (Stage IV). As
this three substeps are FFT-based, the underlying operations are implemented by
means of the cuFFT library. Since this is a single-GPU implementation, the device is
commanded to iterate over all the band pairs in order to perform this stage. Finally,
a single-kernel reduction (Stage V) is performed in the device in order to average the
log-polar correlated maps obtained for each pair of PCA-extracted bands.

4. Peak processing: The log-polar peaks contained in the average map computed in
the previous step are descendently sorted in the device using the Thrust library, select-
ing a given number and processing them one-by-one. This process starts by rotating
and scaling the first component of the target image several times using specific func-
tions from the NPP library. Next, a phase correlation and a cuBLAS-based maximum
search are performed on the cartesian grid to determine the correct angle and trans-
lation parameters. Finally, the highest peak of all the cartesian grids is selected, as its
coordinates determine the shift parameters. In turn, the log-polar counterpart of this
peak decide the scale factor and the rotation angle. All these values are the expected
output of the Stage VI of the pipeline.

3 Proposal of multi-GPU parallelization

A quick glance at the HYFM pipeline depicted in Figure 1 reveals the workload comprising
Stages II, III and IV as a very interesting candidate to a multi-device coarse-grain par-
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allelization. Notice how this workload, described in the step 3 of the single-GPU CUDA
implementation introduced in Section 2, is performed by a loop that iterates over each pair
of bands extracted from reference and target images.

Initial OpenMP+CUDA approach

In a very initial approach we opted to implement a OpenMP-threaded version of the
HYFMGPU host program, keeping a master thread to control the single-GPU parts of
the multi-device implementation (Steps 1, 2 and 4), and defining a parallel section to com-
mand each GPU to run its part of the Step 3. So, once the master thread loads the images, it
commands its GPU to apply the Blackman filter, run the PCA, and distribute the extracted
components equally among the GPUs available. Once the program enters the parallel sec-
tion, each thread commands its GPU to convert its subset of the PCA-extracted bands to
complex type and perform over them in a loop Stages II, III and IV of the pipeline. After the
program exits this parallel section, the master threads takes the control back, averaging the
partial log-polar maps computed by each GPU (Stage V) and processing the peaks (Stage
VI) in order to get the final shift, scale and angle outputs expected after this last stage.

As Step 3 of the CUDA implementation description from Section 2 shows, the cuFFT
library is used to process a the PCA-extracted bands. Because of that, each GPUs needs its
own set of FFT execution plans, whose initialization must be invoked from the correspond-
ing OpenMP thread. The first tests showed that despite having distributed the workload
among several GPUs, the execution time of the step 3 was multiplied by the number of de-
vices, instead of being divided as expected. So, the way how CUDA and OpenMP interact
when each thread is trying to prepare their corresponding cuFFT plans makes these initial-
ization operations to be eventually sequentialized. As Lončar et al. explain in [3], combining
FFT operations and OpenMP-threaded parallelizations is not a trivial task. They also rec-
ommend to use FFTW3 [4] in such cases, but there is no support for this FFT library in
CUDA.

To solve this cuFFT issue, the implementation we have just described was shifted from
forking multiple OpenMP threads to run separated MPI processes. This way, the FFT
plans needed by each GPU were prepared in different processes with its own memory space,
which made the sequentialization problem disappear.

MPI+CUDA version

In this MPI-based evolution, a number of processes equal to the number of GPUs is
launched. Since MPI follows a SPMD model, some noticeable variations were introduced in
the workflow of the host program. Now each process loads its own full copy of the images,
and commands its GPU to apply the Blackman filter and run the PCA on them. Despite
having the all the PCA-extracted components available, each GPU is forced to perform the
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Stages II, III and IV of the pipeline just on its own bands subset. In this case, the interme-
diate log-polar maps processed by each GPU are gathered by means of MPI synchronous
messages in the process controlling the GPU 0, which composes them in a final log-polar
grid (Stage V) and explore the peaks (Stage VI) to compute the final result.

4 Experimental results

All tests were run in a node equipped with a dual-socket host CPU composed of 2 Intel Xeon
E5-2609v3 (1.9 GHz, 6 cores each) with 64 GB of RAM, and 4 GPUs NVIDIA GeForce
GTX TITAN Black (GK110B architecture, compute capability 3.5, 15 SMs with 192 CUDA
cores each, up to 2880) controlled by the 384.59 driver. The CUDA code has been compiled
under Linux using nvcc from CUDA Toolkit 9.0, as well as the libraries used. Multi-threaded
preliminary tests were supported by linking libraries from OpenMP 3.1, whereas the MPI
support was provided by mpich-3.2. The multi-GPU implementation was evaluated by
registering rotated and scaled variations of the Pavia University test case, a common single
reference hyperspectral image of 610×340 pixels and 103 bands already used in [2]. The
values of the parameters that control the registration algorithm were also the same as those
specified in [2], this is: 8 bands to be extracted in the PCA, vector α = {1, 1/4, 1/16, 1/64}
for the FFTs performed to obtain the log-polar maps, and 50 highest peaks to be examined
in the peak processing stage.

Version
Wall time in seconds (Speedup)

Step 1 Step 2 Step 3 Step 4 Total time

HYFMGPU 0.698 s 0.575 s 0.512 s 0.309 s 2.094 s

MPI+2GPU 0.687 s 0.569 s 0.279 s (1.83×) 0.323 s 1.852 s (1.13×)

MPI+4GPU 0.714 s 0.569 s 0.166 s (3.08×) 0.382 s 1.831 s (1.14×)

Table 1: Wall times in seconds (and speedups) for each step and for the whole HYFM
algorithm

The Table 1 shows the wall time consumed by the original single-GPU CUDA imple-
mentation and the MPI+CUDA version when it is run in 2 and 4 GPUs to perform Steps 1
to 4 from Section 2 individually, and to run the whole algorithm. Moreover, the speedups
achieved by the multi-GPU versions for both the Step 3 and the whole algorithm are shown
in the corresponding entries of Step 3 and Total time columns. In relation to the FFTs
performed in Step 3, it must be noticed that the cuFFT API allows the programmer to
disaggregate the creation of FFT execution plans [5] in three steps: (1) handle creation, (2)
estimation of sizes for temporary buffers, and (3) execution plan definition. We experimen-
tally checked that the time consumed by handles creation and plans definition was negligible
with respect to the time needed to estimate the buffer sizes. Since this estimation step does
not depend on the number of PCA-extracted components processed, we moved it to the ini-
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tialization part of the program and, hence, the FFT plans creation time is ascribed to Step
1. Along the computation of high-pass filters, log-polar grids and phase correlations, times
in Step 3 column also include the conversion to complex type of the extracted components
and the calculation of some auxiliary buffers needed. It is also remarkable that the times
shown in Step 4 column increases as the number of GPUs does, since the communication
of the partial results back to the process acting as master is being summed up here.

The speedups of 1.83× for 2 GPUs and 3.08× for 4 GPUs shown in Step 3 column
confirm that the loop performing the MLFFT+LogPolar+Correlation stages was a suitable
candidate to be distributed among several GPUs, despite the time needed by additional
auxiliary buffer computations and data communications making them to distance from the
theoretical maximums of 2× and 4×, respectively. Furthermore, for the specific experiments
run (Pavia University input images, GPUs with GK110B architecture and compute capa-
bility 3.5), the wall time consumed by this step represented about a 25% of the wall time
of the whole algorithm run in a single GPU, so that Amdahl’s Law is limiting the overall
speedup achievable by distributing the workload of this step among 2 GPUs to 1.14×, and
among 4 GPUs up to 1.23×. Therefore, by now the multi-device version is achieving a 99%
and a 93% of the theoretical maximum performance when run in 2 and 4 GPUs respectively.

5 Conclusions and future work

In this work we have introduced an initial approach of a multi-device version of the original
CUDA implementation of the single-GPU HYFMGPU algorithm. The speedups of 1.83×
for 2 GPUs and 3.08× for 4 GPUs obtained for the Step 3 from Section 2 confirmed it as a
suitable candidate to be distributed among several devices.

Furthermore, in the current experimentation conditions (Pavia University input im-
ages, GPUs with GK110B architecture and compute capability 3.5), the wall time of the
tasks currently distributed among several GPUs only represented about a 25% of the total
execution time of the HYFM pipeline, so that finding more steps of the algorithm that could
be parallelized in several GPUs is another interesting research line. For instance, once the
peaks are sorted at the beginning of Stage VI, they could be scattered among the GPUs.
Then, each device would process a subset of the peaks locally and return its highest one
to the host program, which will compute the final result. Moreover, currently the PCA
is performed by a single-GPU non-iterative procedure based on that one presented in [6].
Namely, it would be quite interesting to implement a multi-GPU version of the PCA that
was able not only to boost the component extraction part but also to make each subset
of bands to be directly stored in the global memory of the corresponding GPU. Also more
experiments with larger images (regarding both space and bands) and in different devices
must be run in order to evaluate how the experimentation conditions affect the weight that
each step has in the execution time of the algorithm.

c©CMMSE ISBN: 978-84-697-7861-6
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Finally, although the usage of MPI instead of OpenMP helped to solve the cuFFT
sequentialization issue, there is still a fixed time that must be consumed to estimate the
sizes of the temporary buffers needed by the FFT execution plans. This inconvenience might
be overcome by exploiting CUDA streamed execution, namely trying to hide the latency of
these estimations among other CUDA and/or specific-purpose GPU libraries asynchronous
calls [5, 7, 8].
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