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We have performed collinear and noncollinear calculations on neutral Bi4Mn and collinear ones on
ionized Bi4Mn with charges +1 and −1 to find out why theoretical calculations will not predict
the magnetic state found in the experiment. We have used the density functional theory to find a fit
between the theoretical prediction of the magnetic moment and the experimental value. Our calcula-
tions have consisted in a structural search of local energy minima, and the lowest energy magnetic
state for each resulting isomer. The geometry optimization found three local minima whose fun-
damental state is the doublet spin state. These isomers could not be found in previous theoretical
works, but they are higher in energy than the lowest-lying isomer by ≈ 1.75 eV. This magnetic state
could help understand the experiment. Calculations of noncollinear magnetic states for the Bi4Mn
do not lower the total magnetic moment. We conclude arguing how the three isomers with doublet
state could actually be the ones measured in the experiment. © 2011 American Institute of Physics.
[doi:10.1063/1.3521270]

I. INTRODUCTION

Nanostructured materials have become the main source
in current technology to develop devices with novel prop-
erties: atoms in low dimensional structures behave differ-
ently than as a part of bulk matter. Among them, the zero-
dimensional materials, i.e., atomic clusters and nanoparticles,
have attracted a great deal of attention, especially for their
magnetism. Atoms in pure small clusters can exhibit far larger
magnetic moments than when isolated or within crystals.1–3

This effect can be enhanced when impurities are added.4

In this trend, the study of transition metal binary clusters
was triggered by the exceptionally high magnetism found in
CoRh nanoparticles by Zitoun et al.5 Since then, a number of
magnetically enhanced nanoalloys of ferromagnetic and non-
magnetic transition metals have been studied theoretically6–9

and experimentally.10–12 Yin et al.13 found an enhanced mag-
netism in BiMn clusters for Bi-to-Mn ratios close to 2 in their
Stern–Gerlach measurements, which deviated from the trend
in other Bi nanoalloys like BiCo, where the magnetic moment
had a small dependence with cluster size.10 In a later paper,
Chen et al.14 performed extensive density functional theory
(DFT) calculations on BinMnm (n = 1–6, m = 1–12) clusters
to learn their structure and how their magnetism works. While
they have found quite a good agreement with the experiment
for this series, there are a few large discrepancies between the
theoretical value of the magnetic moment and the measured
one. The most significative one is the Bi4Mn where DFT cal-
culations predict a total magnetic moment μT = 5 μB while
the experiment measures 1.6 μB . The cause of this discrep-
ancy was not found, although extensive geometric optimiza-
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tions and an estimation of the orbital contribution to the mag-
netic moment were performed to solve this problem.

In the present paper we will explore the possible sources
of the mismatch between theoretical calculations and exper-
imental results for the Bi4Mn nanoalloy, through DFT cal-
culations. We considered the following possibilities: finding
isomers of the cluster whose total magnetic moment is low
enough; allowing noncollinear magnetic states for the studied
Bi4Mn structures, as this might lower their magnetic moment;
and finding out the orbital contribution to the magnetic mo-
ment of each structure. The paper is organized as follows: In
Sec. II, we explain the computational methods we have used,
also reasoning why each method was used seeking which re-
sult. In Sec. III, we show our results and discuss them, and it
is divided in two subsections: Subsection III A contains the
results of the calculations with imposed collinear magnetic
moments, and subsection III B, the results of the calculations
where the collinear constraint is lifted, allowing magnetic mo-
ments to arrange freely. Section IV contains the conclusions
derived from our findings.

II. COMPUTATIONAL DETAILS

Our first step was to perform ab initio calculations
within the framework of the DFT over a large number of
different structures of Bi4Mn, both taken from the litera-
ture and created by the authors. We solved each system us-
ing linear combinations of Gaussian-type orbitals within the
Kohn–Sham (KS) density functional methodology (LCGTO-
KSDFM), with the deMon 2003 code.15 The calculation of
the exchange-correlation (XC) energy term was carried out
using the generalized gradient approximation (GGA), in the
Perdew–Burke–Ernzerhof (PBE) ansatz.16 It has been shown
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that the GGA is the approximation that gives the best results
for geometry optimizations of small clusters.17, 18 The orbital
basis set used in our calculations19 for Bi and Mn takes the
Stuttgart–Dresden effective core potentials RECP|SD.20 They
explicitly consider the outer 15 electrons of the Mn using a
relativistic approximation, and the outer five ones of the Bi
with a quasirelativistic one. Spin-orbit coupling (SOC) is not
considered in either case. While the SOC term is not negli-
gible in Bi atoms, it has been reported not to have effects in
the determination of the geometry of the ground state of their
clusters, such as the Bi4.21 The electron density is expanded
in auxiliary basis sets in order to avoid the calculation of the
N4 scaling Coulomb repulsion energy, where N is the number
of the basis functions. The auxiliary basis sets are GEN-A3*
(Ref. 22) for the Bi and A2-DZVP (Ref. 23) for Mn. The in-
ner electrons of the atoms are represented with a core model,
using the Hartwigsen–Goedecker–Hutter pseudopotentials.24

Each structure was geometrically optimized through a
Born–Oppenheimer molecular dynamics simulation. After
this first approach, the geometry of each cluster was op-
timized further with a Broyden–Fletcher–Goldfarb–Shanno
algorithm.25 Consecutively, we carried out a search in the
collinear magnetic state that yields the energy minimum for
zero external magnetic field and T = 0 for each geometry.
The calculations were converged using 10−7 as the conver-
gence criterion for the self-consistent cycle and 10−4 for the
geometry optimization steps. It is worth noting that after this
optimization, the initial structures to which we impose the dif-
ferent magnetic states often relax to different final structures,
while different initial structures might converge to the same
final structure. Hence, we obtain a large number of relaxed
isomers, all of them local minima in their magnetic state. We
focus on the 21 geometries with lower energy, performing
single-point calculations for each isomer, searching for their
fundamental magnetic state. The partial charges and mag-
netic moments for each one of the atoms are known through
a Mulliken population analysis of the electrons. Next, we per-
form noncollinear single-point calculations to determine the
lowest-energy magnetic state for each one of the 21 isomers.
These calculations are performed using a different DFT im-
plementation, the Octopus code.26 The Octopus calculations
consider wavefunctions to be complex spinors and they in-
clude the SOC relativistic correction. In the same manner as
the collinear calculations, XC energy is approximated through
a GGA-PBE functional. As for the grid upon which the KS
equations are solved, we have chosen a radius of 4.4 Å and
a spacing of 0.1 Å. The mixing scheme is a broyden one,
with a mixing factor of 0.02. The convergence factor used was
ConvRelDens = 10−5.

III. RESULTS

A. Collinear calculation results

In Fig. 1, we represent the 21 lowest-energy isomers that
we have found in our calculations and in Fig. 2, we plot the
energies of each of their available magnetic states from 1 to
9 μB . Our lowest energy structure is an edge-capped distorted
tetrahedron with μtotal = 5 μB. This result agrees with Chen’s

FIG. 1. Geometry of the 21 lowest-energy structures for the nanoalloy
Bi4Mn, with their relative energies per atom, in electron volts.

work14 and is concurrently in disagreement with the experi-
mental data.13 In addition, our calculations over the two al-
ternative geometries considered in Ref. 14, a pyramid and a
W-like structures, are in good agreement with said work (see
Fig. 2): the pyramidal structure (isomer 6 in Fig. 1) is 0.76 eV
higher than the lowest-lying isomer, and the W-like structure
(isomer 10 in Fig. 1) 1.06 eV higher.

The structures with μtotal = 5 μB dominate the lowest en-
ergy isomers until the 11th one, and from that point on, struc-
tures with μtotal = 3 μB dominate instead until the 18th one.
Our three highest energy isomers have μtotal = 1 μB , this be-
ing the μtotal closest to the experimental value of 1.6 μB .

Analyzing each atom of the nanoalloy separately, most
of the magnetic moment comes from the Mn atom, while
the Bi ones typically remain close to zero. As we can see in
Fig. 3(a), electrons are shared from the Bi to the Mn, in partic-
ular from 6p orbitals to 4d. This charge transfer does not gen-
erally enhance magnetism in either element, as the Mn total
magnetic moment oscillates between 4 and 5 μB for all clus-
ters, without correlation to charge transfers [see Fig. 3(b)]. In
the three higher energy isomers, however, one of the Bi atoms
stands isolated, bound only to the central Mn. This Bi, in ad-
dition to transferring 6p electrons to the Mn, also receives
charge into its 7p orbital, greatly increasing its magnetic mo-
ment which couples antiparallel with the Mn. This makes the
total magnetic moment of the isomer to decrease to 1 μB . The
lower total magnetic moment state is hence originated in the
enhancement of the magnetism of the Bi atoms, whose mag-
netic moments are either very close to zero or antiparallely
aligned to those of the Mn atoms.

We have not found the lowest energy isomer to have a to-
tal magnetic moment close to the experimental value. Instead,
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FIG. 2. Energy of the 21 structures with lower energy for the magnetic configurations μtotal = 1, 3, 5, 7, 9 μB . The numbers in the x-axis correspond to the
structures shown in Fig. 1. For the sake of comparison, we have included the relative energies to the lowest-lying isomer for the structures calculated by Chen
et al. (Ref. 14).

the isomers with μT = 1 (the ones closest to the experimen-
tal value) have a much higher energy than the ground state;
hence, they could not make up a significative fraction of the
experimental sample of Bi4Mn.

We proceed to test other exchange-correlation function-
als to find out if this could be the reason for the discrep-

FIG. 3. Atomic charges (a) and magnetic moments (b) of each atom in the
ground state of each one of the 21 lowest energy isomers of Bi4Mn.

ancy. In Fig. 4, we show the ground states calculated for
the lowest-lying isomer for different XC functionals, and we
compare them with our results for PBE functional. We per-
formed this calculation for the values of μT = 1, 3, 5 μB . Lo-
cal functionals exhibit higher energies, but all functionals pro-
vide the same energetic ordering of the three magnetic states:
μT = 5 μB as the lowest, 3 μB second lower, and 1 μB third
lower. When splitting the energy in XC and classical terms,
all the considered functionals keep the same ordering: XC
term greatly favors the 3 μB and 5 μB states, while the bias

FIG. 4. Comparison of the three lowest magnetic states of the lowest-lying
isomer of Bi4Mn calculated using different XC functionals. VWN is a Dirac
exchange (Ref. 27) with local VWN correlation (Ref. 28) PZ81, Dirac ex-
change with local PZ81 correlation (Ref. 29) PW92, Dirac exchange with
local PW92 correlation (Ref. 30). BLYP, B88 GGA exchange (Ref. 31) with
LYP GGA correlation (Ref. 32). PW86, PW86 GGA exchange (Ref. 33) with
P86 GGA correlation (Ref. 34). PW91, PW91 GGA exchange and correla-
tion (Ref. 35). PW91SSF, PW91 with full spin scaling function. PBE, PBE
GGA exchange and correlation (Ref. 16).
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FIG. 5. Energy comparison of the 21 structures with lower energy for the
magnetic configurations μT = 0, 2, 4, 6, 8 μB of the negatively (a) and pos-
itively (b) charged ions of Bi4Mn.

of the classical term lowering the 1 μB state cannot balance
it.

The final scenario we can examine with collinear calcu-
lations is the possible ionization of the experimental BiMn
clusters during their production, or that their structure changes
during the ionization in the Stern–Gerlach experiment. This is
unlikely because of the low temperature of the process.36 The
results still do not yield any significative reduction of the total
magnetic moment, as we can see in Fig. 5. The lowest-lying
isomers are small deformations of the one for the neutral clus-
ter, and the lowest magnetic configuration is 4 μB both for
positive and negative ions. The lowest magnetic state of the
anions is found for their third lowest-lying isomer, which has
μT = 2 μB . Even this result is larger than the experimental
value, so it cannot explain the discrepancy.

As a summary, we have found that there are three struc-
tures of the Bi4Mn cluster whose μT = 1 μB . The experi-
mental value is 1.6 μB , which implies that it is not isomer-
ically pure: there has to be a population mixture of clusters
with different structures and different μT , including 1 μB .
However, these three structures are ≈ 1.75 eV higher than
the lowest-lying one, and there are 18 structures with lower
energy than them. Consequently, it is unlikely that the exper-
imental device can produce these isomers in a high enough

ratio as to lower the magnetic moment, explaining the experi-
mental value. Except that some other reason, unaccounted for
in our calculations, happens to favour their synthesis. Nev-
ertheless, there is another possible explanation for a frac-
tional value of μT : that the magnetic moments of the clus-
ter are not alligned collinearly. To explore this possibility,
we proceeded to perform noncollinear calculations, where
the magnetic moments are not constrained to match a single
axis.

B. Noncollinear calculation results

The next step is to find out if the discrepancy can be
solved with noncollinear calculations, performing them for
the 21 lowest-energy structures we found in the collinear
ones. As we can see in Fig. 6(a), the energy dependence of the
different isomers with noncollinear magnetic configuration
roughly follows that of the isomers with collinear magnetism.
The total magnetic moment [see Fig. 6(b)] ranges from 3.7
to 6.4 μB , with the lowest-lying isomer having μT = 5.0 μB ,
values which agree with the collinear calculations for the low-
est energy clusters, exceeding the experimental result. The
ratio of the moduli of the total magnetic moment compo-
nents: Mx and My against Mz is very small, specially for the
lower energy isomers. We can conclude that the collinear ap-
proximation is a good one, which validates the results of our
collinear calculations in subsection III A.

Further analysis of the magnetic components of our iso-
mers yield the orbital magnetic moment: in Fig. 6(c), we com-
pare the modulus of the orbital magnetic moment with the
value for BiMn in bulk, 0.17 μB ,37 seeing that the value of
the orbital magnetic moment has the same order of magni-
tude, being small in all cases. Studying the orbital component
and comparing it with the total magnetic moment of each
isomer, we find that in all cases this contribution is smaller
than 10%, except for the structure 16, where the ratio be-
tween the moduli is 14%. From our results, we conclude that
the orbital magnetic moment for these clusters is too small
to be a significative factor in the total magnetic moment, so
it cannot be the source of the discrepancy between the ex-
perimental results and the theoretical calculations. Further-
more, our calculated orbital magnetic moments for each iso-
mer are well within the upper limit estimated by Chen et al.,
1.35μB .

IV. CONCLUSIONS

We have explored the possible scenarios that could lead
to the known discrepancy between the experimental value of
the total magnetic moment of the Bi4Mn cluster and the the-
oretically calculated one. We have found that three isomers
among the 21 most stable actually have a total magnetic mo-
ment below the experimental one, but these isomers are too
high in energy respect to the lowest-lying one. Furthermore,
there are 18 isomers with lower energy, so these three can-
not make up for a fraction of the population of randomly
created Bi4Mn clusters significative enough to reduce the
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FIG. 6. Energy (a), magnetic moments (b), and orbital moments (c) for
the 21 lowest-energy isomers of Bi4Mn found in the noncollinear calcula-
tions. In (a) we have included the energies of the different isomers from
collinear calculations using the Octopus code, for comparison. In (c), the
horizontal line marks the value of the orbital magnetic moment in bulk
BiMn.

average total magnetic moment down to the experimental
value. We have found that any of the used XC functional
approximations does not make the ground state of the lowest-
lying isomer have a lower magnetic moment. The analysis of
the positive and negative singly charged ions has also yielded
no lowest-energy structure with a magnetic moment close to
the experimental one. In fact, none of the ions of the 21 iso-
mers we have considered has a ground state with a magnetic
moment lower than the experiment. This should be expected
though, as the only lower magnetic state available to ions of
Bi4Mn is a singlet. The possible presence of ions would not
help us explain the experiment unless we had found ground
states at μT = 0 μB . From our noncollinear calculation, we
rule out other two possible sources of the disagreement: (i)
the magnetic configuration is collinear to a high degree, even

when allowing the individual atomic magnetic moment to ar-
range freely, and still produces states with high magnetic mo-
ment: between 4 and 6.4 μB , hence this cannot be the source.
(ii) The orbital magnetic moment is too low in absolute value
compared to the total magnetic moment to produce a signifi-
cant reduction in it.

All these consistently negative results in our search for
a source of the discrepancy in the calculations suggest that
said source is not an actual error of the calculations. Further-
more, the possibility that DFT method itself is not reliable to
study this cluster is unlikely: the DFT results are in fairly good
agreement for almost all the other BimMnn clusters. Having
this in account, we are only left with the explanation sug-
gested in subsection III A, i.e., that the experimental sample of
Bi4Mn is composed of a population of different structures and
that one or some of our structures 19, 20, 21 are a significative
fraction of said sample. We have found no reason why DFT
would increase the energy of these structures specifically, so
there could be a factor in the experiment that favors their pro-
duction. We think it is remarkable that the structures 19, 20,
21 are very similar the lowest-lying isomer for Bi3Mn clus-
ters (a tetrahedron), simply adding an extra Bi atom to the Mn
end of the tetrahedron. If Bi3Mn clusters form much more
quickly in the experimental device than Bi4Mn ones, it is not
unreasonable to think that the later will form from the former.
Bi3Mn also has a large electrostatic dipole we have calculated
to be 2.4 D in the direction that connects the Mn atom with the
center of the triangle formed by the three Bi atoms. This dipo-
lar moment could help a fourth Bi atom to couple to the Mn
instead of breaking up the tetrahedron to form the calculated
Bi4Mn lowest-lying structure. If the process of measurement
of mass and magnetic moment of the clusters is fast enough,
they might not have enough time to relax into the said lowest-
lying isomer, hence resulting in some of our structures 19,
20, or 21 making up a large fraction of the measured Bi4Mn
clusters.

To verify this, one possible path would be to perform
an analysis of the optical properties of the experimentally
obtained Bi4Mn clusters to identify their geometry, and see
if they match with the isomers theoretically obtained as the
lowest energy ones, or instead they match with any of the
19, 20, 21 isomers that actually show a low total magnetic
moment. If the later case were true, then we would have
to explain why the experimental setup produces structures
that theoretically at T = 0 K are known not to be the fun-
damental one. On the other case, it would be necessary to
know why the theory cannot predict the correct magnetic mo-
ment for a cluster with known composition and structure. The
flight-time of the experimentally obtained clusters through the
Stern–Gerlach device is 10 ms, but at this moment we do not
have the means to estimate the time it takes a cluster to relax
to the lowest-lying structure. Time-dependent DFT or quan-
tum mechanical-molecular mechanics calculations should be
the following step to introduce both the time coordinate and
nonzero temperatures, and estimate the estructural relaxation
time, to compare it with the experimental flight-time. In
addition, regular DFT calculations could be improved by
use of optimized-effective-potential method instead of XC
functionals.
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