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Abstract 

The influence of a GATG (gallic acid-triethylene glycol) dendrimer decorated with 27 terminal 

morpholine groups ([G3]-Mor) on the aggregation process of Alzheimer’s peptide has been 

investigated. Amyloid fibrils were formed from the Aβ 1-28 peptide and the process was 

monitored by a ThT assay, changes in CD spectra, and transmission electron microscopy. In 

the presence of [G3]-Mor, more fibrils were built and the process significantly accelerated 

compared to a control. The cytotoxicity of (1) Aβ and (2) the system [G3]-Mor/Aβ was 

monitored at different stages of the aggregation process. Prefibrillar species were more toxic 
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than mature fibrils. [G3]-Mor significantly reduced the toxicity of Aβ, probably due to lowering 

the amount of prefibrillar forms in the system by speeding up the process of fibril formation. 

 

 

Alzheimer’s disease (AD) is the major cause of disability and death in the elderly. Amyloid 

deposits surrounding dying neurons, neurofibrillar degeneration with tangles, and 

cerebrovascular angiopathies are three main characteristics of AD [1]. One of the main 

pathological hallmarks of AD is the formation of amyloid plaques in the affected brain as a 

result of protein misfolding [2]. The major component of amyloid deposits is a 40-42 residue 

peptide called β-amyloid peptide (Aβ), produced by endoproteolytic cleavage of an amyloid 

precursor protein (APP) [3]. The structure of Aβ 1-40 has recently been published [4]. It 

adopts a compact, partially folded structure (with a central hydrophobic region forming a 310 

helix from H13 to D23) predicted to be crucial in-pathway intermediates in fibrilogenesis that 

leads to creation of oligomers, protofibrils, and fibrils in equilibrium. Amyloid aggregates are 

formed when Aβ is excessively produced, cleared too slowly, or in contact with 

proaggregating factors. Various aggregated forms of Aβ act as potent and direct neurotoxic 

agents, eliciting a cascade of events leading to neuronal pathology and clinical manifestation 

of AD. Thus, clearance of Aβ from the brain is first choice in therapies for AD patients [5]. A 

complementary and actively pursued therapeutic strategy for treating AD is preventing 

aggregation of Aβ. For instance, efforts to synthesize small molecules that target Aβ 

aggregates and at the same time complex metal-ions (that are known to facilitate Aβ 

aggregation and produce reactive oxygen species associated to oxidative stress and 

neuropathology of AD) have been made [6, 7]. Inorganic nanoparticles strongly inhibit Aβ 

fibrillation by preferentially binding to oligomers [8]. Alternatively, dendrimers – globular, 

highly branched polymers – either inhibit or accelerate the production of fibrils [9, 10]. A 

breakthrough in the use of dendrimers as therapeutic agents for AD has been the discovery 

that polyamidoamine (PAMAM) dendrimers can purge scrapie forms of prion protein (PrPSc) 

in vitro from infected brain extracts [11, 12]. Several mechanisms have been proposed to 

explain this dendrimer activity; interaction with peptide monomers, blocking of fibril ends, and 

disruption of existing fibrils [13]. 

One of the most important aspects of AD is that neurotoxicity relates to Aβ aggregates, not to 

newly solubilized peptides [14]. Mechanisms has been suggested to explain the cytotoxicity 

induced by Aβ aggregates, such as activation of false signal transduction pathways that lead 

to apoptosis [15, 16], the generation of free radicals that result in oxidative stress and 

mitochondrial dysfunction [17], and the opening of ion-channels in membranes that leads to 

their depolarization [18]. 
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Herein we report on the influence of GATG (gallic acid-triethylene glycol) dendrimers on the 

aggregation of an amyloid model peptide Aβ 1-28, which contains the core region 

responsible for Aβ aggregation. GATG has recently emerged as an interesting family of 

dendrimers that benefit from an easy structural modification, and an adequate aqueous 

solubility and biocompatibility due to their ethylene glycol side-chains [19-21]. The presence 

of peripheral azides in GATG dendrimers has been exploited for efficient functionalization by 

means of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) [22, 23]. The resulting 

activated dendrimers have emerged as interesting agents in the study of the multivalent 

carbohydrate-receptor interaction [24], the dynamics of dendrimers [25], and the preparation 

of polyion complex micelles and dendriplexes for gene therapy [26 ,27]. GATG-based 

contrast agents for MRI have recently been reported [28]. Encouraged by the promising 

properties of GATG dendrimers as inhibitors of the dimerization of the capsid protein (CA) of 

HIV-1 [29], we have investigated their potential to influence the formation of amyloid fibrils 

and the toxicity of Aβ 1-28. With this aim, a novel GATG dendrimer of generation 3, 

functionalized with 27 terminal morpholinoethyl groups ([G3]-Mor, Figure 1), has been 

prepared with CuAAC. N-alkylated morpholines are characterized by physiological pH pKa 

values, which makes them attractive ligands in dendrimer-amyloid peptide interactions. The 

formation of fibrils in the presence of [G3]-Mor has been confirmed using the thioflavin T 

(ThT) assay, TEM observations and CD experiments. The cytotoxicity of Aβ species was 

monitored by the MTT assay during the aggregation process in the absence and presence of 

the dendrimer. The cytotoxicity of [G3]-Mor was also assessed. 

 

2. Material and methods 

2.1. Materials 

A synthetic peptide Aβ 1-28 [DAEFRHDSGYEVHHQKLVFFAEDVGSNK] (purity >90%) was 

purchased from JPT Peptide Technology GmbH (Germany). A peptide stock solution was 

kept in 10 mM HEPES buffer at pH 7.4. Thioflavin T (ThT), heparin-sodium salt from porcine 

intestinal mucosa (H4784) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) were purchased from Sigma Chemical Company. All other chemicals were of 

analytical grade. Double-distilled water was used to prepare the other solutions. [G3]-Mor: 

[G3]-N3 (27 mg, 3.44 µmol, prepared according to Fernandez-Megia et al. [20]) was 

dissolved in t-BuOH (0.46 ml) and H2O (0.30 ml). 4-(3-butyn-1-yl)morpholine (26 mg, 0.186 

mmol, prepared according to Smaill el at. [30]) and freshly prepared aqueous solutions of 

CuSO4 (46 µL, 4.64 µmol) and sodium ascorbate (116 µL, 23.2 µmol), were added. The 

solution was stirred at room temperature for 72 h. Aq HCl (0.1 ml, 0.1 M) was added and the 

mixture purified by ultrafiltration (Amicon YM1, 5 x 30 ml H2O) before being freeze-dried to 
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yield the hydrochloride salt of [G3]-Mor (38.8 mg, 90%) as a pale yellow foam. 1H-NMR (500 

MHz, D2O) δ: 7.90 (br s, 27H), 7.23-6.99 (m, 26H), 4.56 (br s, 54H), 4.21-3.48 (m, 498H), 

3.26 (br s, 2H), 3.19-2.71 (m, 216H), 1.56 (br s, 2H), 0.90 (br s, 3H). 13C NMR (100 MHz, 

D2O) δ: 169.6, 169.5, 152.9, 152.7, 144.6, 140.7, 130.3, 125.0, 107.2, 73.2, 71.0, 70.9, 70.7, 

70.4, 70.0, 69.7, 69.4, 65.6, 57.4, 52.9, 50.9, 40.7, 21.4, 11.8. IR (KBr, cm-1) 3288, 2928, 

2870, 1651, 1118. [G3]-Mor was dissolved in 10 mM HEPES buffer at pH 7.4. 

2.2. Formation of amyloid fibrils – ThT assay  

Aggregation was monitored using the dye, ThT, whose fluorescence depends on the 

aggregate formation. A stock solution of Aβ 1-28 peptide (1 mM) in HEPES, pH 7.4 (kept at 4 

oC and used within few days) was diluted to 50 μM. ThT was then added and its 

concentration in the sample set to match 35 μM and a pH of 5.5 with aliquots of aq HCl. 

Aggregation was triggered by the addition of 0.041 mg/ml heparin. Fluorescence was 

measured with a Perkin-Elmer LS-50B spectrofluorimeter. Experiments were performed at 

37°C with continuous stirring of the sample. The kinetics of aggregation was monitored by 

the changes in fluorescence intensity during the course of the experiment, with excitation and 

emission wavelengths of 450 and 490 nm, respectively. The excitation and emission slit 

widths were set at 5 nm. 

2.3. Formation of amyloid fibrils – transmission electron microscopy observations 

Fifteen μl of a sample were removed from a fluorimetric cuvette after completion of 

aggregation ( Section 2.2) and placed on a copper grid with carbon surface for 10 min and 

dried with a filter paper. The sample was stained with 2% (m/v) uranyl acetate for 2 min and 

dried. Transmission electron microscopy images were taken with a Hitachi H-7000 (75 kV) 

microscope. 

2.4. Formation of amyloid fibrils – Circular dichroism experiments 

CD in the far UV region measurements made with a J-815 CD spectrometer (Jasco). Aβ 1-28 

samples was prepared analogously as for a ThT assay except by adding ThT. CD spectra 

were recorded between 260 and 190 nm using 0.05 cm path-length quartz sandwich cell 

(Helma). The recording parameters were bandwidth – 1.0 nm, slit width – auto, response – 1 

s, scan speed – 50 nm/min, and step resolution – 0.2 nm. The number of scans varied 

between 3 and 5 for each sample. Measurements were made at different time intervals 

during aggregation (0, 5, 60, and 120 min from the beginning of the process). CD spectra 

were corrected by subtracting CD spectra obtained for [G3]-Mor dissolved in a buffer without 

the peptide. The mean residue ellipticity, θ, expressed as a value deg cm2dmol-1, was 

calculated. 

2.5. Cell culture  
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Immortalized Chinese hamster fibroblast (B14, ATCC no. CCL-14) were used to measure the 

cytotoxicity of [G3]-Mor, as also the monomeric and aggregated forms of Aβ 1-28. Cells were 

grown in Dulbecco’s Modified Eagle’s Medium Gluta-MAX (DMEM) (Gibco, UK) 

supplemented with 10% inactivated fetal bovine serum (Sigma Chemical Company) at 37oC 

in a humidified incubator with 5% CO2 in air. Medium was replaced every 3 to 4 days and 

cells were split for subcultures 1:10 every 4 to 5 days. 

2.6. Cytotoxicity of [G3]-Mor – MTT assay 

Five × 103 cells were seeded per well in 96-well plates with growth media (100 µl). Cells were 

washed with phosphate-buffer saline (PBS: 2 mM KH2PO4, 10 mM Na2HPO4, 150 mM NaCl, 

2.7 mM KCl, 1 mM CaCl2, 0.5 mM MgCl2, pH 7.4). Fresh medium and [G3]-Mor (0.05-1.5 

µM) were added 24 h after seeding. After 2 h, the medium with [G3]-Mor was removed, cells 

were washed twice with PBS, and fresh medium added. After 72 h, 50 µl MTT (0.5 mg/ml in 

PBS) was added to each well for 4 h, and the supernatant (containing unreacted dye) was 

replaced with dimethyl sulfoxide (DMSO) (100 µl/well). Plates were shaken and absorbance 

measured at 540 nm with a reference at 720 nm at a Cary 50 BIO UV-Visible 

Spectrophotometer. Yellow MTT formed purple formazan by mitochondrial dehydrogenases 

in the living cells, while no activity of mitochondrial dehydrogenases is detected in dead and 

damage cells [31]. Cell viability was calculated according to equation: 

cell viability[%] = (x/xC) × 100 

where x is the absorbance of cells treated with [G3]-Mor and xC the absorbance of untreated 

(control) cells. An IC50 value of cell viability was obtained graphically. 

2.7. Cytotoxicity of Aβ 1-28 forms 

Two and a half × 103 cells were seeded per well in a 96-well plate with growth media (50 µl). 

Aβ 1-28 peptide samples (collected during the aggregation process) were added to cells at 

10 µM. Aβ was removed after 2 h later, the cells washed twice with PBS, and fresh medium 

added. The MTT assay was used as before (section 3.4). The same procedure was applied 

when A 1-28 aggregated in the presence of [G3]-Mor. 

2.8. Statistics 

Data were expressed as means ± SD, and their statistical significance was analyzed by 

Tucey’s t-test using StatSoft, Inc. (2000) STATISTICA software for Windows. 

 

3. Results 

Amyloid fibrils of Aβ 1-28 were formed in vitro and the aggregation process was monitored 

over time by fluorescence in the ThT assay (Figure 2), having previously checked that ThT 

did not bind to [G3]-Mor. ThT is a dye with a fluorescence intensity that depends strictly on 

the presence of fibrils in the system - the more fibrils formed, the higher the ThT fluorescence 

intensity. A curve characteristic for a nucleation-dependent process was taken as a control 
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(the system without dendrimer). The lowest concentration of [G3]-Mor added (0.01 μM) had 

almost no effect on aggregation, whereas a 10 x higher concentration caused a slight 

increase in fibril production. The most pronounced effect was obtained with a 1 μM dimer, 

which led to the production of far more fibrils and a significant acceleration of aggregation. A 

plateau was reached after 120 min, compared with ~210 min. 

The effect of [G3]-Mor on the morphology of Aβ 1-28 amyloid aggregates was followed by 

TEM. For control samples (Figure 3A) and samples containing 1 µM of [G3]-Mor (Figure 3B), 

characteristic long fibrils were seen. However, the amount of fibrils formed in 1 μM [G3]-Mor 

during aggregation was significantly higher. 

The amount of fibrils produced, as judged by TEM and changes in ThT fluorescence intensity 

were compared with alterations in CD spectra. CD experiments were carried out for the 

control (without [G3]-Mor) and for the system when [G3]-Mor was present at 1 μM. CD 

spectra were recorded in the region of 190-260 nm (Figure 4A). The CD signal here reflects 

the basic secondary structural features of peptides. The spectrum obtained for non-

aggregated Aβ 1-28 had a broad minimum between 195 and 210 nm that decreased as the 

aggregation developed. After addition of [G3]-Mor to Aβ 1-28, the process was faster, as 

illustrated by the changes in residue mean ellipticity for λ=201 nm during aggregation (Figure 

4B). 

Different states of Aβ peptides that are formed during the aggregation process are believed 

to be associated with neurotoxicity in AD. The effect of [G3]-Mor on the toxicity of Aβ 1-28 

was studied during the progress of amyloid fibril formation by the MTT test (Figure 5). The 

cytotoxicity of samples taken every 30 min was determined for a control and for the 

experiments with [G3]-Mor at 0.2 and 0.02 μM (molar ratios Aβ/[G3]-Mor equaled to 50 and 

500 that correspond to [G3]-Mor concentrations of 1 and 0.1 μM in the ThT assay). Before 

the aggregation process started, the Aβ was almost non-toxic. Toxicity increased significantly 

after 30 min and reached a maximum after 90 min in the control. Toxicity decreased and 

after 180 min, cell viability reached the same level as at 30 min. For samples in which [G3]-

Mor was present, no toxicity was seen during the first 30 min of aggregation. Nevertheless, 

[G3]-Mor significantly reduced the cytotoxicity of samples taken at 60, 90, and 120 min (times 

for which the highest toxic effect was observed in control samples) in a concentration-

dependent fashion.  

The cytotoxicity of [G3]-Mor was also checked to confirm it was innocuous at 0.02 and 0.2 

μM. Indeed, cell viability started decreasing when the concentration of [G3]-Mor reached 0.5 

μM (Figure 6). 
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4. Discussion 

Dendrimers have been intensively explored as anti-amyloid agents in the last few years [13, 

32, 33]. The formation of insoluble, fibrillar protein aggregates is a common of many 

neurodegenerative disorders, such as AD, Parkinson’s disease and prion disorders. 

Dendrimers have a high affinity for proteins [34, 35], which has been used to explain their 

interference with amyloidogenesis through several mechanisms (see Introduction). 

Interestingly, most of the previously tested dendrimers block fibril formation at high 

concentrations, whereas they accelerate fibril production at lower concentrations [9, 13, 36]. 

This is typically the pattern for fibril disrupting agents. Inhibitors administered in low doses 

cause a moderate level of fibril breakage in amyloidogenic processes, and may be 

responsible for speeding up the formation of aggregates by creating new free-ends that 

serve as sites of replication. Conversely, the very same inhibitors can be effective at higher 

doses when breakage is very fast. 

With [G3]-Mor, it was soon revealed that it affected the process of amyloidogenesis in a 

strikingly different way to that of most other dendrimers. Indeed, when [G3]-Mor was used at 

high concentrations, fibril formation was not inhibited, but  aggregation was faster and 

increased amounts of fibrils were formed, a seemingly undesirable effect. Thus, although for 

many years the central role of aggregated forms of Aβ in AD pathogenesis has stimulated 

the development of therapeutic approaches designed to prevent fibril formation (fibrillar forms 

of Aβ being necessary for neurotoxicity) [37], recent studies show that alternative Aβ 

assemblies, including small oligomers and fibril intermediates, can also be neurotoxic [38]. 

For instance, correlation of neurological symptoms of AD with insoluble amyloid load seems 

to be much worse than with oligomers [39], which have been found in brains of AD patients 

[40]. In another study, young APP transgenic mice underwent synaptic electrophysiological 

and behavioral changes before amyloid plaques were formed [41 ,42]. It is also known that 

soluble oligomeric Aβ blocks synaptic plasticity is required for memory formation, particularly 

in the hippocampus where neuronal loss occurs as the disease progresses [43]. In addition, 

others have shown that pre-fibrillar assemblies interact with synthetic phospholipid bilayers 

and cell membranes, possibly destabilizing them and impairing specific membrane-bound 

proteins [44,45]. Disclosure of oligomer toxicity has an immediate practical aspect: 

therapeutic strategies aimed at the destabilization of Aβ fibrils might prove counterproductive 

and lead to an increase in the level of oligomers. It seems more important to check the 

toxicity of these systems and how this changes during aggregation than trying to stop fibril 

formation. 

In our studies, cytotoxicity of was checked by the MTT assay. A small quantity of a sample 

was taken every 30 minutes from a cuvette where the aggregation progressed (control). 

Before the aggregation started, no toxic effect was found (time zero). Regarding the 
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cytotoxicity of non-aggregated and aggregated forms of Aβ 1-28, this is consistent with the 

monomeric α-helical conformation being neurotrophic and becoming neurotoxic only after 

transformation to an oligomeric β-sheet conformation [46]. The toxic effect progressed for up 

to 90 min, with minimal cell viability. Then toxicity decreased, and after 180 min reached a 

similar level to in the initial 30 min. Mature amyloid fibrils were substantially less harmful to 

cells than their precursors. When similar experiments involved Aβ/[G3]-Mor mixtures 

prepared at a molar ratio equal to 50, toxicity was substantially decreased. This effect was 

even more pronounced when [G3]-Mor was 10x  higher. 

The most likely role played by [G3]-Mor in the reduction of toxicity relates to the faster and 

higher production of fibrils, with concomitant reduction of the concentration of prefibrillar 

forms, which in the control experiment are seen as ultimately responsible for its toxicity. 

Moreover, good correlation is observed between the times for minimal cell viability and ~50% 

of maximal fluorescence intensity in the ThT assay (90 min for the control and 30 min for the 

Aβ/[G3]-Mor system at  ratio of 50). It means that agents that accelerate the fibril formation 

might have a beneficiary effect in terms of reducing Aβ toxicity. This represents an alternative 

approach to the search for inhibitors of the formation of both fibrillar and oligomeric 

morphologies, such as trehalose. Trehalose inhibits formation of fibrils and oligomers for Aβ 

1-40 that results in reduced toxicity against SH-SY5Y cells. However, when trehalose was 

co-incubated with Aβ 1-42, it only inhibited formation of the fibrillar morphology, and no 

protective effect on SH-SY5Y cells was seen [47]. The behavior of the tested dendrimer 

proves that toxicity can be reduced not only by stopping aggregation, but also by 

accelerating the formation of mature fibrils that are much less harmful to cells than prefibrillar 

forms. 

To conclude, a GATG dendrimer decorated with 27 terminal morpholine groups ([G3]-Mor) 

accelerates at non-toxic concentrations Aβ fibril formation at Aβ/dendrimer ratios 50 and 500. 

Even though the final concentration of fibrils was higher in the presence of [G3]-Mor, the Aβ 

toxicity was significantly lower. This encourages the monitoring of whether the same 

phenomenon is observed ith Aβ 1-40 and Aβ 1-42. If this is the case, it may have a practical 

significance in nanomedicine.  
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Figure legends: 

 

Figure 1. Structure of [G3]-Mor. 
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Figure 2. Variation of the fluorescence of ThT during the aggregation of Aβ 1-28 in the 

absence (grey line) and presence of [G3]-Mor at 0.01 μM (circles), 0.1 μM (rombs), 1 μM 

(triangles). 
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Figure 3. Electron micrographs of Aβ 1-28 samples at the end of aggregation without [G3]-

Mor (A), and in the presence of 1µM [G3]-Mor (B). The length of the bar is 200 nm. 
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Figure 4. CD spectra of Aβ 1-28 during aggregation (A) in the absence of [G3]-Mor – top 

panel, and in the presence of 1µM [G3]-Mor – bottom panel. Changes in mean residue 

ellipticity (B). 

**

***
**

*** ***
***

*** **

0

20

40

60

80

100

120

0 30 60 90 120 150 180

Time [min]

C
e

ll 
v

ia
b

ili
ty

 [
%

 o
f 

c
o

n
tr

o
l]

 

Figure 5. Changes in cell viability upon treatment with Aβ 1-28 in the absence (white bars) 

and presence of [G3]-Mor at 0.2 μM (dark grey bars) and 0.02 μM (light grey bars). Molar 

ratios Aβ/[G3]-Mor equaled to 50 and 500, respectively, that correspond to dendrimer 

concentrations of 1 and 0.1 μM in the ThT assay. To check whether the presence of 

dendrimers affects the toxicity of A 1-28 species (at different stages of aggregation), the 

statistical significance was compared between systems with [G3]-Mor and the control (** 

p<0.01, *** p<0.005). 
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Figure 6. Changes in cell viability after treatment with [G3]-Mor at different concentrations (* 

p<0.05, ** p<0.01). 


