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Abstract

Aging is characterized by a gradual functional decline of tissues with age. Adult stem

and progenitor cells are responsible for tissue maintenance, repair, and regeneration,

but during aging, this population of cells is decreased or its activity is reduced, com-

promising tissue integrity and causing pathologies that increase vulnerability, and

ultimately lead to death. The causes of stem cell exhaustion during aging are not

clear, and whether a reduction in stem cell function is a cause or a consequence of

aging remains unresolved. Here, we took advantage of a mouse model of induced

adult Sox2+ stem cell depletion to address whether accelerated stem cell depletion

can promote premature aging. After a short period of partial repetitive depletion of

this adult stem cell population in mice, we observed increased kyphosis and hair

graying, and reduced fat mass, all of them signs of premature aging. It is interesting

that cellular senescence was identified in kidney after this partial repetitive Sox2+

cell depletion. To confirm these observations, we performed a prolonged protocol of

partial repetitive depletion of Sox2+ cells, forcing regeneration from the remaining

Sox2+ cells, thereby causing their exhaustion. Senescence specific staining and the

analysis of the expression of genetic markers clearly corroborated that adult stem

cell exhaustion can lead to cellular senescence induction and premature aging.
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1 | INTRODUCTION, RESULTS,
DISCUSSION

Adult stem cell exhaustion is considered a hallmark of aging, and it is

believed to be behind the progressive loss of physiological integrity

that leads to the impaired tissue and organ function that results in

the development of multiple pathologies collectively known as age‐
related diseases (López‐Otín, Blasco, Partridge, Serrano, & Kroemer,

2013). It is not clear; however, if defective or reduced adult stem

cell pools are responsible for the dysfunction of tissues in old organ-

isms or, conversely, if aging causes a reduction in the number and/or

functionality of the stem cells (Goodell & Rando, 2015; Schultz &

Sinclair, 2016; Sharpless & DePinho, 2007).

SRY (sex determining region Y)‐box 2, Sox2, is a transcription

factor of the Sox family with a crucial role regulating and maintaining

selfrenewal and pluripotency in embryonic stem cells (Orkin et al.,

2008; Rizzino, 2013). Apart from its role during early development,

Sox2 is also expressed in progenitors at later stages of the mouse

embryo (Graham et al., 2003; Doetzlhofer et al., 2006; Klassen et al.,

2004; Aubert et al., 2003), and its expression persists in the adult

organism in tissue stem cells of stratified and glandular epithelia of

ectodermal and endodermal origin, as well as in sensory cells (Merkel

and taste bud cells) and spermatogonial stem cells, where it has been

proved to be a critical factor sustaining the homeostasis of these tis-

sues (Arnold et al., 2011). Recently also, it has been shown that

Sox2 expression diminishes with aging in several tissues in mice and

humans (Carrasco‐Garcia et al., 2018). As Sox2 expression is critical

for the normal regeneration and maintenance of numerous adult

stem cell compartments, severe ablation of Sox2+ cells in adult mice

results in the lethal disruption of tissue homeostasis. In an interest-

ing manner, however, partial depletion of Sox2+ cells causes a rever-

sible disruption of tissue integrity, and restoration of normal tissue

homeostasis rescues morbidity. This recovery originates from the

action of residual Sox2+ cells capable of reorganizing and regenerat-

ing the affected tissues (Arnold et al., 2011).

Here, we decided to test the stem cell exhaustion hypothesis of

aging by subjecting transgenic mice to a protocol of partial repetitive

depletion of adult Sox2+ cells. We reasoned that cycles of partial

ablation and recovery could result in the exhaustion of the regener-

ating capacity of these Sox2+ cells and thus provided an excellent

opportunity to test whether stem cell exhaustion results in prema-

ture aging.

We took advantage of transgenic Sox2‐TK mice, in which herpes

simplex virus type‐1 (HSV1) thymidine kinase (TK) gene was inserted

into the Sox2 allele (Arnold et al., 2011). A similar mouse model pre-

viously generated in the laboratory of Konrad Hochedlinger was suc-

cessfully used to prove that adult Sox2+ cells are stem and

progenitor cells in a number of tissues (Arnold et al., 2011). Once

we obtained these mice, we decided to confront Sox2‐WT mice ver-

sus Sox2‐TK mice, both treated with GCV. Starting at 8 weeks of

age, mice received intraperitoneal injections of GCV every 2 weeks

and until they were 34 weeks old, for a total of 14 injections (Fig-

ure 1a). We followed the increase in body mass along the experi-

ment and observed that Sox2‐TK mice treated with GCV were not

increasing their body mass as much as GCV‐treated WT animals, and

this was happening for both, male and female mice (Figure 1b).

When the treatment was stopped, we measured body mass compo-

sition using echoMRI and found that Sox2‐TK mice treated with

GCV had a reduced fat mass compared to Sox2‐WT mice, although

this difference only reached statistical significance for male mice

(Figure S1). We also confirmed the reduction in the number of

Sox2+ cells, and the effects produced by the partial depletion in tis-

sues previously described as dependent on the activity of stem and

progenitor Sox2+ cells. We inspected the testis (Arnold et al., 2011),

esophagus and trachea (Zhang et al., 2017) and found that GCV‐
treated mice were showing atrophic seminiferous tubules (Figure S2),

a feature previously described for these transgenic mice after acute

depletion of Sox2+ cells (Arnold et al., 2011) and a frequent event

during aging (Gosden, Richardson, Brown, & Davidson, 1982), and a

decreased epithelial cellularity in esophagus and trachea that corre-

sponded with a reduced number of Sox2+ cells (Figure S2).

During GCV treatment, visual inspection of mice revealed obvi-

ous signs of aging such as pronounced spinal kyphosis and hair

F IGURE 1 Short repetitive partial depletion of Sox2+ cells leads to defective growth and induction of senescence in mice. (a) Schematic
representation of the repetitive partial depletion protocol in mice by intraperitoneal injection of GCV starting at 8 weeks, every 2 weeks, and
until mice were 34 weeks. After treatment, mice were sacrificed at 36 weeks of age. (b) Body mass increase (g) in male (upper graph; n = 13)
and female (lower graph; n = 11) control mice (Sox2WT; n = 8) or Sox2‐TK transgenic mice (Sox2TK; n = 16) treated with GCV along the
experiment. (c) Quantification of animals (percentage, %) showing evident signs of kyphosis after GCV treatment. (d) Quantification of animals
(percentage, %) showing evident signs of hair graying after GCV treatment. (e) SAbetaGal staining of kidney sections from control wild‐type
(Sox2WT) and Sox2‐TK transgenic (Sox2TK) animals after GCV treatment. (f) Quantification of the number of SAbetaGal positive cells observed
in stained kidney sections. (g) Chemiluminescence quantification of SAbetaGal activity using Galacton as a substrate. (h) Quantification of
mRNA expression by QPCR of Ink4a, Mmp3 and Serpine1 in kidneys from control wild‐type (Sox2WT) and Sox2‐TK transgenic (Sox2TK) animals.
Results are presented as mean ± SD. ***p < 0.001, **p < 0.01,*p < 0.05, n.s. nonsignificant
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F IGURE 2 Prolonged repetitive partial depletion of Sox2+ cells leads to induction of senescence and premature mice. (a) Schematic
representation of the prolonged repetitive partial depletion protocol in mice by intraperitoneal injection of GCV starting at 8 weeks, every
2 weeks, and until mice were 54 weeks. After treatment, mice were sacrificed at 56 weeks of age. (b) Quantification of body mass (g) in Sox2‐
TK transgenic animals after GCV (n = 5) or vehicle (HBSS; n = 2) treatment. (c) Quantification of relative body mass composition (% of fat and
lean mass) in Sox2‐TK transgenic animals after GCV or vehicle (HBSS) treatment. (d) SAbetaGal staining of kidney sections from Sox2‐TK
transgenic animals after GCV or vehicle (HBSS) treatment. (e) Quantification of the number of SAbetaGal positive cells observed in d. (f)
Chemiluminescence quantification of SAbetaGal activity using Galacton as a substrate. (g) Quantification of mRNA expression by QPCR of
Ink4a, Ink4b, Il6, Mmp1, Serpine1, and Timp1 in kidneys from Sox2‐TK transgenic animals after GCV or vehicle (HBSS) treatment. Results are
presented as mean ± SD. ***p < 0.001, **p < 0.01,*p < 0.05, n.s.: nonsignificant
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graying (Harkema, Youssef, & Bruin, 2016). We evaluated these

parameters at the end of the treatment and found a significantly

higher proportion of animals showing kyphosis in the Sox2‐TK trea-

ted group compared to the Sox2‐WT group (Figure 1c). Also, the

percentage of animals showing gray hair was significantly higher in

the Sox2‐TK group treated with GCV compared to the Sox2‐WT

treated mice (Figure 1d). At last, we decided to test hair regrowth

capacity of these animals as a surrogate functional readout of aging

of the animals (Finch, 1973). Sox2‐TK mice treated with GCV

showed a clear reduction in their potential to regrow hair after

plucking, with a majority of animals completely unable of regrowing

hair after 15 days, compared to Sox2‐WT treated mice (Figure S3),

pointing to a functional defect in Sox2‐TK mice after treatment.

Since the gradual accumulation of senescent cells in tissues with

age is a hallmark of aging (Jeyapalan & Sedivy, 2008), we decided to

assess the number of cells undergoing senescence after partial repet-

itive Sox2+ cell exhaustion in the Sox2‐TK and Sox2‐WT mice trea-

ted with GCV. For this, we analyzed the expression of the most

widely used marker of the process, the senescence‐associated beta‐
galactosidase activity (SAbetaGal) (Dimri et al., 1995) in kidneys from

treated animals, an organ typically showing a clear age‐related dete-

rioration. When we used frozen kidney sections to perform SAbeta-

Gal staining reactions, we observed a clear positive X‐Gal staining
indicative of induction of cell senescence that appeared higher in

GCV‐treated Sox2‐TK mice compared to Sox2‐WT mice (Figure 1e).

It is interesting that Sox2 is not expressed in the kidney suggesting

that a systemic response is triggered by the exhaustion of the

Sox2+ cells, causing the induction of cell senescence at distant tis-

sues. Quantifications of senescent positive cells corroborated this

observation (Figure 1f). To confirm this result, we used an alternative

substrate that produces a luminescent reaction, Galacton (Bassaneze,

Miyakawa, & Krieger, 2008), instead of a color reaction obtaining

very similar results (Figure 1g). In addition, we measured the expres-

sion levels of several senescence marker genes: cell cycle inhibitor

Ink4a (Krishnamurthy et al., 2004), matrix metalloprotease Mmp3

(Komosinska‐Vassev et al., 2011), and the serine protease inhibitor

Serpine1 (Goldstein, Moerman, Fujii, & Sobel, 1994; Mu & Higgins,

1995). The mRNA levels of these genes were elevated in Sox2‐TK
mice after GCV treatment, although in the case of Ink4a the increase

did not reach statistical significance (Figure 1h), corroborating the

induction of senescence in Sox2‐TK tissues.

We reasoned that the premature aging phenotype that we were

observing was only partial and moderate probably due to the short

protocol of GCV treatment under which we were examining the

effect of the partial depletion of adult progenitor/stem Sox2+ cells.

To test this hypothesis, we decided to subject our mice to a longer

protocol of around 1 year of repetitive partial depletion of Sox2+

adult cells by injecting GCV intraperitoneally in Sox2‐TK mice every

2 weeks, starting at 8 weeks of age and until they were 54 weeks

old (Figure 2a). Control mice were equally injected with vehicle,

HBSS. During the course of the experiment, we observed a progres-

sive decline in spontaneous activity and exploratory behavior in the

GCV‐treated mice. We stopped GCV administration after 24

injections and sacrificed the animals when they were 56 weeks of

age. GCV‐treated mice showed a clearly reduced total body mass

(Figure 2b), and when we determined lean to fat body mass using

echoMRI, we observed a clear reduction of fat mass (Figure 2c) in

GCV‐treated mice compared to HBSS control mice, in agreement

with our observations for the shorter depletion protocol. We then

analyzed the expression of SAbetaGal to test for the accumulation

of senescent cells in kidney tissue sections and observed a strong

positive staining in samples from GCV‐treated mice compared to

control samples that were, for the most part, negative (Figure 2d).

Indeed, quantification of SAbetaGal positive cells in various sections

from kidneys extracted from different animals revealed a massive

induction of cell senescence after GCV treatment (Figure 2e). To

confirm this result, we used again the alternative luminescence sub-

strate for SAbetaGal activity, Galacton. In agreement with the X‐Gal
data, Galacton revealed a massive induction of senescence in the

kidneys of GCV‐treated mice (Figure 2f). We also measured the

mRNA expression of different genes linked to the senescent cell

response, such as Ink4a (Krishnamurthy et al., 2004), Ink4b (Malum-

bres et al., 2000), Il6 (Acosta et al., 2008; Kuilman et al., 2008),

Mmp1 (Benanti, Williams, Robinson, Ozer, & Galloway, 2002), Ser-

pine1 (Goldstein et al., 1994; Mu & Higgins, 1995), and Timp1

(Komosinska‐Vassev et al., 2011). In all cases, we observed a statisti-

cally significant increase in the levels of mRNA for these genes, in

agreement with the notion of a strong induction of senescence, a

response typically associated with advanced aging (Figure 2g).

These observations demonstrate that promoting adult stem cell

depletion can lead to a systemic response that can trigger senes-

cence induction and premature aging of tissues, pointing to stem cell

exhaustion as a causal factor in physiological aging.
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