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Abstract. In this work, we investigate the inverse problem of identifying a

space-wise dependent source term of wave equation from the measurement on

the boundary. On the basis of the optimal control framework, the inverse prob-
lem is transformed into an optimization problem. The existence and necessary

condition of the minimizer for the cost functional are obtained. The projected

gradient method and two-parameter model function method are applied to the
minimization problem and numerical results are illustrated.

1. Introduction

We consider an initial-boundary value problem for wave equation in the form

utt(x, t) = ∆u(x, t) + σ(t)f(x), x ∈ Ω, 0 < t < T,

u(x, 0) = ut(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, T > 0, σ
is a known non-zero function and independent of the space variable x, f ∈ L2(Ω)
is unknown and ∆ is the Laplacian operator. An additional condition is assumed
in the form

∂u

∂n
(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T, (1.2)

where g is a known function and

∂u

∂n
(x, t) =

N∑
i=1

γi(x)
∂u

∂xi
(x, t), x ∈ ∂Ω, 0 < t < T, i = 1, 2, . . . , N,

where γi(x) = (γ1(x), . . . , γN (x)) is the outward unit normal to ∂Ω at x.
We set d = sup{|x1 − x2| : x1, x2 ∈ Ω} is the diameter of Ω. Henceforth we

assume

T > d, (1.3)

σ(0) 6= 0, σ ∈ C1[0, T ]. (1.4)
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For uniqueness and stability of our governing equation we have to choose a
large observation time T . The external forces σ(t)f(x) in the form of separation of
variables are important in modelling vibrations. For example, if we set σ(t) = cosωt
(ω ∈ R), then it describes a spatial force which varies harmonically. Moreover the
system (1.1) is regarded as an approximation to a model for elastic waves from a
point dislocation source. For instance, this kind of point source can be related to
models in reflection seismology, oil and gas exploration, ground-penetrating radar
and many other physical problems [1]. According to the Hadamard requirements
(existence, uniqueness and stability of the solution), the inverse problem is ill-posed
mathematically [15, 19].

For an inverse problem with a single measurement, the main methodology is
based on an L2-weighted inequality called a Carleman estimate. Bellassoued [4],
Imanuvilov and Yamamoto [14], Klibanov and Timonov [20] discussed the applica-
tions of Carleman estimates to inverse problems.

Yamamoto [34] studied the uniqueness and stability result for reconstruction al-
gorithm using exact controllability for an inverse problem described by the wave
equation. Nicaise and Zair [25] identified the source term from interior measure-
ments by using some observability estimates and controllability results by using
multiplier and Hilbert uniqueness method.

Bellassoued et al. [5], Cipolatti and Lopez [7] and Rakesh [27] obtained unique-
ness and stability of inverse problem for the wave equation by using Dirichlet to
Neumann map. Stability estimate was established for inverse problem for the wave
equation by using Neumann to Dirichlet map in [2].

Mordukhovich and Raymond [24], Lagnese et al. [22] proved the optimal con-
trol problems for hyperbolic equations with boundary control. In [3], Barbu and
Pavel had considered coefficient optimal control problem for 1-D wave equation
with nonhomogeneous boundary periodic inputs. Liang [23] studied the bilinear
optimal control problem of the wave equation. Ton [30] used optimal techniques
and established feedback laws to identify the surface of the unknown source and its
intensity from the observed values of the solution of the wave equation on a portion
of fixed closed surface.

For stable reconstruction, we have some regularization techniques [8]. Engl et
al. [9] established the uniqueness of inverse source problem of parabolic and hy-
perbolic equations and analyzed the convergence rate of the regularized solution.
In [35], Yamamoto derived the convergence rate of Tikhonov regularization scheme
for multidimensional inverse hyperbolic problem. Cheng et al. [6] employed a new
strategy for a priori choice of regularizing parameter in Tikhonov’s regularization.
Feng et al. [10] solved the identification problem of the wave equation by using
optimal control method. In [36], Yang obtained the idea to use the techniques of
optimal control framework to the inverse problem of recovering the source term
in a parabolic equation. Gnanavel et al. [11] studied an inverse problem of re-
constructing two time independent coefficients and the initial data in the linear
reaction diffusion system from the arbitrary sub-domain measurement and final
measurement. Tröltzsch [31] analyzed the existence of optimal solutions, necessary
optimality conditions on optimal control problems of partial differential equation
and main principles of selected numerical techniques. Hasanov [12] applied conju-
gate gradient method to identify the unknown spacewise and time dependent heat
sources of the variable coefficient heat conduction equation. In [13], Hasanov et al.
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established the direct relationship between two widely used methods, least square
method and singular value expansion, in inverse source and backward problems
with final overdetermination for parabolic and hyperbolic equations. Kabanikhin
et al. [16, 17] obtained the iteration methods for solve a parameter identification
problem in a one and two dimensional hyperbolic equation of second order respec-
tively. Kabanikhin et al. [18] analyzed a numerical method for inverse problem in
hyperbolic equation.

From the Theorem (2.3) in Section 2 we have observed the time derivative of
∂u
∂n as well as ∂u

∂n itself for stable construction of f ∈ L2(Ω). However, from a
practical point of view, the observation of the time derivative is not desirable and
frequently we are obliged to construct f ∈ L2(Ω) only on the basis of ∂u

∂n itself
which is polluted with L2-errors. Thus the problem of determining f ∈ L2(Ω)
from ∂u

∂n ∈ L2
(
0, T ;L2(∂Ω)

)
is ill-posed in the sense of Hadamard. For stable

construction of f we apply Tikhonov regularization. To solve the inverse problem,
we consider the following optimal control problem for β > 0

min
f∈A

Jβ(f), (1.5)

where

Jβ(f) =
1
2

∫ T

0

∫
∂Ω

∣∣∂u
∂n

(x, t, f)− g(x, t)
∣∣2 dx dt+

β

2

∫
Ω

|f |2 dx,

A = {f ∈ L2(Ω) : |f | ≤ a},

Jβ : A ⊆ L2(Ω)→ R+, Jβ depends on a > 0, u and β is a regularization parameter.
For each β > 0, the source term f is viewed as a control and is adjusted to get the
corresponding ∂u

∂n , close to the observations g. In the optimal control problem, the
second integration in Jβ(f) is called the penalty term, which is used to stabilize
the minimizer.

This article is organized as follows: In Section 2, we give some preliminaries. In
Section 3, we consider the given inverse problem as a optimal control problem and
prove the existence of the minimizer, the necessary optimality condition which has
to be satisfied by each optimal control is deduced. The projected gradient method
and two-parameter model function method are applied to the inverse problem and
numerical examples are given in Section 4.

2. Preliminaries

Weak solution: Given σf ∈ L1(0, T ;L2(Ω)), we say that a function u ∈
C([0, T ];H1

0 (Ω)) with ut ∈ C([0, T ];L2(Ω)), utt ∈ C([0, T ];H−1(Ω)) is a weak solu-
tion of the problem (1.1) and (1.2) provided

(1) 〈utt, φ〉+B[u, φ; t] = σ
∫

Ω
fφ dx, for any φ ∈ H1

0 (Ω) and a.e. 0 ≤ t ≤ T ;
(2) u(·, 0) = 0;
(3) ut(·, 0) = 0

where 〈·, ·〉 denotes the duality pairing of H−1(Ω) and H1
0 (Ω) and B[u, φ; t] =∫

Ω
∇u∇φdx.

Lemma 2.1 ([26]). If σf ∈ L1(0, T ;L2(Ω)), then there exists a unique solution u
to (1.1) such that u ∈ C

(
[0, T ];H1

0 (Ω)
)
∩ C1

(
[0, T ];L2(Ω)

)
and

∂u

∂n
∈ L2 (∂Ω× (0, T )) . (2.1)
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Lemma 2.2 ([26]). If σf ∈ L1(0, T ;L2(Ω)), ∂Ω is C2, then the weak solution
u = u(f) satisfies

sup
0≤t≤T

(
‖u‖H1

0 (Ω) + ‖ut‖L2(Ω)

)
+ ‖utt‖L2(0,T ;H−1(Ω)) ≤ C‖f‖L2(Ω), (2.2)

‖∂u
∂n
‖L2(∂Ω×(0,T )) ≤ C0‖f‖L2(Ω), (2.3)

where C and C0 are constants depending only on Ω, T and σ.

Theorem 2.3 ([33]). Under assumptions (1.3) and (1.4) we have:
(1) (Uniqueness) If the solution u(f) to (1.1) satisfies

∂u

∂n
(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

then f(x) = 0 for almost all x ∈ Ω.
(2) (Continuity) There exists a constant C = C(Ω, T ) such that

C−1‖∂u
∂n

(f)‖H1(0,T :L2(∂Ω)) ≤ ‖f‖L2(Ω) ≤ C‖
∂u

∂n
(f)‖H1(0,T :L2(∂Ω)) (2.4)

for any f ∈ L2(Ω).

3. Optimal control problem

For a fixed β, we consider the functional Jβ(f) as J(f) and

J(f̄) = min
f∈A

J(f), (3.1)

3.1. Existence of minimizer.

Theorem 3.1. There exists a unique minimizer f̄ ∈ A of J , that is, J(f̄) =
minf∈A J(f).

Proof. It can be easily seen that J(f) is nonnegative and thus J(f) has greatest
lower bound inff∈A J(f). Let {fk} be a minimizing sequence, for example,

inf
f∈A

J(f) ≤ J(fk) ≤ inf
f∈A

J(f) +
1
k
, k = 1, 2, . . . .

Since J(fk) ≤ C1 and from the structure of J we easily deduce that ‖fk‖L2(Ω) ≤ C1,
where C1 is independent of k. Let {uk} be the solution of (1.1) corresponding to
{fk}. By Lemma 2.2, we have

sup
0≤t≤T

(
‖uk‖H1

0 (Ω) + ‖(uk)t‖L2(Ω)

)
+ ‖(uk)tt‖L2(0,T ;H−1(Ω)) ≤ C‖fk‖L2(Ω).

This means that we have uniform bounds for uk ∈ L∞(0, T ;H1
0 (Ω)) and (uk)t ∈

L∞(0, T ;L2(Ω)). On a subsequence of fk and uk, by weak compactness, there exists
ū in C([0, T ];H1

0 (Ω)) such that

fk ⇀ f̄ weakly in L2(Ω),

uk ⇀ ū weak* in L∞(0, T ;H1
0 (Ω)),

(uk)t ⇀ ūt weak* in L∞(0, T ;L2(Ω)),

(uk)tt ⇀ ūtt weakly in L2(0, T ;H−1(Ω)),
∂uk
∂n

⇀
∂ū

∂n
weakly in L2 (∂Ω× (0, T )) .
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Using a compactness result from [29], we have uk → ū strongly in L∞(0, T ;L2(Ω)).
By the definition of weak solution, we have

〈(uk)tt, φ〉 = −
∫

Ω

[∇uk∇φ− σfkφ] dx

for any φ ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T . If we pass to the limit as k → ∞ in the

weak formulation of uk, we obtain

〈ūtt, φ〉 = −
∫

Ω

[∇ū∇φ− σf̄φ] dx.

Thus
(
f̄(x), ū(x, t)

)
satisfies (1.1). Moreover, using (2.3) and the lower-semicontinuity

of the L2 norm with respect to weak convergence, we obtain

J(f̄) ≤ lim inf
k→∞

J(fk) = min
f∈A

J(f).

Hence J(f̄) = minf∈A J(f). We can easily know that ∂u
∂n (x, t, f) has the linearity

and convexity with respect to f ; that is,
∂u

∂n
(x, t, εf1 + (1− ε)f2) = ε

∂u

∂n
(x, t, f1) + (1− ε)∂u

∂n
(x, t, f2), ∀ε ∈ [0, 1].

Then the strict convexity of L2-norm naturally leads to the strict convexity of J(f)
which implies that the minimizer f̄ is unique. This completes the proof. �

3.2. Necessary condition. We are now in a position to state the necessary (and,
owing to the convexity, also sufficient) optimality conditions.

Theorem 3.2. Let f be the solution of the optimal control problem (3.1). Then
there exists a triple of functions (u, v, f) satisfying the system

utt(x, t) = ∆u(x, t) + σ(t)f(x), x ∈ Ω, 0 < t < T,

u(x, 0) = ut(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, 0 < t < T.

(3.2)

and
vtt(x, t) = ∆v(x, t), x ∈ Ω, 0 < t < T,

v(x, 0) = vt(x, 0) = 0, x ∈ Ω,

v(x, t) =
∂u

∂n
− g(x, t), x ∈ ∂Ω, 0 < t < T.

(3.3)

Moreover

β

∫
Ω

f(h− f) dx−
∫ T

0

∫
Ω

(vσ(t)(h− f)) dx dt ≥ 0. (3.4)

for any h ∈ A.

Proof. For any h ∈ A, 0 ≤ δ ≤ 1, we have fδ = (1− δ)f + δh ∈ A. Then

Jδ = J(fδ) =
1
2

∫ T

0

∫
∂Ω

∣∣∂u
∂n

(x, t, fδ)− g(x, t)
∣∣2 dx dt+

β

2

∫
Ω

|fδ|2dx. (3.5)

Let uδ be the solution of (3.2) with given f = fδ. Since f is an optimal solution,

dJδ
dδ

∣∣
δ=0

=
∫ T

0

∫
∂Ω

[
∂u

∂n
(x, t, fδ)− g(x, t)]

∂

∂n

(∂uδ
∂δ

)∣∣
δ=0

dx dt

+ β

∫
Ω

f(h− f)dx ≥ 0.
(3.6)
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Let ũδ = (∂uδ

∂δ ), direct calculations lead to the equation

∂2ũδ
∂t2

= ∆ũδ + σ(h− f), x ∈ Ω, 0 < t < T,

ũδ(x, 0) =
∂ũδ
∂t

(x, 0) = 0, x ∈ Ω,

ũδ(x, t) = 0, x ∈ ∂Ω, 0 < t < T.

(3.7)

Let ξ = ũδ at δ = 0. Then ξ satisfies the below equation
ξtt = ∆ξ + σ(h− f), x ∈ Ω, 0 < t < T,

ξ(x, 0) = ξt(x, 0) = 0, x ∈ Ω,

ξ(x, t) = 0, x ∈ ∂Ω, 0 < t < T.

(3.8)

From (3.6), we have∫ T

0

∫
∂Ω

(
∂u

∂n
− g(x, t))

∂ξ

∂n
(x, t) dx dt+ β

∫
Ω

f(h− f) dx ≥ 0. (3.9)

Let Lξ = ξtt −∆ξ and v be the solution of the following problem

L∗v = vtt −∆v = 0,

v(x, T ) = vt(x, T ) = 0,

v(x, t) =
∂u

∂n
− g(x, t),

where L∗ is the adjoint operator of the operator L. From the above equation we
have

0 =
∫ T

0

∫
Ω

(ξL∗v)dx dt

=
∫ T

0

∫
Ω

v(ξtt −∆ξ)dx dt+
∫ T

0

∫
∂Ω

∂ξ

∂n
(
∂u

∂n
− g)dx dt.

(3.10)

Combining (3.9) with (3.10) we have

β

∫
Ω

f(h− f) dx−
∫ T

0

∫
Ω

(vσ(t)(h− f)) dx dt ≥ 0. (3.11)

This completes the proof. �

4. Numerical examples

After obtaining the theoretical results, we propose the numerical schemes for
the inverse problem. We solve the control problem (3.1) directly from the cost
functional; but the regularization parameter plays a major role in the numerical
simulation. In fact, the effectiveness of a regularization method depends strongly
on the choice of the regularization parameter. Kunisch and Zou [21] proposed a
two parameter algorithm to choose some reasonable regularization parameters in
an efficient manner. The basic tool is to use the well known Morozov discrepancy
principle [8, 19] and the damped Morozov discrepancy principle [21].

We consider the inverse problem of the form

P : L2(Ω)→ L2(∂Ω× (0, T )),

Pf =
∂u

∂n
= g(x, t),
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where P is a linear bounded operator, g is the observation data and ∂u
∂n satisfies the

equation (1.1). In applications, g is often corrupted by some error and the noise
data of g with noise level δ are denoted by gδ.

We rewrite the Tikhonov functional

min
fδ∈A

Jβ(fδ) =
1
2

∫ T

0

∫
∂Ω

∣∣Pfδ − gδ∣∣2 dx dt+
β

2

∫
Ω

∣∣fδ∣∣2 dx,
A = {fδ(x) : |fδ| ≤ a, fδ ∈ L2(Ω)}.

(4.1)

where fδ is the corresponding regularization solution for gδ. For fixed β, the prob-
lem (4.1) is solved by projected gradient method [31]. For this method, the deriv-
ative of Jβ at an iterate fδn is given by

J ′β(fδn)(h− f) =
∫

Ω

(
−
∫ T

0

znσ(t)dt+ βfδn

)
(h− f)dx,

where zn is the solution of the adjoint equation

ztt(x, t) = ∆z(x, t), x ∈ Ω, 0 < t < T,

z(x, T ) = zt(x, T ) = 0, x ∈ Ω,

z(x, t) =
∂u

∂n
− g(x, t), x ∈ ∂Ω, 0 < t < T.

(4.2)

By the Riesz representation theorem, we obtain the usual representation of the
reduced gradient

wn = J ′β(fδn) = −
∫ T

0

zn(x, t)σ(t)dt+ βfδn.

Set fδn+1 = P[A]{fδn − swn} for the iteration. where P denotes the projection onto
A and s is optimal step size. The stopping criterion for the iteration is chosen as
‖fδn+1 − fδn‖L2(Ω) ≤ tol.

The two equations (1.1) and (4.2) are solved by the implicit finite difference
method [28]. They are discretized based on the difference approximation

u(xi, yj , tk)tt =
u(xi, yj , tk+1)− 2u(xi, yj , tk) + u(xi, yj , tk−1)

(∆t)2
,

u(xi, yj , tk)xx =
u(xi+1, yj , tk)1/4 − 2u(xi, yj , tk)1/4 + u(xi−1, yj , tk)1/4

(∆x)2
,

u(xi, yj , tk)yy =
u(xi, yj+1, tk)1/4 − 2u(xi, yj , tk)1/4 + u(xi, yj−1, tk)1/4

(∆y)2
,

u(xi, yj , tk)1/4 =
1
4
u(xi, yj , tk+1) +

1
2
u(xi, yj , tk) +

1
4
u(xi, yj , tk−1),

It is easy to check that all above approximation formulas are of second-order
accuracy. The implicit schemes for (1.1) and (4.2) are obtained by approximating
the derivatives using the above formulas.

The popular Morozov principle has received a considerable amount of attention in
linear inverse problems and turns out to be very effective for many inverse problems.
This principle suggests choosing the regularization parameter β in such a way that
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the error due to the regularization is equal to the error due to the observation data,
that is, β is chosen according to∫ T

0

∫
∂Ω

∣∣Pfδ(β)− gδ
∣∣2 dx dt+ βγ

∫
Ω

∣∣fδ(β)
∣∣2 dx = δ2, (4.3)

where γ ∈ [1,∞] and δ is the noise level defined by δ =
∫ T

0

∫
∂Ω
|g − gδ|2 dx dt.

From [21], (4.1) has a unique minimizer for any fixed β, denoted as fδ(β) and it
can be characterized as the solution to the system

P ∗Pfδ + βfδ = P ∗gδ

or in variational form

(Pfδ, P q)L2(∂Ω×(0,T )) + β(fδ, q)L2(Ω) = (gδ, P q)L2(∂Ω×(0,T )) for all q ∈ L2(Ω).

It is obvious that the convergence rate of the damped Morozov discrepancy
principle is quite important for the application of this strategy. For the linear
operator P , this result can be stated as follows.

Lemma 4.1 ([32]). Let Pf = g with noisy data gδ such that ‖g − gδ‖ ≤ δ < ‖gδ‖.
Let the Tikhonov solution fδ satisfy the damped Morozov discrepancy principle
(4.3). Assume that there exists w ∈ L2(∂Ω × (0, T )) such that f = P ∗w ∈
P ∗(L2(∂Ω× (0, T ))). Then

‖fδ − f‖L2(Ω) = O(δmin{1/2,2(γ−1)/γ}).

We frequently use the minimal cost functional of (4.1)

F (β) =
1
2

∫ T

0

∫
∂Ω

|Pfδ(β)− gδ|2 dx dt+
β

2

∫
Ω

|fδ(β)|2 dx. (4.4)

It is known that both fδ(β) and F (β) are infinitely differentiable with respect to
β. Moreover we have

F ′(β) =
1
2

∫
Ω

|fδ(β)|2 dx. (4.5)

In terms of F (β), the Morozov equation (4.3) can be written as

F (β) + (βγ − β)F ′(β) =
1
2
δ2. (4.6)

Then the entire difficulty of choosing the regularization parameter β lies in solving
the highly nonlinear equation (4.6) for β effectively.

Lemma 4.2 ([21]). If F (0) < 1
2δ

2 ≤ F (1), then there exists a unique solution
β∗ ∈ (0, 1] to the Morozov equation (4.6).

To solve (4.6), we use model function approach. By a model function we mean
a parametrized function which presserves the major properties of the non-negative
function F (β) and which approximates F (β) in a manner to be specified below.

From [21] the two-parameter model function algorithm is based on the important
identity

2F (β) + 2βF ′(β) +
∫ T

0

∫
∂Ω

|Pfδ(β)|2 dx dt = 2Ĉ, (4.7)

where Ĉ is an integration constant. To derive the model function, we make the
following approximation in the equation (4.7).

(Pfδ(β), P q(β))L2(∂Ω×(0,T )) ≈ P̃ (fδ(β), q(β))L2(Ω) (4.8)
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where P̃ is a positive constant. Then equation (4.7) reduces to

βm′(β) +m(β) + P̃m′(β) = Ĉ (4.9)

Solving the ordinary differential equation (4.9) we obtain

m(β) = Ĉ +
C̃

P̃ + β
.

where C̃ is an integration constant. Then, by assuming F (0) = 0 or m(0) = 0, one
can remove the constant Ĉ and arrive at the two-parameter model function

m(β) = C̄ +
(

1− P̄

P̄ + β

)
. (4.10)

With this model function, the two-parameter algorithm is used to solve the Morozov
equation (4.6).

Based on the analysis above, the procedure of the iteration can be stated as
follows: Given β0 > 0 and ε > 0, set k = 0.
Step 1: Choose an initial value of iteration fδ = fδ0 (x).
Step 2: Solve the optimal control problem (4.1) to obtain fδ(βk) and compute
F (βk) and F ′(βk). Then update C̄k and P̄k from

m(βk) = C̄k +
(

1− P̄k
P̄k + βk

)
= F (βk), (4.11)

m′(βk) =
C̄kP̄k

(P̄k + βk)2
= F ′(βk). (4.12)

Step 3: Set the kth model function

m(β) = C̄k +
(

1− P̄k
P̄k + β

)
and solve for βk+1 the approximate Morozov’s equation

m(β) + (βγ − β)m′(β) =
1
2
δ2. (4.13)

Step 4: Compare it with ε. If ‖βk+1 − βk‖ < ε, then stop the iteration; otherwise
set k = k + 1 and go to step 1.

We have performed two numerical experiments to test the stability of our al-
gorithm for different noise levels and initial data. The stopping criterion for the
two-parameter iteration is chosen as |βk+1 − βk|/βk+1 ≤ 10−2. In all experiments,
some basic parameters are T = 1, δ(t) = cos t, s = 1 and γ = 1.4. We apply the
noise data generated in the form

gδ = g(1 + δ̂ × random(0, 1)).

where δ̂ is a noise level.
In the first numerical experiment, we consider one dimensional problem (N = 1).

Example 4.3. Let f(x) = sinπx, x ∈ (0, 1). The exact solution of the forward
problem for this f(x) is

u(x, t) =
1

1− π2
sinπx (cosπt− cos t) , (x, t) ∈ [0, 1]× [0, 1],
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∂u

∂n
= − π

1− π2
(cosπt− cos t) , at x = 0, 1.

The source term f(x) is to be recovered from the noise observation data gδ. In
our implementations, the mesh size and time step size are ∆x = ∆t = 1/50. The
tolerance of the optimal control problem is taken as tol = 10−4.

Table 1. β value, the errors in observation and source for the
initial value fδ0 = 0.

δ̂ β ‖g − gδ‖L2(∂Ω×(0,T )) ‖f − fδ‖L2(Ω) iter(β)
0.01 0.000106318 0.00145371 0.0156492 6
0.05 0.00121214 0.00756438 0.0271989 5
0.1 0.00147077 0.0112825 0.0486434 8

Table 2. β value, the errors in observation and source for the
initial value fδ0 = −1.

δ̂ β ‖g − gδ‖L2(∂Ω×(0,T )) ‖f − fδ‖L2(Ω) iter(β)
0.01 0.000110693 0.00147976 0.0113912 6
0.05 0.000819191 0.00597265 0.0234172 6
0.1 0.00308773 0.014366 0.0402498 5

Table 3. β value, the errors in observation and source for the
initial value fδ0 = x(1− x).

δ̂ β ‖g − gδ‖L2(∂Ω×(0,T )) ‖f − fδ‖L2(Ω) iter(β)
0.01 0.000112646 0.00148598 0.0126763 6
0.05 0.00140652 0.00827753 0.0213082 5
0.1 0.00202417 0.0123668 0.0377899 6

In Tables 1–3, we present some numerical results of Example 4.3 with different
noise levels δ̂, different initial value of fδ = fδ0 and β0 = 0.1. The regularization
parameter β obtained by two-parameter algorithm is given in the second column.
The third and forth columns of the tables give the errors in observation data g and
errors in computed source term respectively. The last column shows the number of
iterations of the two-parameter algorithm.

Figure 1 shows the plot of the approximation of the unknown source function
f(x) for different noise levels δ̂ and the initial guesses f0 = 0. From this, we can
see that the efficiency of reconstruction of source term depends on the noise level.
Figure 2 shows the plot of the approximation of the unknown source function f(x)
for different noise levels δ̂ and the initial guesses f0 = −1. From this, we can see
that the approximation of f(x) converges even when the initial guess is negative.

Figure 3 shows the plot of the approximation of the unknown source function
f(x) for different noise levels δ̂ and the initial guesses fδ0 = x(1 − x). The initial
guesses are similar in characteristics to the known source. In the second numerical
experiment, we consider a two dimensional problem (N = 2).
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Figure 1. Exact and computed source term for different δ̂ and
fδ0 = 0 in 1-D wave equation.
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Figure 2. Exact and computed source term for different δ̂ and
fδ0 = −1 in 1-D wave equation
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Figure 3. Exact and computed source term for different δ̂ and
fδ0 = x(1− x) in 1-D wave equation

Example 4.4. Let f(x, y) = sinπx sinπy, (x, y) ∈ (0, 1)×(0, 1). The exact solution
is

u(x, y, t) =
1

1− 2π2
sinπx sinπy

(
cosπ

√
2t− cos t

)
,

∂u

∂n
= − π

1− 2π2
sinπy

(
cos
√

2πt− cos t
)
, on x = 0, 1,

∂u

∂n
= − π

1− 2π2
sinπx

(
cos
√

2πt− cos t
)
, on y = 0, 1.
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The source term f(x, y) is to be recovered from the noise observation data gδ. In
two dimensional case, the mesh sizes and time step size are ∆x = ∆y = ∆t = 1

10 .
The tolerance of the optimal control problem is taken as tol = 10−4.

Table 4. β value, the errors in observation and source for the
initial value fδ0 = 0.

δ̂ β ‖g − gδ‖L2(∂Ω×(0,T )) ‖f − fδ‖L2(Ω) iter(β)
0.05 0.00120084 0.00846277 0.020988 10
0.07 0.00260834 0.012032 0.0224599 7
0.1 0.0051492 0.017512 0.026386 5

Table 5. β value, the errors in observation and source for the
initial value fδ0 = −1.

δ̂ β ‖g − gδ‖L2(∂Ω×(0,T )) ‖f − fδ‖L2(Ω) iter(β)
0.05 0.00118572 0.00816773 0.0235247 10
0.07 0.00272184 0.0120211 0.0245797 7
0.1 0.00505242 0.0172179 0.0251407 5

Table 6. β value, the errors in observation and source for the
initial value fδ0 = xy(1− x)(1− y).

δ̂ β ‖g − gδ‖L2(∂Ω×(0,T )) ‖f − fδ‖L2(Ω) iter(β)
0.05 0.00103108 0.00820616 0.0199434 12
0.07 0.00236611 0.0114796 0.0235887 7
0.1 0.00490916 0.0168844 0.0274358 5

In Tables 4–6, we present some numerical results of two dimensional equation
as in Example 4.4 with different noise levels δ̂, different initial values of fδ = fδ0
and β0 = 0.1. From the result, we see that the source term f is recovered from the
noise observation data gδ stably by the different initial values.

Figures 4–6 we draw the computed source term f(x, y) for the noise level δ̂ = 0.1
and the different initial value of fδ.
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