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 This work integrates Danio rerio multi-parametric responses after chronic, low level 

exposure to simvastatin
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transcription levels of key genes involved in cholesterol biosynthesis.

 Parental exposure to simvastatin induced embryonic malformations of offspring. 

 Embryonic abnormalities, biochemical and molecular data did not follow a 

concentration-response curve.



1 Abstract

2 Simvastatin (SIM), a hypocholesterolaemic compound, is among the most prescribed 

3 pharmaceuticals for cardiovascular disease prevention worldwide. Several studies have shown that 

4 acute exposure to SIM causes multiple adverse effects in aquatic organisms. However, uncertainties 

5 still remain regarding the chronic effects of SIM in aquatic ecosystems. Therefore, the present study 

6 aimed to investigate the effects of SIM in the model freshwater teleost zebrafish (Danio rerio) 

7 following a chronic exposure (90 days) to environmentally relevant concentrations ranging from 8 

8 ng/L to 1000 ng/L. This study used a multi-parameter approach integrating distinct ecologically-

9 relevant endpoints, i.e. survival, growth, reproduction and embryonic development, with 

10 biochemical markers (cholesterol and triglycerides). Real Time PCR was used to analyse the 

11 transcription levels of key genes involved in the mevalonate pathway (hmgcra, cyp51, and dhcr7). 

12 Globally, SIM induced several effects that did not follow a concentration-response relationship; 

13 embryonic development, biochemical and molecular markers, were significantly impacted in the 

14 lower concentrations, 8 ng/L, 40 ng/L and/or 200 ng/L, whereas no effects were recorded for the 

15 highest tested SIM levels (1000 ng/L). Taken together, these findings expand our understanding of 

16 statin effects in teleosts, demonstrating significant impacts at environmentally relevant 

17 concentrations and highlight the importance of addressing the effects of chemicals under chronic 

18 low-level concentrations.

19 Keywords: Zebrafish; Simvastatin; HMGCR; Chronic effects; Low-level exposures

20

21

22 1. Introduction

23 In the past, pharmaceuticals were overlooked as aquatic pollutants because exposure levels 

24 were considered to be too low to induce significant effects in non-target organisms (Arnold et al., 

25 2014; Daughton, 2016; EEA, 1999). However, from the mid-90s, a growing attention has been 

26 devoted to this class of compounds. Indeed, the detection of pharmaceuticals in the aquatic 

27 environments has increased in the last years, not only because of the pharmaceutical industry 

28 growth, but also due to improvements of analytical methods (LaLone, et al., 2014). Most 

29 pharmaceuticals are detected in surface waters at trace levels, generally at concentrations ranging 

30 between ng/L and low μg/L levels (Arnold et al., 2014; Azzouz & Ballesteros, 2012; BIO Intelligence 

31 Service, 2013; Daughton, 2016; Fent et al., 2006). However, since they are bioactive substances, 

32 designed to produce biological effects at rather low concentrations, the scientific community is now 

33 in broad agreement that pharmaceuticals may pose a considerable environmental risk (BIO 



1 Intelligence Service, 2013; Ferreira et al., 2009; Rodrigues et al. 2006). In fact, several 

2 pharmaceuticals have been demonstrated to induce effects at environmentally relevant 

3 concentrations in non-target organisms (Arnold et al., 2014; Fent et al., 2006; Neuparth et al., 2014). 

4 Nevertheless, the ecological risk assessment of pharmaceuticals is still in its infancy with studies 

5 dealing with this class of compounds reporting mostly acute or sub-lethal toxicity effects, with 

6 concentrations above environmental relevance (Dahl et al., 2006; Fent et al., 2006; Neuparth et al., 

7 2014; Santos et al., 2016; Sárria et al., 2011). Hence, given that non-target aquatic organisms may 

8 be continuously exposed to low levels of this class of compounds for several generations, there is 

9 an urging need to assess the chronic effects of environmentally relevant concentrations of 

10 pharmaceuticals (Arnold et al., 2014; BIO Intelligence Service, 2013; Fent et al., 2006).

11 Simvastatin (SIM) is a hypolipidemic drug of the statin class used in humans as the primary 

12 treatment of hypercholesterolemia to decrease serum LDL-cholesterol levels (Burg & Espenshade, 

13 2011; Igel, et al., 2001; Neuparth et al., 2014; Vázquez et al., 2017). Simvastatin, as well as other 

14 statins, is known to specifically inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase 

15 (HMGCR), which is essential for the de novo synthesis of cholesterol in mammalian cells through 

16 the mevalonate pathway (Al-Habsi, et al., 2016; Blumenthal, 2000; Endo et al., 1976a; Endo, et al., 

17 1976b; Fent, et al., 2006; Sehayek, et al., 1994). Simvastatin competes with 3-hydroxy-3-methyl-

18 glutaryl-CoA (HMG-CoA) for the active binding site in the enzyme HMGCR, having an affinity of 

19 about three orders of magnitude greater than the natural substrate. Once bound to the enzyme, 

20 statins alter its conformation, inhibiting its function and thereby decreasing the cholesterol 

21 synthesis (Al-Habsi et al., 2016; Istvan, 2003; Moghadasian, 1999). 

22 Statins, including SIM, have been reported to be among the most prescribed human 

23 pharmaceuticals in the western countries (Ellesat et al., 2010; Kaufman et al., 2010; Miao & 

24 Metcalfe, 2003; Neuparth et al., 2014; Walley et al., 2005). Due to the lack of mechanisms that 

25 ensure complete removal of statins in wastewater treatment plants (WWTP), significant amounts 

26 of these pharmaceuticals are discharged in the aquatic environments (Fent et al., 2006; Lapworth 

27 et al., 2012). Several authors have reported the presence of SIM in WWTPs worldwide (Kasprzyk-

28 Hordern et al., 2009; Miao & Metcalfe, 2003; Ottmar et al., 2012; Pereira et al., 2015; Pereira et al., 

29 2016; Sousa, 2013; Verlicchi et al., 2012).  Concentrations up to 8.9 µg/L and 1.23 µg/L (influents) 

30 and 1.5 µg/L  and 90 ng/L (effluents), were reported in WWTPs in Portugal and USA, respectively 

31 (Ottmar et al., 2012; Pereira et al., 2016). The predicted environmental concentrations for SIM in 

32 Norwegian and Portuguese surface waters have been estimated at 630 ng/L and 369.8 ng/L, 

33 respectively (Grung et al., 2007; Pereira et al. 2015). Considering that SIM is a common prescribed 

34 drug in western countries, and its discharge into aquatic environment has increased in the last 

35 years, many aquatic taxa might be at risk. This is particularly true given that statins were predicted 



1 to inhibit HMGR in a broad range of animal taxa (Santos et al., 2016). In fact, the main concern 

2 regarding the presence of SIM in the aquatic ecosystems is its environmental persistence, toxicity, 

3 and bioactivity, at rather very low concentrations. Furthermore, SIM has a high log Kow of 4.68, 

4 which might indicate high bioaccumulation potential in aquatic organisms (Santos et al., 2016). 

5 Previous studies have reported multiple detrimental effects of SIM in aquatic organisms at several 

6 levels of biologic organization, such as impairment of embryo development (Danio rerio and 

7 Parachentrotus lividus – Ribeiro et al., 2015), decreased metabolic activity and membrane stability 

8 (Oncorhynchus mykiss hepatocyte - Ellesat, et al., 2010), alteration of acetylcholinesterase and lipid 

9 peroxidation levels (Fundulus heteroclitus - Key et al., 2009; Palaemonetes pugio – Key et al., 2008),  

10 disturbances in growth (Dunaliella tertiolecta, Nitocra spinipes and Gammarus locusta - Dahl et al., 

11 2006; DeLorenzo & Fleming, 2008; Neuparth et al., 2014), severe reproductive impairments 

12 (Gammarus locusta – Neuparth et al., 2014), and even mortality (Plaemonetes pugio - Key et al., 

13 2008). With the exception of the Neuparth et al (2014) study that reported chronic effects of SIM 

14 in the ng/L range, all the aforementioned studies have been based on acute toxicity tests, with SIM 

15 concentrations above environmental relevance.  

16 Despite the diversity of studies regarding SIM toxicity, the underlying mechanisms of action 

17 in aquatic organisms are still not fully understood (Gee et al., 2015). Acknowledging the mode of 

18 action (MOA) of SIM in non-target aquatic organisms is important not only to establish its 

19 ecotoxicological response upon SIM exposure, but also to anticipate the effects of other 

20 compounds acting through homologous pathways. This is particularly relevant for bioactive 

21 molecules designed to produce biological effects at very low concentrations, such as 

22 pharmaceuticals. Hence, there is an urgent need to perform long-term, low level exposure assays, 

23 that integrate effects of ecologically-relevant endpoints with molecular and biochemical responses.  

24 Therefore, the main aim of the present study was to evaluate SIM effects on zebrafish, 

25 following a chronic partial life-cycle exposure to environmentally relevant concentrations (ng/L) 

26 and early offspring embryonic development effects of parental SIM exposure. We integrate 

27 multiple key ecological endpoints (survival, growth, reproduction, and embryonic development), 

28 with biochemical markers of lipid homeostasis (cholesterol and triglycerides) and molecular 

29 analysis (expression of key genes coding for modules of the mevalonate pathway: hmgcra, cyp51, 

30 and dhcr7), to gain insights into the long-term adverse effects of SIM on ecologically-relevant 

31 endpoints and to address the underlying mechanism of toxicity in fish. 

32

33 2. Material and Methods

34 2.1 Species Selection



1 Zebrafish (Danio rerio) is recommended as a test species in a wide range of ecotoxicological 

2 test protocols (Oberemm, 2000). Its small size, robustness, multiple progeny from a single mating, 

3 embryo transparency and easy maintenance under laboratory conditions are advantages for its use 

4 as test organism (Fang & Miller, 2012; Lawrence, 2007; Soares et al., 2009). In addition, the close 

5 phylogeny of zebrafish and mammals, with highly conserved mevalonate pathway genes, makes 

6 this species ideal for performing the present study. 

7

8 2.2. Zebrafish maintenance

9 Wild-type zebrafish, 50-day old, were obtained from Orniex, Portugal (purchased from local 

10 suppliers in Singapore). Animals were acclimated to controlled laboratory conditions, in 250 L 

11 aquarium with dechlorinated filtered and aerated water. During this period, fish were kept at 28 ± 

12 1°C, under a photoperiod of 14:10 h (light:dark) and fed, ad libitum, three times per day with 

13 commercial fish diet Tetramin (Tetra, Melle, Germany). These conditions were maintained for 15 

14 days until the beginning of the chronic bioassay.

15

16 2.3. Chronic toxicity bioassay

17 The chronic bioassay was carried out at “Biotério de organismos aquáticos” (BOGA) 

18 located at Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, 

19 Portugal. The experiment was subject to a previous ethical review process carried out by CIIMAR 

20 animal welfare body (ORBEA, 2010/63/EU Directive). The bioassay was performed in compliance 

21 with the European Directive 2010/63/EU, on the protection of animals used for scientific purposes, 

22 and the Portuguese “Decreto Lei” 113/2013. 

23 A partial life-cycle bioassay was performed for 90 days (Figure 1). The experiment was 

24 started by randomly allocating 25 sub-adult zebrafish in 30 L aquaria (two per treatment), under a 

25 flow-through system. The water flow was maintained at 1.08 L per hour by means of a peristaltic 

26 pump (ISM 444, ISMATEC) supplied with dechlorinated, heated and charcoal filtered tap water. 

27 Each aquarium was maintained with a water temperature of 28 ± 1°C, 14:10 h (light:dark) 

28 photoperiod, pH 7.5 ±0.2 and a mean ammonia concentration of 0.08 ± 0.04 mg/L. Fish were fed 

29 twice a day with a commercial fish diet Tetramin (Tetra, Melle, Germany), supplemented with 48-

30 hour-old live brine shrimp (Artemia spp) from one week before the onset of reproduction until the 

31 end of the experiment. During the bioassay, the amount of food delivered was adjusted according 

32 to fish development and size. The amount of food provided was equal for all aquaria.



1 The experiment consisted of six treatments in duplicate: a control (dechlorinated water); a 

2 solvent control (0.0002% acetone, ACET), and four SIM treatments at the following concentrations: 

3 8, 40, 200 and 1000 ng/L. The selection of SIM treatments was based on previous studies (Neuparth 

4 et al., 2014), taking into consideration environmentally relevant concentrations. SIM (CAS no. 

5 79902-63-9; Sigma Aldrich) was diluted in ACET to obtain a stock solution of 4 mg/mL. From this 

6 solution, working solutions were prepared by serial dilutions of the stock solution and aliquots were 

7 stored in the dark at -20°C until use. All solutions were prepared in order to have a final ACET 

8 concentration of 0.0002%. Based on preliminary tests and in Lyssimachou et al. (2015), in order to 

9 maintain exposure concentrations, the working solutions were manually dosed directly into the 

10 water of aquaria twice a day; in the morning (T 0h) and in the afternoon (T 8h), in a volume that was 

11 equivalent to the water renewal during that period.

12

13 Figure 1. Schematic representation of the experimental setup. Each treatment had two aquaria 
14 (R1 and R2), with 25 animals each. Aquaria were then subdivided in two (a and b) for the 
15 reproductive trials and embryonic studies at day 70. Embryonic development was analyzed using 
16 60 embryos (15 each in four replicates).The experiment finished at day 90 and all animals were 
17 sacrificed, measured, weighted, and livers from both males and females were collected for gene 
18 expression analysis (N=8) and for cholesterol/triglyceride quantification (N=8 for males and N=8 
19 for females).

20

21 2.4. Reproductive capability

22 Reproductive capability studies were performed 70 days after the beginning of the chronic 

23 exposure for all the tested groups (120-day old fish). Reproductive success was assessed through 



1 the evaluation of two endpoints: fecundity (number of eggs per female per day) and percentage of 

2 fertilization (% of fertilized eggs per female per day). In the afternoon, before the beginning of the 

3 trials, each aquarium was divided in two separate sections in which a suspended cage with a net 

4 bottom covered with marbles was fixed. Males and females were equally distributed through the 

5 cages in a manner that matched the sex ratio of the respective treatment (four reproductive units 

6 per treatment) (Figure 1). The sex ratio was determined by visual inspection of each animal. 

7 However, given the small size of the animals, for some fish sex determination was not totally clear. 

8 Therefore, at the end of the bioassay the sex ratio of each aquarium was confirmed by 

9 stereomicroscope observation of gonads. The fecundity and % of fertilization were then 

10 determined considering the total number of females in each replicate based on the gonad 

11 observation. During five consecutive days, 1-1.5 hour after the beginning of the light period, 

12 breeding fish were removed and the eggs collected, cleaned and conserved in 70% ethanol, for 

13 posterior counting and determination of the percentage of fertilized eggs.

14

15 2.5. Embryogenesis studies

16 Embryogenesis studies were carried out with slight modification of OECD Fish Embryo Acute 

17 Toxicity (FET) Test 236 (OECD, 2013; Torres et al. 2016). During the reproductive trials, 15 embryos 

18 from each treatment sub-replicate, with 1-1.5 hpf, were kept and randomly placed in 24-well plates 

19 (one egg per well) with 2 ml of clean dechlorinated water, free of SIM (Figure 1). The 24-well plates 

20 were randomly maintained on a water bath at 26.5 ± 0.5°C for 80 h. Embryos were checked, every 

21 day for mortality, and at the end of the assay (80 hpf), under a stereomicroscope in a acclimatized 

22 room at 26 ± 1°C, for embryo development analysis. Morphological abnormalities on eyes, head, 

23 tail or yolk-sac; pericardial oedema; abnormal cell growth and developmental arrest were recorded 

24 as present or absent (Torres et al., 2016). Heart rate, i.e. the cardiac frequency, was evaluated in 

25 four embryos per reproductive unit (16 embryos per treatment) during 15 s using a stop-watch, 

26 restarting the counting if the embryo moved. 

27 2.6. Sampling

28 At end of the assay, the animals were sacrificed with an anaesthetic overdose of 300 mg/L 

29 tricane methanesulfonate (MS-222), to which sodium bicarbonate was added to prevent the 

30 acidification of the solution. All animals were measured and weighed, and Fulton’s condition factor 

31 (K) was determined (K=(weight / lenght3)×100) – Nash et al., 2006). Livers from 16 males and 16 

32 females of each treatment were individually collected and i) preserved separately in RNA Later for 



1 gene expression analysis (8 males and 8 females), and ii) frozen in liquid nitrogen and stored 

2 individually at -80 °C for cholesterol and triglyceride quantification (8 males and 8 females). .

3 2.7. Lipid extraction and cholesterol and triglyceride quantification

4 Lipids were individually extracted from the livers of  8 males and 8 females using a low 

5 toxicity solvent extraction protocol, adapted from Schwartz and Wolins (2007). The tissues were 

6 homogenized in 10 mM PBS buffer pH 7.4 containing 10 mM EDTA (10 mg of tissue per 1 mL buffer 

7 with two ceramic beads) on a Precellys 24 homogenizer. 500 µl of homogenates were then 

8 transferred, in duplicate, to test glass vials containing 5 mL of isopropanol/hexane solution (4:1). 

9 The samples were vortexed for 1 min and incubated at room temperature in the dark with constant 

10 shaking for 2 h. In order to avoid lipid peroxidation, vials were submitted to N2 stream before 

11 closing. After the incubation period, lipids were dissolved in 2 mL of petroleum ether/hexane 

12 solution (1:1). Vials were again vortexed for 1 min and left in the dark at room temperature for 10 

13 min. The phases were then separated by adding 1 mL of Milli-Q water, vortexed for 1 min, incubated 

14 in the dark at room temperature, with constant shaking for 20 min, and centrifuged at 1000 × G, 

15 for 10 min. The upper phase containing the lipids was collected into new vials and evaporated to 

16 dryness under N2 stream. Dried extracts were then stored at -20 °C for subsequent cholesterol and 

17 triglyceride quantification.

18 Dry extracts were re-suspended in 100 µL of isopropanol and sonicated in ultra-sound bath 

19 (Bandelin Sonorex RK100H) for 15 min at room temperature. Quantification of cholesterol and 

20 triglycerides was performed through enzymatical colorimetric assays using Infinity Cholesterol 

21 Liquid Stable Reagent and Infinity Triglycerides Liquid Stable Reagent, respectively, both purchased 

22 from Thermo Sientific, Biognóstica and following the manufacturer’s protocols. Samples were 

23 measured in duplicate and absorbance determined at λ 490 nm using a microplate reader (Biotech 

24 Synergy HT) coupled with software Gen5 (version 2.0). In every run, a standard curve was 

25 performed for the optical quantification of cholesterol and triglycerides. Cholesterol and Triolin 

26 standards were prepared and subjected to 6 serial dilutions (from 0.156251 to 5 mg/mL for 

27 cholesterol and 0.0625 to 2 mg/mL for triolin).

28

29 2.8. Gene expression

30 2.8.1. RNA isolation and cDNA synthesis

31 Eight male and eight female Livers from the different treatments (approximately 3 mg) 

32 were individually used to isolate total RNA via the Illustra RNAspin Min RNA Isolation Kit (GE 

33 Healthcare), according to the manufacturer’s protocol. RNA quantification was performed on a 



1 Take3 Micro-Volume Plate Reader (Biotech Synergy HT) coupled with the software Gen5 (version 

2 2.0). RNA quality was verified by electrophoresis in 1.5 % agarose gel and through the measurement 

3 of the ratio of absorbance at λ 260 / λ 280 nm. Total cDNA was generated from 1 µg of total RNA 

4 extracted using the iScriptTM cDNA Synthesis Kit (Bio-Rad).

5

6 2.8.2. qRT-PCR

7 Fluorescence-based quantitative real time PCR (qRT-PCR) was used to evaluate the 

8 transcription profiles of several genes involved in the mevalonate pathway with important roles in 

9 cholesterol biosynthesis. The gene encoding 3-hydroxy-3-methylglutaryl-CoA reductase (hmgcr) 

10 was selected because its product is the primary target of SIM and the limiting step in the 

11 mevalonate pathway. According to previous studies on the HMGCR tissue distribution, we chose to 

12 assess hmgcra instead of hmgcrb, due to its predominance in the liver, while hmgcrb prevails in the 

13 brain (Al-Habsi et al., 2016). Other two genes, those encoding lanosterol 14α-demethylase (cyp51) 

14 and 7-dehydrocholesterol reductase (dhcr7) were chosen as intermediate genes in the mevalonate 

15 pathway. The gene encoding ribosomal protein L8 (rpl8) was used as the reference gene, as its 

16 expression levels remained constant across treatments. All the primers were already described by 

17 other authors (Table 1). For each treatment (n = 8), the expression of individual target genes was 

18 determined with the Mastercycle ep realplex system (Eppendorf). cDNA of liver samples was 

19 amplified in duplicated in 96-well optical plates, containing 10 µL of NZY qPCR Green Master Mix 

20 (2x) (NZYTech), 0.8 µL of each primer (forward and reverse), 2 µL of cDNA at 100 nmol and 6.4 µL 

21 of water in order to reach a final reaction volume of 20 µL. On each plate, a non-template control 

22 was included. In order to determine the efficiency of the reaction, a two-step qRT-PCR was 

23 performed: initial denaturation at 95 °C (3 min), followed by 40 cycles of amplification with a 

24 denaturation at 95 °C for (15 s) and combined annealing and extension at 58 - 62°C, depending on 

25 primer set (25 s) (Table 1). A melting curve (from 55 °C to 95 °C) was generated in each run to 

26 confirm the specificity of the reactions. The PCR products were analysed with 2 % agarose gel 

27 electrophoresis to check the presence of single bands with the expected size between 136 and 199 

28 bp, depending on the primer sets (Table 1). The PCR efficiency for the genes of interest and for the 

29 reference gene was determined by a standard curve, using six serial dilutions of cDNA pools of all 

30 samples (from 0.064 to 200 ng of cDNA). The minimum efficiency obtained was 94% (Table 1). 

31 Relative change in the transcription abundance of target genes was normalized to rpl8 and 

32 calculated using the Livak method (Livak & Schmittgen, 2001). Control expression levels (ACET 

33 treatment) were normalized to 1 and data were then expressed as fold changes relative to solvent 

34 control group.



1

2 Table 1. Primers, forward (F) and reversed (R), and parameters used in the qRT-PCR for gene 
3 expression quantification in the liver of D. rerio.

Gene Sequence (5’ – 3’) Expected 
band size 

(bp)

Combined 
annealing and 

extension 
temperature 

(°C)

Average 
efficiency

(%)

Reference

Hmgcra F: TCGTGGAGTGCCTGGTGATTGGT

R: TGGGTCTGCCTTCTCTGCTCTCTC

177 62 98 1

cyp51 F: GCTCGGAGACACTCAGACACATCTT

R: AGCAGAACTGAAGTCAGGCTCATCT

138 60 96 1

dhcr7 F: GAGGAGTTCAGGATGGTGCCCGTA

R: GTGGACACAGCATAGCCGAGGATG

199 60 94 1

rpl8 F: TTGTTGGTGTTGTTGCTGGT

R: GGATGCTCAACAGGGTTCAT

136 58 94 2

4 Notes: 1 - (Mu et al., 2015); 2 - (Lyssimachou et al., 2015)

5

6 2.9. Analytical quantification of simvastatin by liquid chromatography – tandem mass 

7 spectrometry 

8 The actual concentrations of SIM were determined, in each treatment, twice during the 

9 bioassay: 30 min after the first SIM spike of the day (T0h) ,and 8 hours after the first SIM spike and 

10 immediately before the second spike (T8h). Two samples from each treatment (bulk samples from 

11 each replicate) were collected and stored at -20 °C for posterior quantification by solid-phase 

12 extraction (SPE) and Liquid Chromatography – Tandem Mass Spectrometry (LC-MS/MS). One 

13 hundred millilitres of each water sample were filtered through 0.45µm PVDF filters (Millipore) and 

14 spiked with 50 ng/L of Mevastatin (MEV, Sigma-Aldrich) as internal standard. Subsequently, the 

15 sample was loaded into a 60 mg Oasis HLB (Waters) cartridge previously conditioned with 5 mL of 

16 methanol (MeOH) and 5 mL of Milli-Q water. The cartridges were washed with 5 mL of Milli-Q 

17 water, dried under a N2 stream and eluted with 5 mL of MeOH. The final extracts were evaporated 

18 to dryness under N2 stream, reconstituted using 100 µL of MeOH and injected in the LC-MS/MS 

19 system. The quantification was performed by the matrix-matched method, by spiking with SIM real 

20 water in the 5 to 1000 ng/L range and submitting these samples to the entire protocol. Due to the 

21 fast conversion of SIM and MEV to their corresponding hydroxyacid forms (SIMHA and MEVHA) in 

22 aqueous media (Bews at al., 2014), these latter forms were also quantified and the final 

23 concentration was calculated as sum of the lactone and hydroxyacid forms, since it is analytically 

24 not feasible to report individual concentrations (Bews at al., 2014).



1 The LC–MS/MS system (Varian) was equipped with two ProStar 212 high-pressure mixing 

2 pumps, a vacuum membrane degasser, an autosampler and a thermostated column compartment 

3 ProStar 410 module (Varian). A volume of 10 µL of extract was directly injected into a Phenomenex 

4 Luna C18 (50 mm × 2.1 mm, 3 μm particle diameter) maintained at a constant temperature of 30 

5 °C. The target compounds were separated at a flow rate of 0.2 mL min−1 using 0.1% of formic acid 

6 in both, Milli-Q water (A) and MeOH (B) as eluents. The applied gradient was as follows: 0–1 min, 

7 30% B; 1–15 min, linear gradient to 100% B; 15–18 min 100% B; 18–18.5 min, linear gradient to 

8 30%B and 18.5–23 min, 30% B. The system was interfaced to a Varian 320-MS triple quadrupole 

9 mass spectrometer equipped with an electrospray interface. Nitrogen was used as nebulizing and 

10 drying gas and Argon was used as collision gas. The analytes were determined in the electrospray 

11 positive (SIM and MEV) and negative (SIMHA and MEVHA) and multiple-reaction monitoring (MRM) 

12 mode of acquisition. Two MRM transitions were used for each compound quantifier and qualifier 

13 respectively (precursor > product ion, m/z values): 441 > 325 and 419 > 199 for SIM, 413 > 311 and 

14 391 > 185 for MEV, 435 > 319 and 435 > 341 for SIMHA and finally, 407 > 305 and 407 > 327 for 

15 MEVHA.

16  The method limits of quantification (LOQs) were 1.5 and 1.2 ng/L for SIM and SIMHA, 

17 respectively. The linearity, evaluated in terms of correlation coefficient for the sum of SIM and 

18 SIMHA, was R2 0.9964 and the recovery was 91%.

19

20 2.10. Statistical analysis

21 The obtained data were checked for homogeneity of variances (Leven’s test) and normality 

22 (Kolmogorov-Smirnov test) and subsequently analysed by one-way ANOVA. Post-hoc comparisons 

23 were carried out using Fisher’s least significant difference (LSD) test. Each treatment was compared 

24 with the solvent control. Repeated Measures ANOVA was used to analyse fecundity. Significant 

25 differences were set as p < 0.05. A Power Analysis and Sample Size Calculation were performed to 

26 verify the reliability of data. All the statistics were computed with Statistica 13 (Statsoft, USA).

27

28 3. Results

29 3.1. Analytical quantification of simvastatin

30 Table 2 summarizes the actual SIM concentrations measured during the bioassay at times T0h 

31 and T8h.  Due to the high conversion of SIM to SIMHA in aqueous media (Bews et al., 2014), the final 

32 concentration was calculated as the sum of both active forms and given as total SIM, although the 

33 major detected fraction was SIMHA (>99.5%). No SIM, nor SIMHA were detected in solvent control 



1 group. Results show that SIM concentrations at the initial time (T0h), were marginally lower than 

2 nominal ones. At T8h,  total SIM concentration decays as expected, but was still present in all 

3 treatments (except control) with a minimum and maximum decay of 27.9% and 57.3% in the 8 and 

4 1000 ng/L SIM treatments, respectively.  

5

6 Table 2.  Nominal and measured concentrations of SIM (expressed as sum of SIM and SIMHA) in water 
7 samples collected in duplicate from each treatment after the first contamination of the day (T 0h) and 
8 immediately before the second one (T 8h), Data are expressed as mean ± standard error.

Time Solvent 
control

SIM
8 ng/La

SIM
40 ng/La

SIM
200 ng/La

SIM
1000 ng/La

T 0 h n.d.b 6.8 ± 0.45 37.9 ± 3.21 108.6 ± 3.70 751.7 ± 40.08

T 8 h n.d.b 4.9 ± 0.08 23.0 ± 0.08 74.0 ± 1.47 343.4 ± 23.14

9 a Nominal SIM concentrations
10 b Not detected 
11

12 3.2. Survival, growth, body weight and length

13 Table 3 displays the survival percentages, weight and length of zebrafish males and females 

14 following the 90-days chronic exposure to environmentally relevant SIM concentrations. No 

15 significant differences among treatments were observed in the survival percentages; almost 100 % 

16 of the fish were alive at the end of the bioassay. In SIM-exposed fish, a significant decrease of 8.6 

17 and 12.5 % in the body weight was observed in males and females exposed to the highest SIM 

18 concentration (1000 ng/L), compared to the solvent control (ACT). A decrease of 9.9% (p=0.09) and 

19 11.4 % (p=0.08) in body weight was also observed in females exposed to 40 and 200 ng/L of SIM, 

20 respectively, and a decrease of 6.7 % (p=0.06) in males exposed to 40 ng/L of SIM without reaching 

21 statistical significance. A significant decrease in female body length was observed in the highest SIM 

22 concentration (1000 ng/L).

23

24 3.3. Reproductive capability

25 Females from all tested SIM concentrations exhibited a trend towards an increase in fecundity 

26 when compared with females from solvent control (Table 3), however statistically significance was 

27 not reached. This increase was followed by an increment in the percentage of fertilization, for which 

28 significant differences were found in the 200 ng/L SIM treatment. 

29

30



1 Table 3. Chronic effects of SIM on survival, weight, length, Fulton’s condition factor (K), fecundity (number of 
2 embryos/ female/ day), and % of fertilization (% of fertilized eggs/female/day) of D. rerio after 90 days of 
3 exposure (M, males; F, females).

Endpoint Control Acet 8 ng/L 40 ng/L 200 ng/L 1000 ng/L

Survival (%) — 100% 100% 100% 100% 100% 98% 

M 611.5 ± 21.9 642.1 ± 12.7 615.3 ± 25.3 598.5# ± 13.6 630.6 ± 9.6 588.0* ± 12.9
Weight (mg)

F 769.0 ± 35.7 839.2 ± 38.6 810.6 ± 38.6 756.2# ± 30.8 742.9# ± 35.6 733.8* ± 40.0

M 38.3 ± 0.4 38.7 ± 0.3 38.2 ± 0.5 38.1 ± 0.3 38.8 ± 0.2 38.2 ± 0.4
Length (mm)

F 39.0 ± 0.4 39.9 ± 0.4 40.0 ± 0.5 38.9 ± 0.4 38.9± 0.4 38.7* ± 0.6

M 1.09 ± 0.03 1.11 ± 0.01 1.10 ± 0.03 1.08 ± 0.02 1.08 ± 0.01 1.06 ± 0.01
K

F 1.29 ± 0.04 1.30 ± 0.04 1.25 ± 0.03 1.27 ± 0.03 1.24 ± 0.03 1.24 ± 0.03

Fecundity — 51.9 ± 9.7 76.3 ± 20.5 94.7 ± 18.5 93.3 ± 17.1 67.6 ± 24.0 109.1 ± 15.5

Embryo 
fertilization (%)

— 94% ± 2.9 90% ± 4.4 94% ± 2.6 97% ± 0.8 98%* ± 0.6 95% ± 1.8

4 * indicates significant difference from the solvent control group (ACET). Values presented as mean ± 
5 standard error; p < 0.05; # - values near significance – female weight at 40ng/L (p=0.09) and 200 ng/L 
6 (p=0.08), male weight at 40 ng/L (p=0.06). (n=50; ~25 for males and 25 females per treatment) 
7 (Power=1.000 for all endpoints; mean sample size calculation = 2.4, for expected power = 0.8).

8

9 3.4. Embryogenesis

10 The cumulative percentage of embryo mortality at 80 hpf was similar among treatments and 

11 remained at low levels, ranging from 5 % (solvent control and parental exposure to 200 ng/L SIM) 

12 to 11.7 % (parental exposure to 1000 ng/L SIM) (Figure 2. A). From all the analysed abnormalities, 

13 tails anomalies (shortened and/or curled tails - Figure 2. B) were the most frequently recorded in 

14 SIM-exposed groups. Ant increase in tail anomalies was observed at the lowest SIM concentrations, 

15 i.e. 5-fold increase in both 8 and 40 ng/L, which was in the rage of significance (p=0.07), compared 

16 with the solvent control group. A significant increase of total abnormalities (sum of head, tail, eyes 

17 and yolk-sac anomalies plus pericardial oedema) was also observed in embryos from the lowest 

18 SIM concentration (8 and 40 ng/L), with 18.3 % and 15% of abnormal embryos in comparison with 

19 1.67 % of the solvent control group (Fgure 2. C). Furthermore, parental exposure to SIM significantly 

20 decreases heart beat by 6.5 bpm at 8 ng/L exposure treatment relative to solvent control (Figure 2. 

21 D).



1
2 Figure 2. Cumulative mortality – n=60 per treatment (A); Anomalies in the tail – n=60 per treatment (B); 
3 Total abnormalities – n=60 per treatment (C); and Heart rate – n=16 per treatment (D) observed in zebrafish 
4 embryos at 80 hpf, following parental chronic exposure to SIM. Error bars indicate standard errors; * 
5 indicates significant difference from the solvent control group (ACET) (p < 0.05). (Power=1.000 for all 
6 endpoints; mean sample size calculation = 3, for expected power = 0.8).

7

8 Figure 3. Tail abnormalities, at 80 hpf, after D. rerio parental exposure to SIM for 70 days. 
9 Comparison between Solvent Control (A), 40 ng/L SIM (B), 8ng/L SIM (C).

10
11

12

13 3.5. Hepatic cholesterol and triglyceride content



1 SIM significantly decreased liver cholesterol (Chol) levels in female zebrafish at 200 ng/L, 

2 with a 56.4 % decrease in comparison with the solvent control group (Figure 4. A). A 48.3% decrease 

3 was also observed in females exposed to 40 ng/L SIM, although significance was not reached 

4 (p=0.08). Males exhibited the same Chol patterns observed in females at 40 and 200n ng/L yet 

5 without significance differences from solvent control group. Both males and females exhibited a 

6 slight Chol level increased in the highest SIM concentration (1000 ng/L) when compared with the 

7 intermediate SIM treatments, nevertheless Chol levels remained lower or similar to the ones 

8 observed the solvent control. Chol levels did not follow a concentration-response curve with a 

9 decrease at intermediate SIM concentrations.

10 Triglyceride (TGL) levels in female liver were significantly lower (42.2 %) in the highest SIM 

11 concentration (1000 ng/L), when compared with solvent control group, (Figure 4. B). Exposure to 8 

12 ng/L of SIM was able to decrease TGL levels by 28 %, however, significance was not reached 

13 (p=0.09). No significant differences in TGL levels were observed in males. 

14

15 Figure 4. Chronic effects of SIM on cholesterol (A) and triglyceride (B) content of D. rerio liver after 
16 90 days of exposure. Error bars indicate standard errors; * indicates significant difference from the 
17 solvent control group (ACET) (p < 0.05) (n=8 per sex/treatment). (Power=0.999; mean sample size 
18 calculation = 5).

19

20

21 3.6. Gene expression

22 Both D. rerio females and males showed significant differences in the transcription levels 

23 of several genes of the mevalonate pathway after 90 days of exposure to SIM (Figure 5). Similar to 



1 Chol levels, hmgcra and cyp51 genes presented, for both sexes, a response that did not follow a 

2 concentration-response curve with a similar decrease at both 40 and 200 ng/L SIM. In females, 

3 hmgcra was significantly downregulated (2.64 (p= 0.01) and 2.89-fold (p= 0.01)) after exposure to 

4 40 and 200 ng/L of SIM, respectively, when compared to the solvent control treatment (ACET). 

5 Similarly, in males, significant decrease (4.86 (p= 0.02) and 2.94-fold) in hmgcra expression levels 

6 was observed at the same concentrations. In females, none of the remaining genes showed altered 

7 transcript levels. Nevertheless, a trend towards a decrease in cyp51 gene expression was observed 

8 at 40 ng/L SIM, although significance was not reached (p = 0.07). Males, on the other hand, 

9 exhibited a 6.80-fold significant decrease of cyp51 expression when exposed to 40 ng/L SIM. A 

10 similar downregulation pattern was observed at 200 ng/L SIM, just in the range of significance 

11 (p=0.06). Neither males nor females presented significant alterations in dhcr7 transcription levels. 

12 No significant differences were observed between control and solvent control for the analysed 

13 genes, with the exception of the dhcr7 in males.



1  

2  

3

4 Figure 5 Relative mRNA expression of hmgcra, cyp51, and dhcr7 in adult D. rerio livers after 90 days SIM 
5 exposure. Females (A) and Males (B). Error bars indicate standard errors; asterisks (*) indicate significant 
6 differences from the solvent control treatment (ACET = 1-fold) (p< 0.05) (n=8 per sex/treatment) 
7 (Power=0.999; mean sample size calculation = 6) 

8

9 3. Discussion

10 Statins, such as SIM, are designed to produce specific biological effects in humans at low 

11 concentrations and, therefore, once in the aquatic environment may affect aquatic taxa, which 

12 consequently might be at risk. Despite the ubiquitous nature of statins in the aquatic ecosystems 

13 and the liability of the scientific community to improve their risk assessment, the chronic effects of 

14 these pharmaceuticals in aquatic organisms has not yet been adequately studied. In order to 



1 address this knowledge gap, the present study aimed at investigating the chronic partial life-cycle 

2 and early offspring embryonic developmental effects of SIM exposure, using zebrafish as a model 

3 organism. Thus, several fundamental questions were addressed: Does chronic SIM exposure affect 

4 ecologically relevant endpoints in zebrafish? Are these effects related with alteration of cholesterol 

5 and triglyceride levels? Is the cholesterol homeostasis disturbed and correlated with changes in the 

6 transcription of key genes from the mevalonate pathway? 

7 In mammals, SIM and other statins operate by competitively inhibiting the rate-limiting 

8 enzyme of the mevalonate pathway (HMGCR), thereby reducing Chol biosynthesis (Blumenthal, 

9 2000; Endo et al., 1976a; Endo et al., 1976b; Sehayek et al., 1994). Given the conservation status of 

10 the mevalonate pathway among mammals and all vertebrates including fish (Pertusa et al., 2007; 

11 Santos et al., 2016), the high degree of conservation of HMGCR with respect to its catalytic activity 

12 and statin interactions across all metazoans (Santos et al., 2016), it is expected that fish display 

13 similar responses to those described in mammals, i.e. an impact on Chol synthesis and alterations 

14 in the transcription of genes from the mevalonate pathway. The results of this study show that 

15 chronic exposure to low levels of SIM impacts key ecologically-relevant endpoints of zebrafish, 

16 particularly embryonic development, concomitantly with alterations in the Chol and TGL levels in 

17 the liver. Furthermore, an impact in the transcription of key genes from the mevalonate pathway 

18 was also observed. Importantly, several of the analysed endpoints did not follow a concentration-

19 response curve, with significant effects observed only in the low-intermediate SIM concentrations. 

20 The results also indicate for some endpoints, such as Cho and TGL, sex-dependent differences, 

21 suggesting that females and males might not respond similarly to SIM exposure.

22  The sub-lethal exposure to the highest SIM concentration (1000 ng/L) significantly 

23 decreased the body weight of zebrafish for both sexes and the length of females. To our knowledge, 

24 there is no scientific study reporting effects of SIM, or other statins, on the weight and growth 

25 control of fish or mammals; and this alteration was not reflected in the levels of Chol nor in the 

26 transcription level of the screened genes. However, the significant decrease in weight and growth, 

27 in females, integrates well with the significant reduction of TGL observed in 1000 ng/L SIM. In fact, 

28 TGL constitutes the main source of energy for physiological needs of zebrafish, therefore, with low 

29 TGL level available, less energy reserves were allocated for the normal growth and weight of 

30 females. 

31 Our results on the embryonic development showed that chronic parental exposure to 8 and 

32 40 ng/L SIM resulted in a significant increase of morphologic abnormalities, with tail anomalies as 

33 the most frequent abnormalities observed. Also, a decrease in the heart rate at parental exposure 

34 to 8 ng/L SIM was observed. Some previous studies showed that the embryonic development of 

35 zebrafish is a target of SIM in the tested higher SIM concentrations with described embryo 



1 malformations similar to those reported here in addition to abnormalities in eyes and yolk-sac, 

2 pericardial oedema and impairment of primordial germ cell migration (Campos et al., 2016; Cunha 

3 et al., 2016; Ribeiro et al., 2015; Thorpe et al. , 2004). It is plausible to hypothesize that the parental 

4 exposure might be responsible for the significant embryonic abnormalities observed. Thus, the 

5 observed disruption in the zebrafish embryonic development induced by SIM could have important 

6 ecological impacts at the population level in fish, affecting the fitness and survival of fish, since the 

7 impact of SIM can be passed to the second generation as the embryos were raised in SIM-free 

8 water.

9 The findings recorded on the embryonic development agree well with the observed 

10 decrease of Chol and TGL levels in the liver of females exposed to the intermediate SIM 

11 concentrations. In fact, the most abundant lipids in vertebrate embryos (including zebrafish) are 

12 Chol and TGL, which are transferred from the  mother to the embryo yolk, having an important role 

13 in providing energy and structural cellular components during embryogenesis (Fraher et al., 2016). 

14 On the other hand, the study of Cunha et al. (2017) reported that zebrafish embryos exposed to 5 

15 and 50 µg/l of SIM presented a transcriptional downregulation of the genes encoding retinoic acid 

16 receptor (RAR) and retinoid X receptor (RXR), which have been implicated in lipid homeostasis (RXR) 

17 and development (RXR and RAR) and thus could give a possible explanation for the present 

18 observations (Castro & Santos, 2014). Overall, our findings and the ones from Cunha et al. (2017) 

19 point to an impact of SIM in the lipid homeostasis of zebrafish embryos that might be implicated in 

20 the observed abnormalities observed during in the embryogenesis. 

21 Chol and TGL are also essential in fish adulthood for the maintenance of several biological  

22 processes like growth, reproduction and cell integrity (van der Wulp et al., 2013; Vergauwen et al., 

23 2010). The administration of statin leads to a reduction of those lipids, at least in mammals. 

24 Although the most prominent effects attributable to statins are their potent Chol lowering 

25 properties by the inhibition of HMGCR enzyme, it is also well established that statins significantly 

26 reduce TGL levels (Funatsu et al., 2001). The reduction of TGL levels by statins seems to be related 

27 with the scarce secretion of very low-density lipoprotein (VLDL) from the liver and the increase in 

28 clearance of TGL-rich lipoprotein via induced LDL receptors from plasma (Funatsu et al., 2001). As 

29 expected from the studies with mammals, our results show that chronic low level exposure to SIM 

30 reduce the Chol and TGL content in zebrafish. Interestingly, SIM treatment was more effective in 

31 females than males, with differences registered for both lipids only in females at the lower SIM 

32 concentrations. Although not exhibiting significant decreases in Chol and TGL levels at the SIM 

33 treatments tested, males present similar response patterns as females, at least for Chol levels. 

34 Similar sex-dependent effects on Chol and TGL levels have been reported by Al-Habsi et al. (2016) 

35 after feeding zebrafish with 0.53 µg/g of atorvastatin for 30 days; registering a significant reduction 



1 of both Chol and TGL only for females. Altogether, these results suggest that female zebrafish are 

2 more prone to the effects of SIM on Chol and TGL content than males. In fact, female zebrafish 

3 need higher lipid content for reproduction than males due to the importance of these components 

4 in egg production (Landgraf et al., 2017). 

5 This study shows that the observed SIM-induced biological and biochemical effects 

6 occurred in parallel, with significant alterations in gene transcription in male and female liver of 

7 two key mevalonate pathway genes, hmgcra (the rate limiting step in the mevalonate pathway) 

8 and cyp51 (an intermediate gene in the mevalonate pathway). A downregulation of these two 

9 genes was observed in males and females at the intermediate concentrations of SIM (40 and 200 

10 ng/L for hmgcra and 40ng/L for cyp51). Interestingly, these are the SIM concentrations that 

11 significantly reduced the levels of liver Chol and therefore, the observed changes in transcript levels 

12 of key genes of the mevalonate pathway appear to be linked with the alterations in Chol levels. The 

13 mechanism of SIM here observed is similar to those reported in mammals, i.e. decrease of Chol 

14 production concomitantly with changes in the transcription levels of gene encoding the enzyme 

15 responsible for the limiting step of mevalonate pathway - HMGCR. However, the majority of the 

16 available studies in the literature, for humans and mammalian animal models, report a 

17 transcriptional up-regulation of hmgcr after SIM administration (Conde et al., 1999; Gouni-Berthold 

18 et al., 2008; Rudling et al., 2002). Also, one study with zebrafish fed with the statin, atrovastin, for 

19 30 days presented the same hmgcr pattern to that reported in mammals (Al-Habsi et al., 2016), in 

20 contrast with the downregulation observed in the present study. Therefore, the potential link 

21 between the transcriptional down-regulation of the hmgcr and cyp51 and the decrease of Chol 

22 production observed here with zebrafish should be confirmed in further studies involving longer 

23 exposure periods and additional SIM concentrations.

24 The contrasting expression profile of hmgcr observed in the present study suggests that 

25 possibly, the low SIM concentrations used in the present study affects zebrafish transcription levels 

26 of hmgcr in a time-specific manner i.e. fluctuations in gene expression over time. To the best of our 

27 knowledge, there are not studies available that investigate the time effects of SIM on hmgcr gene 

28 expression. However, a clear time-dependent gene expression response is described in the 

29 literature for distinct genes in several aquatic model organisms exposed to different compounds, 

30 including SIM (Cunha et al., 2017; Hamadeh et al., 2002; Kim et al., 2015). Thus, the absence of data 

31 on the temporal hmgcr gene expression highlights the importance of using multiple time-points in 

32 gene expression studies with statins. This issue should be explored in future studies. It is worth 

33 noting that SIM induced significant toxic responses at the lowest concentrations (8, 40 and/or 200 

34 ng/L) in most of the analyzed endpoints, while at the highest concentration (1000 ng/L) the 

35 responses were similar to the control conditions. Therefore, the intermediate SIM exposures 



1 appeared more effective in the disruption of lipid homeostasis than the highest exposure. These 

2 responses appeared to be non-monotonic, showing an inverted U-shape for the embryonic 

3 development abnormalities and a U-shape for the cholesterol levels and for the expression of 

4 hmgcra and cyp51 genes. This is a common pattern observed in low concentration exposures during 

5 chronic experiments for some endocrine disrupting chemicals; therefore the non-monotonicity 

6 responses should not be ignored in environmental studies and hazard assessment (Vandenberg et 

7 al., 2012). The mechanism(s) that cause this apparent non-monotonicity of SIM in the present study 

8 are currently unknown and should be further investigated. However, we hypothesize that the 

9 interactions of the endogenous feedback mechanism to maintain the homeostatic control of Chol 

10 and the mechanisms of SIM to reduce the Chol levels might have a role in the responses reported 

11 here. The lowest SIM exposure may result in the activation of SIM associated-pathways to reduce 

12 the Chol levels, however, at the higher concentrations, the endogenous mechanisms to control the 

13 levels of Chol must have compensated the effects of SIM in order to achieve homeostasis and, thus, 

14 the effect of SIM was less evident. 

15 In summary, taken together the findings of the present study indicate that low 

16 environmentally realistic concentrations of SIM have a significant impact in Chol metabolism of 

17 zebrafish with some similarities to the effects reported in mammals. Chronic exposure to SIM 

18 reduced the levels of Chol and TGL, mainly in females, concomitantly with changes in the 

19 transcription levels of key genes involved in the Chol biosynthesis. These alterations could be 

20 associated with the disruption of embryonic development, which might have implications at the 

21 ecological level, given that the effects were observed in the low ng/L range. Given that SIM is 

22 expected to impact the mevalonate pathway in a wide range of animal taxa (Santos et al., 2016), 

23 the results of the present study highlight the need to expand chronic low-level exposure studies to 

24 other groups of animals.
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List of Captions

Figure 1. Schematic representation of the experimental setup. Each treatment had two aquaria 
(R1 and R2), with 25 animals each. Aquaria were then subdivided in two (a and b) for the 
reproductive trials and embryonic studies at day 70. Embryonic development was analyzed 
using 60 embryos (15 each in four replicates).The experiment finished at day 90 and all animals 
were sacrificed, measured, weighted, and livers from both males and females were collected 
for gene expression analysis (N=8) and for cholesterol/triglyceride quantification (N=8 for 
males and N=8 for females).

Figure 2. Cumulative mortality – n=60 per treatment (A); Anomalies in the tail – n=60 per 
treatment (B); Total abnormalities – n=60 per treatment (C); and Heart rate – n=16 per 
treatment (D) observed in zebrafish embryos at 80 hpf, following parental chronic exposure to 
SIM. Error bars indicate standard errors; * indicates significant difference from the solvent 
control group (ACET) (p < 0.05). (Power=1.000 for all endpoints; mean sample size calculation = 
3, for expected power = 0.8).

Figure 3. Tail abnormalities, at 80 hpf, after D. rerio parental exposure to SIM for 70 days. 
Comparison between Solvent Control (A), 40 ng/L SIM (B), 8ng/L SIM (C).

Figure 4. Chronic effects of SIM on cholesterol (A) and triglyceride (B) content of D. rerio liver 
after 90 days of exposure. Error bars indicate standard errors; * indicates significant difference 
from the solvent control group (ACET) (p < 0.05) (n=8 per sex/treatment). (Power=0.999; mean 
sample size calculation = 5).

Figure 5 Relative mRNA expression of hmgcra, cyp51, and dhcr7 in adult D. rerio livers after 90 
days SIM exposure. Females (A) and Males (B). Error bars indicate standard errors; asterisks (*) 
indicate significant differences from the solvent control treatment (ACET = 1-fold) (p< 0.05) (n=8 
per sex/treatment) (Power=0.999; mean sample size calculation = 6) 













Table 1. Primers, forward (F) and reversed (R), and parameters used in the qRT-PCR for gene 
expression quantification in the liver of D. rerio.

Gene Sequence (5’ – 3’) Expected 
band size 

(bp)

Combined 
annealing and 

extension 
temperature 

(°C)

Average 
efficiency

(%)

Reference

hmgcra F: TCGTGGAGTGCCTGGTGATTGGT

R: TGGGTCTGCCTTCTCTGCTCTCTC

177 62 98 1

cyp51 F: GCTCGGAGACACTCAGACACATCTT

R: AGCAGAACTGAAGTCAGGCTCATCT

138 60 96 1

dhcr7 F: GAGGAGTTCAGGATGGTGCCCGTA

R: GTGGACACAGCATAGCCGAGGATG

199 60 94 1

rpl8 F: TTGTTGGTGTTGTTGCTGGT

R: GGATGCTCAACAGGGTTCAT

136 58 94 2

Notes: 1 - (Mu et al., 2015); 2 - (Lyssimachou et al., 2015)



Table 2.  Nominal and measured concentrations of SIM (expressed as sum of SIM and SIMHA) in water 
samples collected in duplicate from each treatment after the first contamination of the day (T 0h) and 
immediately before the second one (T 8h), Data are expressed as mean ± standard error.

Time Solvent 
control

SIM
8 ng/La

SIM
40 ng/La

SIM
200 ng/La

SIM
1000 ng/La

T 0 h n.d.b 6.8 ± 0.45 37.9 ± 3.21 108.6 ± 3.70 751.7 ± 40.08

T 8 h n.d.b 4.9 ± 0.08 23.0 ± 0.08 74.0 ± 1.47 343.4 ± 23.14

a Nominal SIM concentrations
b Not detected 



Table 3. Chronic effects of SIM on survival, weight, length, Fulton’s condition factor (K), fecundity (number 
of embryos/ female/ day), and % of fertilization (% of fertilized eggs/female/day) of D. rerio after 90 days 
of exposure (M, males; F, females).

Endpoint Control Acet 8 ng/L 40 ng/L 200 ng/L 1000 ng/L

Survival (%) — 100% 100% 100% 100% 100% 98% 

M 611.5 ± 21.9 642.1 ± 12.7 615.3 ± 25.3 598.5# ± 13.6 630.6 ± 9.6 588.0* ± 12.9
Weight (mg)

F 769.0 ± 35.7 839.2 ± 38.6 810.6 ± 38.6 756.2# ± 30.8 742.9# ± 35.6 733.8* ± 40.0

M 38.3 ± 0.4 38.7 ± 0.3 38.2 ± 0.5 38.1 ± 0.3 38.8 ± 0.2 38.2 ± 0.4
Length (mm)

F 39.0 ± 0.4 39.9 ± 0.4 40.0 ± 0.5 38.9 ± 0.4 38.9± 0.4 38.7* ± 0.6

M 1.09 ± 0.03 1.11 ± 0.01 1.10 ± 0.03 1.08 ± 0.02 1.08 ± 0.01 1.06 ± 0.01
K

F 1.29 ± 0.04 1.30 ± 0.04 1.25 ± 0.03 1.27 ± 0.03 1.24 ± 0.03 1.24 ± 0.03

Fecundity — 51.9 ± 9.7 76.3 ± 20.5 94.7 ± 18.5 93.3 ± 17.1 67.6 ± 24.0 109.1 ± 15.5

Embryo 
fertilization (%)

— 94% ± 2.9 90% ± 4.4 94% ± 2.6 97% ± 0.8 98%* ± 0.6 95% ± 1.8

* indicate significant differences from the solvent control group (ACET). Values presented as mean ± 
standard error; p < 0.05; # - values near significance – female weight at 40ng/L (p=0.09) and 200 ng/L 
(p=0.08), male weight at 40 ng/L (p=0.06). (n=50; ~25 for males and 25 females per treatment) 
(Power=1.000 for all endpoints; mean sample size calculation = 2.4, for expected power = 0.8).




