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Abstract 7 

In the food industry, the brewing sector holds a strategic economic position since beer is the most 8 

consumed alcoholic beverage in the world. Brewing process involves the production of a large amount 9 

of lignocellulosic residues such as barley straw from cereal cultivation and brewer’spent grains.This 10 

study was aimed at developing a full-scale biorefinery system for generating bio-ethanol and 11 

xylooligosaccharides (XOS) considering the mentioned residues as feedstock. Life Cycle 12 

Asssessment (LCA) methodology was used to investigate the environmental consequences of the 13 

biorefinery system paying special attention into mass and energy balances in each production section 14 

to gather representative inventory data. Biorefinery system was divided in five areas: i) reconditioning 15 

and storage, ii) autohydrolysis pretreatment, iii) XOS purification, iv) fermentation and v) bio-ethanol 16 

purification. LCA results identified two environmental hotspots all over the whole biorefinery chain: the 17 

production of steam required to achieve the large autohydrolysis temperature (responsible for 18 

contributions higher than 50% in categories such as acidification and global warming potential) and 19 

the production of enzymes required in the simultaneous saccharification and fermentation (>95% of 20 

contributions to terrestrial and marine aquatic ecotoxicity potentials). Since enzymes production 21 

involves high energy intensive background processes, the most straightforward improvement 22 

challenge should be focused on the production of steam. An alternative biorefinery scenario using 23 

wood chips as fuel source to produce heating requirements instead of the conventional natural gas 24 

was environmentally evaluated reporting improvements ranging from 44% to 72% in the categories 25 

directly affected by this hotspot.  26 
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1. Introduction 31 

The depletion of fossil fuels, the increasing concerns regarding climate change effects and the need of 32 

an environmental-friendly economy are forcing the interest towards the development of technologies 33 

based on renewable sources to produce bio-chemicals (e.g., plastics, foams, building blocks, 34 

polymers) and bio-energy (Sanders et al., 2007). In this sense, biomass plays a key role for the 35 

sustainable global development (Sanders et al., 2012). The main use of biomass is for food and feed, 36 

however, valorization of biomass-based waste is focusing the research and development since it could 37 

be used in other large scale applications and the no-competition with food/feed is guaranteed (Liu et 38 

al., 2012; Kolfschoten et al., 2014). Moreover, other derived achievements from biomass-based 39 

economies have been identified such as regional energy security and rural economies improvement 40 

(Liu et al., 2012). The implementation of biorefinery approach is attaining special attention not only 41 

from an environmental perspective but also because biorefineries offer unprecedented opportunities 42 

(Liu et al., 2012; Sanders et al., 2012). The biomass-based feedstocks can be deconstructed into 43 

multiple high-added value products depending on the selected strategy (Borrega et al., 2011; 44 

Horhammer et al., 2011; Liu et al., 2012; Kolfschoten et al., 2014; Vargas et al., 2015). Thus, the 45 

valorization sequence selected will considerably affects not only to the type of yielding products but 46 

also their yield and inputs/energy requirement. 47 

Regarding potential feedstocks used in biorefineries, there is a considerable interest in straw, a 48 

lignocellulosic by-product. Cereal straw is an agricultural residue from harvesting, which has 49 

traditionally been incorporated into the soil as nutrients and carbon supplier, directly burnt for heating 50 

purposes or used as animal beeding (Soon and Lupwayi, 2012). Nevertheless, it has attracted the 51 

attention from cellulosic ethanol industry by environmental and cost-effective issues (Kumar et al., 52 

2016; Neves et al., 2016; Vargas et al., 2016).  53 

Barley (Hordeum vulgare) is an abundant cereal in the world and it is one of the ten most common 54 

crops (Krawczy et al., 2005), being Spain placed in the fifth position in terms of global production 55 

volume (Vargas et al., 2015). One of the main barley-demanding industries is the brewing industry, 56 

where the grain is the main raw material. The high starch content and the good adherence of the 57 

husks to the grain body even after malting and milling are the rationale behind barley use in beer 58 

production (Pascari et al., 2018). Beer is the most consumed alcoholic beverage in the world (Pascari 59 

et al., 2018) so, the demand for barley grain is outstanding. According to the beer production process 60 
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(Mussatto, 2014; Pascari et al., 2018), the brewer’s spent grains (BSG) constituted by the husk and 61 

seed coat layers are the main residue from the brewing process (~ 20kg of wet brewer’s spent grains 62 

are produced per 100L of beer produced) as well as lacks economically feasible applications 63 

(Mussatto, 2014; Rojas-Chamorro et al., 2018). Moreover, cereal cultivation stage involves the co-64 

production of straw – up to 0.53 kg straw per kg grain (Larsen et al., 2012; Vargas et al., 2015). Both 65 

(spent grains and straw) are an important and cheap source of lignocellulosic material with high 66 

carbohydrate content, so multiple potential applications such as second generation bio-ethanol and 67 

high-added value products could be identified (Vargas et al., 2015, 2016). 68 

Having a look into lignocellulosic structure, it is constituted by cellulose, hemicelluloses and lignin as 69 

principal components. The cellulose, through enzymatic hydrolysis and fermentation, it might be 70 

converted to liquid fuels such as bioethanol. The hemicelluloses are considered an important source 71 

of valuable compounds as xylooligosaccharides (XOS), useful in food and pharmaceutical industries. 72 

XOS (considered novel non-digestible oligosaccharides with prebiotic potential, immunostimulating 73 

effect, anti-allergy, anti-infection and anti-inflammatory properties) are made up of β-(1,4)-linked 74 

xylose units (Chung et al., 2007; Meyer et al., 2015; Reis et al., 2014). The lignin can be used for the 75 

obtaining of high added-value products, such as resin precursors, heavy metal sequestrant, 76 

antimicrobial agents, aromatic compounds, syngas products, among others (Dávila et al., 2017). 77 

Therefore, this work deals with the large scale design and optimization of an industrial process for 78 

both barley straw and BSG valorization following a biorefinery scheme. The valorization sequence 79 

chosen for analysis includes a first step of hydrothermal pretreatment, with recovery of valuable 80 

hemicellulose-derived compounds in a separate liquid stream, and other step of simultaneous 81 

saccharification and fermentation (SSF) of the solid stream to obtain high bio-ethanol concentrations. 82 

The biorefinery scheme has been assessed from an environmental following the LCA methodology 83 

and considering a cradle-to-gate approach. To our knowledge, there is no peer-review studies 84 

available in the literature that analyse the joint production of bio-ethanol and XOS from alternative 85 

feedstocks. In the following, the production process at large scale of bio-ethanol and XOS is described 86 

in detail paying special attention to the design process.   87 

 88 

2. Methodology 89 

2.1. Life Cycle Assessment 90 
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Life Cycle Assessment (LCA) is considered one of the most developed tools for looking holistically at 91 

the environmental consequences linked to the life cycle of production processes, products or services. 92 

In this sense, it is widely used by environmental professionals and policy makers for the systematic 93 

evaluation of the environmental dimension of sustainability. Numerous studies focused on chemical 94 

and waste management processes have been environmentally assessed following the ISO 14040 95 

(2006) guidelines (Burgess and Brennan, 2001; Kralisch et al., 2014; Al-Salem et al., 2014; Dearsola 96 

et al., 2012). In addition, several authors have explored the implementation of LCA methodology in 97 

environmental studies of biorefineries (Mu et al., 2010; Neupane et al., 2013; Gilani and Stuart, 2015). 98 

Therefore, its applicability in this area is justified.  99 

 100 

2.2. Goal and scope definition 101 

The goal of this LCA study is to provide a full overview regarding the production of both bio-ethanol 102 

and XOS under a biorefinery scheme as well as to determine its environmental performance. To do 103 

so, the biorefinery process has been modelled at full-scale process based on laboratory-scale data 104 

(Vargas et al., 2015, 2016). The scale-up of chemical processes requires a certain understanding of 105 

the involved steps (Piccinno et al., 2016). Therefore, the framework proposed by Piccinno et al. (2016; 106 

2018) for scaling-up chemical production systems for LCA studies from laboratory-scale data has 107 

been followed in detail. An attributional cradle-to-gate approach has been contemplated in this 108 

research study, considering barley straw and BSG from brewery industry as key raw materials.  109 

Since an attributional approach has been considered, the impacts have been estimated from the 110 

processes and material/energy flows used directly in the bio-ethanol and XOS life cycle. Therefore, 111 

energy and mass balances have been performed for the modeling of the full-scale biorefinery plant 112 

with the aim of gathering all the required data for the Life Cycle Inventory stage. 113 

As difference to laboratory processes which are often far from being optimized (mostly in terms of 114 

resource consumption and energy efficiency) as well as they do not have the benefit of economies of 115 

scale (Piccinno et al., 2018), scale up production processes give a first approach to identify 116 

bottlenecks that should need to be improved in perspective of a possible industrial production. 117 

Therefore, a contribution analysis of the different production sections has been performed with the aim 118 

of identifying the environmental hotspots.  119 

 120 
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2.3. Functional unit and allocation procedure 121 

LCAs are often performed using a functional unit that refers to the product obtained in the production 122 

system. However, biorefineries commonly yield on multiple co-products. In biorefinery systems the 123 

choice of method for allocating environmental impacts between the co-products is a common 124 

challenge (Cherubini et al., 2011; Sandin et al., 2015) since it can considerably influence decision-125 

making strategies. In addition, allocation problems arise when it is not feasible to split involved 126 

processes or areas between the co-products. Thus, two approaches have been considered in this 127 

study to report the environmental impacts derived from the biorefinery under study. 128 

1. Approach avoiding allocation: the functional unit is considered as the portfolio of co-products 129 

(i.e., bio-ethanol and xylooligosaccharides) that are generated in the valorization route (Gilani and 130 

Stuart, 2015). Thus, environmental impacts are calculated for a reference flow of 74.22 tonnes of 131 

lignocellulosic stream that enters in the valorization pathway and corresponds with a production batch. 132 

2. Approach including allocation: the environmental impacts of the biorefinery are allocated to the 133 

co-products using a partitioning method based on the economic value (market value) of co-products. 134 

This perspective is deemed reasonable since both are target products for the biorefinery. The 135 

partitioning has been applied to areas connected to both products such as raw material reconditioning 136 

and storage (area 1) and autohydrolysis pretreatment (area 2). Regarding ancillary activities (solid and 137 

liquid waste management) and on-site emissions derived from the valorization strategies, it has been 138 

possible to identify which flow correspond to each co-product and thus, partitioning has not been 139 

required. This overriding approach is acknowledged by ISO 14044 (ISO 14044, 2006). 140 

 141 

2.4. Description of the full-scale bio-ethanol and XOS production biorefinery 142 

The raw material considered in this biorefinery is based on the combination of barley straw from cereal 143 

cultivation stage and the BSG from the brewing process. Figure 1 displays the simplified system 144 

boundaries for the biorefinery process considered under evaluation. The production process has been 145 

divided in five main areas according to the breakdown of a real industrial plant. Within each area, the 146 

different involved operations have been identified and designed in detail.  147 

 148 

<Figure 1> 149 

 150 
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Thus, it has been chosen and designed the appropriate equipment required in the biorefinery process 151 

(e.g., reactors, distillation colum, ultrafiltration unit, …) as well as other secondary machinery (e.g., 152 

pumps, heat exchangers, conveyor bets, …) resulting in the simple plant flow diagram displayed in 153 

Figure 2. A detailed description of each area and corresponding involved operations is detailed below.  154 

 155 

<Figure 2> 156 

 157 

Area 1: Raw material reconditioning and storage. In this area the raw material is received directly from 158 

both a local cereal farm and a local brewery. Barley straw is milled, air-dried, homogenized and 159 

warehoused in silos at atmospheric pressure and room temperature to guarantee its conservation. 160 

Regarding the BSG, they are received with 78% of moisture content and stored in silos at 4ºC until 161 

use. 162 

Area 2: Autohydrolysis pretreatment. Both streams (straw and spent grains) are subjected to a non-163 

isothermal autohydrolysis with water to achieve a liquid to solid ratio of 8 g liquid per g dry material. 164 

The operation temperature in the reactor is 210ºC, conditions reported as optimal for obtaining high 165 

amounts of XOS (Vargas et al., 2015). This stage is key since it permits the selective separation of the 166 

main components of the lignocellulosic biomass to give valuable products such as oligosaccharides 167 

derived from the solubilization of the hemicelluloses and a solid fraction rich in cellulose and lignin 168 

(Dávila et al., 2016). At the end of the hydrothermal pretreatment, the reactor is cooled at 45ºC. The 169 

autohydrolysis liquors (liquid fraction) are separated from the spent solids (solid fraction) in the 170 

filtration unit (press filter). 171 

Area 3: Xylooligosaccharides purification. The liquid fraction rich in hemicellulose-derived compounds 172 

from the filtration unit is subjected to a purification step based on ultrafiltration, evaporation and spray 173 

drying operations. A membrane ultrafiltration unit is required to removing undesired compounds (such 174 

as monosaccharides and compounds derived from extractives and lignin) generated in the 175 

autohydrolysis step and to partially concentrate the liquors (Gullón et al., 2014). The concentrated 176 

fraction rich in XOS is sent to a triple-effect evaporators train under cross-current feeding to increase 177 

the higher economy. The output-stream from the evaporation unit present an average composition of 178 

50% (w/w) in XOS. Next, it is sent to the spray drying unit where oligosaccharides-rich stream is 179 
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sprayed and the XOS power (maximum 5% moisture) is obtained as final product, which is finally 180 

stored. Natural gas is used as fuel in the drying unit. 181 

Area 4: Fermentation. The solid fraction from the filtration unit must be sent for bio-ethanol production. 182 

The fermentative production of bio-ethanol can be performed by consecutive stages of hydrolysis and 183 

fermentation, or in a single stage of Simultaneous Saccharification and Fermentation (SSF). In the 184 

latter, enzymes and fermenting microorganisms are present in the same medium. This configuration 185 

has been chosen for designing since reports multiple advantages (Buruiana et al., 2014). Firstly, the 186 

preparation of the inoculum is carried out; for this, cells of Saccharomyces cerevisiae CECT1170 187 

(Spanish Collection of Type Cultures, Valencia, Spain) are grown at 32ºC for 24 h in a medium 188 

containing 10 g glucose/L, 5 g peptone/L, 3 g malt extract/L, and 3 g yeast extract/L. After growth, 189 

cells are recovered by centrifugation, resuspended in a phosphate buffer solution and inoculated in the 190 

medium SSF. SSF media was prepared by mixing the desired amounts of barley straw and BSG with 191 

water (at a liquid to solid ratio of 8 w/w), enzymes (cellulase, Cellic Ctec2) at a ratio of 2 Filter Paper 192 

Units (FPU) per g of pretreated dry solid, and nutrients (the same as in the preparation of the inoculum 193 

but without glucose).  194 

SSF is the second step and six fermenters are considered for this purpose. SSF is performed in fed-195 

batch mode and substrate, enzymes and nutrients are fed in three separate loads: the first at the 196 

beginning of the fermentation, the second at 24 h and the third at 48 h (Vargas et al., 2015). The fed-197 

batch SFF configuration (FBSSF) has been considered since allows working at high solid loading, 198 

achieving high ethanol concentrations and minimising operational problems (Vargas et al., 2015). 199 

FBSSF is performed at pH=5, 35ºC and 120 rpm. The fed-batch SSF lasts up to 120 h.  200 

It is important to bear in mind that all the required inputs in boths steps must be carefully sterilizated 201 

as well as the equipments used (pre-fermenters to produce the inoculum and fermenters to carry out 202 

the SSF) by means of the injection of steam to avoid possible contaminations. 203 

Area 5: Bio-ethanol purification. This stage consists on the purification of the bio-ethanol rich stream 204 

from FBSSF. Firstly, solids presented in the stream must be removed (biomass and spent solids). To 205 

do so, the stream is derived to a centrifugation unit. The liquid fraction is heated-up from 35ºC to 65ºC 206 

with the aim of transferring the dissolved CO2 from fermentation to gas phase. Secondly, heated 207 

stream is fed into a gas-liquid separator. The gas phase rich is CO2 is vented and the liquid phase is 208 

heated-up till 95ºC (saturated liquid temperature) before being introduced in the distillation unit. After 209 
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distillation, the botton stream is mostly constituted by water together with residual sugars, enzymes 210 

and salts from the fermentation medium. Distillate is rich in ethanol (~90% in weight). After being 211 

condensed, it is sent to the dehydration unit (molecular sieves) in order to obtain fuel grade bio-212 

ethanol (puritiy >99.5%). Finally, bio-ethanol is stored for further distribution. 213 

As indicated in Figure 2, solid and liquid wastes are produced in different steps. Activities involved in 214 

these wastes management have been included within the system boundaries as ancillary stages (see 215 

Figure 1). Liquid and solid wastes produced in the biorefinery are sent to a wastewater treatment 216 

plant (WWTP) and to composting (SWM), respectively. It is assumed that both installations are placed 217 

in the surroundings of the biorefinery. 218 

 219 

2.5. Life Cycle Inventory data and sources 220 

Among the LCA stages, Life Cycle Inventory analysis is the most relevant one since all data related to 221 

the production process (relevant inputs and outputs as well as emissions) must be gathered and 222 

accounted for further steps. In addition, high quality inventory data must be managed to obtain reliable 223 

results. Data corresponding to the foreground system (i.e., the biorefinery process) have been 224 

modelled in detail and identified all of them per area. The modelling of the full-scale facility required 225 

the scale-up of the laboratory production process. The selected studies (Buriana et al., 2014; Vargas 226 

et al. 2015, 2016) supplied useful information regarding the steps and quantities required at lab scale. 227 

The scale-up sequence proposed by Piccinno et al. (2018) has been followed in detail. In addition, 228 

calculation procedures and equations have been used for the specific design of the required 229 

equipment (Sinnott and Towler, 2009). As in other industrial facilities, the single processes are linked 230 

throughout transfer of reaction mixtures and the inter-process heat and energy recovery. Therefore, 231 

the estimated energy and mass flows have been accomplished as foreground-inventory data. In 232 

addition, the stoichiometric amounts of each reactant (including enzymes) considering lab protocols 233 

have been computed in the inventory data in line with Piccinno et al. (2016, 2018). Relevant inventory 234 

data from mass and energy balances to the foreground system is summarised in Table 1.  235 

 236 

<Table 1> 237 

 238 
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Whenever possible primary data must be processed to achieve representative results. Nevertheless, 239 

sometimes it is necessary to go to secondary data mainly for background processes. In this study, 240 

only secondary data have been managed for background system, which involves the production of 241 

utilities (electricity, fossil fuels) and other inputs to the foreground system (chemicals, water and 242 

nutrients). Ecoinvent® database version 3.2 (Wernet et al., 2016) has been considered as main 243 

secondary data source. The biorefinery is planned to be placed in Spain due to the large availability of 244 

raw material. Thus, current data for the average electricity generation and imports/exports from Spain 245 

in 2017 (Red Eléctrica de España, 2017) have been considered to update the electricity defined in the 246 

database (Dones et al., 2007). Regarding enzymes production process and derived environmental 247 

impacts, information has been taken from Gilpin and Andrae (2017) as well as from Nielsen and 248 

Wenzel (2007).  249 

Ancillary activities such as wastewater treatment and solid waste management have been also 250 

included within the system boundaries to compute the environmental impacts derived. Inventory data 251 

corresponding to the wastewater treatment plant have been taken from Doka (2007). Solid residue 252 

from from the centrifugue is sent to composting and inventory data have been taken from Doka 253 

(2007). Table 2 lists the background processes directly taken from Ecoinvent® database included in 254 

this study. 255 

 256 

<Table 2> 257 

 258 

2.6. Life Cycle Impact Assessment methodology 259 

The study takes into consideration the following impact categories: acidification potential (AP) as an 260 

indicator of acid rain effect; eutrophication potential (EP) as a sign of nutrients enrichment of water 261 

and soil; global warming potential (GWP) as an indicator of greenhouse effect; ozone layer depletion 262 

potential (ODP) as a pointer of substances emission with ozone-depleting potential, photochemical 263 

oxidation potential (POP) as an indicator of photo-smog creation. In addition, toxicity-based impact 264 

categories which are linked to the exposure of toxic substances for an infinite time horizon have been 265 

included in the analysis such as human toxicity (HTP), freshwater aquatic ecotoxicity potential (FEP), 266 

marine aquatic ecotoxicity potential (MEP) and terrestrial ecotoxicity (TEP). The choice of these 267 

impact categories is because all together give a complete and comprehensive environmental profile 268 
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related to the production process under evaluation. Characterization factors reported by the Centre of 269 

Environmental Science of Leiden University - CML 2001 method v2.05 (Guinée et al., 2001) have 270 

been considered in this study for the analysis. The implementation of the Life Cycle Inventory data has 271 

been performed in the SimaPro v8.2 (PRé Consultants, 2017) software (Goedkoop et al., 2013).  272 

 273 

2.7. Statistical analysis 274 

Statistical analysis has been carried out using the software R (version 3.4.3) due to the relevance of 275 

electricity requirements in biorefinery systems when environmental burdens are analysed (González-276 

García et al., 2016; 2018; Gullón et al., 2018). Differences in electricity consumptions inall production 277 

areas have been tested using both one-way analysis of variance (ANOVA) and Tukey’s post hoc test. 278 

Differences have been considered significant at p < 0.05 as reported in Table 1. 279 

 280 

3. Results and discussion 281 

Table 3 shows the characterisation results corresponding to the biorefinery process proposed for 282 

analysis. The results are reported per batch (i.e., for the whole production system involving the 283 

valorisation of 74,216 kg of feedstock) as well as per kg of co-product obtained that is, per kg of bio-284 

ethanol and per kg of XOS. As indicated in section 2.3. of this manuscript, the estimation of 285 

environmental burdens between both co-products has been carried out following an allocation 286 

procedure considering the market price of both co-products (0.64 €·kg-1 and 0.671 €·kg-1 respectively 287 

for bio-ethanol and XOS (Joelsson et al., 2016;Alibaba, 2018). 288 

 289 

<Table 3> 290 

 291 

3.1. Global results 292 

The valorisation strategy considered in the designed full-scale plant considers five production units 293 

from feedstock reconditioning till purification sections of both co-products. Figure 3 displays the 294 

contributions from the different involved units to each impact category. According to it, the 295 

autohydrolysis pretreatment (area 2) is considered as an environmental hotspot in the whole 296 

production system with contributions ranging from 33% to 55% depending on the category, except in 297 

                                                 
1 The market price assumed for XOS corresponds with hemicelluloses (which is lower) due to the lack 
of information regarding structural characteristics of the oligosaccharides obtained 
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terms of MEP and TEP. Related studies of biorefinery systems also identified this section as important 298 

in terms of environmental impacts (González-García et al., 2016, 2018; Gullón et al., 2018). This 299 

outstanding effect on the environmental profile is associated with the large requirements of steam in 300 

the autohydrolysis reactor since the optimum operation temperature was fixed at 210ºC, according to 301 

lab experiments. Area 4 intended for fermentation of cellulose-rich solid fraction obtained in the 302 

filtration unit and constituted by the inoculum preparation and FBSSF plays a key role in MEP and 303 

TEP (100% and 94% of contributing ratios, respectively). Background processes involved in the 304 

production of the enzyme required to transform the cellulose into glucose is behind these remarkable 305 

ratios. The remaining areas contribute to the impact categories in a minor extent. Ancillary activities 306 

report a remarkable effect in terms of EP (around 21% of total responsible factors). This area includes 307 

the management of both wastewater in a treatment plant as well as organic solid residues under a 308 

composting scheme, being their effects distributed as 55% and 45%, respectively. Thus, improvement 309 

research activities should be carried out towards the optimization of steam requirements in the 310 

pretreatment step to obtain outstanding reduction on the global environmental profile. 311 

 312 

<Figure 3> 313 

 314 

3.2. Environmental assessment of XOS production 315 

The assessment of the environmental burdens associated with the production of XOS has been 316 

addressed in detail since it allows further comparison with other alternative oligosaccharides (pectic 317 

oligosaccharides (POS) and fructooligosaccharides (FOS)) as well as with other production strategies. 318 

This analysis is also important since area 3 is specific for production XOS, so that the environmental 319 

burdens derived from it, has been entirely allocated to this product. Figure 4a displays the distribution 320 

of environmental burdens between the involved areas that is, area 1 (feedstock reconditioning and 321 

storage), area 2 (autohydrolysis pretreatment), area 3 (XOS purification) and ancillary activities. The 322 

latter ony includes the management of derived wastewater in a WWTP since there is not solid 323 

residues production in this valorisation route. Moreover, the characterisation results per kg of XOS are 324 

summarised in Table 3. According to Figure 4a, the pretreatment stage (area 2) plays a key role in 325 

the environmental profile being responsible for contributing ratios around ~63% in all the categories 326 

except in EP, where it is of 48%. It is important to bear in mind that the partitioning ratio corresponding 327 
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to XOS is 44%, which has been estimated taking into account the market value and production yield. 328 

This partitioning ratio has been considered for the distribution of burdens from area 1 and area 2 329 

between both co-products. Area 3 which is related with XOS recovery from the liquid fraction obtained 330 

in the filtration unit (area 2) and consequenty purification, reports also an outstanding effect on the 331 

environmental profile of the XOS production. This area is responsible for ~31% of contributing burdens 332 

in all the categories. Having a look into this area, steam is required in the evaporation unit, electricity 333 

in the ultrafiltration unit (as well as in the pieces of equipment such as conveyor belts, pumps and 334 

bucket elevators) and natural gas for heating purposes in the spray drying unit. Figure 4b depicts the 335 

distribution of environmental burdens linked to area 3. According to these results the production of the 336 

steam required for the evaporation unit is the responsible for more than 90% of contibutions to all the 337 

categories analysed. This can be explained because steam production requires the combustion of 338 

natural gas. Alternative renewable fuels could be considered to reduce environmental burdens from 339 

this operation. Contributions to the environmental profile from electricity requirements are negligible. 340 

Production of heat needed in the spray drying reports an outstanding effect in GWP (10% of total 341 

contributions). The rationale behind this value is the combustion of natural gas in an industrial boiler to 342 

produced heat requirements. 343 

Finally, eutrophication potential associated with XOS production is considerably affected by the 344 

wastewater management. Activities carried out in the WWTP are responsible for 28% of total 345 

eutrophying substances. 346 

 347 

<Figure 4> 348 

 349 

 350 

3.3. Environmental assessment of bio-ethanol production 351 

In line with XOS production, the environmental profile associated with the production of bio-ethanol 352 

from barley straw and BSG biorefinery has been determined. Thus, environmental hotspots can be 353 

identified and the profile can be compared with others available in the literature. 354 

Figure 5a displays the contributions to the environmental profile from involved stages in its production. 355 

Once again, area 2 plays a key role in some environmental categories such as AP, GWP, FEP and 356 

POP with contributing ratios of 46%, 41%, 51% and 39%, respectively. As previously indicated, a 357 
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partition of burdens derived from area 1 and area 2 has been considered between both co-products. In 358 

the case of bioethanol, the partitioning ratio is of 56%. Therefore, 56% of burdens from feedstock 359 

reconditioning and autohydrolysis pretreatment have been computed to bio-ethanol production. It is 360 

obvious that further improvements should be focussed on the pretreatment step to enhance the 361 

environmental profile.  362 

However, the environmental hotspot in the profile of bio-ethanol production is associated with area 4 363 

(SSF stage), mostly due to the use of enzymes. Figure 5b depicts the contributing factors responsible 364 

for burdens derived from area 4. According to it, enzymes production plays the key role in all the 365 

categories evaluated. Enzyme production an energy and steam intensive process, specifically in 366 

activities such as aeration and fermentation (Nielsen and Wenzel, 2007; Gilpin and Andrae, 2017). 367 

Further research should be carried out on the enzymes production process (i.e., nutrients, carbon 368 

source and energy requirement) as well as on the optimization of the required enzymes dose. 369 

Moreover, CO2 emissions from fermentation are also outstanding in terms of GWP (39%). Production 370 

of nutrients (glucose and peptone) required for the preparation of inoculum and for fermentation step 371 

reports a significant effect in terms of HTP and FEP, due to their background processes. 372 

 373 

<Figure 5> 374 

 375 

Regarding remaining stages, area 1 (raw material reconditioning and storage) and area 5 (bio-ethanol 376 

purification) as well as ancillary activities dedicated to the management of derived waste report a 377 

different behaviour depending on the category. Contributions from area 1 are negligible in all the 378 

categories. The purification stage contribute with no-outstanding ratios in all the categories except in 379 

terms of AP (13%) and FEP (14%). The rationale behind these values is mainly associated with the 380 

production of steam required in the distillation unit (~98%). Finally, ancillary activities include 381 

wastewater treatment and solid waste management under composting. Effect from these activities is 382 

remarkable in AP and EP (19% and 18%, respectively). Composting process is responsible for 99% of 383 

acidifying emissions and 76% of eutrophying emissions. 384 

 385 

3.4. Uncertainty regarding enzymes’ effect on the results 386 
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Enzymes are required for the hydrolysis of cellulose into fermentable sugars. As previously discussed, 387 

the production of enzymes has been identified as one major contributor towards the life cycle 388 

environmental analysis of bio-ethanol production. This statement has been reported by other studies 389 

available in the literature (Wiloso et al., 2012; Sebastião et al., 2016; Gilpin and Andrae, 2017). 390 

However, it is not clear in some works which system boundaries have been taken into account 391 

(Borrion et al., 2012; Wiloso et al., 2012). In this sense, it is not evident if production of both chemicals 392 

and enzymes has been considered, which considerably difficult the environmental comparisons with 393 

studies available in the literature.  394 

MacLean and Spatari (2009) established that 33% of greenhouse gases (GHG) emission produced all 395 

over the life cycle of bio-ethanol are attributed to enzymes and chemicals required. In our study, their 396 

contribution adds up to 20% of total in line with the findings from Sebastião et al. (2016). It is important 397 

to highlight that the enzyme activity is a key factor which directly affect the environmental profile since 398 

it is directly linked to the dose of enzyme required. In our study, around 135 kg enzyme are required 399 

per 1,000 kg of bio-ethanol produced, a value considerably higher than that reported by Daylan and 400 

Ciliz (2016) that employed 38 kg per 1,000 kg bio-ethanol. Therefore, research and development 401 

should be focused on reducing the amount of enzyme needed or increasing the enzyme productivity 402 

as well as the potential for recycling enzymes (MacLean and Spatari, 2009). 403 

Moreover, special attention must be paid to the bio-ethanol production strategy from lignocellulosic 404 

feedstocks. Although in the designed biorefinery, FBSSF has been established for its multiple benefits 405 

such as higher bio-ethanol yields, shorter fermentation time and lower toxic effect of the medium 406 

components (Cheng, et al., 2009); in the literature can be found others approaches for effective bio-407 

ethanol production such as separate hydrolysis and fermentation (SHF), consolidated bioprocessing 408 

(CBP) or cell recycle batch fermentation (CRBF). In SHF, enzymatic hydrolysis of pretreated biomass 409 

is made separately from ethanol fermentation (Azhar et al., 2017). In CBP, the saccharification and the 410 

fermentation are performed by one single microorganism and in one step (Hasunuma and Kondo, 411 

2012). The CRBF is based on the recycling of the yeast cells, reducing the time and of the cost of the 412 

inoculum preparation (Matano et al., 2013). 413 

Furthermore, the pretreatment is a key stage to improve cellulose hydrolysis and to produce a 414 

fermentable sugars stream rich in glucose; likewise, the severity of this stage has a direct effect on the 415 

amount of enzymes required. In our study, autohydrolysis pretreatment has been proposed with the 416 
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aim of producting not only bio-ethanol but also XOS from hemicelluloses solubilization. In this context, 417 

an increase in the severity of the treatment leads to a greater enzymatic susceptibility of the solid 418 

fraction from the hydrothermal treatment and therefore a higher production of ethanol, however 419 

obtaining XOS could substantially be affected. 420 

According to it, it is proved the relevance of including the impact of enzymes production in life cycle 421 

environmental studies of bio-fuels. 422 

 423 

3.5. Production of steam requirements: Sensitivity analysis 424 

Besides enzymes, production of steam requirements is crucial in the environmental profile of the 425 

biorefinery system under study. The rationale behind its large effect on the environmental burdens is 426 

the use of natural gas as fuel, which has been considered as proxy for the current most extended 427 

practices at industrial level. Production of steam requirements in areas 2 (to acquire the optimum 428 

temperature), 3 (in the evaporation unit) and 5 (in the distillation unit) is responsible for contributions 429 

higher than 55% in categories such as AP, GWP, ODP, POP, HTP and FEP as displayed in Figure 430 

6a. Therefore, an interesting challenge to improve the environmental profile should be focused on 431 

reducing the environmental burdens from this operation. An alternative scenario has been proposed 432 

for analysis considering the production of steam from hardwood chips that is, a renewable source 433 

avoiding the use of a fossil fuel (i.e., natural gas). Figure 6b depicts the outcomes of the sensititivity 434 

analysis comparing the profile between base case and the alternative one. According to it, the 435 

alternative scenario yields to the lowest environmental burdens specifically in terms of GWP (reduction 436 

of 61%), AP (72%), FEP (66%) and POP (65%). Therefore, this steam production alternative should 437 

be the most convenient choice. Although background activities involved in chips production (i.e., forest 438 

system) have been computed and require the consumption of diesel in forest machines, global fossil 439 

fuels demand is lower than in the baseline. Thus, global emission parameters (e.g., PM, NOx, SO2) are 440 

lower in the renewable alternative. 441 

 442 

<Figure 6> 443 

 444 

 445 

3.6. Comparison with literature 446 
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Nowadays the interest on the biorefinery approach is capturing the industry and stakeholders’ 447 

attention for multiple motives since a great fraction of energy carriers and materials come from fossil 448 

fuel refineries (Cherubini, 2010). Furthermore, European Commission is implementing strategies to 449 

“closing the loop” of product life cycles in industrial production systems from a circular economy 450 

approach (Liguori and Faraco, 2016). To the best of our knowledge, no other environmental studies 451 

have been published regarding a biorefinery producing both bio-ethanol and oligosaccharides. 452 

Bio-ethanol from first generation technology is currently used in commercial gasoline blends. It 453 

requires the use of dedicated crops which derive on direct competition with arable land for food and 454 

feed purposes. Lignocellulosic bio-ethanol is therefore a promising energy alternative being 455 

considered a clean, low carbon and secure energy source (Borrion et al., 2012; Sebastião et al., 456 

2016). To date, several studies are avaible regarding the environmental impact of bio-ethanol paying 457 

special attention into GHG emission (Daylan and Ciliz, 2016; Chang et al., 2017). However, the 458 

complexity of the whole bio-ethanol production chain can generate significantly different results due to 459 

differences in input data, feedstock managed, methodologies applied and assumptions, and local 460 

geographical conditions (Sebastião et al., 2016). As previously discussed, system boundaries selected 461 

for the analysis is also a critical issue since discrepancies exist regarding their definition. In this sense, 462 

the production of enzymes required in the fermentation throws up great controversy. Our study is 463 

based on a biorefinery system where not only bio-ethanol is produced but also xylooligosaccharides. 464 

Therefore, it involves specific activities (e.g., area 2) dedicated to the fractionation of the feedstock to 465 

produce both co-products. The autohydrolysis section is not common in dedicated bio-ethanol 466 

production systems playing a key role in our environmental profile. The large energy demand in the 467 

autohydrolysis reactor is behind that issue and thus, the environmental profile associated with the bio-468 

ethanol obtained in our biorefinery is considerably worse than available studies in the literature. 469 

Reported values for second generation bio-ethanol are lower than 0.157 kg CO2eq per MJ bio-ethanol 470 

(Sebastião et al., 2016) - which corresponds with wheat straw based bio-ethanol. In our study, the 471 

GWP adds up to 0.280 kg CO2eq per MJ bio-ethanol assuming 26.4 MJ·kg-1 as lower caloric value2 472 

and being ~35% of GHG emission derived from autohydrolysis. 473 

Regarding oligosaccharides production, González-García et al. (2016; 2018) and Gullón et al. (2018) 474 

environmentally assessed different valorization strategies at pilot scale dedicated to hemicellulosic 475 

                                                 
2 http://www.eubia.org/cms/wiki-biomass/biofuels-for-transport/bioethanol/ (accessed March, 2018) 

http://www.eubia.org/cms/wiki-biomass/biofuels-for-transport/bioethanol/
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oligosaccharides production (galactoglucomannas, pectioligosaccharides and xylooligosaccharides, 476 

respectively) from different feedstocks (wood chips, sugar beet pulp and vine shoots). All of them 477 

could be considered alternative oligosaccharides with interest as prebiotic functional food ingredients 478 

and biomaterials. A comparative environmental analysis in terms of GHG emission throughout the 479 

whole life cycle has been addressed with the aim of indetifying the best production strategy. The 480 

comparative profiles per kg of oligosaccharide produced are depicted in Figure 6c. The best result in 481 

terms of GHG emission corresponds to xylooligosaccharides production from barley straw and 482 

brewer’s spent grains under a biorefinery approach together with bio-ethanol as co-product (4.21 kg 483 

CO2eq·kg-1). It is important to highlight that the study corresponds with a full-scale production whereas 484 

the other studies were performed at pilot scale. As previously mentioned, the production process has 485 

been modelled from laboratory data following the methodology reported by Piccinno et al. (2018) 486 

considering the benefit of economies of scale. The production of pectioligosaccharides under thermal 487 

and enzymatic treatments from sugar beet pulp (González-García et al., 2018) derived on a carbon 488 

footprint around 13 times higher. Large electricity requirements in operations such as freeze-drying 489 

are the rationale behind that result. On the other hand, the worst profiles correspond to the extraction 490 

of galactoglucomannas from residual wood waste under thermal treatment conditions (González-491 

García et al., 2016) deriving into 189±40 kg CO2eq·kg-1. Purification and freeze-drying activities are 492 

the key processes responsible for these large results. According to Gullón et al. (2018), 493 

xylooligosaccharides extraction from vine shoots considering different thermal pretreatments and 494 

different valorization routes involves a GWP of 104±49 kg CO2eq·kg-1. Electricity requirements for 495 

freeze dryer and autoclave as well as enzymes are again environmental hotspots. 496 

 497 

4. Conclusions and future outlook 498 

The integration of a biorefinery approach in a production system allows the obtention of different high-499 

added value products from renewable wastes making the process more sustainable not only from an 500 

economic but also from an environmental perspective, reducing residues production and resources 501 

consumption. In this study, wastes from brewery have been considered as potential feedstock for bio-502 

ethanol and xylooligosaccharides production. The production factory has been modelled at full-scale 503 

considering laboratory data and environmental impacts have been determinated following the LCA 504 

methodology. The large requirement of steam, specifically in the autohydrolysis reactor, which is 505 
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commonly produced from natural gas, has been identified as environmental hotspot. In addition, the 506 

production of enzymes required in the bio-ethanol production route have considerably affected the 507 

environmental profile.  508 

The introduction of renewable sources to produce steam requirements such as wood chips can be 509 

considered as a potential improvement, deriving into outstanding environmental reductions. In 510 

addition, the enzyme specific activity is an issue that directly affect the environmental burdens. 511 

According to the outcomes, further research should be focused at large scale not only in the 512 

optimization of enzymes’ dose requirement  but also in the enzymes production process itself with the 513 

aim of increasing their specific activity and reducing the energy requirements as well as in the 514 

enzymes potential recycling. 515 

Environmental sustainability has increasingly been incorporated in the design of biorefinery systems 516 

(although often reduced to GHG emission); economic dimension is often considered mostly 517 

throughout profitability and techno-economic analysis to compare biorefinery alternatives for producing 518 

a given product; however, social dimension of sustainability in contrast to economic and environmental 519 

ones, is generally omitted in design practices. Thus, future efforts must be conducted to develop an 520 

integral sustainability analysis. 521 
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