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Abstract 

The aim of this study was to evaluate the feasibility of using phosphate rock and dolostone as fertilizer and 

amendment, respectively, for application in tropical acid soils. The dissolution of different particle-size fractions 

by water and citric acid was studied. Laboratory column experiments were run following a completely 

randomized design, by using 0.063 – 0.25, 0.25 – 0.5, and 0.5 – 2 mm particle-size fractions of both rocks. Each 

rock particle-size was subjected to exhaustive dissolution with distilled water, citric acid solution at pH 4, and 

citric acid solution at pH 2, with the following extraction times: 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. The 

dissolution of both rocks depended on particle-size, leaching solution and extraction time. The dissolution rate of 

rock-forming minerals augmented as the specific surface area increased, corresponding to a decrease in particle-

size. In all cases, the kinetics of release was characterized by two phases: 1) a first stage of rapid release that 

lasted 24 h, which would ensure short-term nutrient release, and 2) a second stage of slow release (after 24 h), 

representing the long-term nutrient release efficiency. Both rocks are suitable as slow release fertilizers in 

strongly acid soils and would ensure the replenishment of P, Ca, and Mg. A combination of fine and medium 

particle-size fractions should be used to ensure high nutrient release efficiency. Much work has to be done to 

assess the overall impact of considerable amounts of fresh rocks in soils. 
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1. Introduction 

Worldwide acid soils are mainly present into two belts: 1) humid northern temperate zones, which are mostly 

occupied by coniferous forest, and 2) humid tropics, which host savannah systems and tropical rainforests (FAO, 

2016). Acid soils are deficient in plant nutrients such as phosphorus (P), nitrogen (N), potassium (K), calcium 

(Ca) and magnesium (Mg), while having increased availability of phytotoxic elements like aluminium (Al) and 

manganese (Mn) (van Straaten, 2002, 2006; Caires et al., 2005; van Raij, 2011; FAO, 2016). These deficient 

elements (with exception of N) are mostly derived from rocks and minerals (Chien et al., 2011).  

Since soil acidification strongly reduces crop production, amelioration of acid soils is paramount for food 

security and agriculture sustainability. Application of fertilizers can satisfy the nutrient deficiency in acid soils 

(Chien et al., 2011), but the cost of fertilizers, particularly of P fertilizers, has increased substantially worldwide 

(van Straaten, 2002, 2006; Chien et al., 2011). Therefore, finding alternative local sources of plant nutrients 

which could supply P or other elements for sustainable crop production is a practical, low-cost, long-term 

strategy that addresses the need of poor farmers (Appleton, 2002; van Straaten, 2002, 2006; Zapata and Roy, 

2004).  

 Apatites and calcareous rich rocks have been tested for their application in agricultural acid soils. For instance, 

it is known that the reactivity of apatites can be increased through grinding, and this increases P availability and 

produces similar yield responses and agronomic effects to those of triple superphosphate fertilizer (van Straaten, 

2002, 2006; Szilas et al., 2008).  

Thus the application of limestone, possibly with a certain amount of dolomite, can mitigate soil acidity, prevent 

Al and Mn toxicity (Álvarez et al., 2012; van Straaten, 2002, 2006, 2007), and provide Ca and Mg to the soil 

(Viadé et al., 2011). Consequently, food production and quality are enhanced (Maria and Yost, 2006). In 

addition, both apatitic and calcareous rocks may contain a wide range of minor chemical elements, some of 

which are beneficial for plant nutrition (IAEA, 2002; Szilas et al., 2007; van Straaten, 2006).  

In Mozambique, acid soils cover ~70% of the country (Gouveia and Azevedo, 1949). Here, two important rock 

outcrops merit consideration: a metamorphic phosphate rock and a dolostone. Mineralogically, these two rocks 

are extremely relevant for mitigating acidity and replenishing P, Ca, and Mg. Their importance is even more 

significant considering that African Countries cannot afford to purchase expensive water soluble phosphatic 

fertilizers, but could exploit their own rock outcrops, with reduced and controlled environmental risks 

(Khasawneh and Doll, 1978; Appleton, 2002; van Straaten, 2006, 2007).  
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Phosphatic rocks and dolostones vary widely in their mineralogical and physicochemical properties. 

Consequently, their reactivity and agronomic potential also vary (IAEA, 2002; Szilas, 2002; Szilas et al., 2007, 

2008). Thus it is prudent to evaluate their fertility value in terms of nutrient release to assess their possible use 

for crop production while minimizing fertilizer requirements (van Straaten, 2002; Zapata and Roy, 2004).  

The dissolution rate of rocks tested for their possible use in agriculture mainly depends on their mineralogical 

composition as well as on the solubilizing acid and pH of the extracting solution (Goyne et al., 2006; Calvaruso 

et al., 2013). Low molecular weight organic acids (LMWOAs) are preferred to others, citric and oxalic acids 

being the most used (IAEA, 2002). In fact, citric acid originates in soil from the secretions of plant roots and soil 

microorganisms like fungi, lichens, and prokaryotes (Olsson and Wallander, 1998; Goyne et al., 2006; 

Joergensen and Wichern, 2008; Klugh-Stewart and Cumming, 2009; Goyne et al., 2010), and can simulate the 

weathering occurring in the rhizosphere (Turpault et al., 2009; Calvaruso et al., 2013).  

For instance, when apatites are exposed to citrate and oxalate ligands, the release of P and Ca is the highest 

(Goyne et al., 2006, 2010). Instead, the dissolution of calcareous minerals such as calcite (CaCO3) and dolomite 

[CaMg(CO3)2] depends on solution pH, pCO2, temperature, and mineral properties such as crystallinity (Yasuda 

et al., 2013) as well as specific surface area (van Straaten, 2002, 2006, 2007). Dolomite dissolution rates are 

usually lower than those of calcite (Liu et al., 2005; Dewaide et al., 2014).  

This study aims to investigate the feasibility of using a phosphate rock and a dolostone from local sources in 

Mozambique, ground to different grain sizes (0.063-0.25, 0.25-0.5, and 0.5-2 mm), as sources of P, Ca, and Mg 

or acid-neutralising agents. We assessed their effectiveness by testing their solubility in water and different 

concentrations of citric acid solutions in open-system columns under controlled conditions. We hypothesize that 

both rocks will provide substantive nutrient release in support of agronomic production and that finer particle 

size will facilitate enhanced solubility. 

 

2. Materials and Methods 

2.1. Sample preparation 

Both studied rocks are from Mozambique. The phosphate rock was collected from the Nampula Province deposit 

in the Evate district, while dolostone was collected from the Mount Muambe deposit located in the Tete 

Province. Blocks of rocks were fragmented by using a grinding press; then the rock fragments were ground using 

an agate mortar. For both rocks, three size-fractions were obtained by dry sieving: 0.063-0.25, 0.25-0.5 and 0.5-2 

mm. 
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2.2. General characterization 

The mineralogical composition was determined on powdered rocks by x-ray diffraction with a Philips PW 1830 

diffractometer, using the Fe-filtered Co K1 radiation (35 kV and 25 mA); the step size was 0.02° 2 and the 

scanning speed was one second per step. A semi-quantitative estimation was obtained after the identification of 

the minerals on the basis of their characteristic peaks as reported by Dixon and Schulze (2002), and MINCRYST 

database (http://database.iem.ac.ru/mincryst, accessed on 22th June 2016). 

The elemental analysis of both rocks was obtained using DP-6000 Delta Premium portable X-ray fluorescence 

(PXRF) spectrometer (Olympus, Waltham, MA, USA) according to Weindorf and Chakraborty (2016). The 

instrument features a Rh X-ray tube operated at 15–40 kV with quantification via ultra-high resolution (165 eV) 

silicon drift detector. The analysis was firstly conducted in “Soil Mode” (three beams of 30 s each), and secondly 

in “Geochem Mode” (two beams of 30 s each). Therefore, the contents of Al, Si, P, Mg, Ca, and S were 

validated using “Geochem Mode” readings, and the remaining elements were validated using “Soil Mode” 

(Weindorf and Chakraborty, 2016).  

Total carbon concentration in dolostone was determined using CHNS-O analyser (EA1110, Carlo Erba 

Instruments, Milan, Italy). The fractions of phosphate rock were analysed for water soluble P, P extractable with 

neutral ammonium citrate (NAC-P), P extractable with 2% citric acid solution (citric-P), and P extractable with 

2% formic acids solution (formic-P) as per Rajan et al. (1992). For each size- fraction of both rocks, 10 g of 

sample was added to 25 mL of distilled water, and the abrasion pH was measured after 6 min of solid – liquid 

contact (Romero et al., 1987). To measure the pH at 1.5 h, the suspension was stirred for 1 h on an oscillating 

table and left to rest for 30 min before repeating the pH measurement; in a similar way, pH was measured at 24 h 

(Pansu and Gautheyrou, 2006).  

 

2.3. Leaching experiment 

To assess the long-term dissolution (reactivity) of the different size-fractions of both rocks, two sets of column 

experiments were conducted using a completely randomized design. Samples of the three particle-size fractions 

(0.063 – 0.25, 0.25 – 0.5 and 0.5 – 2 mm) of both rocks were treated for 15 days with different leaching solutions 

(distilled water, citric acid solution at pH 4 and citric acid solution at pH 2); leachates were retrieved at the 

following extraction times: 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. Similarly, percolations without rock 

sample were conducted as controls. The experimental design consisted of three replicates for each fraction and 

leaching solutions.  

http://database.iem.ac.ru/mincryst
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The experiments were conducted in an isolated room at a temperature of 25 ± 1oC. The leaching solutions were 

prepared 24 h prior to use by dissolving monohydrate citric acid crystals (AR manufactured by Carlo Erba 

Reagents) in distilled water. The citric acid solution at pH 4 (≈ 10-4 M) was considered representative of the soil 

solution conditions of acid soils from tropical environments, while the citric acid solution at pH 2 (≈ 10-1 M) was 

taken as an example of extreme acidity conditions that only rarely can occur in soil, even in the rhizosphere.  

Each column (diameter x length of 30 x 400 mm) of 200 mL capacity was fitted with 0.3 g of fiberglass at the 

bottom to prevent rock fragments loss. Thus, 1.000 g of each rock size-fraction was put into the column, and 100 

mL of leaching solution were added (solid:liquid ratio of 1:100, w:v). At each extraction time, the liquid was 

allowed to percolate at a constant rate (100 mL h-1). Thus, 100 mL of fresh leaching solution was added to each 

column.  

The elements measured in the leachate of both rocks were Ca, Mg, K, Na, Ba, Al, Fe, Mn, Zn, Cd, Ni, and Pb; 

only in those from phosphate rock fractions was P also determined. The analyses of leachates were carried out 

the same day they were collected. The cations were measured by an inductively coupled plasma optical emission 

spectrometer (Perkin Elmer Optima 8300) as described by Boss and Fredeen (1997), while a simple colorimetric 

method based on ascorbic acid reduction of the ammonium phosphomolybdate complex (Kuo, 1996) was used to 

measure P in the leachates.  

 

2.4. Kinetic analysis 

The Langmuir (1997) equation below was used to determine the release rate using the data obtained by the 

leaching experiment, assuming that the dissolution of minerals in phosphate rock and dolostone were controlled 

by surface reaction: 

dC(t)/dt = k;  Integrated rate law: C = Co + kt, 

where C(t) (mol L-1)  is the concentration of released species in the bulk solution at the time t; C (mol L-1) is the 

concentration of released species in the leachate after the release; Co (mol L-1) is the initial concentration of the 

species in bulk solution before the release starts; k (mol L-1 s-1) is the rate constant.  

 

2.5. Statistical analysis 

R version 3.1.2 (2014-10-31) was used for statistical analysis. Single extraction data were analysed for analysis 

of variance (ANOVA) after a boxcox transformation (Meloun et al., 2005) of the data to perform parametric tests 

(Shapiro-Wilk normality test and Bartlett test of homogeneity of variances). A multiple comparison Tukey test 
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(at 5% significance) was used to compare the means. Similarly, data obtained from the leaching experiments 

were analysed using parametric tests, but they revealed a non-normal distribution and heteroscedasticity. 

Therefore, summary statistics (mean, variance, standard error and deviation) were used whenever possible.  

 

3. Results and discussion 

3.1 Mineralogical and chemical composition of the two rocks 

X-ray diffraction analysis showed that the phosphate rock was mainly made of fluoroapatite, while the dolostone 

was made of dolomite (Figs. 1 and 2, respectively). Both rocks contained traces of phyllosilicates. The major 

constituent elements of the phosphate rock were Ca and P, followed by Si, Al, Fe, K, Sr, and Ba; all the other 

elements were present in concentrations close to or <1000 mg kg-1 (Table I).  

The rock P content was ~24%, equivalent to 55% of P2O5, which satisfies the European legislation in terms of 

total P content to be used for direct application to the soil, as it exceeds the threshold value of 25% of P2O5 

(European Commission, 2000). The concentrations of trace elements were similar to those commonly reported 

for phosphate rocks (Adriano, 2013). The concentrations of As and Hg were moderately high, but they should 

not be problematic for the application of phosphate rock to soils at moderate rates.  

The major elements in the dolostone were Ca, Mg, and C, followed by Si, P, Al, Fe, K, Mn, Ba, S, Sr, and Ti, 

with the other elements present in amounts <40 mg kg-1 (Table I). The richness in Ca, Mg, and C was ~ 29.4, 

18.2, and 8.2%, respectively, equivalent to ~ 41, 30, and 41% of the respective oxides. The Ca:Mg molar ratio of 

1:1 confirmed the mineralogical observation indicating that the main rock forming mineral was dolomite (Al-

Awadi et al., 2009). This dolostone can be considered completely safe given its low concentration of potentially 

hazardous trace elements. 

 

3.2. Phosphate rock 

3.2.1. General properties 

For the phosphate rock, the abrasion pH decreased significantly (P < 0.05) with contact time for all fractions, 

ranging from 9.36 for the finest fraction at 6 min of solid-liquid contact, to 7.81 for the coarsest fraction after 24 

h (Table II). As expected, the finest fraction presented higher pH values (P < 0.05) compared with the other 

fractions. This was ascribed to the higher specific surface area of this fraction. Newly formed mineral surfaces 

like those obtained by grinding are able to release alkaline and alkaline-earth elements and adsorb H+, so to 

induce an abrasion pH that lasts until other factors perturb the suspension (Grant, 1969; Romero et al., 1987). 
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The temporal decrease of abrasion pH was ascribed to the dissolution of atmospheric CO2 (Grant, 1969) and 

possibly to surface passivation (Cuniglio et al., 2009).  

Single extractions of P by water, NAC, 2% citric acid solution and 2% formic acid solution showed that the 2% 

formic acid solution was able to extract the highest (P < 0.001) amount of P (Table III). The increase of 

extractable P with the grinding for all the extractants except water indicates the highest reactivity of the finest 

fraction of this rock (Rajan et al., 1992). Therefore, taking 2% formic acid solution as the best predictor of 

agronomic effectiveness of phosphate rock (Rajan et al., 1992), the finest size fraction features high potential (P 

< 0.001) for a direct application in strongly acid soils (Ghani et al., 1994; Rajan et al., 1996; Zapata and Roy, 

2004). 

 

3.2.2. Long-term release in column experiments 

(i) Cumulative releasing pattern of P, Ca, and Mg  

The cumulative release of P, Ca, and Mg in water and in citric acid solutions at pH 4 and pH 2 from different 

particle sizes of phosphate rock was calculated for the different extraction times. Other elements such as K, Na, 

Ba, Al, Fe, Mn, Zn, Cd, Ni, and Pb were leached in concentrations always lower than 100 mmol kg-1. The 

cumulative release of P, Ca and Mg showed an increasing trend for all leaching solutions (Fig. 3). The rate of 

release was relatively high in the first 24 h of leaching and decreased thereafter, indicating that most of the 

extractable nutrients were released within 24 h. For all nutrients and leaching solutions, the highest cumulative 

release was obtained for the finest fraction (P < 0.01), followed by the medium and, then, by the coarse fraction 

(Table IV).  

The citric acid solution at pH 2 leached the highest amount of nutrients. For instance, at the end of the 

experiment, citric acid at pH 2 had leached from the finest fraction 27 and 86 times the amount of P obtained 

with the citric acid at pH 4 and water, respectively. The amounts of P and Ca extracted by the leaching 

experiment were higher than those extracted by single extraction in both water and 2% citric acid solution (Table 

V). 

For Ca there was no difference between the coarse and medium size-fractions in water and citric acid solution at 

pH 4 and for all the extraction times. The same was true for Mg in the finest and medium size-fractions in the 

case of citric acid solution at pH 2 during the first 72 h of extraction; thereafter the medium size-fraction 

presented a slightly higher cumulative release than the finest size fraction. 
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(ii) Release kinetics of P and Ca 

The release kinetics was determined for both P and Ca, the most important nutrients in the phosphate rock 

fractions. During the leaching period the release rate decreased sharply up to 24 h, to steadily decrease until 

reaching values close to zero (Fig. 4). The finest fraction showed a higher release rate than the other particle-size 

fractions, which did not differ significantly between them, indicating that the kinetics was controlled by 

superficial processes (Dorozhkin, 2012). 

The citric acid solution at pH 2 showed the highest release rate, followed by citric acid solution at pH 4. The 

cumulative curves showed two leaching stages: 1) a rapid release during the first 24 h of leaching ascribed to the 

presence of easily dissolvable mineral surfaces probably activated during the grinding process, which could be 

taken as the short-term nutrient release efficiency (Truong and Fayard, 1995; Zapata and Roy, 2004; Gholizadeh 

et al., 2009), and 2) a slow release after 24 h of leaching, where the dissolution of the bulk mineral begins 

representing the medium- to long-term nutrient release efficiency, which is agronomically relevant.  

Most of the solid had not dissolved when the near-zero release rate was reached, and therefore only the thin layer 

of superficial, very fine, poorly crystalline mineral material had dissolved. The amount of P and Ca extracted in 

this stage was similar among the particle-size fractions (P < 0.01) for citric acid at pH 2 (Table IV). The bulk 

mineral in the second stage was approaching the equilibrium by reaching the metastable conditions characterized 

by the persistence of apatite crystals with a passivated surface that reduces the reactivity of the mineral grain 

(Cuniglio et al., 2009). Because of this, mineral grains in contact with unsaturated solutions release lesser 

amounts of ions than expected from the mineral formula (Dorozhkin, 2012).  

In our trial we demonstrated that the size of rock fragments and the leaching solution strength were the 

determinant factors for the release rates. The ideal (congruent) dissolution of fluoroapatite promoted by an 

organic acid is given below (adapted from Calvaruso et al., 2013): 

Ca5(PO4)3F + 6 AH  5 Ca2+ +6A- + 3 H2PO4
- + F-, 

where A- represents the organic anion 

An appropriate supply of hydrogen ions (H+) and the removal of the reaction products (Ca2+, H2PO4
-, and F-) are 

necessary for the reaction to proceed forward (Robarge, 1999). The open system used in this study (columns) 

ensured the removal of the reaction products through solution percolation, while the citric acid solutions supplied 

H+ so the release could go forward. The mechanism of dissolution of fluoroapatite by LMWOAs such as citric 

acid is ascribed to the supply of H+, the formation of surface complexes that weaken and break the bonds among 

metals and lattice oxygen (Goyne et al., 2006; Dorozhkin, 2002, 2012), and the complexation of metals (Ca, Fe, 
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and Al) by carboxyl ligands (-COOH). All of these reactions entail the release of phosphorus (H2PO4
-) from the 

mineral (Goyne et al., 2006; Calvaruso et al., 2013).  

The phosphate rock had a molar Ca/P ratio of ~ 1.2 (Table I). During the leaching in water and citric acid 

solution at pH 4, the molar Ca/P ratio in solution did not reach 0.5 (Fig. 5). The much lower Ca/P ratio in the 

leachates indicates the occurrence of an incongruent dissolution of fluoroapatite, since P was being released 

preferentially over Ca. With citric acid solution at pH 2, the fluoroapatite dissolution seemed to be incongruent 

too, even though between 24 and 72 h of leaching the Ca/P ratio reached values close to the Ca/P ratio in the 

initial solid phase. Yet, the finest size-fraction always displayed the highest Ca/P ratio. 

According to Harouiya et al. (2007), Dorozhkin (2002, 2012), and Crundwell (2014, 2015, 2016), Ca-apatites in 

acid solutions dissolve by ionic detachment of Ca and orthophosphate ions from the solid toward the solution. In 

our case, the formation of a Ca-rich layer (self – inhibition model) in both water and citric acid solution at pH 4, 

probably was determinant in decreasing the dissolution rate of apatite in the second stage. Hence, the diffusion of 

Ca and orthophosphate ions occurred from the surface layer formed, so leading to incongruent dissolution 

(Dorozhkin, 2002, 2012).  

The Ca rich layer was probably thicker in the second stage of leaching because of the major contact time 

between the unsaturated solutions and apatite crystals. Because of this, the dissolution of fluoroapatite in citric 

acid solution at pH 2 proceeded at a certain rate in first 72 h of extraction, and decreased thereafter due the lack 

of removal of the Ca rich layer formed during the longer periods of solid-solution contact.  

The citrate anion (and others such as oxalic, formic, etc.) have higher affinity for Ca than orthophosphate (Goyne 

et al., 2006; Dorozhkin, 2002, 2012) and plays a considerable role in the dissolution of phosphate rock (Wei et 

al., 2011; Calvaruso et al., 2013). Therefore, the citric acid used in the leaching experiments may allow 

predicting the dissolution of phosphate rocks in acid soils. The LMWOAs produced in the soil rhizosphere by 

root exudates and microbial activity (Marschner et al., 2011; Wei et al., 2011) has the capability to solubilize 

phosphatic particles and increase the availability of P (Kpomblekou and Tabatabai, 2003; Li et al., 2011; Cocco 

et al., 2013; Gómez and Carpena, 2014; De Feudis et al., 2016).  

The dissolution of phosphate rock fractions can be increased by the removal of reaction products, in the plant-

soil system and, even more, in the rhizosphere. Thus, Ca uptake may increase rock particle solubilization and, 

consequently, the availability of P for plants and microrganisms (Marschner et al., 2011; Panhwar et al., 2014).  
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3.3. Dolostone 

3.3.1. General properties 

Similar to phosphate rock, the abrasion pH of dolostone decreased significantly with contact time for all the 

particle-size fractions ranging from 9.57 at 6 min for the medium size fraction (0.25-0.5 mm) to 8.25 after 24 h 

for the coarse size fraction (Table II). There were no significant differences among the size fractions during the 

contact time. As in the case of the phosphate rock fractions, the temporal decrease of abrasion pH can be 

attributed to the dissolution of atmospheric CO2. 

 

3.3.2. Long-term release in column experiments 

 (i) Cumulative releasing pattern of Ca, Mg, and K  

Ca and Mg were the major elements leached during the extraction period.  Other elements such as Na, Ba, Zn, 

Cd, Ni, and Pb were present in concentrations close to or lower than 5 mmol kg-1. Despite elements such as Fe, 

Mn, and Al being leached in concentrations lower than 30 mmol kg-1, namely higher than K, here we discuss K 

together with Ca and Mg as plant macronutrients. The cumulative release of Ca, Mg, and K showed an 

increasing trend in all leaching solutions (Fig. 6). The release rate for Ca and Mg was relatively high in the first 

24 h of leaching, and decreased thereafter. Among the particle-size fractions, the finest one showed the 

maximum cumulative release, followed by the medium size for Ca and Mg. As expected, the citric acid solution 

at pH 2 extracted substantively more nutrients than the other leaching solutions.  

The cumulative pattern of K differed from other nutrients as the medium and coarse size-fractions showed a 

linear trend after 72 h of leaching for both citric acid solutions at pH 4 and 2. Interestingly, water dissolved more 

K from the finest and medium fractions than citric acid at pH 4 did; even more surprisingly, citric acid at pH 4 

dissolved less K from the fine and medium fractions than from the coarsest fraction. We ascribed this behaviour 

to a mineral phase (probably calcium citrate) that precipitated upon dissolution of the fine and medium fractions 

and that prevents the release of K. 

 

(ii) Release kinetics of Ca and Mg  

The kinetics of release was assessed for both Ca and Mg as they were the most important nutrients in dolostone. 

During the leaching period the release rate decreased sharply up to 24 h, followed by a steady decrease until 

reaching values close to zero (Fig. 7). The finest size fraction showed a slightly higher release rate than the other 
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fractions. There were no significant differences between the medium and coarse sizes. The citric acid solution at 

pH 2 showed much higher release rates than the other leaching solutions. 

 Two stages of release were evident for all leaching solutions: 1) a stage of fast release in the first 24 h, and 2) a 

stage of slow release after 24 h for all leaching solutions, probably due to the precipitation of calcium citrate 

during the long period of solid/liquid contact (Al-Khaldi et al., 2007). During this second stage, probably 

characterized by incongruent dissolution, the rates of the released Ca and Mg were higher for medium and coarse 

particle-size fractions (P < 0.01) in citric acid solution at pH 2, while there was not much difference among 

particle size fractions in water and citric acid solution at pH 4 (Fig. 7, Table VI).  

The release rate of Ca was twice that of Mg in both water and citric acid solution at pH 4, and similar for both 

elements in citric acid solution at pH 2 because of the considerable amounts of Mg dissolved by this leaching 

solution. In water and citric acid solution at pH 4, Ca dissolved preferentially compared to Mg during most of 

the extraction time and the releasing was non-stoichiometric (Fig. 5). In citric acid solution at pH 2, after a short 

period of preferential release of Ca, the molar Ca/Mg ratio dropped to values close to 1, the Ca/Mg ratio in 

dissolved rock, because of the low pH (Pokrovsky et al., 2009). The ideal (congruent) dissolution of calcareous 

minerals due to an organic acid is given below (adapted from Pansu and Gautheyrou, 2006): 

CaCO3 + 2AH  Ca2+ + 2A- + H2O + CO2 (fast reaction) 

MgCO3 + 2AH  Mg2+ + 2A- + H2O + CO2 (slow reaction), 

where A- represents the organic anion 

The dissolution rate of dolomite is generally slower than that of calcite and in acid solution is affected by the 

transport rate of the reactants, surface reaction, and transport rate of products away from the surface (Yasuda et 

al., 2013). The same as in the phosphate rock, the open system of columns used in this study ensured the removal 

of products and the supply of H+ by citric acid solutions, so favouring the dissolution of dolostone. This 

explanation is in accordance with the sharp decrease of Ca/Mg ratio in the first 24 h of leaching, which was due 

to the increase of Mg release. 

In citric acid solution at pH 2, the steady decrease of Ca/Mg ratio after 24 h of leaching was ascribed to higher 

dissolution of the remaining carbonates (enriched in Mg). The higher affinity of the citrate anion for Ca over Mg 

(Dorozhkin, 2002, 2012) and the leaching of the reaction products were the driving force of dolostone 

dissolution. The high citrate concentration in citrate solution at pH 2 favored the complexation of Mg, rendering 

the dissolution congruent in the later periods of leaching. Thus, this type of rock can be used for pH correction 
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and Ca plus Mg replenishment for plant uptake, while mitigating Al toxicity (Conyers et al., 1996; Conyers, 

2003; Viadé et al., 2011; Bothe, 2015; da Costa and Crusciol, 2016; Tiritan et al., 2016).  

The LMWOAs such as citric acid promote dolostone dissolution by complexing both Ca and Mg from the rock 

surface (Manahan, 2000; Zimdahl, 2015) resulting in an increase of nutrients (Panhwar et al., 2014; da Costa and 

Crusciol, 2016). Based on leaching curves, the dolostone will have a much higher impact in strongly acid soils, 

even though the slower release rate of dolomite within the dolostone will ensure the long-term efficiency of 

nutrient release. 

 

4. Conclusions 

The leaching experiments run in an open-system (columns) under controlled conditions showed that the nutrient 

release from phosphate rock and dolostone fraction was mainly a function of particle-size, strength of the 

leaching solution, and time. Increased concentrations of citric acid solution resulted in a greater dissolution. The 

application of the tested rocks fractions to strongly acid soils from tropical areas is suitable as they behave like 

slow release fertilizers that are able to replenish the soil with P, Ca, and Mg with the benefit of liming.  

Application of the coarse size fraction (0.5 – 2 mm) of both rocks demands less energy inputs for crushing and 

grinding than other sizes; however the reactivity of this size fraction is low, and its application to the soil would 

be much less effective than finer size-fractions. The application of both fine and medium grained materials might 

represent a good balancing to ensure a short and medium-term release of nutrients and alkalizing species. 

Managing the rhizosphere activities to promote the production of LMWOAs will be a good strategy to improve 

nutrient release by these rocks fractions in acid soils. Much work has to be done to transfer these lab results to 

the field, in particular on the overall impact of considerable amounts of fresh rocks added to tropical soils. 
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Table I 
Elemental analysis and corresponding composition in oxides of the phosphate rock and dolostone from Mozambique used for the trials. Numbers in 

parentheses are the standard deviations (n=3) 

Phosphate rock 
 

Dolostone 

Element mg kg-1 Oxide mmol kg-1 
 

Element mg kg-1 Oxide mmol kg-1 

Si 20,161 (240) SiO2 718.0 (8.6)  Si 12,942 (242) SiO2 460.9 (8.6) 

C < LOD a) CO3 < LOD  C 82,122 (3250) CO3 6843 (271) 

Al 7684 (485) Al2O3 142.8 (9.0)  Al 2439 (1241) Al2O3 45.3 (23.1) 

Fe 7378 (63) Fe2O3 66.1 (0.6)  Fe 1411 (19) Fe2O3 12.6 (0.2) 

P 239,666 (690) P2O5 3866 (11)  P 2801 (160) P2O5 45.2 (2.6) 

Ca 362,923 (5,277) CaO 9073 (132)  Ca 293,958 (1751) CaO 7349 (44) 

Mg <LOD  MgO <LOD  Mg 181,719 (4508) MgO 7478 (186) 

K 3275 (123) K2O 42.0 (1.6)  K 695 (67) K2O 8.9 (0.9) 

S <LOD SO2 <LOD  S 315 (31) SO2 9.8 (1.0) 

Ba 2004 (112) BaO 14.6 (0.8)  Ba 332 (56) BaO 2.4 (0.4) 

Sr 2572 (39) SrO 29.4 (0.5)  Sr 285 (4) SrO 3.3 (0.1) 

Cl 1254 (171) ClO2 35.4 (4.8)  Cl <LOD ClO2 <LOD 

Ti 1228 (22) TiO2 25.7 (0.5)  Ti 114 (8) TiO2 2.4 (0.2) 

Mn 498 (11) MnO2 9.1 (0.2)  Mn 448 (8) MnO2 8.2 (0.2) 
a) LOD - Limit of detection 
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Table II 

  Abrasion pH at different contact times of different particle size fractions of phosphate rock and dolostone from 

Mozambique. Numbers in parentheses are the standard deviations (n=3). 

Contact time Particle size  ANOVA a) 

(hours) 0.063 – 0.25 mm 0.25 – 0.5 mm 0.5 – 2 mm Contact time Rock size  
Contact time x 

Rock size  

Phosphate rock 
  

   0.1 9.36 (0.01) aA b) 8.63 (0.23) bA 8.66 (0.02) bA 

*** *** ** 1.5 8.24 (0.07) aB 7.79 (0.01) bB 7.69 (0.01) bB 

24 8.23 (0.08) aB 7.98 (0.03) bB 7.81 (0.03) bB 

Dolostone 
   

   0.1 9.36 (0.04) aA 9.57 (0.14) aA 9.50 (0.11) aA 

*** * ** 1.5 8.73 (0.10) aB 8.81 (0.05) aB 8.66 (0.03) aB 

24 8.29 (0.03) aC 8.27 (0.03) aC 8.25 (0.03) aC 

a)   * Significant at the 0.05 probability level; ** Significant at the 0.01 probability level; *** Significant at the 0.001 

probability level. 

b) Means with different lowercase or uppercase letters (for rock size fraction or contact time, respectively) significantly 

differed per Tukey multiple mean comparison test at the 95% level of significance. 

 
 
 

Table III 
Reactivity of the different particle-size fractions of phosphate rock from Mozambique in water, neutral ammonium 

citrate (NAC), 2% citric acid solution and 2% formic acid solution. Numbers in parentheses are the standard 

deviation (n=3). The values are express as the percentage of P2O5 extracted from the rock fractions 

Particle size 

Extractant 

ANOVA a) Water NAC 2% citric acid 2% formic acid 

0.063 – 0.25 mm 0.14 (0.01) d A b) 1.90 (0.42) c A 8.74 (0.04) b A  13.34 (1.33) a A 

*** 0.25 – 0.5 mm 0.11 (0.01) d A 0.63 (0.13) c B 5.34 (0.26) b B 7.19 (0.26) a B 

0.5 – 2 mm 0.08 (0.00) c A 0.37 (0.25) b B 4.35 (0.37) a B 5.42 (0.63) a C 

a)  *** Significant at the 0.001 probability level. 
b) Means with different lowercase and uppercase letters (for extractants or particle size fraction, respectively) 

significantly differ per Tukey multiple mean comparison test at 95% of significance. 
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Table IV 

  

Cumulative amounts of P, Ca and Mg (mmol kg-1) released in water, citric acid solution at pH 4 and citric acid solution at pH 2 during the extraction time 

between 24 and 360 h by the different particle-size fractions of phosphate rock from Mozambique. Numbers in parentheses are the standard deviation 

(n=3). 

Element Leaching solution 

Particle size  ANOVA a) 

0.063 - 0.25 mm 0.25 - 0.5 mm 0.5 – 2 mm 

Rock size 

fraction 

Leaching 

solution 

Rock size fraction x 

Leaching solution 

P Water 11.8 (3.1) aA b) 6. 7 (0.5) bA 7.7 (0.6) bA 

*** *** ** Citric acid at pH 4 67.6 (2.3) aB 49.3 (5.9) bB 61.6 (4.9) aB 

Citric acid at pH 2 1874.7 (23.8) aC 1826 (35) aC 1702 (118) aC 

Ca Water 4.9 (1.6) aA 2 (0.6) bA 1.1 (0.1) bA 

*** *** ** Citric acid at pH 4 16.3 (0.8) aB 4.8 (0.3) bB 8.2 (0.8) cB 

Citric acid at pH 2 1367 (95) aC 1244 (124) aC 1308 (212) aC 

Mg Water 1.7 (0.7) aA 0.9 (0.43) bA 0.6 (0.1) bA 

*** *** ** Citric acid at pH 4 0.8 (0.2) aB 0.6 (0.2) aA 1.2 (0.0) aB 

Citric acid at pH 2 14.2 (1.3) aC 27.4 (2.4) bB 25.0 (5.4) bC 

a)  ** Significant at the 0.01 probability level; *** Significant at the 0.001 probability level. 
   

b) Means with different lowercase or uppercase letters (for rock size fraction or leaching solution, respectively) significantly differed per Tukey multiple 

mean comparison test at 95% of significance. 
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Table V 
Amounts of P and Ca (mmol kg-1) released in water and 2% citric acid solution during the leaching and single extraction by the different 

size fractions of phosphate rock from Mozambique. Numbers in parentheses are the standard deviation (n=3) 

Element Extractant 

Type of 

extraction 

Particle size  

ANOVA a) 0.063 – 0.25 mm 0.25 – 0.5 mm 0.5 – 2 mm 

P Water Single 19.7 (1.5) a A b) 15.0 (1.7) b A 11.0 (0.0) c A 

** 
Leaching 62.7 (4.6) a B 35.3 (3.2) b B 30.7 (2.1) b B 

2% Citric acid Single 1231 (5) a A 751.7 (36.1) b A 613.0 (52.0) b B 

Leaching 5375 (135) a B 4590 (197) a B 3492 (296) b B 

Ca Water Single 1.0 (0.0) a A 1.0 (0.0) a A 1.0 (0.0) a A 

** 
Leaching 16.7 (2.5) a B 9.0 (0.0) b B 7.7 (1.5) b B 

2% Citric acid Single 485.3 (18.5) a A 219.3 (17.4) b A 165.7 (4.6) b A 

Leaching 4328 (263) a B 3094 (192) b B 2285 (320) b B 

Ca:P Water Single 0.05 (0.03) a A 0.07 (0.01) a A 0.09 (0.01) a A 

** 
Leaching 0.27 (0.06) a B 0.25 (0.02) a B 0.25 (0.03) a B 

2% Citric acid Single 0.39 (0.02) a A 0.29 (0.01) a A 0.26 (0.02) a A 

Leaching 0.81 (0.05) a B 0.67 (0.02) a B 0.65 (0.05) a B 

a) ** Significant at the 0.01 probability level. 
b) Means with different lowercase and uppercase letters (for particle size fraction or type of extraction, respectively) significantly 

differed per Tukey multiple mean comparison test at 95% of significance. 
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Table VI 

Cumulative amounts of Ca, Mg and K (mmol kg-1) released in water, citric acid solution at pH 4 and citric acid solution 

at pH 2 during the extraction time between 24 and 360 h by the different particle-size fractions of dolostone from 

Mozambique. Numbers in parentheses are the standard deviation (n=3)  

Element Leaching solution 

Particle size  

ANOVA a) 0.063 – 0.25 mm 0.25 – 0.5 mm 0.5 – 2 mm 

Ca Water 57.7 (0.7) a A b) 37.9 (4.3) b A 26.9 (1.6) c A 

** Citric acid at pH 4 73.2 (16.0) a A 55.8 (1.2) a A 56.3 (4.6) a B 

Citric acid at pH 2 643.0 (413.1) a B 1747 (293) b C 1600 (64) b C 

Mg Water 26.5 (0.4) a A 23.6 (3.6) a A 13.7 (2.6) b A 

** Citric acid at pH 4 37.1 (9.0) a B 30.8 (2.2) a A 27.4 (1.7) a B 

Citric acid at pH 2 579.9 (327.0) a C 1913 (261) b B 1782 (59) b C 

K Water 0.6 (0.1) a A 0.7 (0.3) a A 0.4 (0.2) b A 

** Citric acid at pH 4 0.0 (0.0) a B 0.1 (0.0) a B 0.5 (0.1) b A 

Citric acid at pH 2 0.8 (0.1) a C 4.9 (0.5) b C 3.6 (0.5) b B 

a)  ** Significant at the 0.01 probability level. 
b) Means with different lowercase and uppercase letters (for rock size fraction or contact time, respectively) significantly 

differed per Tukey multiple mean comparison test at 95% of significance. 
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Fig. 1 X-Ray diffractogram of the phosphate rock from Mozambique, indicating a composition mostly made of fluoroapatite 

with traces of phyllosilicates. Beam: Co K1 radiation. 
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Fig. 2 X-Ray diffractogram of dolostone from Mozambique, indicating a composition mostly made of dolomite with traces of 

phyllosilicates. Beam: Co K1 radiation. 
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Fig. 3 Cumulative release of P, Ca and Mg (mmol kg-1) freed in water, citric acid solution at pH 4 and citric acid solution at pH 2 during the extraction time of 360 h by the 

different particle-size fractions of phosphate rock from Mozambique. The whiskers indicate the error bars and represent the 95% confidence interval from triplicate leachate 

samples. 
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Fig. 4 Logarithms of releasing rate (R) of P and Ca (mol L-1 s-1) for water, citric acid solution at pH 4 and citric acid solution at pH 2 during the extraction time of 360 h by the 

different particle-size fractions of phosphate rock from Mozambique. The whiskers indicate the error bars and represent the 95% confidence interval from triplicate leachate 

samples. 
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Fig. 5 Molar Ca:P and Ca:Mg ratios for water, citric acid solution at pH 4 and citric acid solution at pH 2 during the extraction time of 360 h for the different particle-size 

fractions of phosphate rock and dolostone from Mozambique. The whiskers indicate the error bars and represent the 95% confidence interval from triplicate leachate samples. 
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Fig. 6 Cumulative release of soluble Ca, Mg and K (mmol kg-1) freed in water, citric acid solution at pH 4 and citric acid solution at pH 2 during the leaching period of 360 h 

from the different particle-size fractions of dolostone from Mozambique. The whiskers indicate the error bars and represent the 95% confidence interval from triplicate leachate 

samples. 
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Fig. 7 Logarithms of releasing rate (R) of Ca and Mg (mol L-1 s-1) for water, citric acid solution at pH 4 and citric acid solution at pH 2 during the extraction time of 360 h for the 

different particle-size fractions of dolostone from Mozambique. The whiskers indicate the error bars and represent the 95% confidence interval from triplicate leachate samples. 
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