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ABSTRACT 

BACKGROUND: Crude glycerol, a by-product of the biodiesel production industry, was used to produce 

intracellular storage polymers for waste valorisation. The enrichment of a mixed microbial culture 

(MMC) in microorganisms with the ability to accumulate intracellular polymers was performed in a 

sequencing batch reactor (SBR) submitted to feast/famine conditions. The effect of different carbon 

sources in the accumulation of biopolymers was investigated. 

RESULTS: A mixed microbial culture (MMC) enriched in yeast and bacteria was obtained using crude 

glycerol as feedstock. Accumulation experiments performed with crude glycerol, synthetic glycerol, and 

synthetic methanol, showed the feasibility of the MMC to produce different biopolymers. 

Triacylglycerides (TAGs) accumulation up to 46 wt.% in yeast cells was promoted by the presence of 

residual lipids in crude glycerol. However, bacteria from Betaproteobacteria class used glycerol mainly 

to accumulate 28 wt.% of polyglucose (PG) and methanol as carbon source for cell growth. 

CONCLUSIONS: As waste valorisation, a possible advantage which comes out of the present study is the 

use of open, non-sterile and non-defined systems to produce TAGs. These TAGs can potentially re-enter 

the biodiesel production process helping on the maximisation of the feedstock used in this process. 
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INTRODUCTION 

Biodiesel is a renewable fuel that emerged during the past decades as a potential 

alternative to petroleum. In Europe, its production capacity during 2014 was 

approximately 23 million tonnes (European Biodiesel Board, 2014). Biodiesel is 

obtained by transesterification of fats and oils, after the addition of an alcohol 

(methanol or ethanol) and a catalyst (like sodium hydroxide), which generates crude 

glycerol as a primary by-product. 
1
 On weight basis, 1 kg of crude glycerol is obtained 

per 9 kg of biodiesel produced. This crude glycerol contains impurities such as water, 

methanol, inorganic salts and free fatty acids. 
2
 Glycerol is widely used in the 

pharmaceutical, cosmetic and food industry. For these purposes, glycerol with high 

purity is required, which implies the application of several purification steps, 
3
 

increasing its production costs. Therefore, the development of an economical, efficient 

and feasible utilisation of the crude glycerol is needed to increase the profitability of 

the biofuel production process. 

The conversion of crude glycerol into added-value products represents an interesting 

and innovative option to improve its usefulness. 
4-6

 Besides appearing as a cheap 

carbon source, its high reduction degree offers the opportunity to obtain reduced 

chemicals at higher yields than those achieved with sugars. 
7
 In particular, some 

microorganisms can use crude glycerol as carbon source to produce cytoplasmic 

inclusions such as polyhydroxyalkanoates (PHAs) and triacylglycerides (TAGs). 
8
 PHAs, 

like polyhydroxybutyrate (PHB) and polyhydroxyvalerate (PHV), are polyesters also 

known as bioplastics that may become an alternative to conventional plastics due to 

their properties, with the advantage of being biobased and biodegradable. 
9
 TAGs are 

Page 34 of 65

http://mc.manuscriptcentral.com/jctb-wiley

Journal of Chemical Technology & Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3 

 

accumulated as intracellular lipid granules, and they can be extracted and used as 

biodiesel feedstock, re-entering the production process and maximising the use of raw 

materials. 
10

 

The intracellular lipid production is carried out by oleaginous microorganisms, which 

are defined as microorganisms with a microbial lipid excess of 20 wt.%. Most of these 

processes are based on the use of pure cultures and comprise microalgae, fungi, yeast 

and bacteria. Microalgae grow very fast, and they are very rich in oil, accumulating a 

TAG content up to 70 wt.%. 
11

 Prokaryotic microorganisms also accumulate TAGs, 
12

 

but their average lipid content is lower (approximately 20-40 wt.%). Some yeast strains 

are also considered as oleaginous microorganisms, 
13

 as they can accumulate up to 70 

wt.%. 

Technologies based on the use of mixed microbial cultures (MMC) have appeared as 

an alternative to pure cultures. These processes are carried out as open, non-sterile 

cultures, which allow the use of wastewater as feedstock. 
14, 15

 In general, biopolymer 

production with MMC is based on a three-stage process. The first unit is an acidifying 

reactor to produce volatile fatty acids (VFAs) from the raw wastewater. These VFAs are 

used as a substrate in a second unit to select accumulating microorganisms from a 

MMC by imposing a feast-famine regime. This strategy consists of alternating periods 

with presence (feast) and absence (famine) of carbon source in the liquid medium. 

Finally, the maximum accumulation capacity of the enriched MMC is achieved in a 

third unit where nutrients (mainly nitrogen) are supplied in limiting concentrations and 

the organic carbon substrate is present in excess to promote the storage of polymer 

and prevent the biomass growth. The main advantage of using glycerol to produce 
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biopolymers is that the acidification unit is not needed, with the consequent saving of 

operational costs. Most of the studies using crude glycerol as carbon source reported 

PHA production, mainly as the homopolymer PHB. Dobroth et al. 
16

 obtained a low 

polymer yield (0.10 g PHB/g methanol) because they enriched a MMC in 

methylotrophic bacteria and only the methanol fraction of crude glycerol was used to 

accumulate PHB. However, Moita et al. 
17

 observed a higher PHB content of 47 wt.% 

with an enriched microbial community only consuming glycerol as carbon source to 

produce biopolymers. Moralejo-Gárate et al. 
18

 also produced PHB up to 80 wt.%, but 

they used a MMC that was previously enriched using synthetic glycerol as substrate. 

In the present study, the features of the biopolymer production carried out by a mixed 

microbial culture using crude glycerol (containing glycerol, methanol and residual 

lipids) as substrate were assessed. Firstly, the enrichment process of a mixed microbial 

culture with biopolymer-accumulating capacity was researched. Then, the maximum 

storage capacity of the enriched MMC and differences in the obtained biopolymers 

were evaluated in batch experiments performed using different carbon sources. 

 

MATERIALS AND METHODS 

Sequencing batch reactor for biomass enrichment 

A double jacket tubular glass reactor with a working volume of 2 L was used to select a 

MMC with biopolymer production capacity. The system was operated as a sequencing 

batch reactor (SBR) under aerobic dynamic feeding (ADF) strategy to establish the 

alternate feast-famine conditions. The SBR operated in 24-hour cycles according to the 

following scheme (in minutes): feeding (0-6), reaction (7-1,429), effluent withdrawal 
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(1,430-1,435) and idle (1,436-1,440) periods. At the end of each cycle, half of the total 

volume of the reactor was discharged and the same volume of feeding of the next 

cycle was supplied, which resulted in hydraulic and solid retention times (HRT and SRT, 

respectively) of 48 hours. The complete mixture of the reactor medium was achieved 

by air flow (6 L/min), which was introduced through a ceramic air diffuser located at 

the bottom of the reactor. The temperature was controlled at 30 °C using a water 

jacket connected to a thermostatic bath. The pH was maintained at 7.0 ± 0.5 with a pH 

controller (Crison, Germany), adding either NaOH (0.5 M) or HCl (0.5 M). The dissolved 

oxygen (DO) concentration was measured with an oxygen pocket meter provided with 

a membrane sensor (Hach-Lange, USA). 

Activated sludge collected from the municipal wastewater treatment plant of Calo-

Milladoiro (Spain) was used as inoculum. Crude glycerol was provided by a biodiesel 

production facility located in Begonte, Lugo (Spain) (Table 1). Glycerol, methanol and 

lipids content in this waste stream amounted to 66%, 20% and 11% of the total organic 

carbon (TOC). The alkaline pH and salinity of the crude glycerol corresponded to the 

presence of NaOH, added as a catalyser for the reaction during biodiesel production. 

A volume of 1,000 mL of feeding was added at the beginning of each operational cycle, 

containing 100 mL of the carbon solution, 100 mL of nutrient solution and 800 mL of 

dilution water. The carbon solution contained 23 mL/L of crude glycerol. The nutrient 

solution was: NH4Cl, 6 g/L; KH2PO4, 7 g/L; MgSO4 7 H2O, 2 g/L; KCl 1 g/L; and 20 mL/L of 

trace element solution. 
19

 Moreover, 1.5 mL/L of a 33 g/L allylthiourea solution (ATU) 

were added to the nutrient solution to prevent nitrification activity.  
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Batch assays to determine the maximum storage capacity 

The maximum biopolymer storage capacity of the enriched MMC was evaluated in 

batch experiments using biomass samples collected at the end of the operational 

cycles of the enrichment SBR (Table 2). Batch experiments were carried out under the 

same conditions as those applied to the enrichment reactor. However, only crude 

glycerol was dosed as carbon source, and no nitrogen source was supplied to force the 

conversion of the substrate into biopolymer and to prevent the biomass growth. 

Different carbon sources were tested to evaluate their influence on the biopolymer 

production: crude glycerol (A1), synthetic glycerol (A2), a mixture of synthetic glycerol 

and methanol (75:25 ratio as Cmmol) similar to the composition of the crude glycerol 

(A3) and a mixture of synthetic glycerol and methanol (25:75 ratio as Cmmol) with the 

opposite ratio to that from the experiment A3 (A4). In all cases, approximately 500 

Cmmol of substrate were added in one pulse at the beginning of the experiment. 

 

Analytical methods 

Liquid phase 

Liquid samples were filtered through a mixed cellulose and ester filter of 0.45 µm of 

pore size (Advantec, Japan) for the quantification of glycerol, methanol, total organic 

carbon (TOC) and ammonium. Glycerol concentration was determined by high-

performance liquid chromatography (HPLC) with HP 1100 (Hewlett Packard, USA) using 

an Aminex HPX-87H-87H 300 x 7.8 mm column (temperature fixed at 35 °C) coupled to 

a refractive index (RI) detector and H2SO4 (5 mM) as eluent. Methanol concentration 

was measured by gas chromatography (model 6850-FID, Agilent, USA) using a DB-WAX 
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30 m x 0.25 mm x 0.25 µm column coupled to a flame ionisation detector (FID) and 

nitrogen as carrier gas. TOC concentration was determined by catalytic combustion 

(model TOC-5000, Shimadzu, Japan) with an automatic injector (model ASI-5000-S, 

Shimadzu, Japan). Ammonium and suspended solids, total (TSS) and volatile (VSS), 

concentrations were analysed according to Standard Methods. 
20

 

Solid phase 

For the analysis of biopolymer content, fresh biomass samples were collected, and 

formaldehyde was added to stop the microbial activity. Then, samples were 

centrifuged, frozen and freeze-dried to obtain a solid phase. For TAGs and PHAs 

identification and quantification, the method proposed by Smolders et al. 
21

 was 

applied. Commercial standards of TAGs (palmitic acid (PO500), oleic acid (O1008) and 

linoleic acid (L1376)) and PHA (containing 88% of hydroxybutirate (HB) and 12% of 

hydroxyvalerate (HV)) were used (Sigma-Aldrich, USA). Freeze-dried biomass samples 

of 5 - 15 mg and standards were weighed using an analytical balance (Mettler Toledo, 

USA) and transferred into borosilicate glass tubes. Volumes of 1.5 mL of 

dichloroethane, 1.5 mL of a solution of propanol (with 25% vol/vol of commercial 

hydrochloric acid) and 50 μL of a solution of benzoic acid (1 mg of benzoic acid in 100 

mL of propanol) as internal standard were added. Tubes were heated for 4 hours at 

100 °C and then cooled at room temperature. A volume of 3 mL of water was added to 

each sample and two phases (aqueous and organic) were formed. One mL of the 

organic phase was filtered over water-free sodium sulphate into vials. The propylesters 

were analysed by gas chromatography (Agilent, USA) equipped with a FID, on an HP 

Innowax column. For the extraction of polyglucose (PG), 5 – 15 mg of freeze-dried 
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samples was weighed using an analytical balance (Mettler Toledo, USA) and 

transferred into borosilicate glass tubes. A volume of 4 mL of HCl 0.6 M was added to 

each tube, and they were heated at 100 °C for 3 hours. Glucose was measured by the 

HPLC previously described above. 

 

Calculations 

Lipid concentration (Cmmol/L) in the liquid samples was estimated by the difference 

between the TOC concentration and the carbon corresponding to the addition of 

glycerol plus methanol concentrations in the sample. The biopolymer content of the 

biomass was calculated as a percentage of the measured TSS on mass basis according 

to equation [1]. The active biomass (X) was obtained by subtracting the quantity of the 

stored compounds from the VSS, following equation [2]. The maximum specific 

glycerol and methanol consumption rates (-qgly, -qMeOH) were estimated from the 

maximum slopes of the curves describing the evolution of the concentrations of these 

compounds, divided by the active biomass concentration (Cmmol/(CmmolX·h)). The 

same procedure was applied to calculate the biopolymer (TAG, PHB, PHV and PG) 

specific production rates (qTAG, qPHB, qPHV, qPG). The yields (Cmmol/Cmmol) for TAGs 

(YTAG/TOC), PHB (YPHB/gly), PHV (YPHV/gly), PG (YPG/gly), and active biomass (YX/S) were 

obtained by dividing the specific production rate of each biopolymer by the 

consumption rate of the substrate. 

���������		�%
 =
�	��������	

�	���
· 100 [1] 

CmmolX = CmmolVSS – (CmmolTAG + CmmolPHB + CmmolPHV + CmmolPG) [2] 
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The elemental composition of the active biomass was assumed to be CH1.8O0.5N0.2. 

 

Microbiology 

The identification of active microbial populations was performed by applying the 

fluorescence in situ hybridization (FISH) technique. Fresh biomass samples were taken 

and the procedure described by Amann et al. 
22

 was followed. Bacterial cells hybridised 

with the following probes: EUB338I, EUB338II, EUB338III, BET42a and EUK516 

(Supplementary material, Table S.1). All probes were 5’ labelled by fluorochromes FITC 

(Fluorescein-5-isocyanate) or Cy3 (Carbocyanine 3). Details on oligonucleotide probes 

are available at probeBase. 
23

 DAPI (4, 6-diamidino-2-phenylindole) was used as 

universal dye for the detection of all DNA in the samples. Fluorescence signals were 

captured using an acquisition system (Coolsnap, Roper Scientific Photometrics) 

coupled to an epifluorescence microscope (Axioskop 2 Plus, Zeiss, Germany). 

Moreover, fresh samples were taken from the enrichment SBR to verify the 

biopolymer accumulation by lipid staining. Sudan IV solution was applied to fresh 

samples for 10 min and then, after the wash-out with distilled water to eliminate the 

excess of dye, safranin for 15 minutes. After drying, microorganisms were observed 

with a binocular vision microscope Axioskop 2 Plus (Zeiss, Germany). 

 

RESULTS AND DISCUSSION 

Enrichment of a mixed microbial culture with crude glycerol 

The enrichment SBR was operated for 500 days using crude glycerol as feeding. The DO 

concentration was measured throughout the enrichment operational cycles to 
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evaluate the selection of accumulating microorganisms. In the present research work, 

the end of the feast phase was considered when both glycerol and methanol were 

depleted, and its length decreased with the gradual enrichment of the system. During 

the first operational cycles, no significant changes in the DO profile were observed. 

However, in few weeks the feast-famine regime appeared accompanied by the 

substrate consumption. After 100 days of operation, the feast lasted 6 hours which 

corresponded to a feast/famine ratio of 0.25. According to Dionisi et al. 
24

, values of 

this ratio of approximately 0.40-0.50 are associated to systems where biomass growth 

occurs, whereas values lower than 0.20 indicate the presence of cultures capable of 

biopolymer storage. 

The progress of the MMC enrichment was also identified by changes in biomass and 

ammonium concentrations at the end of the SBR cycles (Figure 1). At the beginning of 

the operation, the biomass concentration was 0.3 g VSS/L. Then, this value increased 

and remained at approximately 0.7 g VSS/L from day 100 of operation onwards. In a 

similar way, ammonium consumption progressively increased, and its concentration 

decreased from 100 mg NH4
+
-N/L, during the first operational days, to 50 mg NH4

+
-N/L, 

from day 100 onwards. This gradual decrease correlated with the increase of biomass 

concentration in the way that fitted with the theoretical nitrogen consumption for 

biomass growth. The stabilization of the value of the feast/famine ratio and the 

ammonium and biomass concentrations at the end of the enrichment cycles indicated 

that the MMC was enriched after 100 days of operation. The enrichment process was 

significantly longer than in previous studies using synthetic glycerol as substrate, which 
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took 40 days. 
18

 In the present study, the complex composition of the crude glycerol 

could slow down the enrichment of the microbial community. 

Microbial analyses were performed to the enriched biomass on day 229 of operation. 

Two main microbial populations were identified: Eukarya and Bacteria (from class 

Betaproteobacteria). Large spherical cells corresponded to yeasts (Eukarya) (Figure 

2A), whereas small cocci-shape microorganisms belonged to Betaproteobacteria 

(Figure 2B). Sudan IV staining confirmed the presence of biopolymers accumulated 

inside the yeasts as intracellular inclusions, which are presumably the TAGs. In some 

cases, they appeared as single granules and, in others, as several granules in the same 

cell (Supplementary material, Figure S.1). 

 

Characterisation of an enrichment cycle 

The performance of the enriched MMC was followed by measuring single operational 

cycles, which are represented by that of day 246 (Figure 3). Crude glycerol containing 

glycerol, methanol and lipids, which amounted to approximately 30 Cmmol/L in total, 

was added as substrate at the beginning of the cycle. After crude glycerol addition, the 

DO concentration rapidly decreased during the feast period. During this period, its 

profile was characterised by the existence of two plateaus (Figure 3A). The first one 

lasted approximately 2 hours and corresponded to the oxygen consumption due to 

lipids and glycerol uptake. Then, the second plateau was coincident with the methanol 

depletion, which finished after 6 hours. The estimated glycerol specific uptake rate was 

0.26 Cmolgly/(CmolX·h), four-fold the methanol specific uptake rate (0.06 

CmolMeOH/(CmolX·h)). Lipid uptake rate was not calculated because lipids concentration 
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was fully depleted immediately after substrate addition, presumably due to an initial 

adsorption phenomenon on the biomass surface. The lipids and glycerol consumption 

reverted in the accumulation of three different types of biopolymers during the first 

period of the feast: TAG, PHV and PG. The maximum accumulation percentages, 

reached in terms of cell dry weight, were of 25.5, 6.7 and 7.9 wt.% for TAG, PHV and 

PG, respectively (Figure 3B). The compositions of lipids present in the crude glycerol 

and the TAGs accumulated as intracellular biopolymers were very similar (20% palmitic 

acid, 30% oleic acid and 50% linoleic acid, wt.%). These results, combined with carbon 

balance calculations, indicated that the lipids from the crude glycerol were uptaken 

and intracellularly accumulated as TAGs. Glycerol was used for biomass growth, which 

correlated with the decrease of ammonium concentration during this period, but it 

was also accumulated as small amounts of PHV and PG. After glycerol and lipids were 

consumed, both methanol and biopolymer consumption started. At the same time the 

biomass concentration increased, associated to growth on methanol and accumulated 

biopolymers.  

Marang et al. 
25

 observed a similar two-plateau DO profile using a synthetic mixture of 

acetate and methanol as carbon source in an enrichment reactor. They identified in 

the mixed culture two bacterial species: Plasticicumulans acidovorans as PHA-

accumulating bacteria and Methylobacillus flagellatus as methylotroph organisms, 

which consumed acetate and methanol, respectively. They observed biopolymer 

production only when acetate was present, and simultaneous growth on methanol and 

PHA occurred during the second part of the feast phase. In the present research work, 

microbial populations from Eukarya and Bacteria were identified. It can be 
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hypothesized that yeast were responsible for TAG accumulation, as these are 

recognized as the main storage component for energy in eukaryotic cells .
13

 On the 

other hand, bacterial cells consumed glycerol and methanol to grow and produce PHV 

and PG. In this way, the coexistence of both microbial populations may provide this 

versatile behaviour of the MMC. 

Few authors have previously worked on biopolymer production from crude glycerol. 

Moita et al. 
17

 used crude glycerol as feedstock with a similar composition to the 

substrate used in the present study. They observed PHB and PG accumulation from 

glycerol, while methanol consumption was not complete. They obtained an enriched 

MMC with PHA-accumulating capacity but they did not observe TAGs production. 

Differences in the type of biopolymer accumulated may be due to the fact that these 

authors used a PHA-accumulating microbial culture previously acclimated to bio-oil as 

feedstock. However, in the present study activated sludge was used as inoculum for 

the MMC development. Dobroth et al. 
16

 also obtained PHB as the main biopolymer 

but only utilising the methanol fraction of the crude glycerol as carbon source. 

Contrary to these results from literature, in the present study TAGs were found as the 

preferred storage compound when crude glycerol was supplied for the selection of a 

community with the ability to produce storage polymers. To the knowledge of the 

authors, TAG production from industrial wastes using a MMC had not been reported 

previously. 

 

TAG-accumulating capacity using crude glycerol as substrate 
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The maximum accumulation capacity of the enriched MMC was evaluated using crude 

glycerol as substrate (experiment A1, Table 2). The concentration of crude glycerol was 

higher than that used in the enrichment SBR. Approximately 500 Cmmol were added in 

one single pulse at the beginning of the experiment. No nitrogen source was added to 

force the complete conversion of substrate into biopolymers and prevent the microbial 

growth. However, nitrogen was present in the liquid media during the first hours of the 

experiment as residual ammonium coming with the sludge collected at the end of the 

operational cycle of the enrichment SBR. 

After crude glycerol addition, lipids, glycerol and methanol concentrations evolved 

with a similar trend as in the enrichment cycle. Even though lipids were not analysed, 

the concentration was estimated from carbon balances considering measured glycerol, 

methanol and TOC. A sudden decrease of lipids was observed during the first 10 

minutes of the experiment, presumably due to their adsorption on the biomass 

surface. During the feast phase glycerol was preferred over methanol and totally 

consumed in 7 hours after substrate dosage (Figure 4A). Only 24% of the added 

methanol was consumed during the same period. The corresponding specific substrate 

consumption rates were of 0.43 Cmmolgly/(CmmolX·h) and 0.13 

CmmolMeOH/(CmmolX·h), respectively (Table 3).  

The consumption of the carbon compounds present in the crude glycerol was 

accompanied by the production of TAG, PHV and PG (Figure 4A). TAGs were 

accumulated as the main storage compound up to 46.3 wt.% after 2.5 hours. 

Moreover, the extracted TAGs from the biomass samples composition was of 20 wt.% 

palmitic acid, 30 wt.% oleic acid and 50 wt.% linoleic acid, very similar to the 
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composition of fatty acids of the crude glycerol. PG was also determined as 

biopolymer, and its highest amount of 28 wt.% was measured seven hours after 

substrate addition, which corresponded to the complete glycerol depletion. PHAs were 

measured as PHV and reached a low value of 7 wt.%.  

In the present research work, the presence of lipids in the crude glycerol presumably 

selected TAG-accumulating microorganisms in the enrichment SBR. Different strains of 

oleaginous yeasts have been previously reported as capable of the production of 

intracellular lipids from crude glycerol with maximum accumulations as dry weight 

content of 25 wt.% 
26

, 32 wt.% 
27

 and 64 wt.%. 
10

 The maximum TAG accumulation in 

the present study was 46.3 wt.%, which is in the range of the obtained values in those 

previous studies with pure cultures. 

 

Biopolymer production with different carbon sources 

To determine the separated effects of the glycerol and methanol on the accumulating 

capacity of the enriched MMC, experiments with synthetic carbon sources were 

performed (A2-A4, Table 2). As in experiment A1 with crude glycerol, 500 Cmmol were 

added in one single pulse and no nitrogen source was added to force the biopolymer 

accumulation. 

Accumulation experiments with synthetic glycerol in experiment A2 (Table 2), 

indicated that the complete depletion of this carbon source occurred 22 hours after 

substrate dosage (Figure 4B). Compared with the previous experiment with crude 

glycerol, the accumulation of TAGs was very low (11.4 wt.%). Moreover, with glycerol 

as substrate the enriched MMC could produce PG as the main accumulated 
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biopolymer (54.3 wt.%), but also 3.6 wt.% and 14.4 wt.% of PHB and PHV, respectively. 

In this case, the specific substrate consumption rate was of 0.55 Cmmolgly/(CmmolX·h) 

(Table 3). 

In the experiment A3, the composition of the crude glycerol was mimicked with a 

mixture of synthetic glycerol and methanol (75:25 ratio as Cmmol) to evaluate the 

MMC accumulation behaviour (Table 2). Glycerol was consumed faster than methanol, 

with specific uptake rates of 0.48 Cmmolgly/(CmmolX·h) and 0.09 

CmmolMeOH/(CmmolX·h), respectively (Figure 4C). These values were very similar to 

those obtained in the experiment A1 with crude glycerol (Table 3). However, in this 

case, only PG accumulation was observed up to approximately 40 wt.%. As it occurred 

in experiment A2, TAG accumulation did not take place. 

A mixture of glycerol and methanol in a ratio of 25:75 as Cmmol, respectively 

(experiment A4, Table 2), was used as substrate to evaluate the effects of the 

methanol on the MMC. Methanol concentration at the beginning of the experiment 

was higher than that of glycerol, but its consumption rate was significantly lower 0.17 

CmmolMeOH/(CmmolX·h) compared to that of the glycerol of 0.25 Cmmolgly/(CmmolX·h) 

(Figure 4D). No significant accumulation of biopolymers was obtained in this assay. 

Small amounts of PHB and PG were measured, reaching the maximum dry weight 

content of 8.6 and 8.2 wt.%, respectively, when glycerol was depleted. These results 

indicated that the glycerol was the most probable substrate used as carbon source to 

accumulate these two polymers. However, the PG production decreased in this 

experiment and it was nine times lower than in A2 and five times less than in 

experiments A1 and A3. Moreover, contrary to the accumulation experiments with 

Page 48 of 65

http://mc.manuscriptcentral.com/jctb-wiley

Journal of Chemical Technology & Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17 

 

other substrates, ammonium was not completely consumed, and biomass continued 

growing throughout the whole cycle These results may indicate a possible inhibitory 

effect of methanol, as previous studies indicated that methanol inhibits the growth of 

PHB accumulating bacteria at concentrations above 0.5% (vol/vol). 
28

 

Accumulation experiments (A1-A4, Table 2) provided different results depending on 

the composition of the used carbon compounds. Glycerol uptake rate was similar in 

the experiments where large glycerol concentrations were added. Glycerol was 

preferably intracellularly accumulated as PG, as can be proven by the results of 

experiments A2 (synthetic glycerol) and A3 (glycerol:methanol ratio 75:25), where 

percentages were higher than 40 wt.% once glycerol was consumed. These results 

seemed to indicate that glycerol was the main carbon source for PG accumulation. 

Moralejo-Gárate et al. 
29

 reported a yield of 0.40 CmmolPG/Cmmolgly using synthetic 

glycerol, slightly higher than the value obtained in the present study (0.33 

CmmolPG/Cmmolgly). Both PHV and PHB were produced at low percentages, no higher 

than 14% and PHV as the preferred compound. However, in previous studies, PHB was 

obtained as the main biopolymer using both synthetic and crude glycerol. Moralejo-

Gárate et al. 
18

 obtained 80 wt.% of PHB using synthetic glycerol. This is a very high 

value compared to those obtained with the same substrate in the present study of 4 

and 15 wt.% of PHB and PHV, respectively. Dobroth et al. 
16

 obtained 67 wt.% of PHB 

consuming only the methanol fraction, which corresponded to 40 wt.% of the total 

carbon supplied and it is higher than the methanol in the crude glycerol used in this 

study. With a similar crude glycerol composition, Moita et al. 
17

 reached maximum PHB 

content of 47 wt.%. However, they used biomass with PHA-accumulating capacity 
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already acclimated to bio-oil as feedstock. In all these cases, the substrate composition 

(synthetic) or the MMC (acclimated microorganisms) differed from the crude glycerol 

used in the present research work. Therefore, the selected accumulating-

microorganisms in the corresponding enrichments were expected to be different. The 

low PHA values might be attributed to the characteristics of the enriched MMC, where 

TAG-accumulating microorganisms were preferably selected instead of PHA- 

accumulating microorganisms. Only in the experiment with crude glycerol (A1) the 

enriched MMC could accumulate high TAG content, indicating that the presence of 

lipids is required to obtain significant intracellular TAG accumulation. 

 

CONCLUSIONS 

In the present study, a mixed microbial culture with biopolymer-accumulating capacity 

was enriched using crude glycerol as carbon source. Microorganisms from Eukarya and 

Bacteria domains were selected and cohabitated in the MMC, which accumulated a 

mixture of biopolymers (TAG, HB, HV and PG). Yeasts were mainly responsible for the 

lipids storage as TAGs, while bacteria used glycerol to accumulate the remaining 

biopolymers and methanol for growth. Maximum TAG accumulation of 46.3 wt.% was 

observed only when crude glycerol containing lipids was used as substrate. When 

synthetic carbon sources were used, the maximum accumulation corresponded to PG, 

which indicated that fatty acids present in the crude glycerol promoted TAG 

accumulation. 

The conversion of crude glycerol to lipids is important for waste valorisation. A 

possible advantage which comes out of the present study is the use of an open, non-
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sterile and non-defined enrichment, which is expected to lead to a significant decrease 

in the production costs due to lower energy requirements and simpler operation, in 

comparison with the available studies that operated under sterile conditions, using 

pure and defined cultures. 
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TABLE LEGENDS 

 

Table 1. Crude glycerol characterisation. 

Table 2. Accumulation experiments with different carbon substrates using the 

enriched MMC collected from the SBR. 

Table 3. Characterisation of accumulation experiments performed to test the 

maximum biopolymer accumulation with different substrates. 
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Table 1 

 

Parameter  

pH 10 

Density (g/L, 20 °C) 966.9 ± 7.2 

Total Organic Carbon (TOC) (g C/L) 409.2 ± 30.3 

Glycerol (g/L) 696.4 ± 54.0 

Methanol (g/L) 225.4 ± 22.9 

Lipids (g/L) 60.9 ± 5.8 

Na
+
 (g/L) 14.5 ± 0.3 
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Table 2. 

 

Experiment Substrate 

Initial 

biomass  

(g VSS/L) 

Initial substrate composition (Cmmol) 

Glycerol MeOH Lipids 

A1 Crude glycerol 0.52 180 120 140 

A2 Synthetic glycerol 0.43 480 0 0 

A3 
Glycerol + MeOH 

(75:25 as Cmmol) 
0.45 370 110 0 

A4 
MeOH + Glycerol 

(25:75 as Cmmol) 
0.55 120 320 0 
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Table 3. 

 

Exp -q
gly

 -q
MeOH

 q
TAG

 q
PHB

 q
PHV

 q
PG

 Y
TAG/TOC

 Y
PHB/gly

 Y
PHV/gly

 Y
PG/gly

 
Maximum (wt.%) 

TAG PHB HPV PG 

A1 0.43 0.13 0.40 0.00 0.03 0.14 0.52 0.00 0.06 0.33 46.3 0.0 7.4 27.6 

A2 0.55 --- 0.05 0.02 0.04 0.18 0.08 0.02 0.06 0.31 11.4 3.6 14.4 54.3 

A3 0.48 0.09 0.03 0.01 0.01 0.13 0.05 0.03 0.02 0.26 6.8 3.6 5.4 39.5 

A4 0.25 0.17 0.00 0.02 0.00 0.02 0.00 0.08 0.00 0.04 3.9 8.6 2.1 8.2 

- qgly (Cmmol gly/Cmmol X·h); - qMeOH (Cmmol MeOH/Cmmol X·h); qTAG (Cmmol TAG/Cmmol X·h); qPHB (Cmmol PHB/Cmmol 

X·h); qPHV (Cmmol PHV/Cmmol X·h); qPG (Cmmol PG/Cmmol X·h). 

YTAG/TOC (Cmmol TAG/Cmmol TOC); YPHB/gly (Cmmol PHB/Cmmol gly); YPHV/gly (Cmmol PHV/Cmmol gly); YPG/gly (Cmmol 

PG/Cmmol gly).  

wt.% (% g biopolymer/g cell dry weight). 

 

 

 

 

 

 

 

 

 

 

 

Page 59 of 65

http://mc.manuscriptcentral.com/jctb-wiley

Journal of Chemical Technology & Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

28 

 

 

 

 

 

 

FIGURE CAPTIONS 

 

Figure 1. Evolution of ammonium (�) and biomass () concentration at the end of the 

cycles throughout the operation of the enrichment SBR. 

Figure 2. FISH images of the biomass from the enrichment SBR on day 229. (A) 

Eukaryota domain (EUK516: Cy3, red) and Bacteria domain (EUB338mix: FITC, green). 

The bar represents 25 µm. (B) Betaproteobacteria class (BET42a: Cy3, red) and all DNA 

(DAPI, blue). The bar represents 10 µm. 

Figure 3. Evolution of different compounds during an enrichment cycle on day 246 of 

operation. A) Glycerol (�), methanol (�), lipids (◊) and TOC (�), all as Cmmol, 

ammonium (X) as Nmmol, and DO (-) as mg O2/L. B) TAG (�), PHV (), PG (�) and 

active biomass (- - -), all as Cmmol. 

Figure 4. Evolution of different compounds throughout accumulation assays with 

different substrates. A) Crude glycerol-A1; B) Synthetic glycerol-A2; C) Mix of synthetic 

glycerol and methanol (75:25 ratio as Cmmol)-A3; D) Mix of synthetic glycerol and 

methanol (25:75 ratio as Cmmol)-A4. Measurements of glycerol (�), methanol (�), 

lipids (◊), TOC (�), TAG (�), PHB (�), PHV (), PG (�), active biomass (---), all as 

Cmmol. 

Page 60 of 65

http://mc.manuscriptcentral.com/jctb-wiley

Journal of Chemical Technology & Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

 

  

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

0

25

50

75

100

125

0 50 100 150 200 250 300 350 400 450 500

B
io

m
a

ss
 (

g
 V

S
S

/L
)

A
m

m
o

n
iu

m
 (

m
g

 N
-N

H
4

+
/L

)

Time (days)

Page 61 of 65

http://mc.manuscriptcentral.com/jctb-wiley

Journal of Chemical Technology & Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

 

 

 

 

Figure 2 

 

A B 

 

 

 

Page 62 of 65

http://mc.manuscriptcentral.com/jctb-wiley

Journal of Chemical Technology & Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

  

Figure 3 

 

A 

 

B 

 

 

0

1

2

3

4

5

6

7

8

9

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22 24

D
O

 (
m

g
 O

2
/L

) 
a

n
d

 A
m

m
o

n
iu

m
 (

N
m

m
o

l)

G
ly

ce
ro

l,
 M

e
O

H
, L

ip
id

s 
a

n
d

 T
O

C
 (

C
m

m
o

l)

Time (h)

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ct

iv
e

 b
io

m
a

ss
 (

C
m

m
o

l)

TA
G

, P
H

V
 a

n
d

 P
G

 (
C

m
m

o
l)

Time (h)

Page 63 of 65

http://mc.manuscriptcentral.com/jctb-wiley

Journal of Chemical Technology & Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 4 
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SUPPLEMENTARY MATERIAL 

 

Table S1. List of oligonucleotide probes used for biomass FISH analysis, formamide 

percentages and identified microorganisms. 

 

Probe % Formamide Target organism 

EUB338I 0-50 Bacteria domain 

EUB338II 0-50 Planctomycetales 

EUB338III 0-50 Verrucomicrobia 

BET42a 35 Betaproteobacteria class 

EUK516 25 Eukarya domain 

EUB338I, EUB338II and EUB338III were applied as an equimolar mix (EUB338mix) 

 

 

 

 

Figure S1. Biomass sample from the enrichment SBR collected during the feast phase 

on day 478 and treated with Sudan staining to observe the biopolymer inclusions 

inside the yeast cells. The bar represents 10 µm. 
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