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Abstract—Today’s microprocessors include multicores that
feature a diverse set of compute cores and onboard memory
subsystems connected by complex communication networks and
protocols. The analysis of factors that affect performance in such
complex systems is far from being an easy task. Anyway, it is
clear that increasing data locality and affinity is one of the main
challenges to reduce the access latency to data. As the number of
cores increases, the influence of this issue on the performance of
parallel codes is more and more important. Therefore, models
to characterize the performance in such systems are broadly
demanded. This paper shows the use of an extension of the
well known Roofline Model adapted to the main features of
the memory hierarchy present in most of the current multicore
systems. Also the Roofline Model was extended to show the
dynamic evolution of the execution of a given code. In order
to reduce the overheads to get the information needed to obtain
this dynamic Roofline Model, hardware counters present in most
of the current microprocessors are used. To illustrate its use,
two simple parallel vector operations, SAXPY and SDOT, were
considered. Different access strides and initial location of vectors
in memory modules were used to show the influence of different
scenarios in terms of locality and affinity. The effect of thread
migration were also considered. We conclude that the proposed
Roofline Model is an useful tool to understand and characterise
the behaviour of the execution of parallel codes in multicore
systems.

I. INTRODUCTION

Current microprocessors implement multicores that feature
a diverse set of compute cores and on board memory hie-
rarchies connected by increasingly complex communication
networks and protocols with area, energy and performance
implications. In multicore systems, for a parallel code to be
correctly and efficiently executed, its programming must be
careful, and the shared memory abstraction stands out as a
sine qua non for general-purpose programming [1]. The only
practical option for implementing a large cache is to physically
distribute it on the chip so that every core is near some portion
of the cache [2]. In particular, with exascale multicores, the
question of how to efficiently support shared memory model
is of paramount importance [3].

The need for models to characterize the performance of
these complex systems is an open question nowadays [4]–[10].
The Berkeley Roofline Model [11] is a compact representation
of the main features that affect the performance of a code when
executed in a particular system. It shows in a simple plot the
behaviour of this code based on information about the speed
of the computations and the latency to access data.

Taking into account architectural features, particularly the

behaviour of memory accesses, is critical to improve locality
among accesses and affinity between data and cores. Both
locality and affinity are important to reduce the access latency
to data. In addition, a large fraction of on-chip multicore
interconnect traffic originates not from actual data transfers
but from communication between cores to maintain data
coherence [12]. An important impact of this overhead is the
on-chip interconnect power and energy consumption [13].

In particular, performance monitoring is used to identify
bottlenecks by collecting data related to how an application
or system performs [14]. Characterising the nature and cause
of the bottlenecks using this information allows the user to
understand why a program behaves in a particular way. Some
performance issues in which this information is important are,
among others, data locality or load balancing. Their study may
help to lead to a performance improvement [15].

Moving threads close to the place where their data reside is
a strategy that can help to alleviate these issues. When threads
migrate, the corresponding data and directory entries usually
stay in the original memory module, and be accessed remotely
by the migrating thread which is a source of inefficiencies that
can be overlapped by the benefits of the migration [16].

In order to help programmers to understand the perfor-
mance of their codes, on a particular system, various perfor-
mance models have been proposed. In particular the Roofline
Model (RM) offers a nice balance between simplicity and des-
criptiveness based on two important concepts: the operational
intensity (OI) and the number of FLOPS. Nevertheless, its own
simplicity might hide some performance bottlenecks present in
modern architectures. In this work, we use extensions of this
model [17], [18] to study the effects on the performance of
different scenarios in terms of locality and affinity.

The rest of the paper is organized as follows. Next section
presents the Roofline Model, as well as the extensions for mul-
ticore systems, for the dynamic analysis of the performance,
and including latency information. In addition, an introduction
to the use of the hardware counters to extract the information
needed by the RM with low overhead is shown. Section III
introduces a set of case studies based on the SAXPY and
SDOT kernels. Section IV discusses the results obtained in the
case studies. Finally, the main conclusions are summarized in
Section V.
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(a) DyRM. (b) Density colouring.
Fig. 1. Examples of Dynamic Roofline Models for NPB benchmark SP.B.

II. EXTENSIONS TO THE ROOFLINE MODEL

In this section, the Dynamic Roofline Model (DyRM) [17]
and the 3DyRM [18], two extensions to the Roofline Model
that have been used in this paper, are introduced.

The RM [11] is an easy-to-understand model, offering
performance guidelines and information about the actual be-
haviour of a program when it is executed in a particular
system. It offers insight on how to improve the performance
of software and hardware. The RM uses a simple bound
and bottleneck analysis approach, where the influence of the
system bottlenecks are highlighted and quantified. In modern
systems, the main bottleneck is often the connection between
processor and memory. This is the reason why the RM relates
processor performance to off-chip memory traffic. It uses the
term operational intensity, OI, to mean operations per byte
of DRAM traffic (measured in Flops/Byte, FlopsB in the
Figures). Note that it measures traffic between the caches and
memory rather than between the processor and the caches.
Some authors have introduced cache-awareness to provide
a more insightful model [19]. Thus, OI takes into account
the DRAM bandwidth needed by a process on a particular
computer. The RM ties together floating-point performance
(measured in GFLOPS), OI, and memory performance in a
2D graph.

The Dynamic Roofline Model (DyRM) is essentially the
equivalent of splitting the execution of a code in time slices,
getting one RM for each slice, and then combining them in just
one graph. This way, a more detailed view of the performance
during the entire life of the code is obtained, showing its
evolution and behaviour. As an example, Figure 1(a) shows the
DyRM of a NAS application running on a multicore processor.
In this figure, lineal axes are used instead of the logarithmic
axes of the original RM to show more detailed differences in
the behaviour. As can be seen, a colour gradient is being used
to show the program evolution in time. Each point in the model
is coloured according to the elapsed time since the start of the
program (the same colouring schema is used in rest of figures
in this paper).

The DyRM allows the detection of different execution
phases or behaviours in the code. In addition, a two dimen-
sional density estimation of the points in the extended model
can be obtained (Figure 1(b)). Such an estimation allows
to readily find zones in the model where the code spends
more time, which are quite useful to identify performance
bottlenecks. The resulting groups can be highlighted and, by
changing the colour of the points in the DyRM, a better view
of them can be obtained. By using both graphs, the simplicity
of the RM and a detailed view of the program execution are
combined in a compact and simple way.

The OI is used to model the memory performance of a
program running in a specific system. As it was said before,
this metric uses the number of floating point operations per
byte accessed from main memory. OI takes into account the
cache hierarchy, since a better use of cache memories would
mean less use of main memory, and the memory bandwidth
and speed, since its performance would affect GFLOPS. Yet, to
characterise the performance, it may be insufficient, specially
on NUMA systems. The RM sets system upper limits to
performance, but on a NUMA system, distance and connection
to memory cells from different cores may imply variations
in the memory latency. This information is valuable in many
cases. Variations in access time cause different GFLOPS for
each core, even if each core performs the same number of
operations. This way, the same code may perform differently
depending on how different threads are scheduled. In these
situations, OI may keep the same value, hiding the fact
that poor performance is due to the memory subsystem. A
programmer trying to increase the application performance
would not know whether the differences in GFLOPS are due
to memory access or other reasons, like power scaling or the
execution of other processes in some cores. Extending the
DyRM with a third dimension showing the mean latency of
memory accesses for each point in the graph would clarify
the source of the performance problem. We called this model
3DyRM. Some examples of this extension of the RM are
shown along this paper.
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A. Hardware Counter Monitoring

Modern Intel microprocessors use a set of hardware coun-
ters by a tool called Precise Event-Based Sampling (PEBS) to
get on the fly information about a number of events related to
the performance of the code in hand [20]. PEBS is an advanced
sampling feature of the Intel Core-based processors in which
the processor is directly recording samples into a designated
memory region. Each sample contains the state of the processor
at the time certain hardware counter reaches a set goal. A key
advantage of PEBS is that it minimizes the overhead because
the Linux kernel is only involved when the PEBS buffer fills
up, i.e., there is no interruption until a number of samples
are available. A constraint of PEBS is that it works only with
certain events, but generic cache accesses and write operations
are currently supported. Additionally, a minimum latency for
load operations can be selected, so only load events which
serve the data with high latencies are counted and sampled.

In modern Intel processors, starting with the Nehalem
architecture, the PEBS record format includes detailed in-
formation about memory accesses. When sampling memory
operations, the virtual address of the operation data is recorded.
For load operations, the latency in which the data is served is
also recorded (in cycles), as well as information about the
memory level from where the data was actually read.

Intel PEBS captures the entire content of the core registers
in a buffer each time it detects a certain number of hardware
events. These registers include hardware counters, which can
be measuring other events. The data capture tool uses two
PEBS buffers. One of them captures floating point information
each time a certain number of instructions has been executed.
This number can be fixed by the user, determining the sampling
rate. The other one captures the detailed information of a
memory load event, including its latency, after certain number
of memory load events. The user not only can select the
memory sampling rate, but the minimum load latency that an
event must have in order to be counted, allowing the user to
focus only on the loads he is interested in.

The overhead from using PEBS comes from having to
record in a buffer the state of the core each time it is sampled,
with an extra cost for memory operations, due to latency and
data source recording. As such, the overhead is mainly deter-
mined by the sampling rates: the higher the desired resolution,
the larger the overhead. Since both memory events and floating
point information must be sampled, there are two sampling
rates. The 3DyRM is based on floating point performance, so
each point in the model corresponds to a sampled event. As
such, the more often floating point information is sampled,
the more points per second the 3DyRM can be rendered. The
memory latency assigned to that point in the model is given by
the mean latency of memory events captured in the previous
time interval. So, if the memory events are captured in a rate
close to that of the floating point information, each point will
have a close approximation of the latency in that time interval.

To obtain the information needed by the 3DyRM,
the number of floating point operations executed by
each core must be extracted. This means that at
least ten different events must be considered in Intel
Sandy/Ivybridge [21] processors. These events are in
the set of FP COMP OPS EXE:SSE SCALAR DOUBLE

and FP COMP OPS EXE:SSE FP SCALAR SINGLE.
Anyway, if no packed floating point operations are
considered, only two of these events can be taken into
account: FP COMP OPS EXE:SSE SCALAR DOUBLE and
FP COMP OPS EXE:SSE FP SCALAR SINGLE. Additionally,
data traffic between main memory modules and caches have
to be considered for each core. Therefore virtual addresses
that produce cache misses have to be stored by using the
OFFCORE REQUEST: ALL DATA READ event. The sampling
frequency is established through the number of instructions
executed by each core. In this way, information about the
number of instructions, the number of floating point operations
and the number of data read is stored. This information is
enough to define our model.

III. CASE STUDIES

A. System

The experiments presented in this paper were carried out on
a system with two Intel Xeon E5-2650L processors – 8 cores
per processor, 16 total, 32 with Hyper-Threading – and 64 GB
of RAM. Processor cores are named by the OS with numbers
from 0 to 32. Each processor has a 20 MB shared L3 cache.
The main memory is divided into two cells, each processor
has 32 GB of memory closer to itself (its local memory) and
32 GB farther away, and closer to the other (remote memory).
This cells are called cell0, which is made of the even number
named cores and 32 GB of RAM, and cell1, which is made
of the odd number named cores and the other 32 GB of RAM.
All executions were carried out with 16 threads, not using the
Hyper-Threading capability. The system runs a Linux Ubuntu
12.04 with kernel 3.10.1.

B. Routines

In our experiments, we have used two single precision
Level 1 BLAS routines, SDOT and SAXPY.

• The SDOT operation computes the dot product of two
real vectors in single precision:
SDOT← x> × y =

∑
x(i) ∗ y(i)

• The SAXPY operation computes a constant alpha
times a vector x plus a vector y. The result overwrites
the initial values of vector y:
SAXPY ← y = αx+ y

Both operations work with strided arrays. Two values,
named incx and incy, can be used to specify the increment
between two consecutive elements of vector x and y (stride),
respectively. Different strides are used to change the behaviour
of the codes in terms of memory accesses.

C. Implementation

To be able to place segments of each vector in different
memory cells, the libnuma library [22] has been used.
Each vector has been divided into 16 segments, one for
each execution thread, so each one can be allocated to a
specific memory cell using numa_alloc_onnode(). Fur-
thermore, each thread can be assigned to a specific core
using sched_setaffinity(). This way, different config-
urations have been tested:
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• Ideal: Each thread operates with the vector segments
it needs in its local memory.

• Crossed: Each thread operates with the vector seg-
ments it needs in its remote memory.

• All in 0: All the segments are placed in cell0.

• All in 1: All the segments are placed in cell1.

To compare these configurations with more realistic sce-
narios, two other versions have been implemented. These
versions use the standard malloc() routine for memory
allocation, letting the OS choose the thread placement. Note
that migration is allowed in these two scenarios. They are:

• Serial Initialisation (SI): One thread initialises the
memory and sets the initial values to the vectors, then
each parallel thread executes its own code.

• Parallel Initialisation (PI): Each thread initialises the
memory and sets the initial values to each vector
segment.

IV. RESULTS

Results obtained for SAXPY and SDOT are shown in
Table I and Table II, respectively. Results for different vector
strides were considered, using the same stride for both vector
x and y (that is incx = incy). All executions were made for
vectors of 108 elements, that is, 4∗108 bytes, far larger than the
size of L3 cache, and repeated 100 times. The Time columns
show the execution time, in seconds, of the faster (min col-
umn) and the slower (max column) threads of the SAXPY or
SDOT computations executed with 16 threads. This measured
time is the mean of 3 executions, and initialisation time is not
included. The Latency columns show the measured mean
latency of memory accesses of more than 400 cycles, for
cores in cell0 and cell1. Column RQ_DR/INST shows
the number of requests of data memory cache lines that were
made for each 100 instructions retired. Codes were compiled
with gcc 4.6.3 and no optimisations (-O0).

A. Effect of the stride

In both codes, as the stride increases, fewer operations are
performed. For incx = 2, for example, only half of the vector
members take part in the operation. As such, when looking at
the IDEAL times, both Table I and Table II show a halving
of the execution time between incx = 1 and incx = 2.
Nevertheless, from incx = 2 to incx = 32 in Table I, and
from incx = 4 to incx = 32 in Table II, times remain the
same. This is due to the management costs of the memory
hierarchy. In the Sandy Bridge architecture the cache line size
is of 64 bytes, which means it can hold 16 floats. Furthermore,
the processor always reads two cache lines at once from main
memory, meaning it can bring 32 floats at the same time from
the cache. This means that from incx = 2 to incx = 32
the system will transfer from main memory to the cache the
same amount of data, essentially the whole vectors x and y.
For example, with incx = 32 only one float is needed per
each two lines for each vector (in both SAXPY and SDOT),
but the system will still move the full four cache lines, 256
bytes, although only 8 bytes are being used. So from incx = 4
to incx = 32 the codes are memory bound, their execution

TABLE I. RESULTS FOR SAXPY.

Time(seconds) Latency(cycles)

inc code min max cell0 cell1 RQ DR/INST

inc 1

IDEAL 84.8 88.0 540 542 0.3
Crossed 85.8 89.2 548 548 0.3

ALL-IN-0 88.2 97.6 741 1080 0.31
ALL-IN-1 87.8 97.6 1090 749 0.31

PI 80.1 81.5 529 529 0.42
SI 81.8 88.3 566 545 0.32

inc 2

IDEAL 46.0 47.6 713 714 0.61
Crossed 58.0 60.1 1006 1006 0.63

ALL-IN-0 67.9 102.6 1204 1616 0.62
ALL-IN-1 67.9 100.5 1598 1219 0.61

PI 44.9 47.1 752 752 0.61
SI 49.7 55.4 784 807 0.65

inc 4

IDEAL 44.2 45.1 944 938 1.23
Crossed 58.2 59.0 1153 1169 1.24

ALL-IN-0 67.9 100.3 1248 1254 1.23
ALL-IN-1 67.8 100.6 1208 1292 1.23

PI 43.5 44.9 946 956 1.23
SI 50.1 55.0 1027 940 1.23

inc 8

IDEAL 44.23 44.9 965 983 2.48
Crossed 58.1 58.6 1184 1208 2.49

ALL-IN-0 67.7 100.0 1281 1623 2.49
ALL-IN-1 67.7 100.0 1621 1259 2.49

PI 44.3 44.7 967 970 2.49
SI 47.7 50.6 975 993 2.49

inc 16

IDEAL 44.4 44.7 962 956 4.87
Crossed 58.0 58.4 1131 1156 4.84

ALL-IN-0 67.8 99.9 1237 1532 4.86
ALL-IN-1 64.1 99.9 1529 1270 4.89

PI 44.3 44.8 959 970 4.82
SI 48.3 51.9 1007 973 4.89

inc 32

IDEAL 44.1 44.6 978 987 8.84
Crossed 49.6 50.1 975 972 9.02

ALL-IN-0 69.0 95.3 1327 1541 9.02
ALL-IN-1 69.0 95.6 1541 1363 9.03

PI 44.0 44.6 975 984 8.85
SI 46.6 48.2 952 993 8.95

inc 64

IDEAL 34.6 35.1 1140 1142 10.89
Crossed 37.1 37.5 1150 1157 9.85

ALL-IN-0 54.3 74.8 1596 1953 11.32
ALL-IN-1 53.7 75.0 1905 1636 11.14

PI 33.8 35.6 1105 1129 10.83
SI 34.3 35.7 1214 1169 11.93

inc 128

IDEAL 10.8 10.9 866 851 5.21
Crossed 11.2 11.4 826 832 5.22

ALL-IN-0 17.3 23.2 1214 1447 5.37
ALL-IN-1 17.3 23.4 1371 1205 5.39

PI 10.3 11.3 842 861 5.19
SI 10.8 11.1 801 929 6.07
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TABLE II. RESULTS FOR SDOT.

Time(seconds) Latency(cycles)

inc code min max cell0 cell1 RQ DR/INST

inc 1

IDEAL 67.2 68.9 559 554 0.38
Crossed 68.1 70.0 556 552 0.38

ALL-IN-0 67.5 69.7 570 572 0.56
ALL-IN-1 67.7 70.7 567 564 0.38

PI 67.2 69.6 537 539 0.38
SI 68.5 72.6 572 557 0.41

inc 2

IDEAL 34.6 35.7 585 577 0.74
Crossed 38.0 38.9 714 714 0.75

ALL-IN-0 40.2 61.3 782 1178 0.74
ALL-IN-1 40.2 61.8 1172 786 0.74

PI 34.4 35.1 561 563 0.74
SI 36.6 41.4 630 614 0.77

inc 4

IDEAL 26.4 26.8 711 718 1.48
Crossed 36.8 37.2 889 893 1.48

ALL-IN-0 39.6 61.5 924 1255 1.48
ALL-IN-1 39.5 61.9 1237 925 1.48

PI 26.2 27.1 713 715 1.48
SI 30.5 34.9 728 740 1.54

inc 8

IDEAL 26.4 26.6 760 761 3.02
Crossed 36.8 37.4 936 938 3.01

ALL-IN-0 39.5 61.5 968 1306 3
ALL-IN-1 39.5 61.4 1274 965 3

PI 26.3 26.9 757 763 2.97
SI 29.9 33.7 810 831 3.04

inc 16

IDEAL 26.4 26.5 791 795 5.72
Crossed 36.8 37.1 1010 1001 5.72

ALL-IN-0 39.5 61.4 1027 1346 5.66
ALL-IN-1 39.5 61.5 1333 1021 5.66

PI 26.3 26.5 795 788 5.97
SI 29.7 33.5 852 863 6.13

inc 32

IDEAL 26.3 26.5 720 729 10.92
Crossed 36.8 37.0 962 969 10.99

ALL-IN-0 39.9 61.2 966 1333 10.96
ALL-IN-1 39.7 61.4 1338 962 10.97

PI 26.1 27.1 737 737 10.92
SI 31.3 37.8 807 806 10.91

inc 64

IDEAL 25.4 26.1 1048 1028 12.25
Crossed 28.5 29.0 1138 1161 11.23

ALL-IN-0 38.8 56.00 1478 1966 12.92
ALL-IN-1 38.8 56.1 1948 1484 12.84

PI 25.1 26.3 1078 1031 12.2
SI 27.8 31.9 1169 1116 13.28

inc 128

IDEAL 6.6 6.7 653 648 6.13
Crossed 6.8 6.9 680 687 6.09

ALL-IN-0 10.3 14.3 897 1129 6.25
ALL-IN-1 10.2 14.3 1158 879 6.22

PI 6.3 6.6 663 649 6.14
SI 6.5 14.2 854 998 6.74

time is limited by the memory access, and they do not gain
from executing fewer operations. In SAXPY this happens at
incx = 2 due to the store operations.

Column RQ_DR/INST in Tables I and II shows how
as stride doubles from 1 to 32 the RQ DR/INST ratio also
doubles, since the same number of cache lines are requested,
but half the instructions are executed. Memory latency also
increases with the stride. This is due to the fact that, while
only latencies larger than 400 cycles are measured, they can
be either from main memory or from the cache. Cache loads
are usually faster, and with small strides they move the mean
latency closer to 400. With larger strides, memory loads make a
larger share of the accesses detected, and the latency increases.
This effect shows how latency can be used as a proxy of the
cache hierarchy behaviour.

In Figure 2, the evolution of the GFLOPS and the OI can
be seen for the SAXPY IDEAL configuration as the stride
changes. It is clear that OI decreases as fewer operations
are made while accessing the same memory, and GFLOPS
decreases as fewer operations are performed in the same time.
Figure 2(h) shows that, with incx = 128, this behaviour is
broken, the entire vector no longer needs to be accessed, and
then the OI and GFLOPS increase. Results for SDOT are
similar and are not shown in this paper.

B. Effect of the thread placement

In the IDEAL configuration each thread is using the
memory module closer to itself, which should be the best
case for memory access and should present lower latencies.
Tables I and II show that this is the case. In the CROSSED
configuration each thread is using the memory opposite to
itself, and results show higher memory latencies. As expected,
the ALL-IN-0 and ALL-IN-1 configurations show the worst re-
sults. This is because all threads access the same memory cell,
which produces bus conflicts and saturation. In the CROSSED
configuration data has to travel more to reach its destination,
but read conflicts are similar to the IDEAL configuration. In the
ALL-IN configurations, the cell where the data is stored shows
better behaviour than its opposite, but the overall performance
is diminished. In fact, for ALL-IN configurations, threads in
the same cell as the data finish their execution in the order of
the minimum time, while threads in the opposite cell take a
time in the order of the maximum. This states the importance
of balancing the memory use.

In Figure 3 the effects of the memory imbalance are shown
for SAXPY ALL-IN-1. Figures 3(a) and 3(b) show two views
of the 3DyRM with data taken from all the cores (each point
corresponds to one measurement in one core), cell0 in black
and cell1 in green. In Figure 3(b) it is clear that the access
to data from cell0 results in a larger latency. This figure
shows a problem with the floating point operations (FP OPs)
hardware monitoring in the Intel architectures. In the Intel
Sandy Bridge architecture (and following Ivy Bridge), floating
point operations counters count executed operations, not retired
operations [23]. As a consequence, if a FP OP is issued, but
its operands are not in the cache or registers, it is counted as it
was executed, and will be reissued until its operands appear in
the cache. This means in cases like these, where main memory
is accessed so aggressively, floating point operations can be
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(a) INCX=1. (b) INCX=2 (c) INCX=4.

(d) INCX=8 (e) INCX=16. (f) INCX=32.

(g) INCX=64. (h) INCX=128.

Fig. 2. DyRM for SAXPY IDEAL, different strides.
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counted in excess, and hardware counters may not be accurate.
In the case shown in Figure 3, the higher memory latency of
cell0 means its floating point operations are reissued more
times than the ones in cell1, such producing an overcount.
This makes the OI and GFLOPS counts to increase in relation
with cell1 (see Figure 3(a)).

In Figures 3(c) and 3(d) the DyRM of two different cores,
one in cell0 (Figure 3(c)) and other in cell1 (Figure 3(d)),
are shown. Since they are executing the same operation,
their OI should be the same, but Figure 3(c) is displaced
to the right due to the above mentioned overcount. When
threads in cell1 finish their execution, threads in cell0
are still running. Since these threads no longer compete for the
memory access with the ones in the opposite cell, their memory
latency decreases and can achieve a better performance. This
also means than there is a lower overcount in floating point
operations. Figure 3(c) shows this, with two different execution
phases, the latter with larger GFLOPS and lower OI (see
Figure 1 for information on the colour gradient).

In Figure 4 a comparison between the IDEAL and the
CROSSED configurations of SDOT with incx = 8 is shown.
As in the former case, the flop overcount is clearly affecting the
measurement. Threads in SDOT CROSSED with inc = 8 take
about 37 seconds to compute, and, in SDOT IDEAL, about
26 (see Table II). Also, since they compute the same code,
their OI should be almost the same. Yet, Figure 4(a), for the
IDEAL case, shows lower GFLOPS and OI than Figure 4(b),
for the CROSSED case, when the opposite effect should be
seen. This is due to the longer latency of memory accesses of
the CROSSED configuration, around 936 cycles, compared to
the IDEAL one, around 760 (see Table II). This difference
means floating point operations in the CROSSED case are
reissued more times until their data arrives to the cache, and
thus the overcount is larger. Figure 4(d) shows the higher
latency detected for CROSSED compared to Figure 4(c) for
IDEAL.

These two last cases show how the hardware counters on
Intel Sandy Bridge are not precise enough for floating point
operations counting in some cases, and how, by measuring
memory latency, these cases may be identified.

C. Effect of the OS behaviour

Configurations PI and SI correspond to more typical usage
cases. Tables I and II show that PI times and latencies are
very similar to the ones of the IDEAL configuration. This is
because, when each thread in PI initialises its vectors, data are
stored in their cell. If there are no thread migrations during
the execution, this situation is almost identical to the IDEAL
case. In Figure 5 a comparison between the IDEAL and PI
configurations of SDOT is shown. Only the behaviour of two
cores (equivalent to the behaviour of two threads, since there
are no migrations in this case) is shown, since all cores present
broadly the same behaviour.

The SI configuration is a more realistic one. A single thread
initialising data in a program is common. Plus, same data
can be used by different threads during the execution of a
program, which means they access different memory cells at
different times. Tables I and II show that this configuration

falls between IDEAL and CROSSED in terms of performance,
but does not behave as badly as ALL-IN. This indicates that
the system balances data storage between the two memory
cells, and may explain the behaviour observed in Figure 6.
In this figure, the execution of SDOT SI with stride 8 is
shown. Figure 6(a) shows an example in which the initialising
thread was executed on core 4, and did not migrate before the
proper execution of SDOT, sightly after TIME = 1 ∗ 100ns.
Figure 6(b) shows how a compute thread starts its execution
at that time, and ends its execution before the end of the
program. Figure 6(c) shows the added instruction count for
the entire program during its execution, including contributions
for all threads. Four distinct slopes can be observed. The first
corresponds to the initialisation stage, and the other three with
the computation of SDOT. The third slope takes most of the
computation, and the fourth one corresponds to the situation in
which different threads finish their execution at different times,
as such fewer instructions are executed. The second slope
indicates a warm-up period during the execution of SDOT.
Results are similar for SAXPY.

Figures 7(a) and 7(b) show the behaviour of two cores,
one in each cell (results are similar for the other cores in
the same cell as shown in Figure 7(c)). A warm-up phase
is detected for each cell (shown in blue). Latency information
(Figure 7(d)) indicates that data are in cell0 (since cores in
the other cell take longer to access memory) as expected when
the initialising thread belongs to that cell. Nevertheless, data
seems to be balanced between memories, which may be done
by the OS during that phase. In any case, results are not as
good as in the best case scenario.

V. CONCLUSION

Modern multicore systems present complex memory hierar-
chies, and make data locality and thread affinity to be important
issues for obtaining good performance. In this work, extensions
of the Roofline Model are used to characterise graphically the
behaviour of the executions of two simple kernels in terms of
data locality and thread affinity. To implement these models,
advantage of the PEBS hardware counters of Intel processors
was taken, allowing to gather useful information with low
overhead.

Analysis of the SDOT and SAXPY routines were per-
formed with different strides to modify their memory accesses
locality, and also considering different strategies to allocate
vectors in memory modules and threads to modify their affinity
properties. Thread migration scenarios were also considered in
the experimental study.

The results of the experiments show that the extensions of
the Roofline Model, with latency and dynamic information,
are useful to understand the behaviour of the execution of
parallel codes in multicore systems, including the effects
of data accesses locality and thread affinity. Results show
that imprecisions in the Intel Sandy Bridge HC may distort
measurements, and using the 3DyRM can be identified.
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(a) GFLOPS/FlopB. (b) GFLOPS/Latency (cycles).

(c) Core 2. (d) Core 3.

Fig. 3. DyRM and 3DyRM of SAXPY ALL-IN-1 with incx=8 in two cores. Effect of flops overcount. Cell 0 in black, Cell 1 in green.
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(a) SDOT IDEAL. (b) SDOT CROSSED.

(c) SDOT IDEAL, latency. (d) SDOT CROSSED, latency.

Fig. 4. DyRM and 3DyRM of SDOT with incx=8. Effect of flops overcount. Cell 0 in black, Cell 1 in green.
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(a) SDOT IDEAL, core 2. (b) SDOT PI, core 2.

Fig. 5. Good thread placement, SDOT IDEAL and SDOT PI.

(a) Initialising thread, Allocated Core during the
execution.

(b) Compute thread 1, Allocated Core during the
execution.

(c) Added instruction count for all threads, Number
of instructions during the execution.

Fig. 6. Migrations in the initialisation thread in SAXPY SI.
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(a) SDOT SI core 1 (cell1). Initial phase in blue. (b) SDOT SI core 2 (cell0). Initial phase in blue.

(c) SDOT SI. Cell 0 in black, Cell 1 in green. (d) SDOT SI. Cell 0 in black, Cell 1 in green.

Fig. 7. Different behaviours for the two processors, initialisation done by core 4. SDOT SI.
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