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The study of high concentrator photovoltaic (HCPV) technology under real

conditions is essential to understand its real behavior. The influence of direct

normal irradiance (DNI), air temperature (Tair), and air mass (AM) on the

maximum power of two HCPV modules was studied for more than three years.

Results found are presented in this paper. As expected, the main influence on the

maximum power is DNI. Also, Tair has been found to have small influence on the

maximum power. Regarding AM, two different behaviors have been found. The

maximum power could be considered independent of AM for AM� 2, while it

decreases with an approximate linear behavior for AM> 2. Also, the maximum

power of a HCPV module could be estimated with a linear mathematical fitting

based on DNI, Tair, and AM. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861065]

I. INTRODUCTION

High Concentrator Photovoltaic (HCPV) uses optical devices, lenses, and mirrors that focus

the light received on the solar cell surface, usually multi-junction (MJ) solar cells. The aim of

this energy production system is to reduce the cost of electricity by increasing the efficiency of

the system.1

Table I shows the expected forecast for MJ solar cells and HCPV modules for 2015. The

high efficiencies expected for HCPV technology mean that it could be profitable in economic

and energy terms soon. This fact represents a potential alternative to flat module photovoltaic

systems in the energy generation market.2

MJ concentrator solar cells are influenced by changes in irradiance and temperature like

single-junction solar cells. Additionally, due to the internal series connection of individual sub-

cells with different band gap energies, MJ solar cells show a significantly greater sensitivity on

the incident spectrum than single-junction solar cells.3–7 Because of this, HCPV modules are

also influenced by these parameters. However, the behavior of HCPV modules cannot only be

explained by studying the behavior of MJ solar cells. Other effects such as mismatch losses due

to the series-parallel association of MJ solar cells,8 the reduction of HCPV module efficiency

due to optical device losses,2 the cooling of module9 or lens temperature10 under different

atmospheric conditions have been demonstrated to have a far from negligible influence on the

power generation of a HCPV module. Because of this, the study of HCPV modules under real

operating conditions is essential to understand their behavior.

However, one of the problems of HCPV technology is the limited experience in its outdoor eval-

uation.11 For this purpose, the Centre of Advanced Studies in Energy and Environment located in the

south of Spain focused its main activities on HCPV evaluation. Big efforts have been made in this
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center recently to understand and clarify this technology outdoors.11–15 After more than three years of

study of HCPV modules outdoors, the main conclusions obtained are given.

As in any other type of energy production system, it is important to know the behavior of

the system in terms of energy. Hence, this paper is focused on the behavior of maximum power

under different operating conditions. The goal of this paper is to study the influence on the

maximum power (P) of different atmospheric parameters, particularly: direct normal irradiance

(DNI), air temperature (Tair), and air mass (AM).

The paper is organized as follows. Section II describes the experimental set-up and meth-

odology used to measure and study HCPV modules. In Sec. III, the influence of atmospheric

parameters (DNI, Tair, and AM) on the maximum power of HCPV modules is presented. Also,

a linear mathematical fitting, based on these atmospheric parameters, to estimate the maximum

power of HCPV modules under study is introduced and analyzed.

In the last section, Sec. IV, we introduce the main conclusions of our current work and the

possible future research lines.

II. EXPERIMENTAL SET-UP

Two different HCPV modules have been measured since 2010 in order to study the behav-

ior of HCPV technology outdoors. Tables II and III show some data of modules under study

provided by manufacturers.

In order to study HCPV technology, HCPV modules were measured in the Centre of
Advanced Studies in Energy and Environment at the University of Ja�en. The center is located

in the south of Spain, Ja�en, which has a high direct annual irradiation level15 and Tair that can

easily reach 40 �C in summer and 5 �C in winter. Because of this, Ja�en and this solar research

center are located in a suitable place for HCPV outdoor evaluation. The center is equipped with

all instruments required to perform this task.

To carry out this study, the modules are mounted on a solar tracker designed by BSQ

Company on the roof of the research center. A four-wire electronic load PVPM 1000C40 is

placed in the laboratory to register the I-V curves of modules; the maximum power (P) is

TABLE II. Characteristics of the high concentrator photovoltaic modules used in the experiment. Every cell is protected

with a bypass diode.

Manufacturer

Geometric

concentration Primary optics

Secondary

optics Type of solar cells

Number

of solar cells Cooling

A 500 PMMA Fresnel lens Refractive

truncated pyramid

Lattice-matched

GaInP/GaInAs/Ge

6 cells in series Passive

B 550 PMMA Fresnel lens Refractive

truncated pyramid

Lattice-matched

GaInP/GaInAs/Ge

25 cells in series Passive

TABLE III. Maximum power of modules under study at STC provided by manufacturers.

Manufacturer P (W) DNI (W/m2) Tcell (�C) Spectrum

A 65 1000 25 1.5d

B 130 1000 25 1.5d

TABLE I. Forecast of the efficiencies of MJ cells and HCPV modules in 2015.2

Efficiency Forecast (2015)

MJ solar cells 42%–50%

HCPV modules 30%–40%
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extracted from I-V curves. At the same time, an atmospheric station, MTD 3000C from

GEONICA, records other outdoor parameters such as global irradiance, direct normal irradiance,

air temperature, or relative humidity. This station is also located on the roof and communicated

through Ethernet with a Personal Computer (PC) placed in the laboratory. All parameters have

been recorded every 5 min since 2010. It is also important to remark that these modules were

cleaned once a week and also after rainy days to avoid possible power losses. Figure 1 shows the

scheme of the experimental set-up.

III. RESULTS

In this section the influence of DNI, AM, and Tair on the output of HCPV modules under

study is analyzed. Also, a linear mathematical fitting to estimate the maximum power outdoors,

based on the study of these parameters, is introduced and studied.

A. Influence of direct normal irradiance

The influence of DNI on the maximum power has been studied. Figures 2 and 3 show the

behavior of the maximum power measured versus DNI and the linear regression analysis for

the modules under study without any corrections either in Tair or in spectrum. As can be seen,

the maximum power of the HCPV modules is strongly influenced by DNI with a correlation

coefficient (R2) of 0.98 in both cases. This means that, despite the effect of other atmospheric

parameters such as temperature or spectrum, the main influence on HCPV modules’ behavior

comes from DNI. This is an important conclusion because it allows us to understand the main

behavior of maximum power taking into account only DNI.

B. Influence of air mass

It is usually assumed that the main reason for spectral changes is AM.16,17 This is only an

approximation of the real spectrum but can be regarded as a good approximation and many

FIG. 1. Experimental set-up used to study the HCPV module behavior at the Centre of Advanced Studies in Energy and
Environment of the University of Ja�en.
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efforts to evaluate the impact of spectrum changes go in this direction.9,17–20 This is useful

because it is not needed to measure AM to obtain it. Other methods based on measurements

using spectroradiometers or isotype solar cells are more complex and expensive. In addition,

with these methods it is not possible to have direct measurements for the place of interest for

long periods of time in all cases. One possibility to know the spectral distribution for the place

of interest, without the use of spectroradiometers or isotype solar cells, is based on simulation

programs such as SMARTS.21,22 The problem of these methods is that it is necessary to know

atmospheric parameters for the place of interest that are not easy to get. Also, other problems

in these methods are that it is necessary to know parameters of MJ solar cells such as external

quantum efficiency at different temperatures, or spectral dependencies in focusing, absorption,

and/or reflectance introduced by lenses, in order to accurately quantify the influence of incident

spectrum.23,24

FIG. 2. Maximum power versus direct normal irradiance of module A.

FIG. 3. Maximum power versus direct normal irradiance of module B.
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Because of this, the procedure followed for evaluating the spectral impact in the output of

HCPV modules is based on AM:25,26

AMðcÞ ¼
exp

�Z

Zh

� �

sinðcÞ þ 0:50572 � ðcþ 6:07995Þ�1:6364
; (1)

where c is the solar altitude, Z is the site elevation (Z¼ 452 m at Jaen), and Zh is the scale

height of the Rayleigh atmosphere near the Earth surface, equal to 8434.5 m.

In order to study the influence on the maximum power of AM of HCPV modules under

study independently of DNI, the maximum power measured normalized to its value at Standard

Test Conditions (STCs) (Pnormalized) divided by the DNI measured normalized to its value at

STC (DNInormalized) versus AM has been plotted for each module, Figures 4 and 5.

FIG. 4. Maximum power measured normalized to its value at STC divided by DNI measured normalized to its value at

STC versus AM for module A.

FIG. 5. Maximum power measured normalized to its value at STC divided by DNI measured normalized to its value at

STC versus AM for module B.
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The first conclusion that can be extracted from Figures 4 and 5 is that the

Pnormalized/DNInormalized decreases for AM> 2 with an approximate linear behaviour. The second

conclusion is that for AM� 2, the Pnormalized/DNInormalized could be considered constant in first

approximation. This means that:

• For AM� 2, the maximum power of modules under study could be considered independent of

AM in first approximation.
• For AM> 2, the maximum power is influenced by AM decreasing with an approximate linear

behavior.

As can also be seen in Figures 4 and 5, there is an important scatter. This scatter could be

explained by various reasons. One of them could be due to the working temperature of cells of

HCPV modules because no temperature correction has been made. Another possible reason

could be due to other atmospheric parameters: aerosol optical depth and precipitable water

vapor, which have been demonstrated to have a non-negligible effect in the incident spectrum.4

It is also important to remark that MJ solar cells and HCPV modules are optimized to

AM1.5d ASTM G-173–03 incident spectrum.27 This means that a maximum at AM¼ 1.5 could

be expected in Figures 4 and 5. However, this was not found in any case in the outdoor evalua-

tion of HCPV modules under study. This could be explained by the “spectral skewing” intro-

duced by lenses24 and by the influence of other atmospheric parameters in the incident spec-

trum4 among other reasons. This also highlighted the importance of the outdoor evaluation of

HCPV technology.

C. Influence of air temperature

The maximum power of a HCPV module are also influenced by Tair;
9,14,28 however, the

study of its effect and the ability to analyze it individually is not easy as it is still under

study.11 As mentioned above, the influence on maximum power of AM could be considered

negligible for AM� 2. So that, in order to study the influence of Tair on HCPV modules under

study independently of DNI and AM, the maximum power measured normalized to its value at

STC (Pnormalized) divided by the DNI measured normalized to its value at STC (DNInormalized)

versus Tair, filtered for AM� 2, has been plotted for each module, Figures 6 and 7.

Figures 6 and 7 show Pnormalized/DNInormalized versus Tair and the linear regression analysis

for HCPV modules under study. As can be seen, the slope is almost 0 in both cases. This

FIG. 6. Maximum power measured normalized to its value at STC divided by DNI measured normalized to its value at

STC filtered for AM� 2 versus Tair for module A.
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indicates that the influence on Tair of a HCPV module is small. This is consistent with the pre-

vious work related to the study of the influence of Tair on HCPV modules.11

D. Linear mathematical fitting of maximum power

Taking into account the above, a linear mathematical fitting of the maximum power point

of a HCPV module could be mathematically expressed as a function of

P ¼ f DNI;Tair;AMð Þ: (2)

There are two different behaviors in HCPV modules under study depending on AM.

Particularly, for AM� 2, HCPV modules are only influenced by DNI and Tair, while for

AM> 2, HCPV modules are influenced by DNI, Tair, and AM, in first approximation.

Hence, a linear mathematical fitting to estimate the maximum power of a HCPV module

could be expressed as

P ¼ a1 � DNIþ a2 � Tair; for AM � 2; (3)

P ¼ a1 � DNIþ a2 � Tair þ a3 � AM; for AM > 2; (4)

where linear coefficients a1, a2, and a3 are obtained by performing a multiple regression analy-

sis of maximum power as a function of DNI, Tair, and AM. Results for each module are shown

in Table IV.

Figures 8 and 9 show the linear regression analysis between estimated data using expressions 3

and 4, and actual data for two HCPV modules. As can be seen there is an adequate fit between both

FIG. 7. Maximum power measured normalized to its value at STC divided by DNI measured normalized to its value at

STC filtered for AM� 2 versus Tair for module B.

TABLE IV. Linear coefficients for two HCPV modules under study obtained by performing a multiple regression analysis

of P as a function of DNI, Tair, and AM.

Manufacturer a1 a2 A3

A 0.063 �0.0032 �0.58

B 0.13 �0.083 �0.42
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for the two modules under study. Particularly, the slope is close to 1, the offset is close to 0 and corre-

lation coefficient is close to 1 for both modules, which indicates the goodness of the proposed linear

mathematical fitting.

Table V shows some statistical parameters that have also been calculated to check the ac-

curacy of the linear mathematical fitting: the root mean square error (RMSE) and the mean bias

error (MBE). As can be seen, MBE is close to 0 for both modules. This indicates that the math-

ematical fitting neither overestimates nor underestimates the maximum power. As can also be

seen, RMSE is 3.43% and 3.66% for modules A and B, respectively. This indicates the good

accuracy of the linear mathematical fitting in the estimation of the maximum power for HCPV

modules under study.

FIG. 8. Linear regression analysis between actual and estimated data using the proposed linear mathematical fitting for

module A.

FIG. 9. Linear regression analysis between actual and estimated data using the proposed linear mathematical fitting for

module B.
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IV. CONCLUSIONS

Two HCPV modules have been measured outdoors since 2010 in the Centre of Advanced
Studies in Energy and Environment at the University of Jaen located in the south of Spain. This

allows us to study and understand the behavior of HCPV technology under real conditions. In

particular, the influence of direct normal irradiance, air mass, and air temperature on the maxi-

mum power of HCPV modules have been studied. The main parameter that influences the max-

imum power of a HCPV module is the direct normal irradiance with a great correlation

between both. This means that it is possible to understand the main behavior of the maximum

power taking into account only the direct normal irradiance. Related to the influence of air

mass an important conclusion has been found. The maximum power could be considered inde-

pendent of air mass for AM� 2, while it decreases with an approximate linear behavior for

AM> 2 in first approximation. In the case of the air temperature analysis, it has been demon-

strated that the influence of this parameter on the maximum power of HCPV module is small.

Also, the maximum power can be estimated as a function of direct normal irradiance, air tem-

perature, and air mass using a linear mathematical fitting with a good accuracy.

The Centre of Advanced Studies in Energy and Environment will continue its research in

the outdoor evaluation of HCPV technology to understand and clarify its behavior. Also, due to

new measurement systems, such as a solar simulator development by Soldaduras Avanzadas

company in cooperation with the Instituto de Energia Solar at the Universidad Polit�ecnica de

Madrid (IES-UPM), the indoors study of HCPV technology is beginning to be realized. The

new conclusions found in the study of HCPV technology under real and controlled conditions

will be given in future works.
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